JP2002285258A - Metal-ceramic composite material and production method therefor - Google Patents

Metal-ceramic composite material and production method therefor

Info

Publication number
JP2002285258A
JP2002285258A JP2001083921A JP2001083921A JP2002285258A JP 2002285258 A JP2002285258 A JP 2002285258A JP 2001083921 A JP2001083921 A JP 2001083921A JP 2001083921 A JP2001083921 A JP 2001083921A JP 2002285258 A JP2002285258 A JP 2002285258A
Authority
JP
Japan
Prior art keywords
composite material
ceramic
metal
powder
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001083921A
Other languages
Japanese (ja)
Inventor
Hiromasa Shimojima
浩正 下嶋
Takeshi Higuchi
毅 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Ceranx Co Ltd
Original Assignee
Taiheiyo Cement Corp
Ceranx Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, Ceranx Co Ltd filed Critical Taiheiyo Cement Corp
Priority to JP2001083921A priority Critical patent/JP2002285258A/en
Publication of JP2002285258A publication Critical patent/JP2002285258A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metal-ceramic composite material which has extremely high thermal conduction of >=200 W/m. deg.C, and to provide a production method therefor. SOLUTION: The metal-ceramic composite material uses ceramic powder or ceramic fiber as a reinforcing material, and uses aluminum or an aluminum alloy as a matrix. The ceramic powder consists of SiC powder having the purity of >=99%, and in which the content of free carbon is <0.04 wt.%. The composite material contains the SiC powder by >=30 vol.%, and has the thermal conductivity of >=200 W/m. deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属−セラミック
ス複合材料及びその製造方法に関し、特に熱伝導の良好
な金属−セラミックス複合材料及びその製造方法に関す
る。
The present invention relates to a metal-ceramic composite material and a method for producing the same, and more particularly, to a metal-ceramic composite material having good heat conductivity and a method for producing the same.

【0002】[0002]

【従来の技術】最近、半導体製造装置や液晶製造装置等
にセラミックス粉末またはセラミックス繊維を強化材と
し、アルミニウムまたはアルミニウム合金をマトリック
スとする金属−セラミックス複合材料が使われ始められ
ている。
2. Description of the Related Art Recently, a metal-ceramic composite material using a ceramic powder or a ceramic fiber as a reinforcing material and aluminum or an aluminum alloy as a matrix has begun to be used in a semiconductor manufacturing apparatus, a liquid crystal manufacturing apparatus and the like.

【0003】この複合材料の製造方法、特に金属として
アルミニウムをマトリックスとする複合材料の製造方法
としては、粉末冶金法、高圧鋳造法、真空鋳造法等の方
法が従来から知られている。しかし、これらの方法で
は、強化材であるセラミックスの含有率を高くできな
い、あるいは大型の加圧装置が必要である、もしくはニ
アネットの成形が困難である、コストが極めて高いなど
の理由によりいずれも満足できるものではなかった。
[0003] As a method for producing this composite material, particularly a method for producing a composite material using aluminum as a matrix as a metal, methods such as powder metallurgy, high pressure casting, and vacuum casting have been conventionally known. However, in these methods, the content of the ceramics as a reinforcing material cannot be increased, or a large-sized pressing device is required, or it is difficult to form a near net, and the cost is extremely high. It was not satisfactory.

【0004】そこで最近では、上記問題を解決する製造
方法として、米国ランクサイド社が開発した非加圧金属
浸透法(PrimexTM)がある。この方法は、SiC
やAl23などのセラミックス粉末で形成されたプリフ
ォームにMgを含むアルミニウム合金を接触させ、これ
をN2雰囲気炉中で700〜900℃の温度に加熱して
溶融したアルミニウム合金を浸透させる方法である。こ
れは、Mgの化学反応を利用してセラミックス粉末と溶
融金属との濡れ性を改善し、機械的な加圧を行わなくて
もプリフォーム中に浸透できるという特徴があるので、
加圧装置が不要な優れた方法である。
[0004] Recently, as a manufacturing method for solving the above problem, there is a non-pressurized metal infiltration method (Primex ) developed by Rankside Co., USA. This method uses SiC
, Al 2 O 3, or the ceramic powder preforms formed by the contacting the aluminum alloy containing Mg, such as, to which the permeate of aluminum was melted by heating to a temperature of 700 to 900 ° C. in a N 2 atmosphere furnace in the alloy Is the way. This has the feature that the wettability between the ceramic powder and the molten metal is improved by utilizing the chemical reaction of Mg, and that it can penetrate into the preform without performing mechanical pressing.
This is an excellent method that does not require a pressurizing device.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
の方法で作製された複合材料は、アルミニウムとの複合
材料であるので、熱伝導性はかなり良好とはいうもの
の、放熱板やヒータープレート、あるいは宇宙を含む真
空中で用いられる材料などに必要とされる200W/m
・℃以上の高熱伝導率を有する熱伝導の極めて良好な複
合材料は得られないという問題があった。
However, since the composite material produced by these methods is a composite material with aluminum, the thermal conductivity is quite good, but the heat radiation plate, the heater plate, or the space 200W / m required for materials used in vacuum including
There was a problem that a composite material having a high thermal conductivity of not less than ° C. and having extremely good thermal conductivity could not be obtained.

【0006】本発明は、上述した金属−セラミックス複
合材料が有する課題に鑑みなされたものであって、その
目的は、200W/m・℃以上の高熱伝導率を有する熱
伝導の極めて良好な金属−セラミックス複合材料を提供
し、その製造方法をも提供することにある。
The present invention has been made in view of the above-mentioned problems of the metal-ceramic composite material, and an object of the present invention is to provide a metal having a high thermal conductivity of 200 W / m · ° C. or more and having excellent thermal conductivity. An object of the present invention is to provide a ceramic composite material and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明者等は、上記目的
を達成するため鋭意研究した結果、使用するセラミック
ス粉末とその含有率を特定することにより、200W/
m・℃以上の高熱伝導率を有する熱伝導の極めて良好な
複合材料が得られるとの知見を得て本発明を完成するに
至った。
Means for Solving the Problems The present inventors have conducted intensive studies to achieve the above object, and as a result, by specifying the ceramic powder to be used and the content thereof, 200 W /
The inventors have found that a composite material having a high thermal conductivity of at least m · ° C. and a very good thermal conductivity can be obtained, and the present invention has been completed.

【0008】即ち、本発明は、(1)セラミックス粉末
またはセラミックス繊維を強化材とし、アルミニウムま
たはアルミニウム合金をマトリックスとする金属ーセラ
ミックス複合材料において、該セラミックス粉末が、純
度を99%以上とし、フリーカーボンの含有率を0.0
4wt%未満とするSiC粉末であり、該複合材料が、
30体積%以上のSiC粉末を含み、200W/m・℃
以上の熱伝導率を有する複合材料であることを特徴とす
る金属−セラミックス複合材料(請求項1)とし、
(2)純度が99%以上で、フリーカーボンの含有率が
0.04wt%未満のSiC粉末で30体積%以上の粉
末充填率を有するプリフォームを形成し、そのプリフォ
ーム中に窒素雰囲気中で700〜900℃の温度で溶融
したアルミニウムまたはアルミニウム合金を非加圧で浸
透させることにより、熱伝導率が200W/m℃以上の
複合材料を作製することを特徴とする金属−セラミック
ス複合材料の製造方法(請求項2)とすることを要旨と
する。以下さらに詳細に説明する。
That is, the present invention provides (1) a metal-ceramic composite material using ceramic powder or ceramic fiber as a reinforcing material and aluminum or an aluminum alloy as a matrix; 0.0% carbon content
SiC powder having a content of less than 4 wt%, wherein the composite material is
200 W / m · ° C containing 30% by volume or more of SiC powder
A metal-ceramic composite material (claim 1), which is a composite material having the above thermal conductivity,
(2) A preform having a powder filling rate of 30% by volume or more is formed from SiC powder having a purity of 99% or more and a free carbon content of less than 0.04% by weight, and the preform is formed in a nitrogen atmosphere. Manufacturing a metal-ceramic composite material characterized by producing a composite material having a thermal conductivity of 200 W / m ° C. or more by infiltrating non-pressurized aluminum or aluminum alloy at a temperature of 700 to 900 ° C. The gist of the present invention is a method (claim 2). This will be described in more detail below.

【0009】上記で述べたように、本発明の複合材料と
して、複合材料中のセラミックス粉末を99%以上の純
度を有し、フリーカーボンの含有率を0.04wt%未
満とするSiC粉末とすることにより、不純物、特にフ
リーカーボンが少ないことから、アルミニウムと反応し
て生成する熱伝導率の低いAl43の生成が少なくなり
熱伝導性が改善され、そのSiC粉末の複合材料中の含
有率を30体積%以上とすることにより、熱伝導性の良
好なSiC粉末の増加によってさらに熱伝導性が改善さ
れ、その結果、200W/m℃以上の高熱伝導率を有す
る熱伝導の極めて良好な複合材料となる。
As described above, as the composite material of the present invention, the ceramic powder in the composite material is SiC powder having a purity of 99% or more and a free carbon content of less than 0.04 wt%. Thereby, since the amount of impurities, particularly free carbon, is small, the production of Al 4 C 3 having low thermal conductivity generated by reacting with aluminum is reduced, and the thermal conductivity is improved, and the content of SiC powder in the composite material is improved. By setting the rate to 30% by volume or more, the thermal conductivity is further improved by increasing the SiC powder having good thermal conductivity, and as a result, the thermal conductivity having a high thermal conductivity of 200 W / m ° C. or more is extremely good. It becomes a composite material.

【0010】その製造方法としては、セラミックス粉末
に純度が99%以上で、フリーカーボンの含有率が0.
04wt%未満のSiC粉末を用いることにより、先と
同様熱伝導性が改善され、それによって形成されたプリ
フォームに溶融したアルミニウムまたはアルミニウム合
金を浸透させることにより、複合材料中のSiC粉末の
含有率を30体積%以上とすることができ、その結果、
200W/m℃以上の高熱伝導率を有する熱伝導の極め
て良好な複合材料が得られる製造方法となる。
As a method for producing the ceramic powder, the ceramic powder has a purity of 99% or more and a free carbon content of 0.1%.
By using less than 04 wt% of SiC powder, the thermal conductivity is improved as before, and the preform formed thereby is infiltrated with molten aluminum or aluminum alloy, so that the content of SiC powder in the composite material is improved. Can be 30% by volume or more, and as a result,
This is a manufacturing method capable of obtaining a composite material having a high thermal conductivity of 200 W / m ° C. or higher and a very good thermal conductivity.

【0011】[0011]

【発明の実施の形態】本発明の複合材料の製造方法をさ
らに詳しく述べると、先ず強化材として純度が99%以
上で、フリーカーボンの含有率が0.04wt%未満の
SiC粉末を用意する。一方、マトリックスとする金属
としてMgを含むアルミニウム合金のインゴットも用意
する。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing a composite material according to the present invention will be described in further detail. First, SiC powder having a purity of 99% or more and a free carbon content of less than 0.04 wt% is prepared as a reinforcing material. On the other hand, an ingot of an aluminum alloy containing Mg as a metal to be a matrix is also prepared.

【0012】用意したSiC粉末で30体積%以上の粉
末充填率を有するプリフォームを形成する。得られたプ
リフォームに用意したアルミニウム合金のインゴットを
接触させ、それを窒素雰囲気中で700〜900℃の温
度で溶融したアルミニウム合金をプリフォーム中に非加
圧で浸透させて30体積%以上の含有率を有する複合材
料を作製する。
A preform having a powder filling rate of 30% by volume or more is formed from the prepared SiC powder. The obtained preform is brought into contact with an ingot of the prepared aluminum alloy, and the aluminum alloy melted at a temperature of 700 to 900 ° C. in a nitrogen atmosphere is permeated into the preform by non-pressurization to obtain 30% by volume or more. A composite material having a content is produced.

【0013】以上の方法で金属−セラミックス複合材料
を作製すれば、200W/m℃以上の高熱伝導率を有す
る熱伝導の極めて良好な複合材料が得られる。
When a metal-ceramic composite material is produced by the above method, a composite material having a high thermal conductivity of 200 W / m.degree.

【0014】[0014]

【実施例】以下本発明の実施例を比較例と共に具体的に
挙げ、本発明をより詳細に説明する。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples of the present invention and Comparative Examples.

【0015】(実施例1) (1)金属−セラミックス複合材料の作製 強化材として信濃電気精錬社製の純度が99、4%でフ
リーカーボンの含有率が0.02wt%のSiC粉末に
バインダーとしてコロイダルシリカ液をシリカ固形分が
2重量部となる量を添加し、それにさらにイオン交換水
を24重量部加え、ポットミルで12時間混合した。
Example 1 (1) Preparation of Metal-Ceramic Composite Material As a reinforcing material, SiC powder having a purity of 99, 4% and a free carbon content of 0.02 wt% manufactured by Shinano Electric Refining Co., Ltd. was used as a binder. The colloidal silica liquid was added in such an amount that the silica solid content became 2 parts by weight, and 24 parts by weight of ion-exchanged water was further added thereto, followed by mixing in a pot mill for 12 hours.

【0016】得られたスラリーを100×100×50
mmの成形体が得られるゴム型に流し込み、それを24
時間静置し、SiC粉末を沈殿させ、上澄み液を布など
で除去した後、それを冷凍室に入れ、30時間冷凍させ
て脱型した。得られた成形体を1000℃の温度で焼成
してSiC粉末の充填率が70体積%のプリフォームを
形成した。
The obtained slurry is 100 × 100 × 50
mm into a rubber mold from which a molded product of
After standing for a while, the SiC powder was precipitated, and the supernatant was removed with a cloth or the like. Then, it was placed in a freezer, frozen for 30 hours and demolded. The obtained molded body was fired at a temperature of 1000 ° C. to form a preform having a filling ratio of SiC powder of 70% by volume.

【0017】得られたプリフォームにAl−12Si−
3Mg組成のアルミニウム合金のインゴットを接触さ
せ、それを窒素雰囲気中で825℃の温度で溶融したア
ルミニウム合金をプリフォーム中に浸透させた後、冷却
してSiC粉末の含有率が70体積%の複合材料を作製
した。
The obtained preform is made of Al-12Si-
An ingot of an aluminum alloy having a 3Mg composition was brought into contact with the ingot, and the aluminum alloy melted at 825 ° C. in a nitrogen atmosphere was infiltrated into a preform, and then cooled to form a composite having a SiC powder content of 70% by volume. Materials were made.

【0018】(2)評価 得られた複合材料からφ15×t3mmの試験片を切り
出し、レーザーフラッシュ法で熱伝導率を測定した。そ
の結果、熱伝導率は210W/m・℃で200W/m・
℃以上であった。
(2) Evaluation A test piece of φ15 × t3 mm was cut out from the obtained composite material, and the thermal conductivity was measured by a laser flash method. As a result, the thermal conductivity was 210 W / m · ° C and 200 W / m ·
° C or higher.

【0019】(実施例2)プリフォームのSiC粉末の
充填率を55体積%とした他は実施例1と同様に複合材
料を作製し、評価した。その結果、熱伝導率は205W
/m・℃で200W/m・℃以上であった。このこと
は、実施例1を含めて述べると、本発明の製造方法とす
れば、200W/m℃以上の高熱伝導率を有する熱伝導
の極めて良好な複合材料が得られる製造方法とすること
ができることを示している。
Example 2 A composite material was prepared and evaluated in the same manner as in Example 1 except that the filling rate of the SiC powder of the preform was 55% by volume. As a result, the thermal conductivity was 205 W
/ W · m · ° C. This is described in connection with Example 1. According to the manufacturing method of the present invention, a manufacturing method capable of obtaining a composite material having a high thermal conductivity of 200 W / m.degree. Indicates that you can do it.

【0020】(比較例)比較のために、SiC粉末をそ
の純度が97%でフリーカーボンの含有率が0.05w
t%のSiC粉末とした他は実施例1と同様に複合材料
を作製し、評価した。その結果、熱伝導率は168W/
m・℃で実施例よりかなり低くなり、200W/m・℃
を下回っていた。
(Comparative Example) For comparison, SiC powder having a purity of 97% and a free carbon content of 0.05 watts was used.
A composite material was prepared and evaluated in the same manner as in Example 1, except that t% of SiC powder was used. As a result, the thermal conductivity was 168 W /
m / ° C, considerably lower than the example, 200 W / m · ° C
Was below.

【0021】[0021]

【発明の効果】以上の通り、本発明の金属−セラミック
ス複合材料の製造方法であれば、200W/m℃以上の
高熱伝導率を有する熱伝導の極めて良好な複合材料が得
られる製造方法とすることができるようになった。この
ことにより、高熱伝導率が必要な放熱板やヒータープレ
ートなどへの用途が大きく広がった。
As described above, according to the method for producing a metal-ceramic composite material of the present invention, a method for producing a composite material having a high thermal conductivity of 200 W / m.degree. Now you can do it. This has greatly expanded the applications to heat sinks and heater plates that require high thermal conductivity.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス粉末またはセラミックス繊
維を強化材とし、アルミニウムまたはアルミニウム合金
をマトリックスとする金属ーセラミックス複合材料にお
いて、該セラミックス粉末が、純度を99%以上とし、
フリーカーボンの含有率を0.04wt%未満とするS
iC粉末であり、該複合材料が、30体積%以上のSi
C粉末を含み、200W/m・℃以上の熱伝導率を有す
る複合材料であることを特徴とする金属−セラミックス
複合材料。
1. A metal-ceramic composite material using ceramic powder or ceramic fiber as a reinforcing material and aluminum or an aluminum alloy as a matrix, wherein the ceramic powder has a purity of 99% or more;
S to reduce free carbon content to less than 0.04 wt%
iC powder, wherein the composite material contains 30% by volume or more of Si
A metal-ceramic composite material comprising C powder and having a thermal conductivity of 200 W / m · ° C. or more.
【請求項2】 純度が99%以上で、フリーカーボンの
含有率が0.04wt%未満のSiC粉末で30体積%
以上の粉末充填率を有するプリフォームを形成し、その
プリフォーム中に窒素雰囲気中で700〜900℃の温
度で溶融したアルミニウムまたはアルミニウム合金を非
加圧で浸透させることにより、熱伝導率が200W/m
℃以上の複合材料を作製することを特徴とする金属−セ
ラミックス複合材料の製造方法。
2. A 30% by volume SiC powder having a purity of 99% or more and a free carbon content of less than 0.04 wt%.
A preform having the above-mentioned powder filling rate is formed, and aluminum or an aluminum alloy melted at a temperature of 700 to 900 ° C. in a nitrogen atmosphere is introduced into the preform in a non-pressurized manner so that the thermal conductivity is 200 W. / M
A method for producing a metal-ceramic composite material, which comprises producing a composite material at a temperature of at least 100 ° C.
JP2001083921A 2001-03-23 2001-03-23 Metal-ceramic composite material and production method therefor Pending JP2002285258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001083921A JP2002285258A (en) 2001-03-23 2001-03-23 Metal-ceramic composite material and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001083921A JP2002285258A (en) 2001-03-23 2001-03-23 Metal-ceramic composite material and production method therefor

Publications (1)

Publication Number Publication Date
JP2002285258A true JP2002285258A (en) 2002-10-03

Family

ID=18939674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001083921A Pending JP2002285258A (en) 2001-03-23 2001-03-23 Metal-ceramic composite material and production method therefor

Country Status (1)

Country Link
JP (1) JP2002285258A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299304A (en) * 2005-04-15 2006-11-02 Sumitomo Electric Ind Ltd Magnesium based composite material
CN100432252C (en) * 2005-01-05 2008-11-12 中国科学院长春光学精密机械与物理研究所 Method for preparing nanometer SiC reinforced aluminum base composite material
JP2010090436A (en) * 2008-10-08 2010-04-22 Sumitomo Electric Ind Ltd Magnesium-based composite material and production method of the same
JP2010106365A (en) * 2009-12-11 2010-05-13 Sumitomo Electric Ind Ltd Method for producing magnesium-based composite material
JP2010106366A (en) * 2009-12-11 2010-05-13 Sumitomo Electric Ind Ltd Method for producing magnesium-based composite material
JP2014062329A (en) * 2013-12-11 2014-04-10 Sumitomo Electric Ind Ltd Magnesium-base composite material
US9028959B2 (en) 2008-10-03 2015-05-12 Sumitomo Electric Industries, Ltd. Composite member
JP5739873B2 (en) * 2010-04-02 2015-06-24 住友電気工業株式会社 Magnesium-based composite member, heat dissipation member, and semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100432252C (en) * 2005-01-05 2008-11-12 中国科学院长春光学精密机械与物理研究所 Method for preparing nanometer SiC reinforced aluminum base composite material
JP2006299304A (en) * 2005-04-15 2006-11-02 Sumitomo Electric Ind Ltd Magnesium based composite material
JP4720981B2 (en) * 2005-04-15 2011-07-13 住友電気工業株式会社 Magnesium matrix composite
US9028959B2 (en) 2008-10-03 2015-05-12 Sumitomo Electric Industries, Ltd. Composite member
JP2010090436A (en) * 2008-10-08 2010-04-22 Sumitomo Electric Ind Ltd Magnesium-based composite material and production method of the same
JP2010106365A (en) * 2009-12-11 2010-05-13 Sumitomo Electric Ind Ltd Method for producing magnesium-based composite material
JP2010106366A (en) * 2009-12-11 2010-05-13 Sumitomo Electric Ind Ltd Method for producing magnesium-based composite material
JP5739873B2 (en) * 2010-04-02 2015-06-24 住友電気工業株式会社 Magnesium-based composite member, heat dissipation member, and semiconductor device
US9556501B2 (en) 2010-04-02 2017-01-31 Sumitomo Electric Industries, Ltd. Magnesium-based composite member, heat radiation member, and semiconductor device
JP2014062329A (en) * 2013-12-11 2014-04-10 Sumitomo Electric Ind Ltd Magnesium-base composite material

Similar Documents

Publication Publication Date Title
CN103626498A (en) Boron nitride based ceramic nozzle and preparation method thereof
JP4187739B2 (en) Aluminum alloy-silicon carbide silicon nitride composite
JP2002285258A (en) Metal-ceramic composite material and production method therefor
JPS5983978A (en) Novel material comprising silicon and manufacture
KR101152628B1 (en) SiC/C composite powders and a high purity and high strength reaction bonded SiC using the same
US5585313A (en) Ceramic composite material with high heat-resistant property
JP3999993B2 (en) Side drum ceramic plate for twin drum thin plate continuous casting
KR101550115B1 (en) Crucibles
JP5308296B2 (en) Method for producing titanium silicon carbide ceramics
JP2008115068A (en) Process for producing aluminum nitride containing material
CN107805071B (en) Preparation method of titanium-trialuminum-carbon-mullite composite ceramic with low glass wettability
CN101811190B (en) In-situ TiB2 and Ti5Si3 composite material and preparation method thereof
JP4612608B2 (en) Method for producing silicon / silicon carbide composite material
JP2000351679A (en) Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form
JP4183361B2 (en) Method for producing metal-ceramic composite material
JP2002275556A (en) Metal-ceramic composite material
JP3942280B2 (en) Method for producing hexagonal boron nitride sintered body
JPS589882A (en) Super hard heat-resistant ceramics and manufacture
JPH1180860A (en) Production of metal-ceramics composite material
JPH10298685A (en) Electrode parts for semiconductor producing device
JPH08183661A (en) Production of silicon carbide sintered compact
JP2002235129A (en) Method for producing metal - ceramics composite material having reduced gas releasabiltiy
JP2002241869A (en) Method for manufacturing metal/ceramic composite material
JP4167318B2 (en) Method for producing metal-ceramic composite material
JPH10219369A (en) Composite material of ceramics and metal, and its production

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060808