JPS61214424A - Heat-resisting jig and its manufacture - Google Patents

Heat-resisting jig and its manufacture

Info

Publication number
JPS61214424A
JPS61214424A JP5328185A JP5328185A JPS61214424A JP S61214424 A JPS61214424 A JP S61214424A JP 5328185 A JP5328185 A JP 5328185A JP 5328185 A JP5328185 A JP 5328185A JP S61214424 A JPS61214424 A JP S61214424A
Authority
JP
Japan
Prior art keywords
silicon carbide
jig
weight
heat
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5328185A
Other languages
Japanese (ja)
Other versions
JPH0736381B2 (en
Inventor
Kiyotaka Tsukada
輝代隆 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP60053281A priority Critical patent/JPH0736381B2/en
Publication of JPS61214424A publication Critical patent/JPS61214424A/en
Publication of JPH0736381B2 publication Critical patent/JPH0736381B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)

Abstract

PURPOSE:To obtain the heat-resisting jig effectively applicable to use in which heating and cooling are frequently repeated, by specifying the average diameter of particles of silicon carbide crystal constituting the sintered body, the volume of metal silicon in the sintered body, the sum of the volume of permeable voids, and the weight of metal silicon existing in the jig. CONSTITUTION:In case that the average diameter of particle of silicon carbide crystal is larger than 10mum, combination parts between particles in the porous material inevitably decrease, so that it is difficult to obtain the porous material of high permeable void and of excellence in respect of handling. The permeable void of this porous material is 38-65vol%. In case of the permeable void lower than 38vol%, the existing amount of metal silicon inevitably decreases so that the desired heat-resisting jig of high thermal conductivity can not be obtained. On the contrary, in case of the permeable void higher than 65vol%, the strength of porous material is small and the handeability is inferior. As to the weight of metal silicon existing in the heat-resisting jig, the most preferable value needs to be 55-135pts.wt. for 100pts.wt. of silicon carbide constituting the jig.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐熱性治具とその製造方法に関し、特に本発
明は電子工業用の耐熱性治具例えば半導体の拡散・酸化
処理、ダイオードの接合、ガラス封着およびパッケージ
のリードフレームのロー付などの用途に適し食耐熱性治
具とその製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a heat-resistant jig and a method for manufacturing the same, and in particular, the present invention relates to a heat-resistant jig for the electronic industry, such as diffusion and oxidation treatment of semiconductors, and a method for manufacturing diodes. The present invention relates to corrosion-resistant and heat-resistant jigs suitable for bonding, glass sealing, brazing of package lead frames, etc., and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来、電子工業用の耐熱性治具としては、例えば黒鉛基
材表面に炭化珪素被膜を形成させた炭素・炭化蛙**合
体、石英ガラスおよび炭化珪素成形体に金属シリコンを
充填させ念複合体等が知られており、それぞれの用途に
応じて用いられている0 ところで、前記黒鉛基材表面に炭化珪素被膜を形成させ
た炭素・炭化珪素複合体はあらかじめ黒鉛基材をハロゲ
ンガス雰囲気中で高温熱処理を施す等の方法により純化
処理を施す必要があり、多額の費用を要するため経済的
でない。また前記石英ガラスは純度的には好ましいが耐
熱性がやや低く軟化変形を生じ易い。また前記炭化珪素
成形体に金属シリコンを充填させた複合体は例えば特開
昭51−85374号公報に 「プロセス管と、それに
挿入され得る寸法・形状のパドルと、前記パドルて支持
され得る少なくとも1つの舟形容器とからなり、前記プ
ロセス管、パドルおよび舟形容器は5〜30重量%の高
純度シリコン金属を含有する焼結シリコンカーバイドマ
トリックスを主体として成り、前記シリコン金属は前記
管、パドルおよび舟形容器に気体不透過性を与えてなる
半導体拡散炉。」および特開昭53−142183号公
報に「重量割合で炭化珪* 35〜70%及び金属シリ
コン65〜30 %を含有するガス不透過性シリコンク
エバー用治具。」に係る発明が開示されている。
Conventionally, heat-resistant jigs for the electronics industry include, for example, carbon/carbide composites made by forming a silicon carbide film on the surface of a graphite base material, and composites made by filling quartz glass and silicon carbide molded bodies with metallic silicon. Incidentally, the carbon/silicon carbide composite in which a silicon carbide film is formed on the surface of the graphite base material is prepared by preparing the graphite base material in advance in a halogen gas atmosphere. It is necessary to perform purification treatment by a method such as high-temperature heat treatment, which is not economical because it requires a large amount of cost. Furthermore, although the quartz glass is preferable in terms of purity, it has rather low heat resistance and is susceptible to softening and deformation. Further, a composite body in which the silicon carbide molded body is filled with metallic silicon is disclosed in Japanese Patent Application Laid-open No. 51-85374, for example, which describes a process tube, a paddle having a size and shape that can be inserted into the process tube, and at least one paddle that can be supported by the paddle. the process tube, paddle and boat are mainly composed of a sintered silicon carbide matrix containing 5-30% by weight of high-purity silicon metal; ``Semiconductor diffusion furnace which is made gas impermeable to gas.'' and JP-A-53-142183, ``A gas-impermeable silicon containing 35 to 70% silicon carbide* and 65 to 30% silicon metal by weight. An invention related to "Jig for Quever" is disclosed.

(発明が解決しようとする問題点) しかしながら、前者の特開昭51−85374号公報記
載′の焼結シリコンカーバイドマトリックスは再結晶炭
化珪素であり、出発原料として比較的粗粒の炭化珪素粒
子を使用するため、表面の面粗度が大きく、特に高い寸
法精度の要求される焼結体を格別の機械加工を施すこと
なく製造することが困難であるばかりでなく、前記シリ
コンカーバイドマトリックスに充填されている金属シリ
コンの量は5〜30重量%と比較的少ないものであった
(Problems to be Solved by the Invention) However, the sintered silicon carbide matrix described in the former Japanese Unexamined Patent Publication No. 51-85374 is recrystallized silicon carbide, and relatively coarse silicon carbide particles are used as the starting material. In addition, it is difficult to produce a sintered body that has a large surface roughness and requires particularly high dimensional accuracy without special machining. The amount of metallic silicon contained was relatively small at 5 to 30% by weight.

一方後者の特開昭53−142183号公報記載のシリ
コンクエバー治具は金属シリコンを重量で30〜65%
と比較的多fiK含有しているが、その明細書の実施例
には炭素繊維を主体とする成形体を珪素化処理し九特殊
な多孔質炭化珪素体に金属シリコンを含浸させた治具の
製造方法と炭化珪素粉と金属シリコン粉とフェノールレ
ジン等から成る混合物を加熱して得られる反応焼結法に
よる治具の製造方法が記載されており、これらの製造方
法により得られる治具は経済性および強度の両方を満足
させることは困難であると考えられる。
On the other hand, the latter silicon quaver jig described in JP-A-53-142183 contains 30 to 65% of metallic silicon by weight.
However, the examples in the specification include a jig in which a molded body mainly composed of carbon fibers is silicified and a special porous silicon carbide body is impregnated with metallic silicon. It describes a manufacturing method and a method for manufacturing a jig using a reaction sintering method obtained by heating a mixture consisting of silicon carbide powder, metal silicon powder, phenol resin, etc., and the jig obtained by these manufacturing methods is economical. It is considered difficult to satisfy both properties and strength.

ところで、電子工業用の耐熱性治具は、主として半導体
等の高純度製品を取扱う用途に使用されるものであるた
め、高純度で製品汚染のないことおよび耐摩耗性に優れ
ていることが重要であることの他に、加熱・冷却がひん
ばんに繰返される用途に使用されるものであるため、熱
伝導性および耐熱衝撃性に優れていることが好適である
が、このような補々の特性に優れた耐熱性治具を特に安
価に提供することは困難であった。
By the way, heat-resistant jigs for the electronics industry are mainly used for handling high-purity products such as semiconductors, so it is important that they be of high purity, free from product contamination, and have excellent wear resistance. In addition to this, since it is used in applications where heating and cooling are frequently repeated, it is preferable that it has excellent thermal conductivity and thermal shock resistance. It has been difficult to provide a heat-resistant jig with excellent properties at a particularly low cost.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者は、前述の如き従来知られた耐熱性治
具に比較して特に熱伝導性に優れ、良好な均熱性および
速い熱応答性を得ることのできる耐熱性治具を提供する
ことを目的として、種々研究を積重ねた結果、特に開放
気孔率が高く、かつ高強度の多孔質炭化珪素焼結体を得
るに至り、この多孔質炭化珪素焼結体に高純度の金属シ
リコンを含浸したところ、極めて熱伝導率の高い、前記
目的を満足することのできる炭化珪素質複合体を新規に
知見するに至り、本発明を完成し念。
Therefore, the present inventor provides a heat-resistant jig that has particularly excellent thermal conductivity compared to the conventionally known heat-resistant jig as described above, and is capable of obtaining good heat uniformity and quick thermal response. As a result of various research aimed at this purpose, we have obtained a porous silicon carbide sintered body with particularly high open porosity and high strength. Upon impregnation, we discovered a new silicon carbide composite that has extremely high thermal conductivity and can satisfy the above objectives, and we have completed the present invention.

本発明は、開放気孔を有する多孔質炭化珪素焼細体の開
放気孔中に金属シリコンが介在してなる耐熱性治具にお
いて、前記多孔質炭化珪素焼結体を構成する炭化珪素結
晶の平均粒径はiop篤以下であり、前記多孔質炭化珪
素焼結体中の金属シリコンが介在している容積ならびに
空隙気孔の容積の合計は前記治具の容積に対し38〜6
5容積博であり、前記治具中に介在する金属シリコンの
重量は前記治具を構成する炭化珪素100重量部に対し
て45〜135重量部であることを特徴とする耐熱性治
具とその製造方法である。
The present invention provides a heat-resistant jig in which metallic silicon is interposed in the open pores of a porous sintered silicon carbide body having open pores, the average grain size of silicon carbide crystals constituting the porous sintered silicon carbide body. The diameter is less than IOP, and the total volume of the intervening metal silicon and the volume of voids in the porous silicon carbide sintered body is 38 to 6
A heat-resistant jig and its This is the manufacturing method.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の耐熱性治具は、平均粒径が10 Ptf&以下
の炭化珪素結晶で構成されている多孔質炭化珪素焼結体
(以下、単に多孔質体と称す)′5c基材と、すること
が必要である。本発明の耐熱性治具は、主として良好な
均熱性および速い熱応答性が要求される用途に使用され
るものであり、前記耐熱性治具を構成する多孔質体の開
放気孔中に熱伝導性の優れ念金桐シリコンを含浸せしめ
ることにより、高い熱伝導性および気体不透過性を付与
せしめた複合体である。したがって、前記多孔質体はで
きるだけ開放気孔率の高いものであることが望ましいが
、多孔質体を構成する炭化珪素結晶の平均粒径が10声
よりも大きいと必然的に多孔質体内の粒と粒との結合箇
所が少なくなるため、特に開放気孔率が高くかつ取扱い
性に優れた多孔質体を得ることは困難である。
The heat-resistant jig of the present invention includes a porous silicon carbide sintered body (hereinafter simply referred to as a porous body)'5c base material composed of silicon carbide crystals having an average grain size of 10 Ptf or less. is necessary. The heat-resistant jig of the present invention is mainly used for applications requiring good heat uniformity and quick thermal response, and heat conduction is achieved through the open pores of the porous body constituting the heat-resistant jig. It is a composite material that has high thermal conductivity and gas impermeability by impregnating it with paulownia silicone, which has excellent properties. Therefore, it is desirable that the porous body has as high an open porosity as possible, but if the average grain size of the silicon carbide crystals constituting the porous body is larger than 10 tones, the particles within the porous body will inevitably Since the number of bonding points with grains is reduced, it is difficult to obtain a porous body with particularly high open porosity and excellent handling properties.

本発明の多孔質体は、開放気孔を38〜65容積チ有す
るものであることが必要である。前記開放気孔率を38
〜65容積チの範囲内に限定する理由は、前記開放気孔
率が38容槓チよりも低いと必然的に金属シリコンの介
在量が少なくなるため。
The porous body of the present invention needs to have open pores of 38 to 65 volumes. The open porosity is 38
The reason for limiting the range to 65 to 65 volume is that if the open porosity is lower than 38 volume, the amount of metal silicon will inevitably be reduced.

目的とする高い熱伝導率の耐熱性治具を得ることができ
ないからであり、一方65容積チよりも高いと多孔質体
自体の強度が弱く取扱い性に劣るからである。
This is because it is not possible to obtain a heat-resistant jig with a high thermal conductivity as desired, and on the other hand, if the volume is higher than 65 cm, the strength of the porous body itself is weak and the handleability is poor.

本発明の耐熱性治具中に介在する金属シリコンの重量は
前記治具を構成する炭化珪素100重量部に対して45
〜135重量部であることが必要である。
The weight of the metal silicon interposed in the heat-resistant jig of the present invention is 45 parts by weight based on 100 parts by weight of silicon carbide constituting the jig.
~135 parts by weight is required.

その理由は、前記金属シリコンの介在量が45重量部よ
りも少ないと本発明の目的とする高い、熱伝導性を有す
る耐熱性治具を得ることが困難であるばかりでなく、気
体不透過性を付与することが困難であるからであり、一
方金属シリコンの介在量の上限は多孔質体の開放気孔率
の上限によって決定される値である。なお、前記金楓シ
リコンの介在量は55〜135重量部の範囲内がより好
適である。
The reason for this is that if the amount of metallic silicon is less than 45 parts by weight, it is not only difficult to obtain a heat-resistant jig with high thermal conductivity, which is the object of the present invention, but also gas-impermeable. On the other hand, the upper limit of the amount of intervening metal silicon is determined by the upper limit of the open porosity of the porous body. In addition, the amount of the gold maple silicon to be included is more preferably within the range of 55 to 135 parts by weight.

本発明の多孔質体は、β型結晶の炭化珪素を30重!#
−以上含有するものであることが好ましい。
The porous body of the present invention has 30 layers of β-type crystal silicon carbide! #
It is preferable that it contains at least - or more.

その理由は、前記多孔質体は結晶粒相互の結合が強固な
三次元網目構造であることが重要であり。
The reason for this is that it is important that the porous body has a three-dimensional network structure in which crystal grains are strongly bonded to each other.

β型結晶の炭化珪素の含有量を30重量%以上とするこ
とにより、前記結晶粒相互の結合が強固な三次元網目構
造を有する多孔質体を得ることができるからであり、な
かでも50重tチ以上であることが有利である。
This is because by setting the content of silicon carbide in the β-type crystal to 30% by weight or more, it is possible to obtain a porous body having a three-dimensional network structure in which the bonds between the crystal grains are strong. Advantageously, it is greater than or equal to t.

本発明の多孔質体は、実質的に収縮させることなく焼結
させた焼結体であって、その焼結に伴う収縮率は2%以
下であることが有利である。その理由は、焼結時に収縮
を伴う通常の常圧焼結法による炭化珪素焼結体は強度お
よび耐摩耗性等の面では望ましいが、焼成収縮すると開
放気孔率が減少し之り、気孔が独立気孔化し易くなるた
め、金属シリコンの充填が困難になるばかりでなく、本
発明の目的とする開放気孔率が40〜56容檀%の開放
気孔率の大きな多孔質体を製造することが困雉になるか
らである。
The porous body of the present invention is a sintered body that is sintered without substantially shrinking, and it is advantageous that the shrinkage rate due to sintering is 2% or less. The reason for this is that silicon carbide sintered bodies produced by the normal pressureless sintering method, which undergoes shrinkage during sintering, are desirable in terms of strength and wear resistance, but shrinkage during sintering reduces open porosity and causes pores to form. Since the pores tend to become independent, it is not only difficult to fill with metallic silicon, but also difficult to manufacture a porous body with a large open porosity of 40 to 56%, which is the objective of the present invention. Because it becomes a pheasant.

本発明の多孔質体は平均曲げ強度が5 KF/#”以上
であることが有利である。その理由は、前記多孔質体の
平均曲げ強度が5KP/′IIIIL2よりも低いと取
扱い中に折れたり割れたりし易く、耐熱性治具を製造す
ることが困難であるからである。
It is advantageous for the porous body of the present invention to have an average bending strength of 5 KF/#'' or more. This is because it is easy to crack or crack, making it difficult to manufacture heat-resistant jigs.

次に本発明の耐熱性治具を製造する方法について説明す
る。
Next, a method for manufacturing the heat-resistant jig of the present invention will be explained.

本発明によれば、炭化珪素粉末を成形して生成形体とな
し、非酸化性雰囲気下で焼結し死後、前記焼結して得ら
れた多孔質体の開放気孔中に金属シリコンを充填して耐
熱性治具を製造する方法において、前記炭化珪素として
平均粒径が5μ電以下の粉末を使用し、前記生成形体の
嵩比重e1.12〜2.0り/信3となし、前記焼結体
の焼結温度を1400〜2100 Cとなし、前記金属
シリコンを前記治具を構成する炭化珪素100重量部に
対し、45〜136重量部充填することKよって耐熱性
治具を製造することができる。
According to the present invention, silicon carbide powder is molded into a formed body, sintered in a non-oxidizing atmosphere, and after death, metallic silicon is filled into the open pores of the porous body obtained by the sintering. In the method for manufacturing a heat-resistant jig, a powder having an average particle size of 5 μm or less is used as the silicon carbide, the bulk specific gravity of the formed body is 1.12 to 2.0, and the bulk specific gravity is 1.12 to 2.0. A heat-resistant jig is manufactured by setting the sintering temperature of the compact to 1400 to 2100 C, and filling 45 to 136 parts by weight of the metal silicon with respect to 100 parts by weight of silicon carbide constituting the jig. Can be done.

本発明によれば、炭化珪素として平均粒径が5μ篤以下
の粉末を使用することが必要である。その理由は、平均
粒径が5μmより大きい粒度の炭化珪素粉末を使用する
と焼結体内の粒と粒との結合箇所が少なくなるため、高
強度の多孔質体を得ることが困難になるからである。
According to the present invention, it is necessary to use a powder having an average particle size of 5 μm or less as silicon carbide. The reason for this is that if silicon carbide powder with an average particle size larger than 5 μm is used, there will be fewer bonding points between grains within the sintered body, making it difficult to obtain a high-strength porous body. be.

本発明によれば、従来知られた多孔質炭化珪素焼結体に
比較して低密度でかつ取扱い性に優れ元高強度の多孔質
体を製造することが重要であり、加圧成形法により生成
形体を成形する場合には出発原料として炭化珪素粉末を
分散媒液中で解膠剤とともに均一分散させた後凍結乾燥
せしめた炭化珪素粉末を使用することが有利であり、1
2鋳込み成形法により生成形体を成形する場合には出発
原料として炭化珪素粉末を分散媒液中で解膠剤とともに
均一分散させた懸濁液を使用することが有利である。
According to the present invention, it is important to produce a porous body with low density, excellent handling properties, and high strength compared to conventionally known porous silicon carbide sintered bodies. When molding a formed body, it is advantageous to use as a starting material a silicon carbide powder obtained by homogeneously dispersing silicon carbide powder together with a deflocculant in a dispersion medium and then freeze-drying it.
When molding a product by the two-cast molding method, it is advantageous to use as a starting material a suspension in which silicon carbide powder is homogeneously dispersed together with a peptizer in a dispersion medium.

その理由は、炭化珪素粉末は凝集性が強いため通常個々
の粒子が多数密接して集合した2次粒子を形成し易いた
め、このような炭化珪素粉末を何らの分散処理を施すこ
となく出発原料として使用すると2次粒子の単位で結晶
粒の粗大化が生起して得られる多孔質体の三次元網目構
造が比較的粗い組織となり易く、低密度でなおかつ高強
度の多孔質体を得ることは困難であった。しかしながら
、前述の如き分散媒液中で解膠剤とともに一均一分散さ
せた後凍結乾燥させた炭化珪素粉末を使用して加圧成形
した生成形体および懸濁液を使用して鋳込み、成形した
生成形体はいずれも炭化珪素粉末の個々の粒子が極めて
均一に分散し元状態で存在する生成形体を製造すること
ができるため、結晶の三次元網目構造を極めて微細でし
かも均一に発達させることができ、低密度でなおかつ高
強度の多孔質体を製造することができるからである。
The reason for this is that silicon carbide powder has strong cohesiveness and tends to form secondary particles in which a large number of individual particles are closely aggregated. When used as a porous material, coarsening of crystal grains occurs in units of secondary particles, resulting in a relatively coarse three-dimensional network structure of the porous material, making it difficult to obtain a porous material with low density and high strength. It was difficult. However, there are two types of molded products, which are formed by pressure molding using silicon carbide powder that is homogeneously dispersed with a deflocculant in a dispersion medium as described above and freeze-dried, and molded products by casting and molding using a suspension. In all forms, it is possible to produce a formed form in which the individual particles of silicon carbide powder are extremely uniformly dispersed and exist in their original state, making it possible to develop an extremely fine and uniform three-dimensional network structure of the crystals. This is because a porous body having low density and high strength can be manufactured.

本発明によれば、前記分散媒液としては種々のものを使
用することができる゛が、特に凍結乾燥させる場合に使
用するものは、融点が一5〜15Cの範囲内のものが有
利に使用でき、なかでもベンゼン・シクロヘキサンより
選ばれる少なくとも1種あるいは水を使用することが有
利である。
According to the present invention, various types of dispersion medium can be used, but those with a melting point in the range of 15 to 15C are advantageously used, especially when freeze-drying. Among them, it is advantageous to use at least one selected from benzene and cyclohexane or water.

本発明によれば、前記炭化珪素粉末を分散媒液中に均一
分散させる手段として、振動ミル、アトライタ−9ボー
ルきル、コロイドミルおよび高速ミキサーの如き強い剪
断力を与えることのできる分散手段を用いることが有利
である。
According to the present invention, as a means for uniformly dispersing the silicon carbide powder in the dispersion medium, a dispersion means capable of applying a strong shearing force such as a vibration mill, an attritor 9-ball mill, a colloid mill, and a high-speed mixer is used. It is advantageous to use

本発明によれば、前記炭化珪素粉末を分散媒液中に均一
分散させる際に使用する解膠剤としては、分散媒液が有
機質の場合には例えば脂肪酸アミン塩、芳香族アミン塩
、複素環アミン塩、ポリアルキレンポリアミン銹導体等
の陽イオン界面活性剤。
According to the present invention, when the dispersion medium is organic, the deflocculant used when uniformly dispersing the silicon carbide powder in the dispersion medium includes fatty acid amine salts, aromatic amine salts, heterocyclic amine salts, etc. Cationic surfactants such as amine salts and polyalkylene polyamine conductors.

エステル型、エステルエーテル型、エーテル型。Ester type, ester ether type, ether type.

含窒素型等の非イオン界面活性剤が有効であり、分散媒
液が水の場合には例えばしゆう酸アンモニウム・アンモ
ニア水等の無機解膠剤、ジエチルアミン、モノエチルア
ミン、ピリジン管エチルアミン、水酸北西メチルアンモ
ニウム、モノエタノールアミン等の有機解膠剤が有効で
ある。
Nitrogen-containing nonionic surfactants are effective, and when the dispersion medium is water, for example, inorganic peptizers such as ammonium oxalate and aqueous ammonia, diethylamine, monoethylamine, pyridine ethylamine, and hydroxyl. Organic peptizers such as NW methyl ammonium and monoethanolamine are effective.

本発明によれば、前記炭化珪素粉末を分散媒液中に均一
分散させた懸濁液を凍結乾燥する場合には分散媒液の融
点より低い温度に維持された雰囲気中へ懸濁液を噴霧し
て速やかに凍結させることが有利である。
According to the present invention, when freeze-drying a suspension in which the silicon carbide powder is uniformly dispersed in a dispersion medium, the suspension is sprayed into an atmosphere maintained at a temperature lower than the melting point of the dispersion medium. It is advantageous to freeze it quickly.

ところで、前記炭化珪素の結晶系にはα型・β型および
非晶質のものがあるが、なかで4β型のものは平均粒径
が5μ2以下の微粉末を取得し易く、シかも比較的高強
度の多孔質体を容易に製造することができるため有利に
使用することができ、特にβ型炭化珪l/lを50重量
%以上含有する炭化珪素粉末を使用することが好ましい
By the way, there are α-type, β-type, and amorphous types of crystal systems of silicon carbide, but among them, the 4β-type is easy to obtain fine powder with an average particle size of 5μ2 or less, and is relatively easy to obtain. It can be advantageously used because a high-strength porous body can be easily produced, and it is particularly preferable to use a silicon carbide powder containing 50% by weight or more of β-type silicon carbide l/l.

本発明によれば、前記生成形体の嵩比重を1.12〜2
.09/cIL3とすることが必要である。、その理由
は、前記嵩比重が1.129/(X3より小さいと炭化
珪素粒子相互の結合箇所が少ないため、得られる多孔質
体の強度が低く取扱い性に劣るからであり、一方2.0
gβ−より大きいと本発明の目的とする2開放気孔率の
大きな多孔質体な製造することが困難であり、熱伝導率
の高い耐熱性治具を製造することが困難になるからであ
る。
According to the present invention, the bulk specific gravity of the formed body is 1.12 to 2.
.. 09/cIL3. The reason for this is that if the bulk specific gravity is smaller than 1.129/(
This is because if it is larger than gβ-, it is difficult to produce a porous body with a large open porosity, which is the object of the present invention, and it becomes difficult to produce a heat-resistant jig with high thermal conductivity.

本発明によれば、前記焼結温度を1400〜2100C
とすることが必要である。その理由は、前記温度が14
00 ℃よりも低いと粒と粒と全結合するネックを充分
に発達させることが困難で、高い強度を有する多孔質体
を得ることができず、一方21001:’より高いと一
旦成長したネックのうち一定の大きさよりも小さなネッ
クがくびれ光彩状となったり、著しい場合には消失した
りして、むしろ強度が低くなるからである。
According to the present invention, the sintering temperature is 1400 to 2100C.
It is necessary to do so. The reason is that the temperature is 14
If the temperature is lower than 21001:', it is difficult to sufficiently develop the neck that fully bonds the grains, and a porous material with high strength cannot be obtained.On the other hand, if the temperature is higher than 21001, the neck once grown This is because necks that are smaller than a certain size become constricted and become halo-like, or in severe cases disappear, resulting in a decrease in strength.

本発明によれば、前記生成形体は炭化珪素を酸化せしめ
ることのない非酸化性雰囲気中、例えばアルゴン、ヘリ
ウム、ネオン、窒素、水素、−酸化炭素の中から選ばれ
る何れか少なくとも1種よりなるガス雰囲気中あるいは
真空中で焼成される。
According to the present invention, the formed body is made of at least one selected from argon, helium, neon, nitrogen, hydrogen, and carbon oxide in a non-oxidizing atmosphere that does not oxidize silicon carbide. It is fired in a gas atmosphere or in a vacuum.

本発明によれば、前記生成形体は非酸化性雰囲気中で実
質的に収縮させることなく焼成すること、が有利である
。その理由は、焼結時における収縮は多孔質体の強度を
向上させる上では望ましいが。
According to the invention, it is advantageous that the green body is fired in a non-oxidizing atmosphere without substantial shrinkage. The reason is that shrinkage during sintering is desirable for improving the strength of the porous body.

焼成収縮すると開放気孔率が減少したり、気孔が独立気
孔化し易く金嬌シリコンの充填が困難になるばかりでな
く、寸法精度の高い多孔質体を焼成収縮を生起させて製
造することは困難であるからである。
Firing shrinkage reduces open porosity and pores tend to become independent pores, making it difficult to fill with silicone, and it is also difficult to manufacture porous bodies with high dimensional accuracy by causing firing shrinkage. Because there is.

なお、本発明によれば、金属シリコンの充填が容易でか
つ寸法精度の高い多孔質体を得る上で実質的に収縮させ
ることなく焼結する際の焼成収縮率は2%以下とするこ
とが好ましく、なかでも。
According to the present invention, in order to obtain a porous body that is easy to fill with metal silicon and has high dimensional accuracy, the firing shrinkage rate when sintering without substantially shrinking can be set to 2% or less. Preferably, especially.

1%以下であることがより好適である。More preferably, it is 1% or less.

また本発明によれば、前記生成形体を焼成するに際し、
生成形体からの炭化珪素の揮散を抑制することが有利で
ある。その理由は、前記生成形体からの炭化珪素の揮散
を抑制することによって。
Further, according to the present invention, when firing the green body,
It is advantageous to suppress volatilization of silicon carbide from the product form. This is because the volatilization of silicon carbide from the formed body is suppressed.

炭化珪素の粒と粒とを結合するネックを充分に発達させ
ることができるからであシ、特に高強度で取扱い性に優
れた多孔質体を製造する場合には。
This is because the neck that connects the silicon carbide grains can be sufficiently developed, especially when producing a porous body with high strength and excellent handling properties.

炭化珪素の揮散率を5重量%以下に制御することが有利
である。
It is advantageous to control the volatilization rate of silicon carbide to 5% by weight or less.

前記生成形体からの炭化珪素の揮散を抑制する方法とし
ては、外気の侵入を遮断することのできる耐熱性の容器
内に生成形体を装入する方法が有効であり、前記耐熱性
の容器としては、黒鉛あるいは炭化珪素などの材質から
なる耐熱性の容器な使用することが好適である。
An effective method for suppressing volatilization of silicon carbide from the formed body is to charge the formed body into a heat-resistant container that can block the intrusion of outside air, and as the heat-resistant container, It is preferable to use a heat-resistant container made of a material such as graphite or silicon carbide.

本発明によれば、前記金属シリコンを前記治具を構成す
る炭化珪素100重量部に対し、45〜136重量部充
填することが必要である。前記金属シリコンを充填する
理由は、金属シリコンは炭化珪素とのなじみが良く、金
属シリコンを多孔質体の開放気孔内に充填することによ
って強度を向上せしめることができるばかりでなく、金
縞シリコンは熱伝導性に優れているため、多孔質体の開
放気孔中に金属シリコンを充填することにより、高い熱
伝導性および気体不透過性を付与せしめた耐熱性治具と
なすことができるからである。また前記金属シリコンの
充填量を45〜136重量部に限定する理由は、前記金
属シリコンの光填址が45重量部より少ないと本発明の
目的とする商い熱伝導性を有する耐熱性治具となすこと
が困難であるからであり、一方充填量の上限は多孔質体
の開放気孔率によって決定される。前記金属シリコンの
充填量は55重量部以上であることがより好適である。
According to the present invention, it is necessary to fill 45 to 136 parts by weight of the metal silicon with respect to 100 parts by weight of silicon carbide constituting the jig. The reason for filling the metal silicon is that metal silicon has good compatibility with silicon carbide, and filling the open pores of the porous body with metal silicon can improve the strength. Because it has excellent thermal conductivity, by filling the open pores of a porous body with metallic silicon, it can be made into a heat-resistant jig that has high thermal conductivity and gas impermeability. . The reason why the filling amount of the metallic silicon is limited to 45 to 136 parts by weight is that if the optical filler of the metallic silicon is less than 45 parts by weight, the heat-resistant jig having thermal conductivity, which is the object of the present invention, cannot be obtained. However, the upper limit of the filling amount is determined by the open porosity of the porous body. More preferably, the filling amount of the metal silicon is 55 parts by weight or more.

前記金鳴シリコンを多孔質体の開放気孔中へ充填する方
法としては、金属シリコンを加熱溶融させて含浸する方
法あるいは微粉化した金欄シリコンを分散媒液中に分散
し、この分散液を多孔質体に含浸し、乾燥した後、金鵡
シリコンの溶融温度以上に加熱する方法等が適用できる
The method of filling the open pores of the porous body with the Kinara silicon is a method of heating and melting metallic silicon to impregnate it, or a method of dispersing finely powdered Kinara silicon in a dispersion medium and dispersing the dispersion liquid into the porous body. A method such as impregnating a mass, drying it, and then heating it to a temperature higher than the melting temperature of gold parrot silicon can be applied.

次に本発明を実施例および比較例によって説明する。Next, the present invention will be explained with reference to Examples and Comparative Examples.

実施例1 出発原料として使用した炭化珪素粉末は97.5重量%
がβ型結晶で残部は実質的に2H型結晶よりなる炭化珪
素粉末であって、 0.12重t%の遊離炭素、0.3
7重量%の酸素、1.2 X 10−’重量%の鉄、1
.4 x 10−4重t (l tD カル7 ウA、
8 X 10−’重tチのナトリウム、I X 10−
5重tSのカリウムおよび痕跡景のアルミニウムを含有
し、1.1μmの平均粒径を有していた。   ゛ 前記炭化珪素粉末100重量部に対し、ポリビニルアル
コール5 を置部、モノエタノールアミン0.3重を部
と水100重り部を配合し、ボールミル中で5時間混合
した後凍結乾燥した。
Example 1 Silicon carbide powder used as starting material was 97.5% by weight
is a silicon carbide powder consisting of β-type crystals and the remainder is substantially 2H-type crystals, 0.12% by weight of free carbon, 0.3
7 wt% oxygen, 1.2 x 10-'wt% iron, 1
.. 4 x 10-4 doublet (l tD Cal7 UA,
8 X 10-' heavy sodium, I X 10-'
It contained 5xtS of potassium and traces of aluminum and had an average particle size of 1.1 μm. ``To 100 parts by weight of the silicon carbide powder, 5 parts by weight of polyvinyl alcohol, 0.3 parts by weight of monoethanolamine, and 100 parts by weight of water were blended, mixed in a ball mill for 5 hours, and then freeze-dried.

この乾燥混合物を適量採取し、顆粒化した後、静水圧プ
レス機を用いて1300ψ−の圧力で生成形体を成形し
た。この生成形体の形状は直径が200 gm、厚さが
10111の円盤状で、密度は1,73f/m3(54
容積チ)であった。
An appropriate amount of this dry mixture was taken and granulated, and then a formed body was molded using a hydrostatic press at a pressure of 1300 ψ-. The shape of the generated body is a disc with a diameter of 200 gm and a thickness of 10111 mm, and the density is 1,73 f/m3 (54 gm).
The volume was

前記生成形体を黒鉛製ルツボに装入し、タンマン型焼結
炉を用いて1気圧の主としてアルゴンガス気流中で焼結
した。昇温過程は450C/時間でzoOo r:まで
昇温し、最高温度2000 Cで15分間保持した。焼
結中のCOガス分圧は室m〜1700Cが80 Pa以
下、1700Cよりも高温域では300士50 Paの
゛範囲内となるようにアルゴンガス流量を適宜ill整
して制御した。
The formed body was placed in a graphite crucible, and sintered in a Tammann-type sintering furnace in a stream of mainly argon gas at 1 atm. In the temperature raising process, the temperature was raised to zoOor: at a rate of 450 C/hour, and the temperature was maintained at a maximum temperature of 2000 C for 15 minutes. The CO gas partial pressure during sintering was controlled by appropriately adjusting the argon gas flow rate so that the partial pressure of the CO gas was 80 Pa or less in the chamber m to 1700C, and within the range of 300 to 50 Pa in the higher temperature range than 1700C.

得られた焼結体は密度が1ニア0?Δ−1開放気孔率が
47容積−の多孔質体で、β型炭化珪素の含有率が92
重t%で残部は主として4H型と6H型のα型炭化珪禦
であった。またこの結晶構造は走査型電子顕微鏡によっ
て観察したところ、ブロック状の炭化珪素結晶が比較的
太いネックによって複雑に絡み合って結合された三次元
構造を有しており、生成形体に対する線収縮率はいずれ
の方向に対しても0.3±0.1%のiI!囲内で、こ
の焼結体の平均曲げ強度は13.gKg/m2と高い弾
度を有しており、3XIO重量%のアルミニウム、6 
X 10−’重量%の鉄および4×lO重置%のニッケ
ルを含有していた。なお、クロム、カルシウム、銅の含
有量はいずれも痕跡量であり、ナトリウムとカリウムは
いずれもI X to”重量%未満であった。
The obtained sintered body has a density of 1 near 0? A porous body with a Δ-1 open porosity of 47 volume and a β-type silicon carbide content of 92
The balance in weight t% was mainly α-type silicon carbide of 4H type and 6H type. Furthermore, when this crystal structure was observed using a scanning electron microscope, it was found to have a three-dimensional structure in which block-shaped silicon carbide crystals were intricately intertwined and bonded by relatively thick necks, and the linear shrinkage rate for the formed shape was Also in the direction of 0.3±0.1% iI! Within the range, the average bending strength of this sintered body is 13. It has a high elasticity of gKg/m2 and contains 3XIO weight% aluminum, 6
It contained 10-' weight percent iron and 4×10 weight percent nickel. Note that the contents of chromium, calcium, and copper were all in trace amounts, and the contents of sodium and potassium were both less than I x to''% by weight.

次いで、前記多孔質体の表面に平均粒径が20μm1純
度が99.99991111%以上の金員シリコン粉末
100重量部と5%アクリル酸エステル・ベンゼン溶液
60重量部が混合されたスラリーを塗布し、表面に金属
シリコンを3809コーテイングした。この金属シリコ
ンをコーティングした多孔質体をアルゴンガス気流中で
450C/時間の昇温速度で加熱し、最高温度1450
G−で約1時間保持して前記多孔質体の表面に塗布され
た金属シリコンを多孔質体中へ浸透させ、炭化珪素質複
合体を得た。
Next, on the surface of the porous body, apply a slurry in which 100 parts by weight of Kinmen silicon powder with an average particle size of 20 μm and a purity of 99.99991111% or more and 60 parts by weight of a 5% acrylic acid ester benzene solution are mixed, The surface was coated with metal silicon 3809. This porous body coated with metallic silicon was heated at a temperature increase rate of 450C/hour in an argon gas stream to a maximum temperature of 1450C/hour.
G- for about 1 hour to allow the metal silicon applied to the surface of the porous body to permeate into the porous body to obtain a silicon carbide composite.

得られた炭化珪素質複合体の気孔率は2%で、気体不透
過性を有しており、寸法は金属シリコンを充填する前に
比較して0.03 m大きくなっただけであり、平均曲
げ強度は32.1KP/fe112と強く、熱伝導率は
0.23 cal/cm・see Cと極めて良好であ
り、耐熱性治具としての用途に極めて優れていることが
認められた。
The resulting silicon carbide composite had a porosity of 2%, was gas impermeable, and its dimensions were only 0.03 m larger than before filling with metallic silicon, with an average The bending strength was as strong as 32.1 KP/fe112, and the thermal conductivity was extremely good as 0.23 cal/cm·see C, making it extremely suitable for use as a heat-resistant jig.

比較例1 実施例1と同様であるが、出発原料として実施例1で使
用した炭化珪素粉末と市販のα型炭化珪j(GCす24
0、平均粒径80 μm ’)を3ニアの重量比で混合
した混合粉末を使用して多孔質体を製造し、次いで金属
シリコンを含浸して炭化珪素質複合体を得た。
Comparative Example 1 Same as Example 1, except that the silicon carbide powder used in Example 1 and commercially available α-type silicon carbide (GC Su24) were used as starting materials.
A porous body was prepared using a mixed powder of 0.0 μm, average particle size: 80 μm′) mixed at a weight ratio of 3.0 μm, and then impregnated with metallic silicon to obtain a silicon carbide composite.

前記多孔質体は密度が2.379/cIn”、開放気孔
率が26容積%、平均曲げ強度は5 、2 Kp/w+
s2と比較的低強度であった。さらに金属シリコンを含
浸することにより得られた炭化珪素質複合体の気孔率は
l。7%で気体不透過性を有していたが、金属シリコン
の含有量は炭化珪素100重量部に対して24ffiM
部であり、N1伝導率は0.21 cal/cx−Be
(ICとそれ程良好ではなかった。
The porous body has a density of 2.379/cIn'', an open porosity of 26% by volume, and an average bending strength of 5.2 Kp/w+
The intensity was relatively low as s2. Furthermore, the porosity of the silicon carbide composite obtained by impregnating metal silicon is 1. It had gas impermeability at 7%, but the metal silicon content was 24ffiM per 100 parts by weight of silicon carbide.
, and the N1 conductivity is 0.21 cal/cx-Be
(It wasn't as good as IC.

実施例2 実施例1と同様であるが、出発原料として実施例1で使
用した炭化珪素粉末と市販のα型炭化珪素粉末(GOす
6000 )を粉砕し、さらに精製、粒度分級した炭化
珪素粉末(平均粒径1.2μm)を種々の割合で混合し
た混合粉末を使用して多孔質体を製造し、次いで前記多
孔質体を黒鉛製ルツボ中に設置し、純度が99.999
9重量%以上の塊状金與シリコンを多孔質体の周囲に配
置した後1450 CでJjf!熱して気体不透過性を
りする炭化珪素質複合体を製造した。
Example 2 Same as Example 1, except that the silicon carbide powder used in Example 1 and the commercially available α-type silicon carbide powder (GOS 6000) were ground as starting materials, and the silicon carbide powder was further purified and classified for particle size. (average particle size 1.2 μm) mixed in various proportions to produce a porous body, and then the porous body was placed in a graphite crucible, and the purity was 99.999.
After placing 9% by weight or more of bulk gold silicon around the porous body, Jjf! was applied at 1450C. A silicon carbide composite which becomes gas impermeable upon heating was produced.

得られた多孔IC体および炭化珪素質複合体の有性は第
1衰に示した。
The properties of the obtained porous IC body and silicon carbide composite were shown in the first test.

第1表よりわかるように、β型炭化珪素粉末の混合比率
の高い炭化珪素粉末を出発原料として使用した多孔質体
は、密度の割に゛強度が優れていた。
As can be seen from Table 1, the porous body using silicon carbide powder with a high mixing ratio of β-type silicon carbide powder as a starting material had excellent strength relative to its density.

実施例3 実施例1と同様であるが、成形圧力を変えることにより
嵩比重の異なった生成形体を製造して炭化珪素質複合体
を製造した。得られた多孔質体および炭化珪素質複合体
の特性は第2表に示した。
Example 3 A silicon carbide composite was manufactured in the same manner as in Example 1, but by changing the molding pressure, formed bodies having different bulk specific gravity were manufactured. The properties of the obtained porous body and silicon carbide composite are shown in Table 2.

第2表よりわかるように、本発明の多孔質体は低密度で
も強度に優れている。
As can be seen from Table 2, the porous body of the present invention has excellent strength even at low density.

実施例4 実施例1で使用しfc戻化珪素粉末100重f&部に対
し、ポリアクリル酸エステル3重量t部、水酸化テトラ
メチルアンモニウム0.4ffii部と水60重蓋部を
配合し、ボールミル中で10時間混合した後、鋳込み成
形し、外径60m1al、内径45鴎、長さ300m、
密度1.63り/儂3の筒状生成形体を得た。
Example 4 To 100 parts by weight of the fc reconstituted silicon powder used in Example 1, 3 parts by weight of polyacrylic acid ester, 0.4 parts by weight of tetramethylammonium hydroxide and 60 parts by weight of water were blended, and the mixture was milled in a ball mill. After mixing for 10 hours in a mold, it was cast and molded, with an outer diameter of 60ml, an inner diameter of 45mm, and a length of 300m.
A cylindrical formed body with a density of 1.63/min was obtained.

次いで、実施例工と同様の条件で炭化珪素質複合体を製
造した。
Next, a silicon carbide composite was produced under the same conditions as in the example.

得られた多孔質体および炭化珪素質複合体の特性は第1
表に示した。
The properties of the obtained porous body and silicon carbide composite were as follows.
Shown in the table.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明の耐熱性治具は多孔質炭化珪素
焼結体を骨格とする炭化珪素質複合体であって耐摩耗性
に優れており、しかも熱伝導性および耐熱衝撃性に優れ
ているため、加熱・冷却がひんばんに繰返される用途に
対しても極めて有利に適用することのできるものであっ
て、産業上極めて有用である。
As described above, the heat-resistant jig of the present invention is a silicon carbide composite having a porous silicon carbide sintered body as a skeleton, and has excellent wear resistance, as well as thermal conductivity and thermal shock resistance. Therefore, it can be extremely advantageously applied to applications where heating and cooling are frequently repeated, and is extremely useful industrially.

Claims (1)

【特許請求の範囲】 1、開放気孔を有する多孔質炭化珪素焼結体の開放気孔
中に金属シリコンが介在してなる耐熱性治具において、 前記多孔質炭化珪素焼結体を構成する炭化珪素結晶の平
均粒径は10μm以下であり、前記多孔質炭化珪素焼結
体中の金属シリコンが介在している容積ならびに空隙気
孔の容積の合計は前記治具の容積に対し38〜65容積
%であり、前記治具中に介在する金属シリコンの重量は
前記治具を構成する炭化珪素100重量部に対して45
〜135重量部であることを特徴とする耐熱性治具。 2、前記多孔質炭化珪素焼結体は、β型結晶の炭化珪素
を30重量%以上含有する特許請求の範囲第1項記載の
耐熱性治具。 3、前記多孔質炭化珪素焼結体は、平均粒径が5μm以
下の炭化珪素粉末を成形して、嵩比重が1.12〜2.
0g/cm^3の生成形体となし、1400〜2100
℃の非酸化性雰囲気下で焼結して得られた多孔質炭化珪
素焼結体である特許請求の範囲第1あるいは2項記載の
耐熱性治具。 4、炭化珪素粉末を成形して生成形体となし、非酸化性
雰囲気下で焼結した後、前記焼結して得られた多孔質炭
化珪素焼結体の開放気孔中に金属シリコンを充填して耐
熱性治具を製造する方法において、 前記炭化珪素として平均粒径が5μm以下の粉末を使用
し、前記生成形体の嵩比重を1.12〜2.0g/cm
^3となし、前記焼結体の焼結温度を1400〜210
0℃となし、前記金属シリコンを前記治具を構成する炭
化珪素100重量部に対し、45〜136重量部充填さ
せることを特徴とする耐熱性治具の製造方法。 5、前記炭化珪素粉末は、β型結晶の炭化珪素を少なく
とも50重量%含有する特許請求の範囲第4項記載の製
造方法。 6、前記多孔質炭化珪素焼結体の焼結に伴う収縮率は2
%以下とする特許請求の範囲第4あるいは5項記載の製
造方法。
[Scope of Claims] 1. A heat-resistant jig in which metallic silicon is interposed in the open pores of a porous silicon carbide sintered body having open pores, comprising: silicon carbide constituting the porous silicon carbide sintered body; The average grain size of the crystals is 10 μm or less, and the total volume of intervening metallic silicon and the volume of voids in the porous silicon carbide sintered body is 38 to 65% by volume with respect to the volume of the jig. The weight of the metal silicon interposed in the jig is 45 parts by weight based on 100 parts by weight of silicon carbide constituting the jig.
135 parts by weight of a heat-resistant jig. 2. The heat-resistant jig according to claim 1, wherein the porous silicon carbide sintered body contains 30% by weight or more of β-type crystal silicon carbide. 3. The porous silicon carbide sintered body is made by molding silicon carbide powder with an average particle size of 5 μm or less, and has a bulk specific gravity of 1.12 to 2.
0g/cm^3 production form and none, 1400-2100
The heat-resistant jig according to claim 1 or 2, which is a porous silicon carbide sintered body obtained by sintering in a non-oxidizing atmosphere at ℃. 4. After shaping the silicon carbide powder into a formed body and sintering it in a non-oxidizing atmosphere, metal silicon is filled into the open pores of the porous silicon carbide sintered body obtained by the sintering. In the method for manufacturing a heat-resistant jig, the silicon carbide is a powder having an average particle size of 5 μm or less, and the bulk specific gravity of the formed body is 1.12 to 2.0 g/cm.
^3, and the sintering temperature of the sintered body was 1400 to 210.
0° C., and filling 45 to 136 parts by weight of the metal silicon with respect to 100 parts by weight of silicon carbide constituting the jig. 5. The manufacturing method according to claim 4, wherein the silicon carbide powder contains at least 50% by weight of β-type crystal silicon carbide. 6. The shrinkage rate due to sintering of the porous silicon carbide sintered body is 2.
% or less, the manufacturing method according to claim 4 or 5.
JP60053281A 1985-03-19 1985-03-19 Heat resistant jig and its manufacturing method Expired - Lifetime JPH0736381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60053281A JPH0736381B2 (en) 1985-03-19 1985-03-19 Heat resistant jig and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60053281A JPH0736381B2 (en) 1985-03-19 1985-03-19 Heat resistant jig and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS61214424A true JPS61214424A (en) 1986-09-24
JPH0736381B2 JPH0736381B2 (en) 1995-04-19

Family

ID=12938355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60053281A Expired - Lifetime JPH0736381B2 (en) 1985-03-19 1985-03-19 Heat resistant jig and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH0736381B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0322998A2 (en) * 1987-12-25 1989-07-05 Ibiden Co., Ltd. Heat-resistant composite body and process for preparing it
JPH0557841U (en) * 1991-12-27 1993-07-30 関西日本電気株式会社 Jig for semiconductor heat treatment
JP2002226285A (en) * 2000-11-29 2002-08-14 Kyocera Corp Lightweight ceramic member and method for manufacturing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4524318B2 (en) 2008-05-27 2010-08-18 原田工業株式会社 Automotive noise filter
JP5114325B2 (en) 2008-07-08 2013-01-09 原田工業株式会社 Roof mount antenna device for vehicle
USD726696S1 (en) 2012-09-12 2015-04-14 Harada Industry Co., Ltd. Vehicle antenna

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5177609A (en) * 1974-12-28 1976-07-06 Toshiba Ceramics Co Tankakeisotaino shirikonganshinhoho
JPS5185374A (en) * 1974-12-06 1976-07-26 Norton Co
JPS53142183A (en) * 1977-05-18 1978-12-11 Toshiba Ceramics Co Silicon wafer jig
JPS5416521A (en) * 1977-07-07 1979-02-07 Shinetsu Chemical Co Method of making silicon carbide molded body
JPS5747772A (en) * 1980-07-17 1982-03-18 Kennecott Corp Silicon carbide, silicon composite material and manufacture
JPH034514A (en) * 1989-06-01 1991-01-10 Clarion Co Ltd Manufacture of wafer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5185374A (en) * 1974-12-06 1976-07-26 Norton Co
JPS5177609A (en) * 1974-12-28 1976-07-06 Toshiba Ceramics Co Tankakeisotaino shirikonganshinhoho
JPS53142183A (en) * 1977-05-18 1978-12-11 Toshiba Ceramics Co Silicon wafer jig
JPS5416521A (en) * 1977-07-07 1979-02-07 Shinetsu Chemical Co Method of making silicon carbide molded body
JPS5747772A (en) * 1980-07-17 1982-03-18 Kennecott Corp Silicon carbide, silicon composite material and manufacture
JPH034514A (en) * 1989-06-01 1991-01-10 Clarion Co Ltd Manufacture of wafer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0322998A2 (en) * 1987-12-25 1989-07-05 Ibiden Co., Ltd. Heat-resistant composite body and process for preparing it
US4846673A (en) * 1987-12-25 1989-07-11 Ibiden Co., Ltd. Process for preparing heat-resistant composite body
US4913738A (en) * 1987-12-25 1990-04-03 Ibiden Co., Ltd. Heat-resistant composite body
JPH0557841U (en) * 1991-12-27 1993-07-30 関西日本電気株式会社 Jig for semiconductor heat treatment
JP2002226285A (en) * 2000-11-29 2002-08-14 Kyocera Corp Lightweight ceramic member and method for manufacturing the same
JP4671501B2 (en) * 2000-11-29 2011-04-20 京セラ株式会社 Lightweight ceramic member and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0736381B2 (en) 1995-04-19

Similar Documents

Publication Publication Date Title
EP0322998B1 (en) Heat-resistant composite body and process for preparing it
US3853566A (en) Hot pressed silicon carbide
US3833389A (en) Heat resistant and strengthened composite materials and method for producing same
JP2004018322A (en) Silicon/silicon carbide composite material and method of producing the same
WO2017022012A1 (en) Aluminum-silicon-carbide composite and method of manufacturing same
JPS61214424A (en) Heat-resisting jig and its manufacture
JPS6311589A (en) Heat resistant tool and manufacture
JPS5918349B2 (en) Titanium carbonitride-metal boride ceramic materials
JPH06144948A (en) Production of ceramic porous body
HU204240B (en) Process for producing self-carrying ceramic composite structure
JPH11106848A (en) Production of ceramic powder highly containing aluminum alloy matrix composite material
JP2563782B2 (en) Method for manufacturing silicon carbide based jig for semiconductor manufacturing
JPS61143686A (en) Silicon carbide sintered body for heat-resistant jig having excellent dimensional accuracy
JPH01115888A (en) Production of jig for producing semiconductor
JPH0459270B2 (en)
JPS61163180A (en) High size precision and anti-abrasivity silicon carbide composite body and manufacture
JP2004323291A (en) Aluminum-ceramic composite and its producing method
JPS61168570A (en) Boron nitride sintered body and manufacture
RU2045498C1 (en) Method for production of highly porous cellular materials based on carbide ceramics
JPS6235995B2 (en)
JPS61132562A (en) Manufacture of silicon carbide sintered body
JPH10298685A (en) Electrode parts for semiconductor producing device
JP2000026177A (en) Production of silicon-silicon carbide ceramics
JP2644806B2 (en) Manufacturing method of composite sliding material composed of ceramic and metal
JPH0138075B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term