JP2007283435A - Silicon-carbide-based polishing plate, manufacturing method, and polishing method for semiconductor wafer - Google Patents

Silicon-carbide-based polishing plate, manufacturing method, and polishing method for semiconductor wafer Download PDF

Info

Publication number
JP2007283435A
JP2007283435A JP2006113498A JP2006113498A JP2007283435A JP 2007283435 A JP2007283435 A JP 2007283435A JP 2006113498 A JP2006113498 A JP 2006113498A JP 2006113498 A JP2006113498 A JP 2006113498A JP 2007283435 A JP2007283435 A JP 2007283435A
Authority
JP
Japan
Prior art keywords
polishing
silicon carbide
polishing plate
semiconductor wafer
bulk density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006113498A
Other languages
Japanese (ja)
Other versions
JP4913468B2 (en
Inventor
Masahiko Ichijima
雅彦 市島
Toshihiro Suzuki
俊宏 鈴木
Atsushi Arai
敦史 新居
Kaori Sato
華織 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2006113498A priority Critical patent/JP4913468B2/en
Publication of JP2007283435A publication Critical patent/JP2007283435A/en
Application granted granted Critical
Publication of JP4913468B2 publication Critical patent/JP4913468B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silicon-carbide-based polishing plate which improves a polishing accuracy of a wafer and improves a polishing efficiency. <P>SOLUTION: The silicon-carbide-based polishing plate has a thermal conductivity of 200 W/m×K or more and a Young's modulus of 450 GPa or more. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は炭化珪素系研磨プレート、製造方法、半導体ウェーハの研磨方法に係り、特に半導体ウェーハの研磨に用いられ、熱伝導率、ヤング率などの特性値を特定した炭化珪素系研磨プレート、製造方法、半導体ウェーハの研磨方法に関する。   The present invention relates to a silicon carbide-based polishing plate, a manufacturing method, and a method for polishing a semiconductor wafer, and more particularly to a silicon carbide-based polishing plate used for polishing a semiconductor wafer and characterized by characteristics such as thermal conductivity and Young's modulus. The present invention relates to a method for polishing a semiconductor wafer.

一般に、半導体ウェーハは、単結晶インゴットから薄くスライスした後、ラップおよびポリッシュ工程により、鏡面研磨されて製造される。   In general, a semiconductor wafer is manufactured by being thinly sliced from a single crystal ingot and then mirror-polished by a lapping and polishing process.

これら研磨工程に用いられる半導体ウェーハ研磨装置の基本構成は、研磨プレートを備えた研磨ヘッドと、研磨布を貼り付けた研磨定盤からなり、研磨プレートを交換することにより、研磨装置を連続的に稼働している。   The basic configuration of a semiconductor wafer polishing apparatus used in these polishing processes is composed of a polishing head equipped with a polishing plate and a polishing surface plate with a polishing cloth attached thereto. By exchanging the polishing plate, the polishing apparatus is continuously operated. It is operating.

半導体ウェーハは熱可塑性ワックスにより研磨プレートに固定され、化学研磨液を研磨布の研磨面とウェーハ被研磨面との間に供給しながら、研磨定盤に押し付けられて研磨される。   The semiconductor wafer is fixed to the polishing plate with thermoplastic wax, and is pressed against the polishing platen while being supplied with a chemical polishing liquid between the polishing surface of the polishing cloth and the surface to be polished, and polished.

近年は、半導体ウェーハの大口径化への移行や微細化に対し、研磨精度に対する要求も厳しくなってきている。   In recent years, demands for polishing accuracy have become stricter as semiconductor wafers have shifted to larger diameters and have become finer.

大口径の半導体ウェーハを精度よく研磨するには、研磨時の摩擦熱による温度分布を低減することと、ウェーハ面内への研磨圧力のばらつきを小さくすることが重要となる。   In order to polish a large-diameter semiconductor wafer with high accuracy, it is important to reduce the temperature distribution due to frictional heat during polishing and to reduce the variation in polishing pressure within the wafer surface.

研磨時の摩擦熱は、半導体ウェーハを介して研磨プレートに伝達するが、研磨プレートに温度分布の不均一が生じると熱変形を生じ、半導体ウェーハの研磨精度が低下する。従って、研磨プレートの温度分布の不均一を解消するために熱伝導率が高く、熱膨張係数が小さい材料が要求されている。   The frictional heat at the time of polishing is transmitted to the polishing plate through the semiconductor wafer. However, if the temperature distribution in the polishing plate becomes uneven, thermal deformation occurs, and the polishing accuracy of the semiconductor wafer is lowered. Therefore, in order to eliminate the uneven temperature distribution of the polishing plate, a material having high thermal conductivity and a low thermal expansion coefficient is required.

一方、ウェーハ面内における研磨圧力のばらつきを小さくするためには、設計で剛性を上げることは可能であるが、研磨装置が大型になってしまうことと、研磨プレートが重量物となってしまうため、コストの上昇や生産性の低下を招く。   On the other hand, in order to reduce the variation of the polishing pressure in the wafer surface, it is possible to increase the rigidity by design, but the polishing apparatus becomes large and the polishing plate becomes heavy. , Leading to increased costs and decreased productivity.

従って、研磨プレートに要求される機械的特性としては、低密度、高強度、高剛性であり、熱的特性としては、高熱伝導、低熱膨張が挙げられる。   Accordingly, the mechanical properties required for the polishing plate are low density, high strength, and high rigidity, and the thermal properties include high thermal conductivity and low thermal expansion.

これらの要求に応えるために、近年炭化珪素系セラミックスを用いた研磨プレートが増加している。   In order to meet these demands, in recent years, polishing plates using silicon carbide ceramics have increased.

炭化珪素系セラミックスは、高熱伝導性、剛性、低熱膨張等に優れる特性を有しており、これを利用した提案がなされている。   Silicon carbide-based ceramics have characteristics such as high thermal conductivity, rigidity, and low thermal expansion, and proposals have been made using this.

例えば、研磨プレートに密度が2.7g/cm以上である珪化物セラミックス製または炭化物セラミックス製の緻密体を用いることが提案され(特許文献1)、また、炭化珪素焼結体にSiを含浸させた研磨プレートが提案されている(特許文献2)。 For example, it is proposed to use a dense body made of silicide ceramic or carbide ceramic having a density of 2.7 g / cm 3 or more for the polishing plate (Patent Document 1), and silicon carbide sintered body is impregnated with Si A polished polishing plate has been proposed (Patent Document 2).

特許文献1に記載のものをはじめとして、炭化珪素セラミックスは、B−C系の焼結助剤を用いて製造した場合、一般に緻密で熱伝導率が高い焼結体が得られることはすでに知られている。   It is already known that silicon carbide ceramics including those described in Patent Document 1 are generally dense and have a high thermal conductivity when manufactured using a BC sintering aid. It has been.

一般に常圧焼結法による炭化珪素セラミックスの製造方法は次のようにして行われる。   In general, a method for producing silicon carbide ceramics by atmospheric pressure sintering is performed as follows.

原料に平均粒径がサブμmから数μmのαまたはβ型炭化珪素粉末を使用し、これにB−C系の焼結助剤とバインダー及び溶媒を必要量混合してスラリーを調製する。次に、スプレードライヤー等を使用して造粒粉を作製し、この造粒粉を型に入れて成形する。成形方法は、CIPや一軸プレス等が一般的に用いられている。   An α- or β-type silicon carbide powder having an average particle size of sub-μm to several μm is used as a raw material, and a slurry is prepared by mixing required amounts of a BC sintering aid, a binder and a solvent. Next, granulated powder is produced using a spray dryer or the like, and the granulated powder is put into a mold and molded. As a forming method, CIP, uniaxial press or the like is generally used.

得られた成形体は、非酸化性雰囲気にて2000℃以上の温度で焼成され、炭化珪素セラミックスが得られる。   The obtained molded body is fired at a temperature of 2000 ° C. or higher in a non-oxidizing atmosphere to obtain silicon carbide ceramics.

このようにして製造された炭化珪素セラミックスは、粉体原料を焼結させるため、素材内部に気孔が存在する。そのため、気孔率を下げ、素材嵩密度を上げるために種々の工夫がなされているが、気孔を無くすことは非常に難しい。   Since the silicon carbide ceramic produced in this manner sinters the powder raw material, there are pores inside the material. For this reason, various attempts have been made to lower the porosity and increase the material bulk density, but it is very difficult to eliminate the pores.

焼結体の熱伝導率はその嵩密度と相関関係があり、高い嵩密度のもの程高くなる傾向を示す。高密度3.159g/cm後のもので熱伝導率が170W/m・K前後であり、200W/m・Kを超えるものを作ることは非常に難しい。気孔率を下げ、嵩密度を上げる焼成方法として、ホットプレスまたはHIP等の方法もあるが、大型品については安価に安定供給することはできない。 The thermal conductivity of the sintered body has a correlation with the bulk density, and the higher the bulk density, the higher the tendency. It has a high density of 3.159 g / cm 3 and has a thermal conductivity of around 170 W / m · K, and it is very difficult to make a product having a density exceeding 200 W / m · K. There are methods such as hot pressing or HIP as a firing method for decreasing the porosity and increasing the bulk density, but large products cannot be stably supplied at low cost.

また、その他の特性については、三点曲げ強さが450MPa前後、ヤング率が概ね350GPa〜450GPaであり、熱膨張係数は、4.5×10−6/K(室温〜1000℃において)前後である。 As for other properties, the three-point bending strength is about 450 MPa, the Young's modulus is about 350 GPa to 450 GPa, and the thermal expansion coefficient is about 4.5 × 10 −6 / K (at room temperature to 1000 ° C.). is there.

さらに、特許文献2に記載の研磨プレートのように、Si−SiC複合材料を用いる方法もあるが、気孔部分が全てSiで充填され、構造的にポアレスとなるため、熱伝導率は一般的に炭化珪素セラミックスより高くなるが、ヤング率で350GPa以上の剛性のものを製造することは難しい。また、その他の特性については、嵩密度が3.1g/cm前後,熱膨張係数は4.3×10−6/K前後である。 Furthermore, there is a method using a Si—SiC composite material as in the polishing plate described in Patent Document 2, but since the pores are all filled with Si and structurally poreless, the thermal conductivity is generally Although it is higher than silicon carbide ceramics, it is difficult to produce a material having a Young's modulus of 350 GPa or more. As for other characteristics, the bulk density is around 3.1 g / cm 3 and the thermal expansion coefficient is around 4.3 × 10 −6 / K.

また、特許文献3には、熱伝導率が200W/m・K、ヤング率が320GPaのSi含浸炭化珪素製真空チャックが開示されている。   Patent Document 3 discloses a Si-impregnated silicon carbide vacuum chuck having a thermal conductivity of 200 W / m · K and a Young's modulus of 320 GPa.

しかしながら、未だ熱伝導率が高くヤング率が大きい材料を製造することができず、ウェーハの研磨精度を高めるとともに研磨能率が向上する炭化珪素系研磨プレートが実現していない。
特開平11−320394号公報 特開2002−36102号公報 特開2005−72039号公報
However, a material having a high thermal conductivity and a high Young's modulus cannot be produced yet, and a silicon carbide polishing plate that improves the polishing accuracy of the wafer and improves the polishing efficiency has not been realized.
JP-A-11-320394 JP 2002-36102 A JP 2005-72039 A

本発明は上述した事情を考慮してなされたもので、ウェーハの研磨精度を高めるとともに研磨能率が向上する炭化珪素系研磨プレートを提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a silicon carbide-based polishing plate that improves the polishing accuracy of a wafer and improves the polishing efficiency.

また、ウェーハの研磨精度を高めるとともに研磨能率が向上する炭化珪素系研磨プレートを製造することができる炭化珪素系研磨プレートの製造方法を提供することを目的とする。   It is another object of the present invention to provide a method for manufacturing a silicon carbide polishing plate capable of manufacturing a silicon carbide polishing plate that improves the polishing accuracy of the wafer and improves the polishing efficiency.

また、半導体ウェーハを精度及び能率よく研磨することができる半導体ウェーハの研磨方法を提供することを目的とする。   It is another object of the present invention to provide a semiconductor wafer polishing method capable of polishing a semiconductor wafer with high accuracy and efficiency.

本発明者等は鋭意研究の結果、含浸するSi量に対して、熱伝導率とヤング率は相反する関係にあることを見出し、この知見に基づき、嵩密度、2.60g/cm〜2.90g/cmの炭化珪素焼結体に、溶融Siを含浸処理し、嵩密度が3.05g/cm〜3.15g/cmとした。また、三点曲げ強さについても、この範囲内で曲げ強度が最も高くなることを見出した。本発明はこれらの知見に基づいてなされたものである。 As a result of diligent research, the present inventors have found that the thermal conductivity and Young's modulus are in a contradictory relationship with the amount of Si to be impregnated, and based on this finding, the bulk density is 2.60 g / cm 3 to 2. The silicon carbide sintered body of .90 g / cm 3 was impregnated with molten Si, so that the bulk density was 3.05 g / cm 3 to 3.15 g / cm 3 . Also, the three-point bending strength was found to have the highest bending strength within this range. The present invention has been made based on these findings.

すなわち、上述した目的を達成するため、本発明に係る炭化珪素系研磨プレートは熱伝導率が200W/m・K以上で、ヤング率が450GPa以上であることを特徴とする。   That is, in order to achieve the above-described object, the silicon carbide based polishing plate according to the present invention has a thermal conductivity of 200 W / m · K or more and a Young's modulus of 450 GPa or more.

好適には嵩密度2.60g/cm〜2.90g/cmの炭化珪素焼結体に溶融Siを含浸処理し、嵩密度が3.05g/cm〜3.15g/cmで、曲げ強さが500MPa以上のSi−SiC複合材料である。 Preferably impregnated with the melted Si silicon carbide sintered body having a bulk density of 2.60g / cm 3 ~2.90g / cm 3 , a bulk density of 3.05g / cm 3 ~3.15g / cm 3 , It is a Si-SiC composite material having a bending strength of 500 MPa or more.

また、本発明に係る炭化珪素系研磨プレートの製造方法は、平均粒径が0.01μm以上1μm未満のα型炭化珪素粉末にB−C系の焼結助剤、バインダーおよび溶媒を配合して混練しスラリーを調製する工程と、スラリーをスプレードライヤーを使用して、ほぼ平均粒径50μmの造粒粉を作製する工程と、造粒粉を所定のゴム型に充填し、CIP成形を行い成形体を作製する工程と、成形体をAr雰囲気にて、1900℃〜2300℃で焼成し嵩密度2.60g/cm〜2.90g/cmの炭化珪素焼結体を作製する工程と、減圧下1450℃で炭化珪素焼結体に溶融Siを含浸して熱伝導率が200W/m・K以上で、ヤング率が450GPa以上の炭化珪素系研磨プレートを作製する工程を有することを特徴とする。 The method for producing a silicon carbide polishing plate according to the present invention comprises blending a B-C sintering aid, a binder and a solvent with an α-type silicon carbide powder having an average particle size of 0.01 μm or more and less than 1 μm. A step of kneading to prepare a slurry, a step of producing a granulated powder having an average particle size of about 50 μm using a spray dryer, and filling the granulated powder into a predetermined rubber mold, followed by CIP molding A step of producing a body, a step of firing the molded body at 1900 ° C. to 2300 ° C. in an Ar atmosphere, and producing a silicon carbide sintered body having a bulk density of 2.60 g / cm 3 to 2.90 g / cm 3 , Characterized in that it comprises a step of impregnating a silicon carbide sintered body with molten Si at 1450 ° C. under reduced pressure to produce a silicon carbide-based polishing plate having a thermal conductivity of 200 W / m · K or more and a Young's modulus of 450 GPa or more. To do.

また、本発明に係る半導体ウェーハの研磨方法は、上記炭化珪素系研磨プレートを半導体ウェ−ハ研磨装置の研磨ヘッドに取り付け、前記炭化珪素系研磨プレートにワックスを用いて取り付けられた半導体ウェーハを、回転する研磨定盤に取り付けられて回転する研磨布に押し付けて研磨することを特徴とする。   Further, in the method for polishing a semiconductor wafer according to the present invention, the silicon carbide polishing plate is attached to a polishing head of a semiconductor wafer polishing apparatus, and the semiconductor wafer attached to the silicon carbide polishing plate using wax is attached. It is attached to a rotating polishing surface plate and is pressed against a rotating polishing cloth for polishing.

本発明に係る炭化珪素系研磨プレートによれば、ウェーハの研磨精度を高めるとともに研磨能率が向上する炭化珪素系研磨プレートを提供することができる。   According to the silicon carbide based polishing plate of the present invention, it is possible to provide a silicon carbide based polishing plate that improves the polishing accuracy of the wafer and improves the polishing efficiency.

本発明に係る炭化珪素系研磨プレートの製造方法によれば、ウェーハの研磨精度を高めるとともに研磨能率が向上する炭化珪素系研磨プレートを製造することができる。   According to the method for manufacturing a silicon carbide-based polishing plate according to the present invention, it is possible to manufacture a silicon carbide-based polishing plate that improves the polishing accuracy of the wafer and improves the polishing efficiency.

本発明に係る半導体ウェーハの研磨方法によれば、半導体ウェーハを精度及び能率よく研磨することができる。   According to the semiconductor wafer polishing method of the present invention, the semiconductor wafer can be polished with high accuracy and efficiency.

本発明の一実施形態に係る炭化珪素系研磨プレート、この研磨プレートの製造方法および研磨プレートを用いた半導体ウェーハの研磨方法について添付図面を参照して説明する。   A silicon carbide based polishing plate according to an embodiment of the present invention, a method for manufacturing the polishing plate, and a method for polishing a semiconductor wafer using the polishing plate will be described with reference to the accompanying drawings.

図1は本発明の炭化珪素系研磨プレートを研磨装置に組み込んだ使用状態を示す概念図である。   FIG. 1 is a conceptual diagram showing a use state in which a silicon carbide polishing plate of the present invention is incorporated in a polishing apparatus.

図1に示すように、本発明の炭化珪素系研磨プレート1は、半導体ウェ−ハ研磨装置2の研磨ヘッド3に取り付けて用いられ、炭化珪素系研磨プレート1にワックス4を用いて取り付けられた半導体ウェーハ5を、回転する研磨定盤6に取り付けられて回転する研磨布7に押し付けて研磨する。   As shown in FIG. 1, the silicon carbide polishing plate 1 of the present invention is attached to a polishing head 3 of a semiconductor wafer polishing apparatus 2 and attached to the silicon carbide polishing plate 1 using wax 4. The semiconductor wafer 5 is polished by being pressed against a rotating polishing cloth 7 attached to a rotating polishing surface plate 6.

炭化珪素系研磨プレート1は、炭化珪素系製で円盤形状をなし、熱伝導率が200W/m・K以上で、ヤング率が450GPa以上である。   Silicon carbide-based polishing plate 1 is made of silicon carbide and has a disk shape, a thermal conductivity of 200 W / m · K or more, and a Young's modulus of 450 GPa or more.

また、含浸するSi量に対して、熱伝導率とヤング率は相反する関係にあり、研磨プレート1は嵩密度2.60g/cm〜2.90g/cmの炭化珪素焼結体に、溶融Siを含浸処理し、嵩密度が3.05g/cm〜3.15g/cmで、曲げ強さが500MPa以上のSi−SiC複合材料であるのが好ましい。 In addition, the thermal conductivity and Young's modulus are in a relationship opposite to the amount of Si to be impregnated, and the polishing plate 1 is a silicon carbide sintered body having a bulk density of 2.60 g / cm 3 to 2.90 g / cm 3 . It is preferably an Si—SiC composite material that is impregnated with molten Si, has a bulk density of 3.05 g / cm 3 to 3.15 g / cm 3 , and a bending strength of 500 MPa or more.

熱伝導率が高い材料は、ウェーハ研磨時に発生する摩擦熱による温度分布を低減できるため、研磨治具の熱変形が抑制される大きなメリットがある。炭化珪素系材料の熱膨張係数は、ほぼ4.3×10−6/K前後とウェーハに近い値であるので、熱分布により発生する研磨治具とウェーハとの間の応力を小さくすることができ、ウェーハの研磨精度が向上する。また、ヤング率が450GPaを超えるため、研磨圧力による研磨治具の変形が低減し、面内ばらつきも低減する。従って、大口径のウェーハを研磨した場合でも研磨精度の低下を防ぐことができる。 A material having high thermal conductivity has a great merit that thermal deformation of the polishing jig is suppressed because temperature distribution due to frictional heat generated during wafer polishing can be reduced. Since the thermal expansion coefficient of the silicon carbide-based material is approximately 4.3 × 10 −6 / K, which is close to the wafer, the stress between the polishing jig and the wafer generated by the heat distribution can be reduced. This improves the polishing accuracy of the wafer. Further, since the Young's modulus exceeds 450 GPa, the deformation of the polishing jig due to the polishing pressure is reduced, and the in-plane variation is also reduced. Therefore, even when a large-diameter wafer is polished, it is possible to prevent a decrease in polishing accuracy.

さらに、剛性が高いために、研磨治具の肉厚を低減することが可能であり、相対的に比熱容量も低下するため温度分布も小さくなる。同様に、軽量化に繋がるため、装置負荷やコストが低減できる。   Furthermore, since the rigidity is high, it is possible to reduce the thickness of the polishing jig, and the specific heat capacity is also relatively lowered, so that the temperature distribution is also reduced. Similarly, since it leads to weight reduction, apparatus load and cost can be reduced.

また、炭化珪素焼結体の嵩密度が2.60g/cmより小さいと、熱伝導率は高くなるが、ヤング率が低下する傾向にあり、逆に、2.90g/cmより大きくなると、炭化珪素焼結体の緻密化が進んでいることから、開気孔であった気孔が閉気孔になるため、Siの含浸が妨げられる。特性は炭化珪素焼結体に近づくこととなり、200W/m・K以上に熱伝導率を上げることはできない。 Also, the bulk density of the silicon carbide sintered body 2.60 g / cm 3 less than the thermal conductivity is high, there is a tendency that the Young's modulus is reduced, conversely, when greater than 2.90 g / cm 3 Since the silicon carbide sintered body is being densified, the pores that were open pores become closed pores, which impedes Si impregnation. The characteristics approach that of a silicon carbide sintered body, and the thermal conductivity cannot be increased to 200 W / m · K or more.

従って、熱伝導率およびヤング率の両特性が十分高い範囲にあるのは、嵩密度2.60g/cm〜2.90g/cmの炭化珪素焼結体に、溶融Siを含浸処理し、嵩密度が3.059g/cm〜3.15g/cmとした場合である。 Therefore, both the thermal conductivity and Young's modulus characteristics are in a sufficiently high range by impregnating molten silicon with a silicon carbide sintered body having a bulk density of 2.60 g / cm 3 to 2.90 g / cm 3 , This is a case where the bulk density is 3.059 g / cm 3 to 3.15 g / cm 3 .

特に好ましい範囲は、焼結体嵩密度が2.70g/cm〜2.85g/cmである。 A particularly preferred range, the sintered body bulk density is 2.70g / cm 3 ~2.85g / cm 3 .

また、三点曲げ強さについても、この範囲内が500MPa以上と最も高くなる。研磨プレートにウェーハを貼り付ける際は、研磨プレートを加熱して固定用ワックスを使用して行うが、このときの熱サイクルによる応力やハンドリングの容易さ等については、三点曲げ強さが大きいほど有利となる。   Also, the three-point bending strength is the highest at 500 MPa or more in this range. When affixing the wafer to the polishing plate, the polishing plate is heated and fixed wax is used. Regarding the stress caused by the thermal cycle and the ease of handling, the higher the three-point bending strength, It will be advantageous.

本実施形態の炭化珪素系研磨プレートによれば、ウェーハの研磨精度を高めるとともに研磨能率が向上する炭化珪素系研磨プレートが実現される。   According to the silicon carbide-based polishing plate of the present embodiment, a silicon carbide-based polishing plate that improves the polishing accuracy of the wafer and improves the polishing efficiency is realized.

この炭化珪素系研磨プレートを用いることにより、精度及び能率よい半導体ウェーハの研磨が実現される。   By using this silicon carbide based polishing plate, polishing of a semiconductor wafer with high accuracy and efficiency is realized.

次に本発明に係る炭化珪素系研磨プレートの製造方法について説明する。   Next, a method for manufacturing a silicon carbide based polishing plate according to the present invention will be described.

原料に平均粒径が0.01μm以上1μm未満のα型炭化珪素粉末を使用し、これにB−C系の焼結助剤とバインダーおよび溶媒を必要量配合し、ボールミルにて24時間混合してスラリーを調製した。   Α-type silicon carbide powder having an average particle size of 0.01 μm or more and less than 1 μm is used as a raw material, and necessary amounts of a B-C sintering aid, a binder and a solvent are mixed therein and mixed for 24 hours in a ball mill. A slurry was prepared.

α型炭化珪素粉末の平均粒径が0.01μmより小さいと、成形時の充填不良が発生しやすく成形しにくくなる。また、得られる成形体密度が低いため、成形体ハンドリング時などにおいて、クラックや割れなどが生じやすい。平均粒径が1μm以上であると、焼成時に焼結不良が発生しやすく焼結体密度が低くなってしまう。   If the α-type silicon carbide powder has an average particle size of less than 0.01 μm, poor filling during molding tends to occur and molding becomes difficult. Further, since the density of the obtained molded body is low, cracks and cracks are likely to occur during handling of the molded body. When the average particle size is 1 μm or more, sintering failure tends to occur at the time of firing, and the sintered body density becomes low.

次に、スプレードライヤーを使用して、ほぼ平均粒径50μmの造粒粉を作製した。   Next, using a spray dryer, granulated powder having an average particle diameter of 50 μm was produced.

造粒粉を所定のゴム型に充填し、1.5ton/cmでCIP成形を行い成形体を得た。 The granulated powder was filled into a predetermined rubber mold, and CIP molding was performed at 1.5 ton / cm 2 to obtain a molded body.

成形体をAr雰囲気にて、1900℃〜2300℃で焼成し炭化珪素焼結体を得た。   The formed body was fired at 1900 ° C. to 2300 ° C. in an Ar atmosphere to obtain a silicon carbide sintered body.

ここで、炭化珪素は、1800℃以上の高温になると焼結が開始され、この時、体積収縮をともなって緻密化が進行する。従って、嵩密度2.60g/cm〜2.90g/cmの炭化珪素焼結体を得るためには、熱処理温度と密度の関係を調査して制御する。 Here, when silicon carbide reaches a high temperature of 1800 ° C. or higher, sintering starts, and at this time, densification proceeds with volume shrinkage. Therefore, in order to obtain a silicon carbide sintered body having a bulk density of 2.60 g / cm 3 to 2.90 g / cm 3 , the relationship between the heat treatment temperature and the density is investigated and controlled.

また、焼結助剤の添加量も焼結収縮に影響を与えるため重要であり、これによりさらに精度の高い制御が可能となる。   Further, the addition amount of the sintering aid is also important because it affects the sintering shrinkage, and this enables control with higher accuracy.

炭化珪素焼結体への溶融Siの含浸は、減圧下1450℃で行った。減圧下で行うのは、炭化珪素焼結体の気孔内に十分Siを含浸させるためである。   The silicon carbide sintered body was impregnated with molten Si at 1450 ° C. under reduced pressure. The reason why the pressure is reduced is that the pores of the silicon carbide sintered body are sufficiently impregnated with Si.

また、本発明で示している熱伝導率をはじめとした各特性については、全てJISに準拠して測定した。   Moreover, all the characteristics including the thermal conductivity shown in the present invention were measured in accordance with JIS.

本実施形態の炭化珪素系研磨プレートの製造方法によれば、ウェーハの研磨精度を高めるとともに研磨能率が向上する炭化珪素系研磨プレートを製造することができる。   According to the method for manufacturing a silicon carbide based polishing plate of the present embodiment, it is possible to manufacture a silicon carbide based polishing plate that improves the polishing accuracy of the wafer and improves the polishing efficiency.

(実施例1) 嵩密度が2.70g/cmの炭化珪素焼結体を作製し、1450℃でSi含浸処理を行いSi−SiC複合材料を得た。このSi−SiC複合材料の熱伝導率は235W/m・Kでヤング率が455GPa、嵩密度は3.09g/cmで三点曲げ強さは520MPaであった。
この素材を用いてφ12インチウェーハ用の研磨プレートを製作し、研磨試験を実施した。
研磨圧力は、高いほど摩擦熱が大きくなるため、研磨プレートの温度分布も大きくなり変形量も増す。通常は、研磨後のウェーハ精度から、研磨条件を決めているが、研磨圧力が高い方が研磨能率が向上するため、できるだけ高い研磨圧力が有利である。
研磨後は、中心1点と外周部8点を計測し、ウェーハの平坦度を算出した。
平坦度が0.5μmより大きくなる点を判定点とした結果、研磨圧力300gf/cmであった。
Example 1 A silicon carbide sintered body having a bulk density of 2.70 g / cm 3 was produced, and Si impregnation treatment was performed at 1450 ° C. to obtain a Si—SiC composite material. This Si—SiC composite material had a thermal conductivity of 235 W / m · K, a Young's modulus of 455 GPa, a bulk density of 3.09 g / cm 3 , and a three-point bending strength of 520 MPa.
Using this material, a polishing plate for φ12 inch wafer was manufactured and a polishing test was performed.
Since the frictional heat increases as the polishing pressure increases, the temperature distribution of the polishing plate also increases and the amount of deformation increases. Normally, polishing conditions are determined based on the wafer accuracy after polishing. However, a higher polishing pressure improves the polishing efficiency, and therefore a higher polishing pressure is advantageous.
After polishing, one point at the center and eight points on the outer periphery were measured to calculate the flatness of the wafer.
The point at which the flatness was greater than 0.5 μm was determined as a judgment point, and the polishing pressure was 300 gf / cm 2 .

(実施例2) 嵩密度が2.85g/cmの炭化珪素焼結体を作製し、1450℃でSi含浸処理を行いSi−SiC複合材料を得た。このSi−SiC複合材料の熱伝導率は220W/m・Kでヤング率が470GPa、嵩密度は3.12g/cmで三点曲げ強さは600MPaであった。
実施例1と同じく、この素材を用いてφ12インチウェーハ用の研磨プレートを製作した。
実施例1で得られた結果から、研磨圧力300gf/cmで同様の評価を行なった結果、ウェーハの平坦度は0.3μmであった。
Example 2 A silicon carbide sintered body having a bulk density of 2.85 g / cm 3 was produced, and Si impregnation treatment was performed at 1450 ° C. to obtain a Si—SiC composite material. This Si-SiC composite material had a thermal conductivity of 220 W / m · K, a Young's modulus of 470 GPa, a bulk density of 3.12 g / cm 3 , and a three-point bending strength of 600 MPa.
As in Example 1, a polishing plate for φ12 inch wafer was manufactured using this material.
From the results obtained in Example 1, the same evaluation was performed at a polishing pressure of 300 gf / cm 2. As a result, the flatness of the wafer was 0.3 μm.

(比較例1) 嵩密度が2.50g/cmの炭化珪素焼結体を作製し、1450℃でSi含浸処理を行いSi−SiC複合材料を得た。このSi−SiC複合材料の熱伝導率は240W/m・Kでヤング率が340GPa、嵩密度は3.00g/cmで三点曲げ強さは280MPaであった。
実施例1と同様に、この素材を用いてφ12インチウェーハ用の研磨プレートを製作した。
実施例2と同様の評価を行った結果、ウェーハの平坦度は1.2μmであった。
Comparative Example 1 A silicon carbide sintered body having a bulk density of 2.50 g / cm 3 was produced, and Si impregnation treatment was performed at 1450 ° C. to obtain a Si—SiC composite material. This Si—SiC composite material had a thermal conductivity of 240 W / m · K, a Young's modulus of 340 GPa, a bulk density of 3.00 g / cm 3 , and a three-point bending strength of 280 MPa.
As in Example 1, a polishing plate for φ12 inch wafer was manufactured using this material.
As a result of performing the same evaluation as in Example 2, the flatness of the wafer was 1.2 μm.

(比較例2) 嵩密度が3.00g/cmの炭化珪素焼結体を作製し、1450℃でSi含浸処理を行いSi−SiC複合材料を得た。このSi−SiC複合材料の熱伝導率は170W/m・Kでヤング率が400GPa、嵩密度は3.01g/cmで三点曲げ強さは410MPaであった。
実施例1と同様に、この素材を用いてφ12インチウェーハ用の研磨プレートを製作した。
実施例2と同様の評価を行った結果、ウェーハの平坦度は2.0μmであった。
この素材については、嵩密度の上昇がほとんど見られなかったことより、素材を切断して組織を観察した結果、Siが十分含浸しておらず、炭化珪素焼結体組織と変わらなかった。
(Comparative Example 2) A silicon carbide sintered body having a bulk density of 3.00 g / cm 3 was produced, and Si impregnation treatment was performed at 1450 ° C to obtain a Si-SiC composite material. This Si—SiC composite material had a thermal conductivity of 170 W / m · K, a Young's modulus of 400 GPa, a bulk density of 3.01 g / cm 3 , and a three-point bending strength of 410 MPa.
As in Example 1, a polishing plate for φ12 inch wafer was manufactured using this material.
As a result of performing the same evaluation as in Example 2, the flatness of the wafer was 2.0 μm.
With respect to this material, since almost no increase in bulk density was observed, the material was cut and the structure was observed. As a result, Si was not sufficiently impregnated and was not different from the silicon carbide sintered body structure.

本発明に係る炭化珪素系研磨プレートを研磨装置に組み込んで使用状態を示す概念図。The conceptual diagram which shows the use condition by incorporating the silicon carbide type polishing plate which concerns on this invention in a grinding | polishing apparatus.

符号の説明Explanation of symbols

1 炭化珪素系研磨プレート
2 半導体ウェーハ研磨装置
3 研磨ヘッド
4 ワックス
5 半導体ウェーハ
6 研磨定盤
7 研磨布
DESCRIPTION OF SYMBOLS 1 Silicon carbide type polishing plate 2 Semiconductor wafer polishing apparatus 3 Polishing head 4 Wax 5 Semiconductor wafer 6 Polishing surface plate 7 Polishing cloth

Claims (4)

熱伝導率が200W/m・K以上で、ヤング率が450GPa以上であることを特徴とする炭化珪素系研磨プレート。 A silicon carbide based polishing plate having a thermal conductivity of 200 W / m · K or more and a Young's modulus of 450 GPa or more. 嵩密度2.60g/cm〜2.90g/cmの炭化珪素焼結体に溶融Siを含浸処理し、嵩密度が3.05g/cm〜3.15g/cmで、曲げ強さが500MPa以上のSi−SiC複合材料であることを特徴とする請求項1に記載の炭化珪素系研磨プレート。 In bulk density 2.60 g / cm 3 impregnated with the melted Si silicon carbide sintered body ~2.90g / cm 3, a bulk density of 3.05g / cm 3 ~3.15g / cm 3 , flexural strength The silicon carbide based polishing plate according to claim 1, wherein is a Si—SiC composite material of 500 MPa or more. 平均粒径が0.01μm以上1μm未満のα型炭化珪素粉末にB−C系の焼結助剤、バインダーおよび溶媒を配合して混練しスラリーを調製する工程と、
スラリーをスプレードライヤーを使用して、ほぼ平均粒径50μmの造粒粉を作製する工程と、
造粒粉を所定のゴム型に充填し、CIP成形を行い成形体を作製する工程と、
成形体をAr雰囲気にて、1900℃〜2300℃で焼成し嵩密度2.60g/cm〜2.90g/cmの炭化珪素焼結体を作製する工程と、
減圧下1450℃で炭化珪素焼結体に溶融Siを含浸して熱伝導率が200W/m・K以上で、ヤング率が450GPa以上の炭化珪素系研磨プレートを作製する工程を有することを特徴とする炭化珪素系研磨プレートの製造方法。
A step of preparing a slurry by blending an α-type silicon carbide powder having an average particle size of 0.01 μm or more and less than 1 μm with a BC sintering additive, a binder and a solvent, and kneading the mixture;
Using a spray dryer to produce a granulated powder having an average particle size of approximately 50 μm;
Filling the granulated powder into a predetermined rubber mold and performing CIP molding to produce a molded body;
Firing the molded body at 1900 ° C. to 2300 ° C. in an Ar atmosphere to produce a silicon carbide sintered body having a bulk density of 2.60 g / cm 3 to 2.90 g / cm 3 ;
Characterized in that it comprises a step of impregnating a silicon carbide sintered body with molten Si at 1450 ° C. under reduced pressure to produce a silicon carbide-based polishing plate having a thermal conductivity of 200 W / m · K or more and a Young's modulus of 450 GPa or more. A method for manufacturing a silicon carbide polishing plate.
請求項1または2に記載の炭化珪素系研磨プレートを半導体ウェ−ハ研磨装置の研磨ヘッドに取り付け、前記炭化珪素系研磨プレートにワックスを用いて取り付けられた半導体ウェーハを、回転する研磨定盤に取り付けられて回転する研磨布に押し付けて研磨することを特徴とする半導体ウェーハの研磨方法。 The silicon carbide polishing plate according to claim 1 or 2 is attached to a polishing head of a semiconductor wafer polishing apparatus, and the semiconductor wafer attached to the silicon carbide polishing plate using wax is used as a rotating polishing platen. A method of polishing a semiconductor wafer, wherein the polishing is performed by pressing against a polishing cloth attached and rotating.
JP2006113498A 2006-04-17 2006-04-17 Silicon carbide polishing plate and method for polishing semiconductor wafer Expired - Fee Related JP4913468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006113498A JP4913468B2 (en) 2006-04-17 2006-04-17 Silicon carbide polishing plate and method for polishing semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006113498A JP4913468B2 (en) 2006-04-17 2006-04-17 Silicon carbide polishing plate and method for polishing semiconductor wafer

Publications (2)

Publication Number Publication Date
JP2007283435A true JP2007283435A (en) 2007-11-01
JP4913468B2 JP4913468B2 (en) 2012-04-11

Family

ID=38755664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006113498A Expired - Fee Related JP4913468B2 (en) 2006-04-17 2006-04-17 Silicon carbide polishing plate and method for polishing semiconductor wafer

Country Status (1)

Country Link
JP (1) JP4913468B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101934493A (en) * 2010-08-10 2011-01-05 天津中环领先材料技术有限公司 Polishing process of ultrathin zone-melting silicon polished wafer
JP2012164932A (en) * 2011-02-09 2012-08-30 Shin Etsu Chem Co Ltd Method of manufacturing silicon thin-film transfer wafer and polishing device
JP2016032062A (en) * 2014-07-30 2016-03-07 日立金属株式会社 Silicon carbide single crystal substrate processing method and silicon carbide single crystal substrate with jig
KR20210084616A (en) 2018-11-28 2021-07-07 가부시키가이샤 사무코 A method for estimating thermal conductivity, a device for estimating thermal conductivity, a method for manufacturing a semiconductor crystal product, a device for calculating thermal conductivity, a computer-readable recording medium in which a program for calculating thermal conductivity is recorded, and a method for calculating thermal conductivity

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256572A (en) * 1987-04-15 1988-10-24 株式会社日立製作所 Sic base ceramics and manufacture
JPH0532458A (en) * 1990-11-20 1993-02-09 Asahi Glass Co Ltd Heat-treating apparatus for semiconductor, high-purity silicon carbide part for semiconductor heat-treating apparatus and its production
JP2001247367A (en) * 2000-03-03 2001-09-11 Tokai Konetsu Kogyo Co Ltd Silicon carbide sintered compact and method for producing the same
JP2002036102A (en) * 2000-07-28 2002-02-05 Ibiden Co Ltd Wafer holding jig
JP2002103213A (en) * 2000-09-25 2002-04-09 Ibiden Co Ltd Wafer holding tool
JP2005066710A (en) * 2003-08-25 2005-03-17 Ibiden Co Ltd Manufacturing method for vacuum chuck

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256572A (en) * 1987-04-15 1988-10-24 株式会社日立製作所 Sic base ceramics and manufacture
JPH0532458A (en) * 1990-11-20 1993-02-09 Asahi Glass Co Ltd Heat-treating apparatus for semiconductor, high-purity silicon carbide part for semiconductor heat-treating apparatus and its production
JP2001247367A (en) * 2000-03-03 2001-09-11 Tokai Konetsu Kogyo Co Ltd Silicon carbide sintered compact and method for producing the same
JP2002036102A (en) * 2000-07-28 2002-02-05 Ibiden Co Ltd Wafer holding jig
JP2002103213A (en) * 2000-09-25 2002-04-09 Ibiden Co Ltd Wafer holding tool
JP2005066710A (en) * 2003-08-25 2005-03-17 Ibiden Co Ltd Manufacturing method for vacuum chuck

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101934493A (en) * 2010-08-10 2011-01-05 天津中环领先材料技术有限公司 Polishing process of ultrathin zone-melting silicon polished wafer
JP2012164932A (en) * 2011-02-09 2012-08-30 Shin Etsu Chem Co Ltd Method of manufacturing silicon thin-film transfer wafer and polishing device
JP2016032062A (en) * 2014-07-30 2016-03-07 日立金属株式会社 Silicon carbide single crystal substrate processing method and silicon carbide single crystal substrate with jig
KR20210084616A (en) 2018-11-28 2021-07-07 가부시키가이샤 사무코 A method for estimating thermal conductivity, a device for estimating thermal conductivity, a method for manufacturing a semiconductor crystal product, a device for calculating thermal conductivity, a computer-readable recording medium in which a program for calculating thermal conductivity is recorded, and a method for calculating thermal conductivity
DE112019005929T5 (en) 2018-11-28 2021-08-05 Sumco Corporation Thermal conductivity estimation method, thermal conductivity estimation device, semiconductor crystal product production method, thermal conductivity calculation device, thermal conductivity calculation program, and thermal conductivity calculation method

Also Published As

Publication number Publication date
JP4913468B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP4261130B2 (en) Silicon / silicon carbide composite material
JPH0662338B2 (en) Silicon carbide / Graphite / Carbon composite ceramic body
JP5692845B2 (en) Highly rigid ceramic material and manufacturing method thereof
JPS6128627B2 (en)
JP4913468B2 (en) Silicon carbide polishing plate and method for polishing semiconductor wafer
US11198648B2 (en) Cordierite-based sintered body, method for producing the same, and composite substrate
JP4894770B2 (en) Silicon carbide / boron nitride composite sintered body, method for producing the same, and member using the sintered body
JP4842212B2 (en) Mold for glass hard disk substrate
KR102124766B1 (en) Plasma processing apparatus and manufacturing method of the same
KR100889387B1 (en) Manufacturing Method of Silicon Nitride Ceramics, Silicon Nitride Ceramic Rotor and Pipe And The Product Thereby
JP4382919B2 (en) Method for producing silicon-impregnated silicon carbide ceramic member
JP4758617B2 (en) High-density silicon carbide ceramics and method for producing the same
JP4612608B2 (en) Method for producing silicon / silicon carbide composite material
JP3970394B2 (en) Method for manufacturing silicon carbide sintered body
JP2009051705A (en) Silicon/silicon carbide composite material, its manufacturing process, and its method of evaluation
JP6975598B2 (en) Manufacturing method of silicon carbide member
WO2007139180A1 (en) Molding die for glass hard disk substrate
KR101140352B1 (en) Manufacturing method of pre-sintered porous Si granules for porous reaction-bonded silicon nitride, pre-sintered porous granules therefrom
KR101722652B1 (en) A composite ceramic material having ultra high temperature stability in atmosphere and manufacturing method of the composite ceramic material
KR20050122748A (en) Fabrication method of silicon nitride ceramics by nitrided pressureless sintering process
JPH05178657A (en) Alumina group composite sintered body and its production
JP2012144389A (en) SiC/Si COMPOSITE MATERIAL
JP2007055897A (en) Silicon/silicon carbide composite material
JP2002201070A (en) Silicon carbide sintered compact and its manufacturing method
JPWO2006080423A1 (en) MONITOR WAFER AND WAFER MONITORING METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120119

R150 Certificate of patent or registration of utility model

Ref document number: 4913468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees