JP2592288B2 - Method for densifying powder compacts on the premise of sintering - Google Patents

Method for densifying powder compacts on the premise of sintering

Info

Publication number
JP2592288B2
JP2592288B2 JP63090772A JP9077288A JP2592288B2 JP 2592288 B2 JP2592288 B2 JP 2592288B2 JP 63090772 A JP63090772 A JP 63090772A JP 9077288 A JP9077288 A JP 9077288A JP 2592288 B2 JP2592288 B2 JP 2592288B2
Authority
JP
Japan
Prior art keywords
resin
powder
molding
sintering
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63090772A
Other languages
Japanese (ja)
Other versions
JPH01261251A (en
Inventor
昌章 竹下
徹 江口
澄彦 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koransha Co Ltd
Original Assignee
Koransha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koransha Co Ltd filed Critical Koransha Co Ltd
Priority to JP63090772A priority Critical patent/JP2592288B2/en
Publication of JPH01261251A publication Critical patent/JPH01261251A/en
Application granted granted Critical
Publication of JP2592288B2 publication Critical patent/JP2592288B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、セラミックおよび金属等の粉体の焼結を前
提にした粉末成形体の緻密化方法に係わるものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for densifying a powder compact on the premise of sintering a powder of ceramic, metal, or the like.

<従来の技術> 焼結を前提にした粉体の成形には、加圧成形(乾式加
圧、ラバープレス)、鋳込成形(泥漿鋳込、ドクターブ
レード)、可塑成形(押出し、射出)が常用されるが、
これらには、それぞれ欠点がある。
<Conventional technology> Powder molding on the premise of sintering includes pressure molding (dry pressing, rubber pressing), casting (slurry casting, doctor blade), and plastic molding (extrusion, injection). It is commonly used,
Each of these has drawbacks.

(加圧成形)乾式加圧成形は、密度が不均一になりやす
く大型品の寸法精度が悪く、大きさと厚みに制約があ
る。
(Pressure molding) In dry pressure molding, the density tends to be uneven and the dimensional accuracy of large products is poor, and the size and thickness are limited.

ラバープレス成形は、型にゴム型を使用する為、寸法
精度が悪く、切削等の後加工が必要で又、装置が高価で
ある。
In rubber press molding, since a rubber mold is used as a mold, dimensional accuracy is poor, post-processing such as cutting is required, and the apparatus is expensive.

(鋳込成形)泥漿鋳込成形は、薄物では比較的均一な成
形体が得られるが、厚肉物では密度差を生じやすく割れ
やすい。
(Casting) In the slip casting, a relatively uniform molded product can be obtained with a thin material, but a density difference is easily generated with a thick material, and the material is easily cracked.

ドクターブレード成形は、通常2mm以下の薄板しか成
形できない。
Doctor blade molding can usually form only a thin plate of 2 mm or less.

(可塑成形)押出し成形は、押出し方向に対してタテ方
向に密度差を生じやすく粒子の配向が起こりやすい。
(Plastic molding) In extrusion molding, a difference in density tends to occur in the vertical direction with respect to the extrusion direction, and the orientation of particles tends to occur.

又、複雑形状品は困難である。 Also, products with complicated shapes are difficult.

射出成形は、複雑形状も可能で寸法精度が良いが、有
機バインダー類の揮発分解に長時間を要し、割れやす
い。
Injection molding is possible with complicated shapes and good dimensional accuracy, but it takes a long time for volatile decomposition of organic binders and is easily broken.

従って、厚肉品になれば成形後の樹脂の脱去が極めて
困難である。
Therefore, it is extremely difficult to remove the resin after molding if it becomes thick.

本発明は、かかる問題に鑑みてなされたもので、その
目的とする所は、厚肉の複雑形状体でも均一に緻密化す
ることができる焼結を前提にした粉末成形体の新規な緻
密化方法を提供するにある。
The present invention has been made in view of such a problem, and an object of the present invention is to provide a novel compaction of a powder compact on the premise of sintering capable of uniformly compacting even a thick complex shape body. There is a way to provide.

<問題点を解決するための手段> 本発明者は、上記問題点に関して鋭意研究を行った結
果、次の様な新しい知見を得た。
<Means for Solving the Problems> As a result of intensive studies on the above problems, the present inventors have obtained the following new findings.

成形用の粉体に、該粉体100重量部に対して硬化性樹
脂1〜5重量部、該樹脂と相溶性のある液体15〜60重量
部、および該樹脂の硬化剤を混合して、成形後、自硬硬
化反応をおこさせると、該成形体から該相溶性のある液
体が排出され該硬化体は自己収縮して緻密化し、これを
焼結すると極めて密度の高い焼結体が得られること。
To the powder for molding, 1 to 5 parts by weight of a curable resin, 15 to 60 parts by weight of a liquid compatible with the resin, and a curing agent for the resin are mixed with 100 parts by weight of the powder, After molding, when a self-hardening reaction is caused, the compatible liquid is discharged from the molded body, the cured body self-shrinks and densifies, and when this is sintered, an extremely dense sintered body is obtained. Be done.

上記硬化性樹脂としては、ポリビニルアルコール、フ
ェノール系樹脂、尿素系樹脂、メラニン系樹脂、エポキ
シ樹脂、ウレタン系樹脂が好ましいことを見出だした。
As the curable resin, it has been found that polyvinyl alcohol, phenolic resin, urea resin, melanin resin, epoxy resin, and urethane resin are preferable.

本発明は、上記知見に基づいてなされたものである。 The present invention has been made based on the above findings.

<作 用> 粉体に硬化性樹脂と、この樹脂の硬化剤および相溶性
液体(例えば水)を混合すると、自硬硬化反応が起こ
り、硬化に付随して自己収縮も始まる。
<Operation> When a curable resin, a curing agent for the resin, and a compatible liquid (for example, water) are mixed with the powder, a self-hardening reaction occurs, and self-shrinkage starts along with the curing.

この硬化反応時、相溶性液体は外へ排出される。 During this curing reaction, the compatible liquid is discharged outside.

液体の排出に伴って成形体は、自己収縮を起こして緻
密化する。
As the liquid is discharged, the molded body undergoes self-shrinkage and becomes denser.

さらに乾燥操作を伴うと、自己収縮が加速される。 When a drying operation is further performed, self-shrinkage is accelerated.

本発明の最大の特徴は、この緻密化機構である。 The greatest feature of the present invention is this densification mechanism.

樹脂を硬化させる時に、この相溶性液体が混合されて
ない場合、硬化体には自己収縮は起きにくく、緻密化は
起こらない。
When this compatible liquid is not mixed when the resin is cured, self-shrinkage hardly occurs in the cured body, and densification does not occur.

相溶性液体が硬化性樹脂と混合されたときに、樹脂と
どのような形で存在しているかは不明であるが、硬化反
応時、容易に分離して外に排出されることは確かであ
る。
When the compatible liquid is mixed with the curable resin, it is unknown what form it is with the resin, but it is certain that it will be easily separated and discharged outside during the curing reaction .

本発明の相溶性液体とは、硬化性樹脂を分散あるい
は、溶解可能なものを意味する。
The compatible liquid of the present invention means a liquid capable of dispersing or dissolving a curable resin.

たとえば、硬化性樹脂が水溶性である場合は、代表的
相溶性液体は水である。
For example, if the curable resin is water-soluble, a typical compatible liquid is water.

その他、エチルアルコール、プロピルアルコール等、
水溶性液体が使用可能である。
In addition, ethyl alcohol, propyl alcohol, etc.
A water-soluble liquid can be used.

硬化性樹脂が非水溶性である場合は、トルエン、ベン
ゼンキシレン、酢酸エチル、シクロヘキサンをはじめと
する有機溶媒が使用できる。
When the curable resin is insoluble in water, organic solvents such as toluene, benzenexylene, ethyl acetate, and cyclohexane can be used.

尚、これらの液体は、単独あるいは、水+エチルアル
コール等の様に2種類以上を混合して使用することもで
きる。
These liquids can be used alone or in combination of two or more such as water + ethyl alcohol.

本発明における硬化性樹脂としては、フェノール系樹
脂、尿素系樹脂、メラニン系樹脂、エポキシ系樹脂、ウ
レタン系樹脂等が代表的なものであるが、成形強度が高
く、かつ成形体からの樹脂の脱去がスムーズに行える為
に樹脂量が少なくて済むことを考慮すると、上記樹脂の
中ではエポキシ系樹脂が最も適している。
As the curable resin in the present invention, a phenolic resin, a urea resin, a melanin resin, an epoxy resin, a urethane resin, and the like are typical, but the molding strength is high, and the resin Considering that a small amount of resin is required for smooth removal, an epoxy resin is most suitable among the above resins.

これら硬化性樹脂は相互に混合され、あるいはその他
の樹脂が混合されたものを使用することも可能である。
These curable resins may be mixed with each other, or a mixture of other resins may be used.

成形用粉末との配合比は、硬化性樹脂は、粉体100重
量部に対して1〜15重量部、相溶性液体は15〜60重量部
加えることが一応の目安である。硬化性樹脂が下限未満
の場合、スリップを鋳型に注入した場合、粉末特性にも
よるが硬化不良を生じ形状確保が困難となる。あるいは
硬化しても成形体強度が不足し脱型が困難となるが、上
限を越えると硬化性は硬化性樹脂の増加によって著しく
高まり、得られた成形体は高い強度を有するが、硬化性
樹脂量が増加するために焼結前の脱脂動作、特に肉厚成
形体の場合、脱脂時に割れが生じやすい。また過剰の硬
化性樹脂、焼結後の機械的強度を低下させる一因とな
る。相溶性液体が下限未満の場合、粉末の流動化成分が
減少するために、注型操作が難しくなる。またスリップ
粘性が増加するために、スリップ中に気泡が残存しやす
くなり焼結後の焼結体の機械的特性が低下しやすいが、
上限を越えるとスリップ中の粉末割合が低すぎて、成形
時の収縮率が大きくなり乾燥時に反り、割れが発生しや
すくなる。またこれを焼結した場合、成形体密度が低す
ぎるために緻密体が得られにくくなる。
The mixing ratio of the curable resin to the molding powder is 1 to 15 parts by weight and the compatible liquid is 15 to 60 parts by weight based on 100 parts by weight of the powder. When the amount of the curable resin is less than the lower limit, when the slip is injected into the mold, curing failure occurs depending on the powder characteristics, and it is difficult to secure the shape. Or, even if cured, the molded body strength is insufficient and demolding becomes difficult.However, if the upper limit is exceeded, the curability is significantly increased by the increase of the curable resin, and the obtained molded body has high strength, but the curable resin Since the amount increases, a degreasing operation before sintering, particularly in the case of a thick molded body, is liable to crack during degreasing. In addition, excessive curable resin causes a reduction in mechanical strength after sintering. If the compatible liquid is less than the lower limit, the casting operation becomes difficult because the fluidized component of the powder decreases. In addition, since the slip viscosity increases, bubbles tend to remain in the slip and the mechanical properties of the sintered body after sintering tend to decrease,
If the ratio exceeds the upper limit, the ratio of powder in the slip is too low, the shrinkage ratio during molding is increased, and warpage occurs during drying, and cracks are likely to occur. Further, when this is sintered, it is difficult to obtain a dense body because the density of the formed body is too low.

本発明の硬化体は、相溶性液体の添加量によっても異
なるが、体積が約5%以上自己収縮し、緻密化する。
The cured product of the present invention self-shrinks by about 5% or more in volume, and densifies, though it varies depending on the amount of the compatible liquid added.

さらに強制乾燥を行うと、成形体中に残存する相溶性
液体が外に出ることによって、2%以上収縮し、より強
固に緻密化する。
Further, when the forced drying is performed, the compatible liquid remaining in the molded body is shrunk by 2% or more due to the outside thereof, and the molded body is further densified.

得られた成形体は、約100Kg/cm2以上の曲げ強度を有
し緻密化後、自在に機械加工が可能で、任意の形状・寸
法に加工できる。
The obtained molded body has a bending strength of about 100 kg / cm 2 or more, and after densification, can be machined freely and can be processed into any shape and dimensions.

本発明での「成形」という概念は、精密な型を使用し
て目的形状を、一度で成形することの外に適当な形で、
一度硬化緻密化させたものを機械加工等、いわゆる除去
加工によって目的形状に形成することも含有するもので
ある。
The concept of "molding" in the present invention is to use a precision mold to form the target shape in a single
It also includes that the material once hardened and densified is formed into a target shape by so-called removal processing such as machining.

<実 施 例> 実施例1 成形粉末:部分安定化ジルコニア粉末 (粒径0.5μm、3.0mol%酸化イットリウム含有) 硬化性樹脂:水溶性エポキシ樹脂 相溶性液体:水 注型用型:100mm×100mm×50tmmのキャビティーを有する
アルミ製金型 配合割合 部分安定化ジルコニア粉末 100 部 水溶性エポキシ樹脂 4.3 水 30 分散剤(ポリカルボン酸アンモニウム系) 1.0 硬化剤(トリエチレンテトラミン) 0.57 上記硬化剤を除く組成を、アルミナ製ボールミル(ア
ルミナボールは原料粉末に対して2倍量)にて、12時
間、湿式混合してスラリーとした。
<Examples> Example 1 Molding powder: partially stabilized zirconia powder (particle size: 0.5 µm, containing 3.0 mol% yttrium oxide) Curable resin: water-soluble epoxy resin Compatible liquid: water Casting mold: 100 mm x 100 mm Aluminum mold with a cavity of × 50 t mm Mixing ratio Partially stabilized zirconia powder 100 parts Water soluble epoxy resin 4.3 Water 30 Dispersant (ammonium polycarboxylate) 1.0 Hardener (triethylenetetramine) 0.57 Hardener above The composition except for was wet-mixed for 12 hours in an alumina ball mill (alumina balls were twice as large as the raw material powder) to form a slurry.

スラリーに硬化剤を添加、約15分間撹拌後、注型用ア
ルミ製金型へ注入した。
A hardener was added to the slurry, stirred for about 15 minutes, and then poured into an aluminum mold for casting.

尚、注型用アルミ製金型内面には、注入直前にフッ素
系離型剤をスプレーにて2〜3回吹付けた。
The inner surface of the casting aluminum mold was sprayed with a fluorine-based release agent by spraying two to three times immediately before the injection.

注入後、室温(約22℃)に放置し、12時間後、金型よ
り脱型した。
After the injection, it was left at room temperature (about 22 ° C.), and after 12 hours, it was released from the mold.

得られた硬化体表面には、排出された相溶性液体であ
る水が付着し、ノギスにより自己収縮率を算出したとこ
ろ、6.2%体積収縮を起こし、緻密化していた。
Water, which was a compatible liquid discharged, adhered to the surface of the obtained cured product, and when the self-shrinkage ratio was calculated using a caliper, the volume was shrunk by 6.2%, resulting in densification.

尚、上記スラリー組成において相溶性液体として水を
使用せず、水溶性エポキシ系樹脂を増量し、硬化させた
ものは、硬化体の収縮は起こらず、緻密化しなかった。
In the above slurry composition, water was not used as the compatible liquid, and the amount of the water-soluble epoxy resin was increased and cured, and the cured product did not shrink and did not become dense.

相溶性液体を用いた硬化体を、50℃の温風乾燥機に入
れ5時間、強制乾燥した。
The cured product using the compatible liquid was placed in a 50 ° C. hot air drier and forcibly dried for 5 hours.

硬化体はさらに約2%体積収縮を起こし、強固な緻密
体となった。
The cured product further contracted by about 2% in volume, and became a firm dense body.

成形体は割れ、反りの発生がなく良好な状態であっ
た。
The molded body was in a good state without cracking or warpage.

同成形体の強度測定の為、10mm×10mm×40mmLの角棒
を切り出し、3点曲げ強度を測定した。
In order to measure the strength of the molded body, a 10 mm × 10 mm × 40 mmL square bar was cut out, and the three-point bending strength was measured.

成形体曲げ強度は、平均102Kgf/cm2の値を示し、機械
加工に充分耐えることが予想され、NCフライス盤による
溝加工及び切削試験を実施、問題なく生加工ができた。
The flexural strength of the molded body was 102 Kgf / cm 2 on average, and it was expected that it could withstand mechanical processing sufficiently. The grooves and cutting tests were performed with an NC milling machine, and raw processing could be performed without any problem.

電気炉を用い昇温時間12時間、温度600℃、保持1時
間の条件にて大気中で成形体中の樹脂分を脱去した。
Using an electric furnace, the resin content in the molded body was removed in the air under the conditions of a temperature rising time of 12 hours, a temperature of 600 ° C., and a holding time of 1 hour.

脱脂体に割れ、反りは発生しておらず、又内部にも樹
脂残渣は認めず良好であった。
The degreased body was not cracked or warped, and no resin residue was observed inside.

脱脂体を電気炉を用い、昇温8時間、温度1500℃、保
持1時間の条件にて焼結した。
The degreased body was sintered using an electric furnace under the conditions of a temperature rise of 8 hours, a temperature of 1500 ° C., and a holding time of 1 hour.

得られた焼結体は、密度6.04g/cm3、吸水率0%(ア
ルキメデス法)であり、同焼結体から4.0×3.0×40mmL
の角棒を切り出し曲げ強度を測定したところ、平均は12
1.5Kg/mm2であり、これは市販の部分安定化ジルコニア
と比較しても同等以上の物性に相当した。
The obtained sintered body had a density of 6.04 g / cm 3 and a water absorption of 0% (Archimedes method).
When the bending strength was measured by cutting out a square bar of
It was 1.5 kg / mm 2 , which was equivalent to or higher than the properties of commercially available partially stabilized zirconia.

尚、焼結体は外観上の割れ等は認めなかった。 The sintered body did not show any cracks in appearance.

実施例2 成形用粉体:窒化アルミニウム(0.8μm) 硬化性樹脂:比水系エポキシ樹脂 相溶性液体:トルエン 配合割合 窒化アルミニウム 100 部 焼結助剤(Y2O3) 3.0 非水系エポキシ樹脂 7.5 トルエン 45 分散剤(ポリエステル系) 1.4 硬化剤(キシレンジアミン) 1.55 実施例1と同様に、硬化剤を除く組成でスラリーを作
成、硬化剤を添加後、充分撹拌し、フッ素離型剤を塗布
した真鍮製金型に注入、常温放置し約5時間後、型より
硬化体を取出した。
Example 2 Molding powder: aluminum nitride (0.8 μm) Curable resin: water-based epoxy resin Compatible liquid: toluene Compounding ratio Aluminum nitride 100 parts Sintering aid (Y2O3) 3.0 Non-aqueous epoxy resin 7.5 Toluene 45 Dispersant (Polyester type) 1.4 Hardener (xylene diamine) 1.55 As in Example 1, a slurry was prepared with the composition excluding the hardener, the hardener was added, and the mixture was sufficiently stirred and a brass mold coated with a fluorine release agent was used. After about 5 hours, the cured product was taken out of the mold.

ノギスにより体積収縮率は7.0%であり、自己収縮に
より緻密化していた。
The volume shrinkage was 7.0% due to the caliper, and it was densified by self-shrinkage.

さらに、50℃で24時間温風乾燥し、成形体とした。 Further, it was dried with hot air at 50 ° C. for 24 hours to obtain a molded body.

成形体に割れ、反りは発生しておらず良好であった。 The molded product was good without cracking or warpage.

成形体を電気炉にて実施例1と同一条件で脱脂した。 The molded body was degreased in an electric furnace under the same conditions as in Example 1.

その後、抵抗加熱式雰囲気炉にて、N2下1850℃(保持
4時間)の条件下で焼結した。
Thereafter, sintering was performed in a resistance heating atmosphere furnace under the condition of 1850 ° C. (holding 4 hours) under N 2.

得られた窒化アルミニウム焼結体は、密度3.27、曲げ
強度平均48.0Kgf/mm2で良好な物性を示した。
The obtained aluminum nitride sintered body showed good physical properties with a density of 3.27 and an average bending strength of 48.0 kgf / mm 2 .

実施例3 成形粉体:窒化ケイ素(粒径0.3μm) 硬化性樹脂:水系エマルジョンエポキシ樹脂 相溶性液体:水+アルコール 注型用型:外径100φ(羽数13)ターボロータ用分割式
アルミ金型 配合割合 窒化ケイ素粉末 90.9 助剤(Al2O3) 4.55 助剤(Y2O3) 4.55 合計100部 水系エマルジョンエポキシ樹脂 7.0 (固形分換算) 水+エチルアルコール(水:エチルアルコール=2:1)4
5 硬化剤(イソフォロンジアミン) 1.0 分散剤(ポリカルボン酸アンモニウム)1.0 上記硬化剤を除く組成をアルミナ製ポットミルへ投
入、6時間、湿式混合しスラリーとした。
Example 3 Molding powder: silicon nitride (particle diameter: 0.3 μm) Curable resin: water-based emulsion epoxy resin Compatible liquid: water + alcohol Casting mold: 100 mm outer diameter (13 blades) split aluminum alloy for turbo rotor Type Compounding ratio Silicon nitride powder 90.9 Auxiliary agent (Al2O3) 4.55 Auxiliary agent (Y2O3) 4.55 Total 100 parts Water-based emulsion epoxy resin 7.0 (solid content conversion) Water + ethyl alcohol (water: ethyl alcohol = 2: 1) 4
5 Hardener (isophoronediamine) 1.0 Dispersant (ammonium polycarboxylate) 1.0 The composition excluding the above hardener was charged into an alumina pot mill and wet-mixed for 6 hours to form a slurry.

硬化剤をスラリーに添加、約15分間撹拌後、充分にフ
ッ素系離型剤を塗布したターボロータ形状キャビティー
を有するアルミ金型(羽部は分割)へ静かに注入した。
After adding the curing agent to the slurry and stirring for about 15 minutes, the mixture was gently injected into an aluminum mold (split with blades) having a turbo rotor-shaped cavity sufficiently coated with a fluorine-based release agent.

約1.5時間経過した時点で、硬化体は取扱い可能とな
った為、アルミ金型を分割、硬化体を取り出した。
When about 1.5 hours had passed, the cured product was ready to be handled, so the aluminum mold was divided and the cured product was taken out.

硬化体をビニール袋中に密閉放置し、5時間後、取出
しノギスを用い収縮割合を計算、7.4%体積収縮を起こ
し、緻密化していた。
The cured product was left tightly closed in a plastic bag, and after 5 hours, the shrinkage ratio was calculated using a take-out caliper, the volume shrunk by 7.4%, and the product was densified.

さらに、50℃24時間、強制乾燥し成形体とした。 Further, it was forcibly dried at 50 ° C. for 24 hours to obtain a molded body.

得られた成形体を中心部で縦割りし、内部を観察、か
つ外部と内部の成形体密度を測定したが、1.52g/cm3
差は認めなかった。
The obtained molded body was divided vertically at the center, the inside was observed, and the density of the molded body between the outside and the inside was measured, but no difference was found to be 1.52 g / cm 3 .

尚、成形体に割れ、反りは発生せず良好であった。 The molded body was good without cracking or warping.

樹脂分の脱去は、昇温36時間、温度600℃、保持1時
間で行い、さらにN2下、1800℃、9気圧の条件下で焼結
させた。
Removal of the resin was carried out at a temperature rise of 36 hours, a temperature of 600 ° C. and a holding time of 1 hour, and sintering under N 2 at 1800 ° C. and 9 atm.

得られた窒化ケイ素製ターボローターに割れ、羽部の
変形等は認めず、密度3.21と完全に緻密化していた。
The resulting silicon nitride turbo rotor did not crack, the blades were not deformed, etc., and the density was 3.21 and the density was completely dense.

実施例4 成形用粉体:炭化ケイ素(粒径0.6μm) 硬化性樹脂:ポリビニールアルコール 相溶性液体:水 注型用型:25φ×200のキャビティーを有する樹脂型 配合割合 炭化ケイ素粉末 100 部 助剤(炭化硼素) 1.0 助剤(カーボンブラック) 2.0 ポリビニールアルコール 10 蒸溜水 60 硬化剤(ホルムアルデヒド) 2.0 分散剤(ポリカルボン酸アンモニウム) 0.4 上記硬化剤を除く組成で、SiC製ポットミル投入、12
時間、湿式混合し、スラリーとした。
Example 4 Molding powder: Silicon carbide (particle diameter: 0.6 μm) Curable resin: Polyvinyl alcohol Compatible liquid: Water Casting mold: Resin mold having 25φ × 200 cavity Mixing ratio 100 parts of silicon carbide powder Auxiliary agent (boron carbide) 1.0 Auxiliary agent (carbon black) 2.0 Polyvinyl alcohol 10 Distilled water 60 Hardener (formaldehyde) 2.0 Dispersant (ammonium polycarboxylate) 0.4 Except for the above hardener, injection of SiC pot mill, 12
The mixture was wet-mixed for a time to form a slurry.

硬化剤を添加後、20分間撹拌して、得られた自硬性ス
ラリーを樹脂型へ注入した。
After adding the curing agent, the mixture was stirred for 20 minutes, and the obtained self-hardening slurry was poured into a resin mold.

尚、樹脂型内面には、フッ素系離型剤を数回塗布し
た。
Note that a fluorine-based release agent was applied several times to the inner surface of the resin mold.

約5時間経過したところで、硬化体を取出し、ビニー
ル袋に入れ密閉常温で、48時間放置した。
After a lapse of about 5 hours, the cured product was taken out, placed in a plastic bag, and allowed to stand at room temperature for 48 hours.

硬化反応がさらに進行するに伴って、相溶性液体
(水)が排出され、6.0%の体積収縮をし、緻密化して
いた。
As the curing reaction progressed further, the compatible liquid (water) was discharged, and contracted by 6.0% in volume and became dense.

得られた成形体を、アルゴンガス雰囲気の炉中で550
℃で樹脂の脱去を行った。
The obtained molded body is placed in a furnace in an argon gas atmosphere for 550 minutes.
Removal of the resin was carried out at ℃.

次いで、1気圧のアルゴンガス雰囲気中で約2100℃で
30分間焼成した。
Next, at about 2100 ° C in an atmosphere of argon gas at 1 atm.
Bake for 30 minutes.

得られた焼結体は、他の成形法によって得られたもの
と、同一の外観を示し良好であった。
The obtained sintered body had the same appearance as that obtained by another molding method and was excellent.

尚、焼結体密度は、3.13g/cm3、曲げ強度は62Kg/mm2
と他の成形法と比較しても、何ら遜色なかった。
The sintered body density was 3.13 g / cm 3 and the bending strength was 62 kg / mm 2
Compared with other molding methods, it was no inferior.

実施例5 実施例4では、炭化ケイ素の焼結助剤の1つであるC
源をカーボンブラックとして添加したが、本例ではC源
を硬化性樹脂であるエポキシ系樹脂の熱分解により、生
成する炭素をそのまま利用して焼結助剤とした。
Example 5 In Example 4, one of the sintering aids for silicon carbide, C
Although the source was added as carbon black, in this example, the C source was used as a sintering aid using the carbon generated by thermal decomposition of the epoxy resin as the curable resin.

配合割合 炭化ケイ素粉末 100 部 焼結助剤(非晶質ホウ素) 0.5 水溶性エポキシ樹脂 12 硬化剤(トリエチレンテトラミン) 2.4 蒸溜水 60 分散剤(ポリカルボン酸アンモニウム塩) 0.8 上記、水溶性エポキシ系樹脂の熱分解による残留カー
ボン量については、計算上2.5部相当となる。
Compounding ratio Silicon carbide powder 100 parts Sintering aid (amorphous boron) 0.5 Water-soluble epoxy resin 12 Curing agent (triethylenetetramine) 2.4 Distilled water 60 Dispersant (polycarboxylate ammonium salt) 0.8 Above, water-soluble epoxy resin The amount of residual carbon due to thermal decomposition of the resin is calculated to be equivalent to 2.5 parts.

実施例4と同様な工程を経て、成形体を得た。 A molded article was obtained through the same steps as in Example 4.

水溶性エポキシ系樹脂が増量したにもかかわらず、割
れ、そり、変形等は認めなかった。
Despite the increase in the amount of the water-soluble epoxy resin, no crack, warpage, deformation, or the like was observed.

得られた成形体をアルゴンガス雰囲気中、550℃に加
熱し、エポキシ系樹脂を炭化させた。
The obtained molded body was heated to 550 ° C. in an argon gas atmosphere to carbonize the epoxy resin.

次いで、1気圧アルゴンガス雰囲気中で2100℃で1時
間、焼成した。
Next, it was baked at 2100 ° C. for 1 hour in a 1 atm argon gas atmosphere.

得られた焼結体は、他の成形法によって得られたもの
と同一の外観を示し、良好であった。
The obtained sintered body had the same appearance as that obtained by another molding method and was excellent.

尚、焼結体密度は、3.14g/cm3、曲げ強度は、65Kg/mm
2、と他の成形法と比較しても何ら問題なかった。
The sintered body density was 3.14 g / cm 3 and the bending strength was 65 kg / mm
There was no problem compared with 2 and other molding methods.

実施例6 成形粉体:金属粉末(SUS粉末) 硬化性樹脂:非水系エポキシ樹脂 相溶性液体:トルエン−ベンゼン(1:1) 注型用型:100×200×1mmtのキャビティを有するアルミ
金型 配合割合 SUS304粉末 100 部 非水系エポキシ樹脂 3.5 硬化剤(キシレンジアミン) 0.5 分散剤(ポリエステル系) 1.0 キシレン 25.0 上記、硬化剤を除く組成をモノマロン系樹脂ポットミ
ルにて6時間、湿式混合しスラリーとした。
Example 6 Molding powder: Metal powder (SUS powder) Curable resin: Non-aqueous epoxy resin Compatible liquid: Toluene-benzene (1: 1) Casting mold: Aluminum gold with 100 × 200 × 1 mm t cavity Mold Mixing ratio SUS304 powder 100 parts Non-aqueous epoxy resin 3.5 Hardener (xylene diamine) 0.5 Dispersant (polyester) 1.0 xylene 25.0 The above composition excluding the hardener is wet-mixed in a monomalon-based resin pot mill for 6 hours, and mixed with slurry. did.

硬化剤を添加後撹拌、注型用金型に静かに注入した。 After adding the curing agent, the mixture was stirred and gently poured into a casting mold.

取扱い可能になった時点で、型から取り出し、密閉放
置した。
When handling became possible, it was taken out of the mold and left tightly closed.

硬化反応が進行するに伴って、キシレンが硬化体表面
に出て、成形体は約5.7%体積収縮し、緻密化してい
た。
As the curing reaction progressed, xylene appeared on the surface of the cured product, and the molded product shrank by about 5.7% in volume and became dense.

緻密化したものは、厚さが薄いにもかかわらず、反り
や変形な認めなかった。
In the case of the densified one, no warpage or deformation was recognized despite its thin thickness.

強制乾燥後、卓上ポール盤で、1.0φ、2.0φ、5.0φ
の孔明けが容易に出来た。
After forced drying, 1.0φ, 2.0φ, 5.0φ on desktop pole
Drilled easily.

成形体を600℃で脱脂後、水性雰囲気下1260℃で2時
間、焼成した。
After the molded body was degreased at 600 ° C., it was baked at 1260 ° C. for 2 hours in an aqueous atmosphere.

焼成したものは、反りや変形もなく、密度6.65Kg/cm3
であった。
The baked one has no warpage or deformation and a density of 6.65Kg / cm 3
Met.

<発明の効果> (1)厚肉の複雑形状体でも均一に緻密化できる。<Effects of the Invention> (1) Even a thick complex shaped body can be uniformly densified.

(2)焼成後の反りや変形がない。(2) No warping or deformation after firing.

(3)切削、孔明け等の除去加工も可能である。(3) Removal processing such as cutting and drilling is also possible.

(4)厚肉でも焼成時の割れが起こりにくい。(4) Even when thick, cracking during firing is unlikely to occur.

フロントページの続き (56)参考文献 特開 昭62−227448(JP,A) 特開 昭59−190255(JP,A) 特開 昭60−71570(JP,A) 特開 昭60−137865(JP,A) 特開 昭63−219501(JP,A) 実開 昭56−146737(JP,U) 特公 昭61−57641(JP,B2) 特公 昭50−23416(JP,B2)Continuation of the front page (56) References JP-A-62-227448 (JP, A) JP-A-59-190255 (JP, A) JP-A-60-71570 (JP, A) JP-A-60-137865 (JP, A) JP-A-63-219501 (JP, A) JP-A-56-146737 (JP, U) JP-B-61-57641 (JP, B2) JP-B-50-23416 (JP, B2)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】粉体と、粉体100重量部に対して硬化性樹
脂1〜5重量部、該樹脂と相溶性のある液体15〜60重量
部、および該樹脂の硬化剤を混合して成形後、自硬硬化
反応をおこさせて該成形体から該相溶性のある液体を排
出せしめることを特徴とする焼結を前提にした粉末成形
体の緻密化方法。
1. A mixture of a powder, 100 parts by weight of a powder, 1 to 5 parts by weight of a curable resin, 15 to 60 parts by weight of a liquid compatible with the resin, and a curing agent for the resin. A method of densifying a powder molded body on the premise of sintering, characterized by causing a self-hardening reaction after molding to discharge the compatible liquid from the molded body.
【請求項2】上記硬化性樹脂がポリビニルアルコール、
フェノール系樹脂、尿素系樹脂、メラニン系樹脂、エポ
キシ樹脂、ウレタン系樹脂である特許請求の範囲第1項
に記載の緻密化方法。
2. The method according to claim 1, wherein the curable resin is polyvinyl alcohol,
The densification method according to claim 1, wherein the method is a phenolic resin, a urea resin, a melanin resin, an epoxy resin, or a urethane resin.
JP63090772A 1988-04-12 1988-04-12 Method for densifying powder compacts on the premise of sintering Expired - Lifetime JP2592288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63090772A JP2592288B2 (en) 1988-04-12 1988-04-12 Method for densifying powder compacts on the premise of sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63090772A JP2592288B2 (en) 1988-04-12 1988-04-12 Method for densifying powder compacts on the premise of sintering

Publications (2)

Publication Number Publication Date
JPH01261251A JPH01261251A (en) 1989-10-18
JP2592288B2 true JP2592288B2 (en) 1997-03-19

Family

ID=14007895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63090772A Expired - Lifetime JP2592288B2 (en) 1988-04-12 1988-04-12 Method for densifying powder compacts on the premise of sintering

Country Status (1)

Country Link
JP (1) JP2592288B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100235106B1 (en) * 1997-05-20 2000-01-15 박종서 Bio ceramic button and manufacturing process of the same
CN102452123B (en) * 2010-10-22 2014-05-28 比亚迪股份有限公司 Ceramic body and forming method thereof, and ceramic product
CN102452122B (en) * 2010-10-22 2014-05-28 比亚迪股份有限公司 Ceramic body and moulding method thereof and ceramic product
CN103448168B (en) * 2013-09-02 2015-05-13 湖北三江航天红阳机电有限公司 Method for de-molding particle-reinforced and fiber-reinforced double-element composite material
WO2016066173A1 (en) * 2014-10-30 2016-05-06 Danmarks Tekniske Universitet Dual-role plasticizer and dispersant for ceramic layers

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338286B2 (en) * 1973-07-03 1978-10-14
JPS56146737U (en) * 1980-03-31 1981-11-05
JPS59190255A (en) * 1983-04-11 1984-10-29 黒崎窯業株式会社 Basic refractory composition
NL8302955A (en) * 1983-08-24 1985-03-18 Hoogovens Groep Bv METHOD FOR MANUFACTURING A MAGNESIA CARBON STONE, MAGNESIA CARBON STONE MANUFACTURED BY THE METHOD AND CONVERTER CONTAINING A WEAR LINING, WHICH IS AT LEAST PART OF MAGNESIA CARBON STONES MADE WITH THE MAGNESIA
JPS60137865A (en) * 1983-12-22 1985-07-22 黒崎窯業株式会社 Refractory composition
JPS6157641A (en) * 1984-07-09 1986-03-24 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− Fluorinated thermoplastic elastomer composition
JPS62227448A (en) * 1986-03-31 1987-10-06 Nippon Kinzoku Kk Preparation of catalyst carrier made of ceramic
JP2592599B2 (en) * 1987-03-10 1997-03-19 日立ツール株式会社 Molding method of cemented carbide powder

Also Published As

Publication number Publication date
JPH01261251A (en) 1989-10-18

Similar Documents

Publication Publication Date Title
US4894194A (en) Method for molding ceramic powders
US20140131928A1 (en) Reactive liquid ceramic binder resin
JPS6364968A (en) Silicon carbide base composite ceramics
US5190709A (en) Reaction injection molding of ceramics using a ceramic precursor as a binder
JP2592288B2 (en) Method for densifying powder compacts on the premise of sintering
WO1988007505A1 (en) Polymerizable binder solution for low viscosity, highly loaded particulate slurries and methods for making green articles therefrom
EP0468066B1 (en) Process for molding ceramics using a liquid, curable ceramic precursor
EP0560258B1 (en) Reaction injection molding of silicon nitride ceramics having crystallized grain boundary phases
JP6072557B2 (en) Glass molding material
JP2005097078A (en) Method of manufacturing three dimensional structure, ceramic sintered compact using the same and member for semiconductor/liquid crystal manufacturing apparatus using the same
KR20030013542A (en) Method for Manufacturing Homogeneous Green Bodies from the Powders of Multimodal Particle Size Distribution Using Centrifugal Casting
JP4701494B2 (en) Method for producing sintered boron carbide
JPH10217212A (en) Manufacture of ceramic formed body
JP5099658B2 (en) Manufacturing method of large thin ceramic body
JP3251937B2 (en) Manufacturing method of sintered ceramic compact
JP3541445B2 (en) Powder molding method
JP3207049B2 (en) Ceramic molding composition
KR100232059B1 (en) Molding method of silicon carbide-carbon black system for reaction-sintered sic
JPH0723248B2 (en) Method for manufacturing ceramic molded body
JP2003127124A (en) Method for manufacturing ceramics molded object
JPS61158403A (en) Method of molding ceramic
JP2003081682A (en) Method of producing silicon-impregnated silicon carbide ceramic
JPH1112043A (en) Casting of ceramic powder
JPH0722931B2 (en) Forming method of powder sintering precursor
JPH064504B2 (en) Method for manufacturing ceramics sintered body

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 12