JP2006334976A - Method for producing fine ceramic using ultrasonic waves - Google Patents

Method for producing fine ceramic using ultrasonic waves Download PDF

Info

Publication number
JP2006334976A
JP2006334976A JP2005164086A JP2005164086A JP2006334976A JP 2006334976 A JP2006334976 A JP 2006334976A JP 2005164086 A JP2005164086 A JP 2005164086A JP 2005164086 A JP2005164086 A JP 2005164086A JP 2006334976 A JP2006334976 A JP 2006334976A
Authority
JP
Japan
Prior art keywords
powder
ceramic
molding
ultrasonic
ultrasonic vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005164086A
Other languages
Japanese (ja)
Inventor
Shigeharu Matsubayashi
重治 松林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005164086A priority Critical patent/JP2006334976A/en
Publication of JP2006334976A publication Critical patent/JP2006334976A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for attaining the densification of components with regard to a method for producing a ceramic component using cold hydrostatic pressurization molding and hot hydrostatic pressurization treatment. <P>SOLUTION: With regard to ceramic powder molding and the hot hydrostatic pressurization treatment of a ceramic sintered body, ultrasonic vibration is applied during cold hydrostatic pressurization (CIP) and hot hydrostatic pressurization (HIP). By using a CIP device or a HIP device suppressing the occurrence of a defect and the formation of pores by bridging, the fillability of powdered matter and the fineness of a sintered body are promoted. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、静水圧加圧(以下、CIPとも略記する)または熱間静水圧加圧(以下、HIPとも略記する)を用いた緻密質セラミックスの製造方法に関する。   The present invention relates to a method for producing a dense ceramic using hydrostatic pressure (hereinafter abbreviated as CIP) or hot isostatic pressure (hereinafter also abbreviated as HIP).

これまで、より高圧でのCIP処理を行ったり、顆粒の可塑性を制御したり、HIPではより高圧での処理を行ったり、圧力パターンを制御したり、HIP前の密度をできるだけ高くするなどの対策がとられてきた。   Up to now, measures such as CIP processing at higher pressures, controlling the plasticity of granules, HIP processing at higher pressures, controlling pressure patterns, and increasing the density before HIP as much as possible Has been taken.

例えば、特許文献1で開示されているようにHIP時に鍛造加工を併行して行ったり、特許文献2で開示されているようにCIP時に圧力媒体(圧媒)を加温し顆粒の可塑性を増大させるなどが試みられている。
特開平3−13506号公報 特開平4−247904号公報
For example, as disclosed in Patent Document 1, forging is performed concurrently with HIP, or pressure medium (pressure medium) is heated during CIP as disclosed in Patent Document 2 to increase the plasticity of the granules. Attempts have been made.
Japanese Patent Laid-Open No. 3-13506 JP-A-4-247904

しかしながら、上述のような方法では、装置への負担が大きく、粉体調製や一次焼成時の制御パラメータが多く再現性に乏しいなどの課題を有していた。例えば、特許文献1で開示されているHIP時に鍛造加工を併行する際には装置が大掛かりになる一方で、複雑形状に対応できないという課題を有し、特許文献2で開示されているCIP時に圧力媒体(圧媒)を加温する場合も短時間の処理が困難であり、熱軟化する設定80℃以上の維持には操業上の費用負担もかなり大きくなるなどの課題を有していた。   However, the above-described method has problems such as a heavy burden on the apparatus, a large number of control parameters during powder preparation and primary firing, and poor reproducibility. For example, when carrying out forging at the time of HIP disclosed in Patent Document 1, the apparatus becomes large, but there is a problem that it cannot cope with a complicated shape, and pressure during CIP disclosed in Patent Document 2 Even when the medium (pressure medium) is heated, it is difficult to perform the treatment for a short time, and maintaining the setting of 80 ° C. or higher, which causes heat softening, has a problem that the operational cost is considerably increased.

そこで、本発明は従来の問題点に鑑み創案されたもので、その目的とするところは、簡便に緻密なセラミックスを製造する方法を提供するものである。   Therefore, the present invention has been made in view of the conventional problems, and an object of the present invention is to provide a method for easily producing a dense ceramic.

本発明に係る緻密質なセラミックスの製造方法は、各種セラミックスを製造する際に頻繁に用いられるCIP成形および/またはHIP処理の製造設備において、それぞれの圧力容器内にセットした超音波発振装置により、超音波加振を付与することを特徴とするものである。   The method for producing a dense ceramic according to the present invention uses an ultrasonic oscillator set in each pressure vessel in a CIP molding and / or HIP processing production equipment frequently used in producing various ceramics. It is characterized by applying ultrasonic vibration.

即ち、本発明の要旨は、以下のとおりである。   That is, the gist of the present invention is as follows.

(1) セラミックス粉末、あるいは、セラミックス粉末と可塑性樹脂の混合物を顆粒化した粉末を、一次成形後、収縮性を有する風袋に充填して、二次的により高圧でCIP成形をする際に、または、前記の粉末、あるいは、前記顆粒化した粉末を収縮性を有する風袋に充填し、その後、CIP成形する際に、CIP成形時の圧力容器内部または外部にセットした超音波発振装置により、超音波加振を付与することを特徴とする超音波を用いた緻密質セラミックス成形体の製造方法。   (1) When ceramic powder or powder obtained by granulating a mixture of ceramic powder and plastic resin is first molded and then filled in a shrinkable tare, and secondarily subjected to CIP molding at a higher pressure, or The powder or the granulated powder is filled in a shrinkable tare, and then formed into an ultrasonic wave by an ultrasonic oscillator set inside or outside the pressure vessel at the time of CIP molding. A method for producing a dense ceramic molded body using ultrasonic waves, characterized by applying vibration.

(2) 一次焼成によって得られたセラミックス焼結体を、より高圧のHIP処理によって二次焼成を行う際に、HIP処理時の圧力容器内部または外部にセットした超音波発振装置により、超音波加振を付与することを特徴とする超音波を用いた緻密質セラミックス焼結体の製造方法。   (2) When the ceramic sintered body obtained by primary firing is subjected to secondary firing by higher-pressure HIP treatment, an ultrasonic wave is applied by an ultrasonic oscillator set inside or outside the pressure vessel during HIP treatment. A method for producing a dense ceramic sintered body using ultrasonic waves, characterized by applying vibration.

(3) セラミックス粉末、あるいは、セラミックス粉末と可塑性樹脂の混合物を顆粒化した粉末を、一次成形後、ゴム被膜を外装し二次的により高圧でCIP成形をする際に、または、前記の粉末、あるいは、前記顆粒化した粉末を収縮性を有する風袋に充填し、その後、CIP成形する際に、CIP成形時の圧力容器内部または外部にセットした超音波発振装置により、超音波加振を付与した後、一次焼成を行い、その後、より高圧のHIP処理によって二次焼成を行う際に、HIP処理時の圧力容器内部または外部にセットした超音波発振装置により、超音波加振を付与することを特徴とする超音波を用いた緻密質セラミックス焼結体の製造方法。   (3) Ceramic powder, or powder obtained by granulating a mixture of ceramic powder and plastic resin, after primary molding, when a rubber coating is sheathed and secondarily subjected to CIP molding at a higher pressure, or the above powder, Alternatively, the granulated powder is filled in a shrinkable tare and then subjected to ultrasonic vibration by an ultrasonic oscillator set inside or outside the pressure vessel at the time of CIP molding when CIP molding is performed. After that, when performing primary firing, and then performing secondary firing by higher-pressure HIP treatment, applying ultrasonic vibration with an ultrasonic oscillation device set inside or outside the pressure vessel at the time of HIP treatment A method for producing a dense ceramic sintered body using a characteristic ultrasonic wave.

本発明に係るセラミックスの製造方法を、例えば、アルミナ、サイアロン、ジルコニア、炭化珪素などの製造時に適用すれば、欠陥の少ない、緻密なセラミックスの安定製造が可能になる。また、装置への組み込みも容易で、操業コスト面での負荷も極めて少ない。さらに、高いコストを必要とせず、簡便にセラミックス材料の高緻密化ができる。このことにより、高品質、安定生産が可能となる。   If the method for producing a ceramic according to the present invention is applied to the production of, for example, alumina, sialon, zirconia, silicon carbide, etc., it becomes possible to stably produce a dense ceramic with few defects. Moreover, it can be easily incorporated into the apparatus, and the operation cost is extremely low. Further, the ceramic material can be easily densified without requiring high cost. This enables high quality and stable production.

本発明者らは、上記の目的を達成するために、種々検討した結果、CIPまたはHIPの圧力容器内にセットした超音波発振装置により、超音波加振を付与することで、成形中のブリッジングや空孔(ポア)の形成を抑制したり、二次焼成処理の閉気孔の消失を促進するはたらきを有することを見い出した。本発明者等は、超音波加振をセラミックスの代表的な製造プロセスへの適用について鋭意検討し、その具体的な手法を提供するに至ったものである。   As a result of various studies in order to achieve the above object, the present inventors have applied ultrasonic vibration by an ultrasonic oscillation device set in a pressure vessel of CIP or HIP, thereby forming a bridge during molding. It has been found that it has a function of suppressing the formation of pores and pores and promoting the disappearance of closed pores in the secondary firing treatment. The inventors of the present invention diligently studied the application of ultrasonic vibration to a typical manufacturing process of ceramics and came to provide a specific method.

これまで、アルミナ、サイアロン、ジルコニアの他、窒化珪素や炭化珪素などの大型構造体の成形前には、セラミックス粉末にポリエチレンやポリビニルアルコール等の熱可塑性樹脂を混合し、この混合物を噴霧造粒または凍結乾燥などによる30〜80μm程度に顆粒化し、収縮性を有する風袋に充填した後にCIP成形する方法が一般的に用いられてきた。   Until now, before molding large structures such as alumina, sialon and zirconia, silicon nitride and silicon carbide, ceramic powder is mixed with thermoplastic resin such as polyethylene and polyvinyl alcohol, and this mixture is spray granulated or A method of CIP molding after granulating to about 30 to 80 μm by freeze drying or the like and filling a shrinkable tare has been generally used.

本発明は、CIP成形する際に、図1に示すように、圧力容器1の内部または外部にセットした超音波発振装置(例えば、超音波発振子4)により、超音波加振を付与するものであり、これによりCIP成形時に粉体の流動性をより活発化させ、成形時の欠陥生成を抑制することが可能となる。なお、図1は、後述する実施例で用いるために、一般的なCIP装置において、超音波加振用の振動子(具体的には超音波発振子)を組み込んだCIP装置を模式的に表した断面概略図である。図1中の符号2は昇降ピストンを表わし、符号3は試料のセッター用デーブルを表す。   In the present invention, when CIP molding is performed, as shown in FIG. 1, ultrasonic vibration is applied by an ultrasonic oscillator (for example, an ultrasonic oscillator 4) set inside or outside the pressure vessel 1. As a result, the fluidity of the powder is more activated during CIP molding, and it is possible to suppress the generation of defects during molding. FIG. 1 schematically shows a CIP device in which a vibrator for ultrasonic vibration (specifically, an ultrasonic oscillator) is incorporated in a general CIP device for use in the embodiments described later. FIG. Reference numeral 2 in FIG. 1 represents an elevating piston, and reference numeral 3 represents a setter table for the sample.

本発明のセラミックス粉末としては、アルミナ、ジルコニア、窒化珪素質、炭化珪素質、コーディエライト等が例示でき、サイズは中心粒径として0.1〜10μm程度のものであることが多い。   Examples of the ceramic powder of the present invention include alumina, zirconia, silicon nitride, silicon carbide, cordierite and the like, and the size is often about 0.1 to 10 μm as the center particle size.

また、本発明のセラミックス粉末の混合方法としては、回転式ポットミル、遊星型ボールミル、アトリッションミル、振動ボールミル、等の方法を用いることができ、アルミナ、ジルコニア、ムライト、窒化珪素、サイアロン、炭化珪素等のファインセラミックスを母相とするセラミックス焼結体の製造に用いることが可能である。   Further, as a mixing method of the ceramic powder of the present invention, a rotary pot mill, a planetary ball mill, an attrition mill, a vibrating ball mill, or the like can be used, and alumina, zirconia, mullite, silicon nitride, sialon, carbonization can be used. It can be used for manufacturing a ceramic sintered body having a fine ceramic such as silicon as a parent phase.

用いるポットやボールとしては、実質的に混合する粉体と同組成の焼結体を用いることが好ましいが、摩耗の少ない他材質や樹脂被覆されたボールを使用することも可能である。   As the pot or ball to be used, it is preferable to use a sintered body having the same composition as the powder to be mixed, but it is also possible to use another material with less wear or a resin-coated ball.

得られた混合粉末の所望の形状への成形方法としては、本発明の超音波加振を用いる場合には一軸方向のプレス成形後のCIP成形、または直接ゴム型、ビニル、紙型などの収縮性を有する風袋に充填し、その後CIP成形することが好ましい。   As a method for forming the obtained mixed powder into a desired shape, when ultrasonic vibration of the present invention is used, CIP forming after uniaxial press forming or shrinkage of a direct rubber mold, vinyl, paper mold, etc. It is preferable to fill in a tare having properties and then perform CIP molding.

CIP成形の際に、圧力容器内部または外部にセットした超音波発振装置により、超音波加振を適切に付与することで、混合粉体が流動し圧密化し易くなることにより、成形中のブリッジングや空孔(ポア)の形成を抑制でき、緻密なセラミックス成形体を製造することができる。   Bridging during molding by making the mixed powder flow and consolidate easily by applying ultrasonic vibration appropriately with an ultrasonic oscillator set inside or outside the pressure vessel during CIP molding. And the formation of pores can be suppressed, and a dense ceramic molded body can be produced.

その他の代表的なセラミックス成形法である鋳込み成形、押し出し成形、ドクターブレード成形や射出成形などにも超音波加振は展開が可能である。   Ultrasonic vibration can be applied to other typical ceramic forming methods such as casting, extrusion, doctor blade forming, and injection forming.

また、本発明は、セラミックス粉末をそのまま収縮性を有する風袋に充填して、CIP成形を行う場合にも適用できる。さらに、セラミックス粉末、あるいは、セラミックス粉末と可塑性樹脂の混合物を顆粒化した粉末を、一次成形した後に、収縮性を有する風袋に充填して、一次成形よりも高圧で二次的にCIP成形を行う場合にも適用できる。   The present invention can also be applied to the case where CIP molding is performed by filling ceramic powder into a shrinkable tare as it is. Furthermore, ceramic powder or powder obtained by granulating a mixture of ceramic powder and plastic resin is first molded and then filled into a shrinkable tare, and secondarily subjected to CIP molding at a higher pressure than primary molding. It can also be applied to cases.

また、本発明の超音波加振の付与は、一次焼成によって得られたセラミックス焼結体を、一次焼成時より高圧のHIP処理によって二次焼成を行う際にも適用できるものである。   Further, the application of ultrasonic vibration according to the present invention can be applied to the case where the ceramic sintered body obtained by the primary firing is subjected to secondary firing by HIP treatment at a higher pressure than that during the primary firing.

なお、通常、アルミナ、サイアロン、ジルコニアの他、窒化珪素や炭化珪素などの、各種一次焼成後に得られるセラミックス焼結体は、理論密度に対する焼結体の嵩密度の割合である相対密度が95%以上に緻密化されたものである。即ち、一次焼成によって実質的に閉気孔によって相対密度95%以上に焼成・緻密化されたセラミックス焼結体といえるものである。   Usually, ceramic sintered bodies obtained after various primary firings such as silicon nitride and silicon carbide in addition to alumina, sialon and zirconia have a relative density of 95%, which is the ratio of the bulk density of the sintered body to the theoretical density. It has been densified as described above. That is, it can be said to be a ceramic sintered body that is fired and densified to a relative density of 95% or more by closed pores substantially by primary firing.

さらに、一次焼成時より高密度化及び高強度化するための二次焼成手段として最も一般的な手法であるHIP処理の際にも、本発明の超音波加振の付与により、混合粉体が流動し圧密化し易くなることにより、前記の各種一次焼成時の内部欠陥をより効率的に消失させることを可能とするため、HIP処理室内での超音波加振の併用という新たな手法を提供するものである。   Furthermore, even during HIP treatment, which is the most common method for secondary firing to increase the density and strength from the time of primary firing, the mixed powder is obtained by applying ultrasonic vibration according to the present invention. Provided a new technique of using ultrasonic vibration in the HIP processing chamber in order to make it possible to eliminate the internal defects during the various primary firings more efficiently by facilitating flow and consolidation. Is.

HIP処理の際に、図2に示すように、圧力容器1の内部または外部にセットした超音波発振装置(例えば、超音波発振子4)により、超音波加振を適切に付与することで、二次焼成処理の閉気孔の消失を促進でき、緻密なセラミックス焼結体を製造することができる。なお、図2は、後述する実施例で用いるために、一般的なHIP装置において、超音波加振用の振動子(具体的には超音波発振子)を組み込んだHIP装置を模式的に表した断面概略図である。図2中の符号3は試料のセッター用デーブルを表わし、符号5はHIP用のヒーターを表す。   At the time of HIP processing, as shown in FIG. 2, by applying ultrasonic vibration appropriately by an ultrasonic oscillation device (for example, ultrasonic oscillator 4) set inside or outside the pressure vessel 1, The disappearance of closed pores in the secondary firing treatment can be promoted, and a dense ceramic sintered body can be produced. FIG. 2 schematically shows a HIP apparatus in which a vibrator for ultrasonic vibration (specifically, an ultrasonic oscillator) is incorporated in a general HIP apparatus for use in an embodiment described later. FIG. Reference numeral 3 in FIG. 2 represents a setter table for the sample, and reference numeral 5 represents a heater for HIP.

焼結方法としては、常圧焼結法、ガス圧焼結法、ホットプレス法の他に、誘導加熱焼結などがあげられるが、本発明の二次緻密化焼結であるHIP法と同様に超音波加振の展開が可能である。   As the sintering method, in addition to the normal pressure sintering method, the gas pressure sintering method, and the hot press method, induction heating sintering and the like can be mentioned, but the same as the HIP method which is the secondary densification sintering of the present invention. In addition, ultrasonic vibration can be developed.

本発明の焼結雰囲気としては、セラミックス化合物組成に応じ、酸化物系は基本的に大気中、非酸化物系はArガスやNガスなどの不活性雰囲気ガス中もしくは真空中であることが好ましい。この理由は、セラミックス原料粉が雰囲気ガスとの反応を抑制するためである。 As the sintering atmosphere of the present invention, depending on the ceramic compound composition, the oxide system is basically in the atmosphere, and the non-oxide system is in an inert atmosphere gas such as Ar gas or N 2 gas or in vacuum. preferable. This is because the ceramic raw material powder suppresses the reaction with the atmospheric gas.

また、前記のCIP成形時に超音波加振を付与した後、一次焼成を行い、その後、一次焼成よりも高圧でHIP処理によって二次焼成を行う際にも、超音波加振を付与すると、その効果はより大きくなる。   In addition, after applying ultrasonic vibration during the CIP molding, primary firing is performed, and then when performing secondary firing by HIP treatment at a higher pressure than the primary firing, The effect is greater.

本発明の超音波の加振は、圧力容器の外周から付与する定在波でも、内部に振動子を装填した構造でも構わない。出力や周波数は、成形体や焼結体の厚さなどのサイズで適宜調整することが、より効率的である。   The ultrasonic vibration of the present invention may be a standing wave applied from the outer periphery of the pressure vessel or a structure in which a vibrator is loaded inside. It is more efficient to appropriately adjust the output and frequency according to the size of the molded body and the thickness of the sintered body.

CIPでもHIPでも、数cmサイズの角板または円柱では外部からでも内部からでも3〜10W程度の出力範囲で十分効果的であるが、より好ましくは5W以上である。また、同様に数十cmサイズの角板または円柱では外部からでも内部からでも10〜30W程度の出力範囲で十分効果的であるが、より好ましくは20W以上である。   For both CIP and HIP, a square plate or cylinder having a size of several centimeters is sufficiently effective in an output range of about 3 to 10 W from the outside or from the inside, but more preferably 5 W or more. Similarly, a square plate or cylinder having a size of several tens of cm is sufficiently effective in the output range of about 10 to 30 W from the outside or the inside, but more preferably 20 W or more.

次に、本発明の実施例を比較例と共に説明する。   Next, examples of the present invention will be described together with comparative examples.

(実施例1〜3)
窒化珪素(Si)粉末 (β化率90%以上、純度97%、平均粒径0.8μm)、
酸化イットリウム(Y)粉末 (平均粒径1.5μm)、
酸化アルミニウム(Al)粉末 (平均粒径0.6μm)、
酸化マグネシウム(MgO)粉末 (平均粒径0.4μm)、
酸化ジルコニウム(ZrO)粉末 (平均粒径1.2μm)、
を表1に示す所定量(質量%)添加し、分散媒として精製水またはアセトンを用い、窒化珪素セラミックスを内貼りしたボールミルで24時間混練した。精製水またはアセトンの添加量は、セラミックス全粉末原料100gに対し140gとした。
(Examples 1-3)
Silicon nitride (Si 3 N 4 ) powder (β conversion 90% or more, purity 97%, average particle size 0.8 μm),
Yttrium oxide (Y 2 O 3 ) powder (average particle size 1.5 μm),
Aluminum oxide (Al 2 O 3 ) powder (average particle size 0.6 μm),
Magnesium oxide (MgO) powder (average particle size 0.4 μm),
Zirconium oxide (Zr 2 O) powder (average particle size 1.2 μm),
Was added in a predetermined amount (mass%) shown in Table 1, and purified water or acetone was used as a dispersion medium and kneaded for 24 hours in a ball mill with silicon nitride ceramics attached thereto. The amount of purified water or acetone added was 140 g with respect to 100 g of all ceramic powder raw materials.

次いで、得られた混合粉末を120mm×120mmの金型に入れ、圧力20MPaで、120mm×120mm×t20mmに一軸成形後、超音波加振(出力10W)付きのCIP装置で高圧成形した。CIP圧は120MPaとし、110mm×110mm×厚さ18mmの板状成形体を得た。   Next, the obtained mixed powder was put into a 120 mm × 120 mm mold, uniaxially molded at 120 mm × 120 mm × t20 mm at a pressure of 20 MPa, and then high-pressure molded by a CIP apparatus with ultrasonic vibration (output 10 W). The CIP pressure was 120 MPa, and a plate-like molded body having a size of 110 mm × 110 mm × thickness 18 mm was obtained.

焼結条件としては、実施例1については窒素ガス流通中にて、表1中に示す各温度で8時間保持、実施例2〜3については大気中の無加圧焼結を行った。その後、超音波加振(出力15W)付きのNガス中のHIP装置で二次焼成処理した。HIP圧は180MPaとし、86mm×86mm×厚さ14mmの板状の緻密質焼結体を得た。 As the sintering conditions, Example 1 was maintained for 8 hours at each temperature shown in Table 1 while nitrogen gas was flowing, and Examples 2 and 3 were subjected to pressureless sintering in the atmosphere. Followed by secondary firing process at a HIP apparatus N 2 gas with ultrasonic vibration (output 15W). The HIP pressure was 180 MPa, and a plate-like dense sintered body of 86 mm × 86 mm × thickness 14 mm was obtained.

(実施例4〜9)
実施例4〜9は、実施例1〜3と同一原料を用い、同一組成で、同じ精製水またはアセトンで調製したが、超音波加振なしのCIP成形と超音波加振(出力15W)ありのHIP処理を行った場合(実施例4〜6)、超音波加振あり(出力10W)のCIP成形と超音波加振なしのHIP処理を行った場合(実施例7〜9)である。
(Examples 4 to 9)
Examples 4 to 9 were prepared using the same raw materials as in Examples 1 to 3 and the same composition and the same purified water or acetone, but with CIP molding without ultrasonic vibration and ultrasonic vibration (output 15 W) This is the case where the HIP process is performed (Examples 4 to 6), and the CIP molding with ultrasonic vibration (output 10 W) and the HIP process without ultrasonic vibration are performed (Examples 7 to 9).

焼結体密度は、アルキメデス法により測定した。得られた焼結体から機械的性質評価用の試験片を切り出し、その特性を評価した。抗折強度はJIS R1601準拠の試験片でクロスヘッド速度0.5mm/secにて測定し、硬さは、押込荷重9.8Nにてビッカース硬さとして測定した。靭性についてはJIS R1607準拠のSEPB法により室温にて破壊靭性値(KIC)を測定した。 The sintered body density was measured by the Archimedes method. A test piece for evaluating mechanical properties was cut out from the obtained sintered body, and its characteristics were evaluated. The bending strength was measured with a test piece conforming to JIS R1601 at a crosshead speed of 0.5 mm / sec, and the hardness was measured as Vickers hardness at an indentation load of 9.8 N. For toughness, the fracture toughness value (K IC ) was measured at room temperature by the SEPB method according to JIS R1607.

(比較例10〜12)
超音波加振なしのCIP成形とHIP処理を行った場合(比較例10〜12)である。
(Comparative Examples 10-12)
This is a case (Comparative Examples 10 to 12) in which CIP molding and HIP processing without ultrasonic vibration are performed.

Figure 2006334976
Figure 2006334976

Figure 2006334976
Figure 2006334976

以上より、本発明の焼結体は、密度、強度、硬さ、靭性のいずれも超音波加振なしに比べ優れた値を有するという結果が得られた。本発明は、様々なセラミックス材種に対して、汎用的に適用が可能と判断できる。   From the above, it was found that the sintered body of the present invention had excellent values for density, strength, hardness, and toughness compared to those without ultrasonic vibration. It can be judged that the present invention is applicable to various ceramic material types for general purposes.

超音波加振用の振動子を組み込んだCIP装置を表す概略図である。It is the schematic showing the CIP apparatus incorporating the vibrator | oscillator for ultrasonic excitation. 超音波加振用の振動子を組み込んだHIP装置を表す概略図である。It is the schematic showing the HIP apparatus incorporating the vibrator | oscillator for ultrasonic excitation.

符号の説明Explanation of symbols

1 圧力容器、
2 昇降ピストン、
3 試料のセッター用テーブル、
4 超音波発振子、
5 HIP用のヒーター。
1 pressure vessel,
2 lifting piston,
3 Sample setter table,
4 Ultrasonic oscillator,
5 Heater for HIP.

Claims (3)

セラミックス粉末、あるいは、セラミックス粉末と可塑性樹脂の混合物を顆粒化した粉末を、一次成形後、収縮性を有する風袋に充填して、二次的により高圧で静水圧加圧成形をする際に、または、
前記の粉末、あるいは、前記顆粒化した粉末を収縮性を有する風袋に充填し、その後、静水圧加圧成形する際に、
静水圧加圧成形時の圧力容器内部または外部にセットした超音波発振装置により、超音波加振を付与することを特徴とする超音波を用いた緻密質セラミックス成形体の製造方法。
Ceramic powder or powder obtained by granulating a mixture of ceramic powder and plastic resin is filled into a shrinkable tare after primary molding, and then subjected to secondary hydrostatic pressure molding at a higher pressure, or ,
When filling the powder or the granulated powder into a shrinkable tare, and then hydrostatic pressure molding,
A method for producing a dense ceramic molded body using ultrasonic waves, wherein ultrasonic vibration is applied by an ultrasonic oscillator set inside or outside a pressure vessel at the time of hydrostatic pressure molding.
一次焼成によって得られたセラミックス焼結体を、一次焼成時より高圧の熱間静水圧加圧処理によって二次焼成を行う際に、
熱間静水圧加圧処理時の圧力容器内部または外部にセットした超音波発振装置により、超音波加振を付与することを特徴とする超音波を用いた緻密質セラミックス焼結体の製造方法。
When the ceramic sintered body obtained by the primary firing is subjected to the secondary firing by the hot isostatic pressing process at a higher pressure than during the primary firing,
A method for producing a dense ceramic sintered body using ultrasonic waves, wherein ultrasonic vibration is applied by an ultrasonic oscillator set inside or outside a pressure vessel at the time of hot isostatic pressing.
セラミックス粉末、あるいは、セラミックス粉末と可塑性樹脂の混合物を顆粒化した粉末を、一次成形後、ゴム被膜を外装し二次的により高圧で静水圧加圧成形をする際に、または、
前記の粉末、あるいは、前記顆粒化した粉末を収縮性を有する風袋に充填し、その後、静水圧加圧成形する際に、
静水圧加圧成形時の圧力容器内部または外部にセットした超音波発振装置により、超音波加振を付与した後、
一次焼成を行い、その後、より高圧の熱間静水圧加圧処理によって二次焼成を行う際に、
熱間静水圧加圧処理時の圧力容器内部または外部にセットした超音波発振装置により、超音波加振を付与することを特徴とする超音波を用いた緻密質セラミックス焼結体の製造方法。
Ceramic powder, or powder obtained by granulating a mixture of ceramic powder and a plastic resin, after primary molding, when a rubber coating is externally applied and then subjected to secondary hydrostatic pressure molding at a higher pressure, or
When filling the powder or the granulated powder into a shrinkable tare, and then hydrostatic pressure molding,
After applying ultrasonic vibration by an ultrasonic oscillator set inside or outside the pressure vessel during hydrostatic pressure molding,
When performing the primary firing, and then performing the secondary firing by a higher pressure hot isostatic pressing process,
A method for producing a dense ceramic sintered body using ultrasonic waves, wherein ultrasonic vibration is applied by an ultrasonic oscillator set inside or outside a pressure vessel at the time of hot isostatic pressing.
JP2005164086A 2005-06-03 2005-06-03 Method for producing fine ceramic using ultrasonic waves Pending JP2006334976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005164086A JP2006334976A (en) 2005-06-03 2005-06-03 Method for producing fine ceramic using ultrasonic waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005164086A JP2006334976A (en) 2005-06-03 2005-06-03 Method for producing fine ceramic using ultrasonic waves

Publications (1)

Publication Number Publication Date
JP2006334976A true JP2006334976A (en) 2006-12-14

Family

ID=37555916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005164086A Pending JP2006334976A (en) 2005-06-03 2005-06-03 Method for producing fine ceramic using ultrasonic waves

Country Status (1)

Country Link
JP (1) JP2006334976A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109551614A (en) * 2018-10-11 2019-04-02 中国科学院宁波材料技术与工程研究所 A kind of ultrasonic unit for powder pressing forming
JP2019199078A (en) * 2018-05-11 2019-11-21 信越化学工業株式会社 Method for manufacturing ceramic molding for sintering and method for manufacturing ceramic sintered body
JP2019199079A (en) * 2018-05-11 2019-11-21 信越化学工業株式会社 Method for manufacturing ceramic molding for sintering and method for manufacturing ceramic sintered body
KR20210106969A (en) * 2019-08-13 2021-08-31 비씨엔씨 주식회사 Manufacturing method for plasma resistance edge ring using prepress and the plasma resistance edge ring using thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019199078A (en) * 2018-05-11 2019-11-21 信越化学工業株式会社 Method for manufacturing ceramic molding for sintering and method for manufacturing ceramic sintered body
JP2019199079A (en) * 2018-05-11 2019-11-21 信越化学工業株式会社 Method for manufacturing ceramic molding for sintering and method for manufacturing ceramic sintered body
JP7056625B2 (en) 2018-05-11 2022-04-19 信越化学工業株式会社 Method for manufacturing ceramic molded body for sintering and method for manufacturing ceramic sintered body
JP7056624B2 (en) 2018-05-11 2022-04-19 信越化学工業株式会社 Method for manufacturing ceramic molded body for sintering and method for manufacturing ceramic sintered body
CN109551614A (en) * 2018-10-11 2019-04-02 中国科学院宁波材料技术与工程研究所 A kind of ultrasonic unit for powder pressing forming
KR20210106969A (en) * 2019-08-13 2021-08-31 비씨엔씨 주식회사 Manufacturing method for plasma resistance edge ring using prepress and the plasma resistance edge ring using thereof
KR102427219B1 (en) * 2019-08-13 2022-07-29 비씨엔씨 주식회사 Manufacturing method for plasma resistance edge ring using prepress and the plasma resistance edge ring using thereof

Similar Documents

Publication Publication Date Title
Janssen et al. Tailor-made ceramic-based components—Advantages by reactive processing and advanced shaping techniques
Leo et al. Near‐net‐shaping methods for ceramic elements of (body) armor systems
Zhang et al. Properties of silicon carbide ceramics from gelcasting and pressureless sintering
JPH0753604B2 (en) Silicon Carbide Composite Ceramics
RU2744543C1 (en) Method for producing ceramic composite material based on silicon carbide, reinforced with silicon carbide fibers
JPH0242796B2 (en)
JP4904465B2 (en) Ceramic optical component and manufacturing method thereof
JP2016132607A (en) Ceramic composite material and manufacturing method therefor
JP2006334976A (en) Method for producing fine ceramic using ultrasonic waves
Wang et al. Joining of advanced ceramics in green state
WO2010008596A1 (en) Production of sintered three-dimensional ceramic bodies
JP2008222500A (en) Porous molding, porous filled molding, method for producing porous molding and method for producing porous filled molding
Jayaseelan et al. Pulse electric current sintering of Al2O3/3 vol% ZrO2 with constrained grains and high strength
JP2007283435A (en) Silicon-carbide-based polishing plate, manufacturing method, and polishing method for semiconductor wafer
Montanari Additive Manufacturing of Silicon Nitride
JPH06340475A (en) Fiber reinforced ceramic composite material and its production
Sivakumar et al. Influence of MgO on microstructure and properties of mullite–Mo composites fabricated by pulse electric current sintering
JPH06199578A (en) Ceramic-base composite material, its production and ceramic fiber for composite material
JP2009051705A (en) Silicon/silicon carbide composite material, its manufacturing process, and its method of evaluation
RU2816616C1 (en) Method of producing hot-pressed silicon carbide ceramics
JP2955917B2 (en) Silicon nitride sintered body having high fracture toughness by addition of foreign particles and method for producing the same
RU2734682C1 (en) Method of making silicon nitride ceramic with calcium aluminate sintering additive with low melting
JP4796717B2 (en) Method for producing Si3N4-SiC composite sintered body
JP5166223B2 (en) Method for joining members to be joined of silicon nitride ceramics
US8865055B2 (en) Production of sintered three-dimensional ceramic bodies

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061019