JPH10298685A - Electrode parts for semiconductor producing device - Google Patents

Electrode parts for semiconductor producing device

Info

Publication number
JPH10298685A
JPH10298685A JP12007397A JP12007397A JPH10298685A JP H10298685 A JPH10298685 A JP H10298685A JP 12007397 A JP12007397 A JP 12007397A JP 12007397 A JP12007397 A JP 12007397A JP H10298685 A JPH10298685 A JP H10298685A
Authority
JP
Japan
Prior art keywords
preform
metal
powder
electrode
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12007397A
Other languages
Japanese (ja)
Inventor
Hiromasa Shimojima
浩正 下嶋
Mitsuyoshi Kimura
光良 木村
Kazunari Naito
一成 内藤
Mutsuo Hayashi
睦夫 林
Heishiro Takahashi
平四郎 高橋
Tomikazu Koyama
富和 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Cement Co Ltd
Original Assignee
Nihon Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Cement Co Ltd filed Critical Nihon Cement Co Ltd
Priority to JP12007397A priority Critical patent/JPH10298685A/en
Publication of JPH10298685A publication Critical patent/JPH10298685A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain electrode parts for producing semiconductors composed of a metal-ceramics composite material excellent in heat resistance by infiltrating the molten metal of an Al allay into a preform made of ceramics using AlN powder having specified particle size as the raw material and executing solidification. SOLUTION: Fine pulverious AlN having 1 to 150 μm average particle size is added with a binder and water to form into the shape of slurry. This slurry is poured into a mold and is applied with vibration to settle solids in the slurry, the supernatant is removed, and compacting is executed. This compacted body is frozened in the mold and is released from the mold and is dried and sintered to form into a preform. An Al alloy of Al-Mg or the like is placed on the preform, and heating is executed to the melting temp. of the At alloy or above in a nitrogen gas atmosphere to infiltrate the Al alloy into the preform under no pressure. It is impregnated at 50 to 80 vol.% powder filling ratio to obtain a composite material used for an electrode for a semiconductor producing device composed of the metal-ceramics material. The electrode material excellent in thermal conductivity, degassing properties and plasma resistance can stably be obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製造装置用
電極部品に関し、特に金属−セラミックス複合材料を用
いた半導体製造装置用電極部品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode part for a semiconductor manufacturing apparatus, and more particularly to an electrode part for a semiconductor manufacturing apparatus using a metal-ceramic composite material.

【0002】[0002]

【従来の技術】近年、コンピューターなどの電子機器の
急激な発展に伴い、その中核をなす半導体チップはます
ます高集積化、低コスト化が要求され、それに応えるべ
く、その半導体を製造する装置にも絶え間ない改良が求
められ続けている。特にプラズマCVDやエッチングな
どの装置に関しては、半導体の歩留まりや処理速度の向
上を目指して、ウェハーを加熱して処理する場合も増え
てきた。
2. Description of the Related Art In recent years, with the rapid development of electronic devices such as computers, the core semiconductor chips have been required to have higher integration and lower cost. There is a need for continuous improvement. In particular, with respect to apparatuses such as plasma CVD and etching, the number of cases in which a wafer is heated and processed is increasing in order to improve the yield and processing speed of semiconductors.

【0003】そのプラズマCVD装置などに用いる電極
部品としては、導電性や熱伝導性の良さに加えて、脱ガ
ス性がよく、容易に高真空が得られるとの理由で現在で
はA6061(Al−Mg−Si−Cu系)のようなア
ルミニウム合金に陽極酸化皮膜処理を施した部品が多く
使われている。そしてこの部品は、フッ素系のガスを含
むプラズマガスに腐食され難いという優れた特性をも有
している。
[0003] The electrode parts used in the plasma CVD apparatus and the like are currently A6061 (Al-) because they have good degassing properties and can easily obtain a high vacuum in addition to good conductivity and thermal conductivity. Many parts in which an anodic oxide film treatment is applied to an aluminum alloy such as (Mg-Si-Cu) are used. This component also has an excellent property of being hardly corroded by a plasma gas containing a fluorine-based gas.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記ア
ルミニウム合金に陽極酸化皮膜処理を施した部品は、そ
の融点が低いため、耐熱性に乏しく、300℃程度の温
度でも容易に軟化、変形するという欠点があった。その
ため、ウェハーの加熱処理を繰り返すことによって部品
の寿命が短くなり、その取り替えに要するランニングコ
ストが大きくかさむという問題が生じてきた。
However, a component obtained by subjecting the above aluminum alloy to the anodic oxidation coating treatment has a low melting point, so that it has poor heat resistance and is easily softened and deformed even at a temperature of about 300 ° C. was there. Therefore, there has been a problem that the life of the components is shortened by repeating the heat treatment of the wafer, and the running cost required for the replacement is greatly increased.

【0005】本発明は、上述した半導体製造装置用電極
部品が有する課題に鑑みなされたものであって、その目
的は、耐熱性を改善した半導体製造装置用電極部品を提
供することにある。
The present invention has been made in view of the above-mentioned problems of the electrode component for a semiconductor manufacturing apparatus, and has as its object to provide an electrode part for a semiconductor manufacturing apparatus with improved heat resistance.

【0006】[0006]

【課題を解決するための手段】本発明者等は、上記目的
を達成するため鋭意研究した結果、半導体製造装置用電
極部品に、AlN粉末によって形成されたプリフォーム
にアルミニウムを主成分とする金属を浸透させた金属−
セラミックス複合材料を用いれば、耐熱性に優れた電極
部品が得られるとの知見を得て本発明を完成するに至っ
た。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, a preform formed of AlN powder has been used as a main component in an electrode part for semiconductor manufacturing equipment. Metal impregnated with
The present inventors have found that the use of a ceramic composite material can provide an electrode component having excellent heat resistance, and have completed the present invention.

【0007】即ち本発明は、平均粒径が1〜150μm
のAlN粉末で形成されたプリフォームにアルミニウム
を主成分とする金属を浸透させた粉末充填率が50〜8
0vol%である金属−セラミックス複合材料から成る
ことを特徴とする半導体製造装置用電極部品とすること
を要旨とする。以下さらに詳細に説明する。
That is, according to the present invention, the average particle size is 1 to 150 μm.
A preform formed of AlN powder of the above is impregnated with a metal containing aluminum as a main component and has a powder filling rate of 50 to 8
The gist of the present invention is to provide an electrode part for a semiconductor manufacturing apparatus, which is made of a metal-ceramic composite material of 0 vol%. This will be described in more detail below.

【0008】上記のように、半導体製造装置用の電極部
品としては、AlN粉末で形成されたプリフォームにア
ルミニウムを主成分とする金属を浸透させた金属−セラ
ミックス複合材料から成るとした。この複合材料は、金
属の高靱性、高熱伝導性とセラミックスの高剛性、低熱
膨張性を兼ね備えた材料として開発された材料である
が、その構造上、金属は連続しているので、導電性も十
分に有していることを利用したものである。そして、こ
の複合材料は、金属にセラミックス粉末が加わっている
ので、耐熱性は勿論優れている。
As described above, an electrode component for a semiconductor manufacturing apparatus is made of a metal-ceramic composite material in which a metal mainly composed of aluminum is permeated into a preform formed of AlN powder. This composite material has been developed as a material that has both the high toughness and high thermal conductivity of metal and the high rigidity and low thermal expansion of ceramics. It is based on the fact that it has enough. This composite material is excellent in heat resistance, of course, since ceramic powder is added to the metal.

【0009】その複合材料中の金属をアルミニウム合金
としたのは、前記したと同じく、導電性、熱伝導性、脱
ガス性、耐プラズマ性などに優れていることによる。ま
た、セラミックス粉末をAlN粉末としたのは、耐プラ
ズマ性に優れている上に、熱伝導性が良好であることに
よる。AlN以外のセラミックス粉末を用いることもで
きるが、例えば、Al23粉末では熱伝導性が悪い点で
劣り、SiC粉末では耐プラズマ性の点で劣るなどAl
N以外の粉末では好ましくない点があり、セラミックス
粉末の内ではこのAlN粉末が最適である。
The reason why the metal in the composite material is an aluminum alloy is that it is excellent in conductivity, heat conductivity, degassing property, plasma resistance and the like, as described above. The reason why the ceramic powder is AlN powder is that it has excellent plasma conductivity and good thermal conductivity. Ceramic powders other than AlN can be used. For example, Al 2 O 3 powder is inferior in terms of poor thermal conductivity, and SiC powder is inferior in plasma resistance.
Powders other than N are not preferable, and among ceramic powders, this AlN powder is the most suitable.

【0010】そのAlN粉末を多くすれば、粉末の充填
が密になるので、熱軟化による変形に対する抵抗が増す
ため耐熱性が向上するが、その粉末充填率が50vol
%より低いと耐熱性の改善に及ぼす効果は十分でなく、
80vol%より高いと充填するのが難しくなる上、電
極部品の電気抵抗が上がり過ぎる。従って粉末充填率は
50〜80vol%が好ましく、70vol%程度だと
充填し易く、またプリフォームのハンドリングもし易い
ので、特に好ましい。そのAlN粉末の平均粒径として
は、1〜150μmが好ましく、1μmより細かいとア
ルミニウムの浸透が難しくなり、150μmより粗いと
プリフォームの形成が難しくなり、電極部品の作製が難
しくなる。
When the amount of AlN powder is increased, the packing of the powder becomes denser, so that the resistance to deformation due to thermal softening is increased and the heat resistance is improved.
%, The effect on heat resistance improvement is not sufficient,
If it is higher than 80% by volume, it becomes difficult to fill, and the electric resistance of the electrode component becomes too high. Therefore, the powder filling rate is preferably 50 to 80 vol%, and when the powder filling rate is about 70 vol%, it is particularly preferable because the filling is easy and the preform is easy to handle. The average particle size of the AlN powder is preferably from 1 to 150 μm, and if it is smaller than 1 μm, penetration of aluminum becomes difficult, and if it is coarser than 150 μm, formation of a preform becomes difficult, and production of electrode parts becomes difficult.

【0011】[0011]

【発明の実施の形態】上述した金属−セラミックス複合
材料の製造方法には、粉末冶金法、高圧鋳造法、真空鋳
造法等の方法が従来から知られている。しかし、これら
の方法は、セラミックス粉末の含有量を多くできない、
あるいは大型の加圧装置が必要である、もしくはニアネ
ット成形が困難である、コストが高いなどの理由によ
り、いずれも満足できるものではなかった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As a method for producing the above-mentioned metal-ceramic composite material, methods such as powder metallurgy, high-pressure casting, and vacuum casting have been conventionally known. However, these methods cannot increase the content of the ceramic powder,
In addition, none of them was satisfactory because a large-sized pressurizing device was required, near-net molding was difficult, and the cost was high.

【0012】そこで最近では、上記問題を解決する製造
方法として、米国ランクサイド社が開発した非加圧金属
浸透法が注目されている。この方法は、SiCやAl2
3などのセラミックス粉末で形成されたプリフォーム
に、アルミニウムインゴットを接触させ、これをN2
囲気中で700〜900℃に加熱して溶融したアルミニ
ウム合金をプリフォームに含浸させる方法である。これ
は、合金に含まれているMgの化学反応を利用して溶融
合金のセラミックス粉末への濡れ性を改善し、溶融合金
が加圧しなくてもプリフォームに浸透するものである。
Therefore, recently, as a manufacturing method for solving the above problem, a non-pressurized metal infiltration method developed by Rankside Co., USA has attracted attention. This method uses SiC or Al 2
This is a method in which an aluminum ingot is brought into contact with a preform formed of a ceramic powder such as O 3 and heated to 700 to 900 ° C. in an N 2 atmosphere to impregnate the preform with a molten aluminum alloy. This is to improve the wettability of the molten alloy to ceramic powder by utilizing the chemical reaction of Mg contained in the alloy, and the molten alloy permeates the preform without applying pressure.

【0013】そしてこの方法は、セラミックス粉末の含
有量を30〜85vol%と広く、かつ高い範囲まで変
えることができるので、本発明の範囲である50〜80
vol%を容易に達成できる。また、この方法で作製さ
れたプリフォームは、その形状の自由度が高いので、か
なり複雑な形状をニアネットで作ることもできる。この
ように、この方法は、加圧装置が不要であり、セラミッ
クス粉末の含有量を高くでき、ニアネット成形も可能と
なる方法であるので、コストを含め前記した問題を解決
する優れた方法である。
In this method, the content of the ceramic powder is as wide as 30 to 85 vol% and can be changed to a high range.
vol% can be easily achieved. Further, since the preform manufactured by this method has a high degree of freedom in the shape, a considerably complicated shape can be formed by the near net. As described above, this method does not require a pressurizing device, can increase the content of ceramic powder, and enables near-net molding. Therefore, this method is an excellent method for solving the above-described problems including costs. is there.

【0014】以上のことから、本発明の半導体製造装置
用電極部品を作製するのもこの非加圧金属浸透法による
製造方法が最も適しているので、この方法での本発明の
電極部品を製造する実施の形態を以下に述べると、先ず
1〜150μmの平均粒径を有するAlN粉末を用意す
る。この粉末を単独、または平均粒径が異なるものを2
種類以上を混合して用いてもよい。
From the above, since the manufacturing method by the non-pressurized metal infiltration method is most suitable for manufacturing the electrode part for a semiconductor manufacturing apparatus of the present invention, the electrode part of the present invention is manufactured by this method. An embodiment will be described below. First, an AlN powder having an average particle size of 1 to 150 μm is prepared. Use this powder alone or two powders with different average particle sizes.
You may mix and use more than one type.

【0015】用意したセラミックス粉末でプリフォーム
を形成する。形成方法は、沈降成形、射出成形、その他
CIP成形などいずれの方法でも構わない。要はアルミ
ニウム合金の浸透が終了するまで形態を保っており、か
つ浸透を阻害しないプリフォームを形成できる方法であ
れば何でもよい。但し、プリフォームの形成に水を分散
媒として用いる場合には、AlN粉末が水と反応するた
め使えない。その場合には、例えばシリカなどでAlN
表面を被覆する必要がある。被覆したシリカは、アルミ
ニウム合金の浸透時に還元され、Si金属としてアルミ
ニウム合金に組み込まれるため、悪影響はない。
A preform is formed from the prepared ceramic powder. The forming method may be any method such as sedimentation molding, injection molding, and other CIP molding. In short, any method can be used as long as it can maintain a shape until the penetration of the aluminum alloy is completed and can form a preform that does not inhibit the penetration. However, when water is used as a dispersion medium for forming a preform, it cannot be used because the AlN powder reacts with water. In this case, for example, AlN
The surface needs to be coated. The coated silica is reduced during the infiltration of the aluminum alloy and incorporated into the aluminum alloy as Si metal, so that there is no adverse effect.

【0016】これらプリフォームの形成方法の内、本発
明者等が最も多用している沈降成形の例を述べると、先
ず用意したAlN粉末にバインダーと水を加え、混合し
てスラリーとする。そのスラリーをゴム等の型に注ぎ振
動を掛けて固形物を沈降させ、その上澄み液を除去し成
形する。得られた成形体を型に入れたまま凍結し、凍結
した成形体を脱型し、乾燥後、焼結してプリフォームを
形成する。そのプリフォームに窒素雰囲気中で700〜
900℃の温度でアルミニウムを主成分とする金属を非
加圧で浸透させることにより、半導体製造装置用電極に
用いる複合材料が得られる。
Among the methods of forming preforms, the following describes an example of sedimentation molding which is most frequently used by the present inventors. First, a binder and water are added to prepared AlN powder and mixed to form a slurry. The slurry is poured into a mold of rubber or the like and vibrated to settle solids, and the supernatant is removed and molded. The obtained molded body is frozen in a mold, the frozen molded body is released, dried, and sintered to form a preform. 700 ~
By infiltrating a metal mainly composed of aluminum at a temperature of 900 ° C. without applying pressure, a composite material used for an electrode for a semiconductor manufacturing apparatus can be obtained.

【0017】以上の方法で半導体製造装置用電極部品を
作製すれば、耐熱性に優れた電極部品が得られる。
When an electrode part for a semiconductor manufacturing apparatus is manufactured by the above method, an electrode part having excellent heat resistance can be obtained.

【0018】[0018]

【実施例】以下、本発明の実施例を具体的に挙げ、本発
明をより詳細に説明する。
EXAMPLES Hereinafter, the present invention will be described in more detail by giving specific examples of the present invention.

【0019】(実施例) (1)プリフォームの形成 セラミックス粉末として平均粒径が16μmのシリカコ
ーディングしたAlN粉末(ダウケミカル社製)を用
い、その粉末に対し、バインダーとしてコロイダルシリ
カ液をシリカ分が2wt%となる量だけ添加し、それに
イオン交換水を24wt%加え、媒体を入れてないポッ
トミルで8時間混合した。得られたスラリーを8インチ
のウェハー用サセプタ(プラズマCVD放電用電極部
品)を想定して、φ210×t6mmの円板型のシリコ
ーンゴム型に流し込んで振動を掛けて固形分を沈降さ
せ、表面の水分を除いてからゴム型に入れたまま−30
℃に冷却して冷凍品を得た。得られた冷凍品を1晩静置
し、それを脱型し、1050℃で12時間焼成し、プリ
フォームを形成した。
(Example) (1) Formation of Preform Silica-coated AlN powder (manufactured by Dow Chemical Co., Ltd.) having an average particle diameter of 16 μm was used as a ceramic powder, and a colloidal silica liquid was used as a binder for the powder. Was added in an amount of 2 wt%, ion-exchanged water was added to the mixture in an amount of 24 wt%, and the mixture was mixed for 8 hours in a pot mill containing no medium. Assuming an 8 inch wafer susceptor (electrode part for plasma CVD discharge), the obtained slurry was poured into a disk-shaped silicone rubber mold of φ210 × t6 mm, and vibrated to settle the solid content. Remove water and leave in rubber mold -30
After cooling to ° C., a frozen product was obtained. The obtained frozen product was left still overnight, demolded, and fired at 1050 ° C. for 12 hours to form a preform.

【0020】(2)半導体製造装置用電極部品(金属−
セラミックス複合材料)の作製 形成したプリフォームの上にプリフォームの2.5倍重
量のAl−7Mg組成のアルミニウム合金を置き、窒素
雰囲気中で810℃の温度で12時間非加圧浸透させた
後、100℃/hrで冷却し半導体製造装置用電極部品
に用いる金属−セラミックス複合材料を作製した。
(2) Electrode parts for semiconductor manufacturing equipment (metal
Preparation of Ceramic Composite Material) An aluminum alloy having an Al-7Mg composition 2.5 times the weight of the preform is placed on the formed preform, and is subjected to non-pressure infiltration at 810 ° C. for 12 hours in a nitrogen atmosphere. Then, the mixture was cooled at 100 ° C./hr to produce a metal-ceramic composite material used for an electrode component for a semiconductor manufacturing apparatus.

【0021】(3)評価 形成したプリフォームから試験片を切り出し、アルキメ
デス法で嵩比重を測定し、プリフォームの粉末充填率を
求めた。その結果、70vol%であった。また、得ら
れた複合材料の比抵抗を四端子法で測定した。その結
果、室温で40×10-8Ω・mであった。この数値は、
一般のアルミニウム合金の比抵抗である2〜3×10-8
Ω・mに比べ、ほぼ1桁落ちるが、実用上差し支えるほ
どではなく、十分電極部品としての働きを有する。さら
に、複合材料を600℃の電気炉に10時間入れて耐熱
性を調べた。その結果、変形は何等なかった。これは、
従来の電極部品の材質であるA6061(アルミニウム
合金)の融点が550〜600℃であることを考慮する
と、大幅に耐熱性が改善されているといえる。さらにま
た、複合材料から切り出した試験片を用いてJIS R
1611(ファインセラミックスのレーザーフラッシ
ュ法による熱拡散率・比熱容量・熱伝導率試験方法)に
準拠してレーザーフラッシュ法により熱伝導率を測定し
た。その結果、176W/mKであった。これは、純A
l金属の240W/mKには及ばないが、一般のアルミ
ニウム合金の140〜180W/mKには十分匹敵す
る。その他脱ガス性、耐プラズマ性については、測定し
ていないが、これらの特性に対してより良好なAlN粉
末に置き代わっているので、従来のアルミニウム合金だ
けのものより悪化することはない。
(3) Evaluation A test piece was cut out from the formed preform, and the bulk specific gravity was measured by the Archimedes method to determine the powder filling rate of the preform. As a result, it was 70 vol%. Further, the specific resistance of the obtained composite material was measured by a four-terminal method. As a result, it was 40 × 10 −8 Ω · m at room temperature. This number is
2-3 × 10 -8 which is the specific resistance of general aluminum alloy
Although it is almost one digit lower than Ω · m, it does not hinder practical use and has a sufficient function as an electrode component. Further, the composite material was placed in an electric furnace at 600 ° C. for 10 hours to examine heat resistance. As a result, there was no deformation. this is,
Considering that the melting point of A6061 (aluminum alloy), which is the material of the conventional electrode component, is 550 to 600 ° C., it can be said that the heat resistance is greatly improved. Furthermore, a JIS R using a test piece cut out of the composite material was used.
The thermal conductivity was measured by the laser flash method in accordance with 1611 (Test method for thermal diffusivity, specific heat capacity and thermal conductivity of fine ceramics by laser flash method). As a result, it was 176 W / mK. This is pure A
Although it does not reach 240 W / mK of 1 metal, it is sufficiently comparable to 140 to 180 W / mK of general aluminum alloy. Other properties such as degassing property and plasma resistance are not measured. However, since these properties are replaced by better AlN powder, they do not worsen than conventional aluminum alloys alone.

【0022】[0022]

【発明の効果】以上の通り、本発明の半導体製造装置用
電極部品であれば、AlN粉末を含む金属−セラミック
ス複合材料が用いられているので、従来より耐熱性に優
れた上に、熱伝導性、脱ガス性、耐プラズマ性も同等以
上の電極部品とすることができた。このことにより、ウ
ェハーの加熱処理を繰り返しても、その取り替えに要す
るランニングコストは、大幅に減少するものと思われ
る。
As described above, since the metal-ceramic composite material containing AlN powder is used in the electrode part for a semiconductor manufacturing apparatus according to the present invention, the electrode part is excellent in heat resistance and heat conduction as compared with the conventional one. An electrode part having the same properties, degassing properties, and plasma resistance was also obtained. As a result, even if the heat treatment of the wafer is repeated, the running cost required for the replacement is expected to be greatly reduced.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小山 富和 東京都北区浮間1−3−1−805 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tomiwa Koyama 1-3-1-805 Ukima, Kita-ku, Tokyo

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径が1〜150μmのAlN粉末
で形成されたプリフォームにアルミニウムを主成分とす
る金属を浸透させた粉末充填率が50〜80vol%で
ある金属−セラミックス複合材料から成ることを特徴と
する半導体製造装置用電極部品。
1. A preform formed of AlN powder having an average particle size of 1 to 150 μm and made of a metal-ceramic composite material having a powder filling rate of 50 to 80 vol% by infiltrating a metal containing aluminum as a main component. An electrode component for a semiconductor manufacturing apparatus, comprising:
JP12007397A 1997-04-24 1997-04-24 Electrode parts for semiconductor producing device Pending JPH10298685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12007397A JPH10298685A (en) 1997-04-24 1997-04-24 Electrode parts for semiconductor producing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12007397A JPH10298685A (en) 1997-04-24 1997-04-24 Electrode parts for semiconductor producing device

Publications (1)

Publication Number Publication Date
JPH10298685A true JPH10298685A (en) 1998-11-10

Family

ID=14777240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12007397A Pending JPH10298685A (en) 1997-04-24 1997-04-24 Electrode parts for semiconductor producing device

Country Status (1)

Country Link
JP (1) JPH10298685A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100867981B1 (en) 2007-02-05 2008-11-10 (주) 이노쎄라 Method of producing ceramic body by sedimentation
CN110592412A (en) * 2019-10-18 2019-12-20 南京理工大学 Nano AlN particle reinforced mixed crystal heat-resistant aluminum-based composite material and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100867981B1 (en) 2007-02-05 2008-11-10 (주) 이노쎄라 Method of producing ceramic body by sedimentation
CN110592412A (en) * 2019-10-18 2019-12-20 南京理工大学 Nano AlN particle reinforced mixed crystal heat-resistant aluminum-based composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
CN108179302B (en) preparation method of high-thermal-conductivity diamond/copper composite material
JPH0768066B2 (en) Heat resistant composite and method for producing the same
CN110724845A (en) Diamond/aluminum composite material with high heat conductivity and high reliability and preparation process thereof
JP5340864B2 (en) SiC / Al composite material and method for producing the same
JP3698571B2 (en) Silicon carbide based composite and method for producing the same
JPH10298685A (en) Electrode parts for semiconductor producing device
JP2002285258A (en) Metal-ceramic composite material and production method therefor
JP3888766B2 (en) Electrostatic chuck and manufacturing method thereof
JP3830733B2 (en) Particle-dispersed silicon material and manufacturing method thereof
JP2001073102A (en) Carbon fiber dispersed aluminum matrix composite material having high thermal conductivity and low thermal expansibility
JP2002249832A (en) Ceramics/metal composite material and its manufacturing method
JP2004169064A (en) Copper-tungsten alloy, and method of producing the same
JPH0736381B2 (en) Heat resistant jig and its manufacturing method
JPH11256253A (en) Carbon fiber for composite material and composite material
JP4167318B2 (en) Method for producing metal-ceramic composite material
JP4217279B2 (en) Method for producing metal-ceramic composite material
JPH08175871A (en) Silicon carbide-based sintered body and its production
JPH1180860A (en) Production of metal-ceramics composite material
JP3999989B2 (en) Copper-tungsten carbide composite material
JP4279370B2 (en) Method for producing metal-ceramic composite material
JPH10219369A (en) Composite material of ceramics and metal, and its production
JP4276304B2 (en) Method for producing metal-ceramic composite material
JP4053110B2 (en) Metal-ceramic composite material
JP3828622B2 (en) Method for producing metal-ceramic composite material
JPH08183661A (en) Production of silicon carbide sintered compact