JP4671501B2 - Lightweight ceramic member and manufacturing method thereof - Google Patents

Lightweight ceramic member and manufacturing method thereof Download PDF

Info

Publication number
JP4671501B2
JP4671501B2 JP2000398612A JP2000398612A JP4671501B2 JP 4671501 B2 JP4671501 B2 JP 4671501B2 JP 2000398612 A JP2000398612 A JP 2000398612A JP 2000398612 A JP2000398612 A JP 2000398612A JP 4671501 B2 JP4671501 B2 JP 4671501B2
Authority
JP
Japan
Prior art keywords
porosity
dense layer
ceramic member
mass
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000398612A
Other languages
Japanese (ja)
Other versions
JP2002226285A (en
Inventor
正博 中原
俊之 井原
裕作 石峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000398612A priority Critical patent/JP4671501B2/en
Publication of JP2002226285A publication Critical patent/JP2002226285A/en
Application granted granted Critical
Publication of JP4671501B2 publication Critical patent/JP4671501B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5022Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with vitreous materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5093Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with elements other than metals or carbon
    • C04B41/5096Silicon

Description

【0001】
【発明の属する技術分野】
本発明は、工作機械、半導体製造装置等、各産業分野において幅広く利用することができる軽量セラミックス部材に関するものである。
【0002】
【従来の技術】
機械構造部品に用いられる部材は、従来から金属が用いられているが、近年セラミックスの利用も増えてきている。これは、軽量、高剛性、高硬度、低熱膨張等の金属に対する優位な特性によるものであり、Al等の酸化物、SiC等の炭化物、Si等の窒化物から目的に応じて選定されている。中でも、構造部材の軽量化は全般的に現代の趨勢である。例えば、ステージ装置のように動く構造物では、軽いほど速く移動させることができ、また軽いほど駆動源への負担が少なくでき、また軽いほど慣性力が小さくなり制御性が高くなることは明らかである。
【0003】
かかる軽量化の課題を解決すべく、(1)セラミックス粉末に予め粒子状又はビーズ状の有機物を混合して成形した後、或いはスポンジ上の有機物にセラミックス粉末のスラリーを坦持させた後、これらの有機物を焼成と同時に燃焼させることにより気孔を形成させてなる有機物焼失型軽量セラミックス、(2)セラミックス粉末スラリーに発泡剤を添加して発泡させた後、鋳込み成形し、乾燥・脱脂し、焼成してなる焼結体内部が多孔体で表層が緻密層からなる軽量セラミックスが提案されている(特開平5−310482号、特開平6−247778号、特開平10−187163号)。
【0004】
【発明が解決しようとする課題】
しかし、上記(1)の軽量セラミックスは、表面部分に存在する有機物の燃焼により、その表面の平滑度は低下する。また、セラミックス粉末に混入させる有機物の微細化にも限界があり、これにより得られるセラミックスは比較的大きな気孔を有しているため強度が低い。
【0005】
上記(2)の軽量セラミックスは、発泡剤を使用したスラリーの鋳込み成形を用いる為に、気孔が傾斜配向している。この為、厚み方向に対し密度の不均一が発生し、焼成時に反り等の変形を生じる。また、例えば、構造部材において、荷重を受ける部品やねじの締結が必要となる部品等への適用に際しては、気孔が多く存在する部分は強度的にも避けるような設計上の配慮が必要となり、その使用には制限がでてくる。また、これは鋳込み成形が必須のプロセスとなるため、緻密層の厚みを容易に厚くしたり、厚みを制御することは難しく、また内部の多孔体においてもスラリー中の気泡制御が難しい等の生産性に問題がありコストアップにつながるなどの問題点があった。
【0006】
【課題を解決するための手段】
本発明者は、構造部材として適用可能な軽量化を実現するセラミックス焼結体の具体的な構成について検討を重ねた結果、気孔率25〜80体積%であり、MgO:6〜18質量%、Al :34〜46質量%、SiO :36〜60質量%のコージェライトの多孔質セラミックスからなる基体に、金属珪素を含浸してなる気孔率5体積%以下の表面緻密層を500μm以上の厚みで構成することにより、嵩比重が2以下の軽量化がれることを見出した。
【0007】
この表面緻密層の表層にSiO形成されていることを特徴とする。
【0008】
また、MgO:6〜18質量%、Al :34〜46質量%、SiO :36〜60質量%のコージェライトの多孔質セラミックスからなる基体の表面に、金属珪素粉末と溶媒及びバインダーを混合した金属珪素ペーストを塗布した後、金属珪素の融点以上に加熱することで、金属珪素を表層に含浸させ表面緻密層を形成する製造方法を見出したものである。
【0009】
【発明の実施の形態】
本発明は、多孔質セラミックスからなる基体の表層のみへの含浸を行うことで、内部を多孔体、表層を緻密体とした嵩比重2以下の軽量セラミックス部材の提供を可能にした。
【0010】
図1に本発明の軽量セラミックス部材の模式的構成図を示す。この図に示すように、本発明の軽量セラミックス部材1は、25〜80体積%の気孔率を有する多孔質セラミックスからなる基体2と気孔率5体積%以下を有する表面緻密層3からなり、この基体2をコージェライトで形成し、その表面緻密層3として金属珪素を含浸し強化した構成となり、全体の嵩比重を2以下としてある。
【0011】
ここで、嵩比重2以下の軽量セラミックス部材を得る為には、多孔体の気孔率を25〜80体積%とする必要がある。気孔率が25体積%より小さいと嵩比重2以下の達成が困難となり、80体積%を越えると、気孔が著しく多くなるため金属珪素を基体2の表面に含浸してなる表面緻密層3を備えることが困難となる。本発明に係る多孔質セラミックスは、セラミックス粒子の間隙を利用して気孔を形成する為、焼結体中に均質に気孔を存在させることができる。気孔の形成については、セラミックス材料の焼結時の収縮を小さくすることが好ましく、本発明者は、コージェライトをセラミックス材料に選定した。
【0012】
のセラミックス材料には、強度や靱性を強化するためのウィスカー等を添加して用いても何ら問題はない。気孔率の制御については、成形時の生密度調整、セラミックス粉末に対する焼成と同時に消失する粒子状又はビーズ状の有機物添加量の調整で行うことができる。
【0013】
このようにして得られた多孔質セラミックスの表面は平滑性が低くなるために、本発明では気孔率5体積%以下の表面緻密層を500μm以上の厚みで備える構造とした。気孔率が5体積%より大きいと表面緻密化が不十分となり、平滑性はもとより水中等での使用において、含水等の不具合が生じる。表面緻密層としては、金属珪素を選定した。金属珪素は、表面塗布後に融点以上に加熱して溶融させることで基体2のへ含浸が可能となる。
【0014】
ここで、表面緻密層にはウィスカー等を加えて強化しても何ら問題はない。表面緻密層の気孔率や厚みは、含浸する溶液の粘度や塗布量を調整することで任意に設定できる。粘度が低すぎると、基体2のに溶液がとどまらないために、表面緻密の気孔率は大きくなる。また、塗布量多い程、表面緻密3の厚みを大きくできる。構造部材として、高強度の要求等、使用目的に応じて表面緻密層の厚みを設計すればよい。
【0015】
また、構造部材としての使用には、加工等を行う場合があるため本発明では表面緻密層3を500μm以上に設計した。
【0016】
また、このような要求に対する強化方法としては、基体2の表面に金属珪素含浸してなる表面緻密層3の表面加熱処理を施すことでも可能である。これは、表面緻密層3の表層の金属珪素を酸化し、SiO膜を形成させることで、加工傷等の表面欠陥を小さくすることができるためである。また、金属珪素を溶融含浸させる場合には、金属珪素の融点の1410℃まで温度を上げる必要があるが、コージェライトは、融点が窒化珪素や炭化珪素ほど高くないために、金属珪素の含浸時に溶融しない組成比に設定する必要がある。この為、本発明でその組成について検討を重ねた結果、図2(a)のハッチング部で示すMgO:6〜18重量%、Al:34〜46重量%、SiO:36〜60重量%の範囲が良好であることを見出した。
【0017】
このようにして得られる焼結体は嵩比重が2以下であり、従来のセラミックス緻密体にはない軽量化を実現できる。
【0018】
次に、本発明の製造方法について説明する。
【0019】
最初に、コージェライトの多孔質セラミックスの作製を行う。コージェライトについては、MgO、Al、SiO粉末を所望の割合で計量し、分散剤及びイオン交換水をポットミルに投入し、高純度アルミナボール、あるいはジルコニアボールによって均一に混合させる。ここで、収縮を抑えるためにCaO、希土類等の焼結助剤は添加しない。
【0020】
このようにして得られた泥しょうにバインダーを加えた後、スプレードライヤーにて乾燥造粒して造粒粉末を製作し、この造粒粉末を金型に充填してメカプレスやラバープレス法等の公知の成形法によって製作した成形体に切削加工等を施して所定の形状とする。気孔率を大きくしたいときには、前述したとおり有機物を造粒粉末に添加して混合させたものを用いれば良い。
【0021】
このようにして得られた成形体を1400〜1450℃で大気焼成を行い、多孔体を得る。本方法によれば、焼成時の変形等もなく良好な多孔質セラミックスからなる基を得られる。
【0022】
次に、表面緻密層の形成方法について述べる。まず、金属珪素粉末と有機溶媒及び有機バインダーとを混合した金属珪素ペーストを多孔質セラミックスからなる基体2の表面に塗布した後、金属珪素の融点1410℃以上に加熱する。このとき溶融した金属珪素は毛細管現象により基体2のへ含浸され基体2気孔率5体積%以下の表面緻密3が形成される。
【0023】
また、金属珪素含浸してなる表面緻密層3において、約1100〜1300℃で大気中熱処理を施すことにより、SiO膜が表面緻密層3の表層に形成され、加工傷等の表面欠陥を小さくすることができる。
【0024】
以上の方法により、内部を多孔質セラミックスからなる基そして基体2の表面に金属珪素を含浸してなる気孔率5体積%以下の表面緻密層3を備えることにより、嵩比重2以下の軽量セラミックス部材を提供することができる。例えば、産業機器関係では動くステージやテーブル、搬送関係では台板やコンテナ等への適用が可能である。
【0025】
【実施例】
以下に、本発明を実施例により詳細に説明する。
実施例1
本発明の軽量セラミックス部材の一説明する。MgO:Al:SiOの組成比が13:37:50の質量となるように、Al粉末、タルク、カオリンを計量し、上記の方法で原料作製を行った。ここで、気孔率10〜50体積%の範囲は、成形時の圧力を調整することで作製できるが、気孔率50体積%を越える範囲については、有機物の添加が必要であるため澱粉を添加して、気孔率の調整を行った。このようにして得られた原料粉末をラバープレスして、20×20×20cmの成形体を作製した。その後、1430℃で焼成を行い、気孔率10〜90体積%を有する多孔質セラミックスからなる基体の作製を行った。
【0026】
このようにして得られた多孔質セラミックスからなる基体の表層に、金属珪素、樹脂、ガラスを用いて各々の表面緻密層を形成した。表面緻密層は、ペーストの塗布量を調整し、気孔率の異なるものを用意した。金属珪素の場合は、金属珪素粉末をイソプロピルアルコールとポリエチレングリコールと混合し、ペースト状にしたものを上記多孔体の表面全体に塗布した。その後、真空中で1430℃まで昇温することにより金属珪素を表層に溶融・含浸させ、表面緻密層を得た。
【0027】
ここで、比較例として、上記コージェライトの泥しょうに発泡剤を添加し、石膏型を用いて、20×20×20cmの成形体を鋳込み成形により作製し、焼成を行った。
【0028】
上記方法で作製したコージェライトを用いた軽量セラミックス部材の嵩比重測定結果を表1に示す。
【0029】
嵩比重測定はヘリウムガス置換法で行った。また、表面緻密層の気孔率は、飽水重量と乾燥重量を用いて測定を行った。また、表面緻密層の厚みは試料破断面より測定を行った。
【0030】
この結果、本発明の軽量セラミックス部材は、表面緻密層の気孔率を5体積%以下とし、内部の多孔質セラミックスからなる基気孔率を25体積%以上とすることで、嵩比重2以下の軽量化を達成できた。ここで、No1に示すように、内部の多孔質セラミックスからなる基気孔率が10体積%では嵩比重2以下とすることはできなかった。また、No14に示すように、内部の多孔質セラミックスからなる基気孔率が90体積%となると表面緻密層を形成することが困難であった。また、No4,7,13に示すように、表面緻密層の気孔率が5体積%を越えるものは、表面緻密層の厚み薄く、加工等を要する場合がある構造部材としての使用には不適と判断した。使用用途に応じて、表面緻密層の厚みを大きくする場合は、内部の多孔質セラミックスからなる基体の気孔率を大きくすることで、嵩比重2以下に調整できる。
【0031】
また、比較例として作製した発泡剤使用のものは、焼成時に大きな変形が発生した。これは、鋳込み成形時の石膏接触する部分と接触しない部分とにおいて密度差が発生する為と考えられる。
【0032】
【表1】

Figure 0004671501
【0033】
実施例
次に、コージェライトは融点が窒化珪素や炭化珪素程高くないために、金属珪素含浸する上で、溶融しない組成範囲の選定を行った。実施例1と同様の方法で図2(b)に示す丸印の組成比のコージェライト多孔体(気孔率40体積%)を作製し、加熱炉で1430℃迄昇温し、溶融有無を確認した。その結果、図2(b)の白丸の組成のものは溶融しなかったが、黒丸の組成のものは溶融した。これより、図2(a)に示すハッチング部、即ちMgO:6〜18重量%、Al:34〜46重量%、SiO:36〜60重量%の範囲が溶融せず良好であることが分かった。
【0034】
【発明の効果】
以上詳述したとおり、本発明の軽量セラミックス部材は、気孔率25〜80体積%であり、MgO:6〜18質量%、Al :34〜46質量%、SiO :36〜60質量%のコージェライト多孔質セラミックスからなる基体に、金属珪素を含浸してなる気孔率5体積%以下の表面緻密層を500μm以上の厚みで備えることで嵩比重2以下の軽量化を実現し、さらには金属珪素含浸してなる面緻密層に熱処理を施しSiO膜を形成することで、強度を向上させることができる。
【図面の簡単な説明】
【図1】 本発明の軽量セラミックス部材の構成を示す概略図である。
【図2】 (a)は本発明のコージェライトの組成範囲を示し、(b)は(a)に示す太枠内の拡大図を示す3成分図である
【符号の説明】
1:軽量セラミックス部材
2:基体(多孔質セラミックス
3:表面緻密 [0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lightweight ceramic member that can be widely used in various industrial fields such as machine tools and semiconductor manufacturing apparatuses.
[0002]
[Prior art]
Metals have conventionally been used for members used for machine structural parts, but in recent years, the use of ceramics has increased. This is due to the superior properties of metals such as light weight, high rigidity, high hardness, and low thermal expansion. From the oxides such as Al 2 O 3 , carbides such as SiC, and nitrides such as Si 3 N 4. It is selected accordingly. In particular, the weight reduction of structural members is generally a modern trend. For example, in a structure that moves like a stage device, the lighter the light, the faster it can move, and the lighter the lighter the load on the drive source, the lighter the inertial force becomes and the controllability becomes clearer. is there.
[0003]
In order to solve the problem of weight reduction, (1) after mixing the ceramic powder with a particulate or beaded organic material in advance, or carrying the ceramic powder slurry on the organic material on the sponge, Organic matter burned-out lightweight ceramics that are formed by burning the organic matter simultaneously with firing, (2) After foaming by adding a foaming agent to the ceramic powder slurry, cast molding, drying and degreasing, firing There have been proposed lightweight ceramics in which the inside of the sintered body is a porous body and the surface layer is a dense layer (JP-A-5-310482, JP-A-6-247778, JP-A-10-187163).
[0004]
[Problems to be solved by the invention]
However, the smoothness of the surface of the lightweight ceramic (1) is reduced by burning organic substances present on the surface portion. In addition, there is a limit to the miniaturization of organic matter mixed in the ceramic powder, and the resulting ceramic has relatively large pores and thus has low strength.
[0005]
In the lightweight ceramics of (2) above, the pores are inclined and oriented because slurry casting using a foaming agent is used. For this reason, density non-uniformity occurs in the thickness direction, and deformation such as warpage occurs during firing. In addition, for example, in structural members, when applying to parts that receive a load or parts that require fastening of screws, it is necessary to consider the design so as to avoid the part where there are many pores in terms of strength, There are restrictions on its use. In addition, since casting is an essential process, it is difficult to increase the thickness of the dense layer, it is difficult to control the thickness, and it is difficult to control the bubbles in the slurry even in the internal porous body. There was a problem that there was a problem in the nature and the cost was increased.
[0006]
[Means for Solving the Problems]
As a result of repeated studies on a specific structure of a ceramic sintered body that realizes weight reduction applicable as a structural member, the inventor has a porosity of 25 to 80% by volume , MgO: 6 to 18% by mass, A surface dense layer having a porosity of 5% by volume or less formed by impregnating metallic silicon on a base made of a cordierite porous ceramic of Al 2 O 3 : 34 to 46% by mass and SiO 2 : 36 to 60% by mass is 500 μm. by configuring in the above thickness, bulk density of 2 or less weight reduction was found that the Fig.
[0007]
An SiO 2 film is formed on the surface layer of the surface dense layer .
[0008]
Further, a metal silicon powder, a solvent, and a binder are formed on the surface of a base made of cordierite porous ceramics of MgO: 6 to 18% by mass, Al 2 O 3 : 34 to 46% by mass, and SiO 2 : 36 to 60% by mass. The present inventors have found a manufacturing method for forming a dense surface layer by impregnating metal silicon into a surface layer by applying a metal silicon paste mixed with and then heating to a melting point of metal silicon or higher.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention makes it possible to provide a lightweight ceramic member having a bulk specific gravity of 2 or less, in which only the surface layer of a substrate made of porous ceramics is impregnated, and the inside is a porous body and the surface layer is a dense body.
[0010]
FIG. 1 shows a schematic configuration diagram of a lightweight ceramic member of the present invention. As shown in this figure, a lightweight ceramic member 1 of the present invention comprises a base 2 made of porous ceramics having a porosity of 25 to 80% by volume and a surface dense layer 3 having a porosity of 5% by volume or less. the substrate 2 is formed by Kojerai bets, the metal silicofluoride-containing impregnating be strengthened configured as a surface dense layer 3, there the whole bulk density as 2 or less.
[0011]
Here, in order to obtain a lightweight ceramic member 1 having a bulk specific gravity of 2 or less, the porosity of the porous body needs to be 25 to 80% by volume. Porosity 2 5 achieved the volume% by Ri small bulk density 2 or less becomes difficult, and when it exceeds 80 vol%, the surface dense layer 3 formed by the metallic silicon because pores is significantly more impregnated into the surface of the substrate 2 It is difficult to provide Since the porous ceramic according to the present invention forms pores using the gaps between the ceramic particles, the pores can be present uniformly in the sintered body. The formation of pores is preferably to reduce the shrinkage during sintering of the ceramic material, the present inventors have selected Kojerai bets on ceramic material.
[0012]
The child of a ceramic material, there is no problem with the addition of such whiskers to enhance the strength and toughness. Control of porosity, raw density adjustment at the time of molding, Ru can be accomplished by adjusting the particulate or beaded organic amount simultaneously lost firing for ceramic powder.
[0013]
To this way the surface of the porous ceramic obtained is made low smoothness, and a structure in which Ru with a porosity of 5 vol% or less of the surface dense layer 3 in a thickness of more than 500μm in the present invention. When the porosity is larger than 5% by volume, surface densification becomes insufficient, and problems such as moisture content occur in use in water as well as smoothness. The surface dense layer 3, were selected metal silicofluoride-containing. Metallic silicon, it is possible to impregnate the front surface of the substrate 2 by heating and melting above the melting point after the surface coating.
[0014]
Here, there is no problem to enhance the addition of whiskers or the like on the front surface dense layer 3. The porosity and thickness of the surface dense layer 3 can be arbitrarily set by adjusting the viscosity and coating amount of the solution to be impregnated. If the viscosity is too low, in order not solution stay on the front surface of the base body 2, the porosity of the front surface dense layer 3 increases. Moreover, the thickness of the surface dense layer 3 can be increased as the coating amount is increased. What is necessary is just to design the thickness of the surface dense layer 3 as a structural member according to a use purpose, such as a request | requirement of high intensity | strength.
[0015]
In addition, the use as a structural member, was designed surface dense layer 3 in the present invention because if there is to perform processing and the like on 500μm or more.
[0016]
Further, as a method enhancement to this request it may also be subjected to heat treatment on the surface of the surface dense layer 3 formed by impregnating the metallic silicon on the surface of the substrate 2. This oxidized the surface of the metal silicofluoride elements of surface dense layer 3, by forming the SiO 2 film, it is because it is possible to reduce the surface defects such as machining scratches. Also, when the melting impregnated with metallic silicon, it is necessary to raise the temperature to 1410 ° C. of the melting point of the metal silicon, for Kojerai DOO has a melting point not as high as silicon nitride or silicon carbide, during impregnation of metallic silicon It is necessary to set the composition ratio so as not to melt. For this reason, as a result of repeated examination of the composition in the present invention, MgO: 6 to 18 wt%, Al 2 O 3 : 34 to 46 wt%, SiO 2 : 36 to 60 shown in the hatched part of FIG. We have found that the weight percent range is good.
[0017]
The sintered body thus obtained has a bulk specific gravity of 2 or less, and can realize a weight reduction that is not found in conventional ceramic dense bodies.
[0018]
Next, the manufacturing method of this invention is demonstrated.
[0019]
First, carry out the production of Kojerai door of porous ceramics. For cordierite, MgO, Al 2 O 3 , and SiO 2 powder are weighed in a desired ratio, and a dispersant and ion-exchanged water are put into a pot mill and uniformly mixed with high-purity alumina balls or zirconia balls. Here, a sintering aid such as CaO or rare earth is not added to suppress shrinkage.
[0020]
After adding a binder to the mud thus obtained, dry granulate with a spray dryer to produce a granulated powder, fill the mold with the granulated powder, mechanical press or rubber press method etc. A molded body manufactured by a known molding method is cut into a predetermined shape. In order to increase the porosity, as described above, an organic substance added to the granulated powder and mixed may be used.
[0021]
The molded body thus obtained is subjected to atmospheric firing at 1400 to 1450 ° C. to obtain a porous body. According to this method, obtain a group member 2 made of rather good porous ceramics also deformation during firing.
[0022]
Next, a method for forming the surface dense layer 3 will be described. First , a metal silicon paste in which metal silicon powder, an organic solvent, and an organic binder are mixed is applied to the surface of the base 2 made of porous ceramics, and then heated to a melting point of metal silicon of 1410 ° C. or higher. In this case, molten metal silicon is impregnated into the front surface of the substrate 2 by hair capillary phenomenon, porosity 5% by volume or less of the surface dense layer 3 on the substrate 2 is Ru is formed.
[0023]
Further, the surface dense layer 3 formed by impregnating the metallic silicon, by performing the atmosphere heat treatment at about 1100 to 1300 ° C., SiO 2 film is formed on the surface layer of the surface dense layer 3, the surface defects such as machining flaws Can be small.
[0024]
By the above method, by providing a base member 2 and a porosity of 5 vol% or less of the surface dense layer 3 formed by impregnating the metallic silicon on the surface of the substrate 2, comprising an internal porous ceramics, bulk specific gravity of 2 or less A lightweight ceramic member can be provided. For example, it can be applied to a moving stage or table for industrial equipment, and to a base plate or a container for transportation.
[0025]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples.
Example 1
An example of the lightweight ceramic member of the present invention will be described. The Al 2 O 3 powder, talc, and kaolin were weighed so that the composition ratio of MgO: Al 2 O 3 : SiO 2 was 13:37:50 , and the raw material was prepared by the above method. Here, the range of the porosity of 10 to 50% by volume can be prepared by adjusting the pressure at the time of molding, but for the range exceeding the porosity of 50% by volume, it is necessary to add an organic substance, so starch is added. The porosity was adjusted. The raw material powder thus obtained was rubber-pressed to produce a 20 × 20 × 20 cm shaped body. Then, the resulting mixture was fired at 1430 ° C., was prepared in groups body made of porous ceramics having a porosity of 10 to 90 vol%.
[0026]
The surface layer of the thus composed of porous ceramics obtained by group members, metal silicon, a resin, to form a respective surface dense layer of a glass. The surface dense layer was prepared by adjusting the amount of paste applied and having different porosity. In the case of metallic silicon, metallic silicon powder was mixed with isopropyl alcohol and polyethylene glycol, and a paste was applied to the entire surface of the porous body. Thereafter, the metallic silicon is melted and impregnated into the surface layer of the base body by raising the temperature up to 1430 ° C. in vacuo to give the surface dense layer.
[0027]
Here, as a comparative example, a foaming agent was added to the cordierite slurry, and a 20 × 20 × 20 cm molded body was produced by casting using a gypsum mold and fired.
[0028]
Table 1 shows the measurement results of bulk specific gravity of a lightweight ceramic member using cordierite produced by the above method.
[0029]
The bulk specific gravity was measured by a helium gas replacement method. Moreover, the porosity of the surface dense layer was measured using saturated water weight and dry weight. The thickness of the surface dense layer was measured from the sample fracture surface.
[0030]
As a result, light-weight ceramic member of the present invention, the porosity of the surface dense layer is 5 vol% or less, the porosity of the base body made of the porous ceramics With 25% by volume or more, bulk density 2 or less It was possible to reduce the weight. Here, as shown in No1, the porosity of the base body made of the porous ceramics could not be 10% by volume in the bulk specific gravity of 2 or less. Further, as shown in No14, the porosity of the base body made of the porous ceramics is difficult to form a table Men緻 dense layer becomes 90% by volume. In addition, as shown in Nos. 4, 7, and 13, when the porosity of the surface dense layer exceeds 5% by volume, the surface dense layer is thin and unsuitable for use as a structural member that may require processing. It was judged. Depending on the intended use, to increase the thickness of the surface dense layer, by increasing the porosity of the substrate made of the porous ceramics, What can be adjusted to the bulk density 2 or less.
[0031]
Moreover, the thing using the foaming agent produced as a comparative example generate | occur | produced the big deformation | transformation at the time of baking. This is considered to be due to the density difference occurs in a portion not in contact with the portion in contact with the gypsum mold during casting.
[0032]
[Table 1]
Figure 0004671501
[0033]
Example 2
Next, since cordierite has a melting point that is not as high as that of silicon nitride or silicon carbide, a composition range that does not melt when impregnating metallic silicon was selected. A cordierite porous body (porosity 40 volume%) having the composition ratio of the circles shown in FIG. 2 (b) is prepared in the same manner as in Example 1, and the temperature is raised to 1430 ° C. in a heating furnace to confirm the presence or absence of melting. did. As a result, the white circle composition of FIG. 2B did not melt, but the black circle composition melted. From this, the hatched portion shown in FIG. 2 (a), that is, MgO: 6 to 18% by weight, Al 2 O 3 : 34 to 46% by weight, and SiO 2 : 36 to 60% by weight are good without melting. I understood that.
[0034]
【The invention's effect】
As described in detail above, the lightweight ceramic member of the present invention has a porosity of 25 to 80% by volume , MgO: 6 to 18% by mass, Al 2 O 3 : 34 to 46% by mass, SiO 2 : 36 to 60 % by mass. % of the substrate made of porous ceramics of cordierite, to achieve bulk density of 2 or less weight reduction in Rukoto comprises a porosity 5% by volume or less of the surface dense layer formed by impregnating the metallic silicon with a thickness of more than 500μm news by forming a SiO 2 film by heat treatment on the front surface dense layer formed by impregnating the metallic silicon, it is possible to improve the strength.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a configuration of a lightweight ceramic member of the present invention.
FIG. 2 (a) shows the composition range of the cordierite of the present invention, and FIG. 2 (b) is a three-component diagram showing an enlarged view inside the bold frame shown in FIG .
[Explanation of symbols]
1: Lightweight ceramic member 2: Substrate ( porous ceramic )
3: Surface dense layer

Claims (3)

気孔率25〜80体積%であり、MgO:6〜18質量%、Al :34〜46質量%、SiO :36〜60質量%のコージェライトの多孔質セラミックスからなる基体に、金属珪素を含浸してなる気孔率5体積%以下の表面緻密層を500μm以上の厚みで備え、嵩比重が2以下であることを特徴とする軽量セラミックス部材。 A porosity of 25 to 80 vol%, MgO: having 6 to 18 wt%, Al 2 O 3: 34~46 wt%, SiO 2: a 36 to 60 base made mass% of cordierite porous ceramics, metal A lightweight ceramic member comprising a surface dense layer impregnated with silicon and having a porosity of 5% by volume or less with a thickness of 500 μm or more and a bulk specific gravity of 2 or less. 上記表面緻密層の表層にSiO形成されていることを特徴とする請求項記載の軽量セラミックス部材。Lightweight ceramic member according to claim 1, wherein the SiO 2 film is formed on the surface layer of the surface dense layer. MgO:6〜18質量%、Al :34〜46質量%、SiO :36〜60質量%のコージェライトの多孔質セラミックスからなる基体の表面に、金属珪素粉末と溶媒及びバインダーを混合した金属珪素ペーストを塗布した後、金属珪素の融点以上に加熱することで、金属珪素を表層に含浸させ表面緻密層を形成することを特徴とする請求項1記載の軽量セラミックス部材の製造方法。Metal silicon powder, solvent and binder are mixed on the surface of a base made of cordierite porous ceramics of MgO: 6 to 18% by mass, Al 2 O 3 : 34 to 46% by mass, SiO 2 : 36 to 60% by mass 2. The method for producing a lightweight ceramic member according to claim 1 , wherein after the applied metal silicon paste is applied, the surface layer is formed by impregnating the surface layer of metal silicon by heating to a melting point or higher of the metal silicon.
JP2000398612A 2000-11-29 2000-12-27 Lightweight ceramic member and manufacturing method thereof Expired - Fee Related JP4671501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000398612A JP4671501B2 (en) 2000-11-29 2000-12-27 Lightweight ceramic member and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000363500 2000-11-29
JP2000-363500 2000-11-29
JP2000398612A JP4671501B2 (en) 2000-11-29 2000-12-27 Lightweight ceramic member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002226285A JP2002226285A (en) 2002-08-14
JP4671501B2 true JP4671501B2 (en) 2011-04-20

Family

ID=26604853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000398612A Expired - Fee Related JP4671501B2 (en) 2000-11-29 2000-12-27 Lightweight ceramic member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4671501B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007323052A (en) * 2006-05-02 2007-12-13 Shiyoufuu:Kk Composite tooth for dental arch model, and method of producing the same and application thereof
JP4714816B2 (en) * 2006-07-18 2011-06-29 独立行政法人産業技術総合研究所 Ceramic structure and manufacturing method thereof
EP3093603B1 (en) * 2014-11-10 2018-11-28 NGK Insulators, Ltd. Container housing heat storage material
CN109020167A (en) * 2017-06-09 2018-12-18 河北卓达建材研究院有限公司 A method of improving the brown foam glass porosity
CN109020193A (en) * 2017-06-09 2018-12-18 河北卓达建材研究院有限公司 A method of reducing brown foam glass density
CN109020242A (en) * 2017-06-09 2018-12-18 河北卓达建材研究院有限公司 A kind of preparation method of lightweight brown foam glass
CN109020235A (en) * 2017-06-09 2018-12-18 河北卓达建材研究院有限公司 A method of improving the coloured foam class porosity
CN109020169A (en) * 2017-06-09 2018-12-18 河北卓达建材研究院有限公司 A method of improving the white foam glass porosity
JP6488346B1 (en) * 2017-09-27 2019-03-20 日本碍子株式会社 Fuel cell and cell stack device
JP7143154B2 (en) * 2018-09-07 2022-09-28 株式会社ノリタケカンパニーリミテド GLASS COATING LIQUID AND METHOD FOR MANUFACTURING CERAMIC PRODUCTS

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214424A (en) * 1985-03-19 1986-09-24 Ibiden Co Ltd Heat-resisting jig and its manufacture
JPS61287190A (en) * 1985-06-13 1986-12-17 イビデン株式会社 Substrate for electronic circuit
JPH01172290A (en) * 1987-12-25 1989-07-07 Ibiden Co Ltd Heat resistant complex body and production thereof
JPH02102177A (en) * 1988-10-06 1990-04-13 Eagle Ind Co Ltd Porous corrosion-resistant material and production thereof
JPH1160355A (en) * 1997-08-05 1999-03-02 Sumitomo Electric Ind Ltd Silicon nitride composite material having multilayer structure and its production
JPH11177196A (en) * 1997-12-12 1999-07-02 Ngk Spark Plug Co Ltd Ceramic substrate with conductive pattern and its manufacture

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232285A (en) * 1985-04-04 1986-10-16 エヌオーケー株式会社 High strength lightweight ceramic material
JPS62191484A (en) * 1986-02-17 1987-08-21 株式会社荏原製作所 Composite material for pump
EP0294176A3 (en) * 1987-06-02 1989-12-27 Corning Glass Works Lightweight laminated or composite structures
JPS6414914A (en) * 1987-07-08 1989-01-19 Fujitsu Ltd Jig for manufacture of semiconductor
JPS6469583A (en) * 1987-09-07 1989-03-15 Kobe Steel Ltd Production of glass-ceramic composite material
JPH01212289A (en) * 1988-02-17 1989-08-25 Kanebo Ltd Ceramic structure
JP2988964B2 (en) * 1990-05-31 1999-12-13 株式会社日立製作所 Lightweight and high-rigidity ceramics and their uses
JPH05310482A (en) * 1992-05-08 1993-11-22 Osaka Yogyo Kk Lightweight ceramic compact and its production
JPH06247778A (en) * 1993-02-23 1994-09-06 Osaka Cement Co Ltd Lightweight ceramic compact with obliquely oriented pore and its production
JPH10187163A (en) * 1996-12-26 1998-07-14 Ishikawajima Harima Heavy Ind Co Ltd Light weight ceramic sound absorber and manufacture of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214424A (en) * 1985-03-19 1986-09-24 Ibiden Co Ltd Heat-resisting jig and its manufacture
JPS61287190A (en) * 1985-06-13 1986-12-17 イビデン株式会社 Substrate for electronic circuit
JPH01172290A (en) * 1987-12-25 1989-07-07 Ibiden Co Ltd Heat resistant complex body and production thereof
JPH02102177A (en) * 1988-10-06 1990-04-13 Eagle Ind Co Ltd Porous corrosion-resistant material and production thereof
JPH1160355A (en) * 1997-08-05 1999-03-02 Sumitomo Electric Ind Ltd Silicon nitride composite material having multilayer structure and its production
JPH11177196A (en) * 1997-12-12 1999-07-02 Ngk Spark Plug Co Ltd Ceramic substrate with conductive pattern and its manufacture

Also Published As

Publication number Publication date
JP2002226285A (en) 2002-08-14

Similar Documents

Publication Publication Date Title
Liu et al. Research on selective laser sintering of Kaolin–epoxy resin ceramic powders combined with cold isostatic pressing and sintering
KR100538690B1 (en) Highly Porous Ceramics Fabricated From Preceramic Polymers And Expandable Microspheres, And The Producing Method The Same
JP4671501B2 (en) Lightweight ceramic member and manufacturing method thereof
JPH05254914A (en) Method for making sintered body
KR101401084B1 (en) Particle-stabilized ceramic foams coated on ceramic materials and the method for manufacturing the same
CN109265175B (en) High-strength ceramic product and preparation method thereof
US20060211567A1 (en) Method and slip for production of a moulded body from ceramic material ceramic moulded body and use of such a moulded body
Camerucci et al. Slip casting of cordierite and cordierite–mullite materials
US20010033038A1 (en) Method of producing metal/ceramic composite, and method of producing porous ceramic body
Lee et al. Shrinkage‐free, alumina–glass dental composites via aluminum oxidation
JP3830733B2 (en) Particle-dispersed silicon material and manufacturing method thereof
KR100502815B1 (en) Porous Ceramic Material with Double Pore Structures and Manufacturing Process therefor
CN109721381A (en) The preparation method of silicon nitride shell reinforcing silicon nitride foam ceramic
JPH06247778A (en) Lightweight ceramic compact with obliquely oriented pore and its production
KR100646212B1 (en) Producing method of highly porous, high strength ceramics materials and the materials the same
JP2002194456A (en) Method for manufacturing large-size thick-walled ceramics/metal composite material
JP2006306681A (en) Method for manufacturing large-sized thin-walled ceramic body
JP4714816B2 (en) Ceramic structure and manufacturing method thereof
JP3604128B2 (en) Displacement control type pressure sintering apparatus and pressure sintering method using the same
RU2203247C1 (en) Method for manufacturing unfired refractory metallurgy-usable products
JPH0223321B2 (en)
JPH11240756A (en) Ceramic lightweight composite material having closed pore and its production
JPS62244603A (en) Slurry casting molding die
JPH05310482A (en) Lightweight ceramic compact and its production
JP2000109372A (en) Metal-ceramics composite material and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees