JPS59190275A - Manufacture of reaction sintered ceramics - Google Patents
Manufacture of reaction sintered ceramicsInfo
- Publication number
- JPS59190275A JPS59190275A JP58063079A JP6307983A JPS59190275A JP S59190275 A JPS59190275 A JP S59190275A JP 58063079 A JP58063079 A JP 58063079A JP 6307983 A JP6307983 A JP 6307983A JP S59190275 A JPS59190275 A JP S59190275A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- powder
- reaction
- carbonaceous
- reaction sintered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Ceramic Products (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、反応焼結を利用し/Cセラミックスの製造方
法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing /C ceramics using reactive sintering.
反応焼結法は、たとえば金属ケイ繁茂を含む成形体を穿
累気流中で焼成し、金属ケイ素が窒化ケイ素となるとき
に生ずる結合力を利用して強固なセラミックスを得る方
法であって、通常の自己焼結法と来なり、比較的低温で
焼結が可能であること、焼成温度よりも高い温度でも使
用に耐えること、金属ケイ素等の粒度配合などによって
種々の性質のものが得られることなとの利点があるため
工業的に広く利用されている。The reaction sintering method is a method in which, for example, a molded body containing metallic silicon is fired in a perforated air flow to obtain strong ceramics by utilizing the bonding force that occurs when the metallic silicon turns into silicon nitride. It is a self-sintering method, and it is possible to sinter at relatively low temperatures, it can withstand use even at temperatures higher than the firing temperature, and products with various properties can be obtained by changing the particle size of metal silicon etc. It is widely used industrially due to its advantages.
しかし乍ら従来の方法では、金属ケイ繁茂または金属ケ
イ繁茂含有の粉粒体に、バインダー等を所要量添加して
混練したものを、型に充填・成形し離型するとか、また
は押出し法により成形して所謂グリーン成形体をつくり
、これを反応焼結せしめているが、何れも複雑な形状の
ものの製造が困難であるばかりでなく、グリーン成形体
の変形あるいはそれに内在している歪による焼結体の変
形なとの問題もあり、さらに、縦俣寸法比の大きいもの
の場合は、充分な強度が得られないなとの欠点があった
。However, in the conventional method, the required amount of binder, etc. is added to the powder or granules containing metal silicon, which is then kneaded, filled into a mold, molded, and released, or extruded. The so-called green molded body is formed by molding, and this is then subjected to reaction sintering, but not only is it difficult to manufacture products with complex shapes, but the green molded body may be deformed or sintered due to inherent distortion. There is also the problem of deformation of the body, and in the case of a product with a large vertical pole dimension ratio, there is a drawback that sufficient strength cannot be obtained.
本願発明者らは、通気性の炭素質の型に金属ケイ繁茂な
どを充填し、これを窒素気流中で焼成すると、型の気孔
からの窒素ガスにより、型内て容易に焼結反応が行なわ
れることを見出だし、本発明を完成した。The inventors of the present application have found that when a breathable carbonaceous mold is filled with metal silicone, etc. and fired in a nitrogen stream, the sintering reaction easily takes place within the mold due to the nitrogen gas coming from the pores of the mold. The present invention was completed based on this discovery.
本発明の一つの目的は、特に複雑な形状あるいは寸法比
の大きい場合でも、高い寸法精度と強度を有する反応焼
結体を効率良く製造する方法を提供することであり、他
の目的は、炭素質の型自体をセラミックスの被覆材とし
て機能を発揮せしめる複合形セラミックスの製造方法を
提供することに在る。One object of the present invention is to provide a method for efficiently manufacturing a reaction sintered body having high dimensional accuracy and strength even when the shape is particularly complex or the size ratio is large. The object of the present invention is to provide a method for manufacturing composite ceramics in which the mold itself functions as a coating material for the ceramics.
本発明の要旨は、通気性をイボする炭素質成形型に金属
ケイ繁茂または金属ケイ繁茂を含む粉粒体を充填し、次
いで該粉粒体が充j1−↓された評成形型を♀素雰囲気
中または窒素を含存する不活性雰囲気中(ここで不活性
とは、酸累、二酸化炭素なとの酸化性気体が実質的に煎
い状態をいう)て焼成することを特徴とする反応焼結セ
ラミックスの製造法に在る。The gist of the present invention is to fill a carbonaceous mold that has poor air permeability with a metal silicon overgrowth or a powder containing a metal silicon overgrowth, and then to process the evaluation mold filled with the powder into a carbonaceous mold. Reactive firing characterized by firing in an atmosphere or in an inert atmosphere containing nitrogen (here, inert means a state in which oxidizing gases such as acid accumulation and carbon dioxide are substantially heated). It is in the manufacturing method of bonded ceramics.
本発明に用いられる炭素質成形型は、窒素が成形型の壁
を通して供給されるため、該型の気孔率は20〜42%
の範囲に在ることが好ましく、20%以下では窒素の供
給が困難となり焼結に長時間を要し、極端な場合には金
属ケイ素のまま残り、反応焼結体が得られず、また42
%を超えると粉粒体と接する型表面の平滑性が保たれな
くなったり、気孔への粉粒の侵入が起き好ましくない。The carbonaceous mold used in the present invention has a porosity of 20 to 42% because nitrogen is supplied through the mold wall.
If it is less than 20%, it becomes difficult to supply nitrogen and sintering takes a long time, and in extreme cases, metal silicon remains and a reaction sintered body cannot be obtained.
If it exceeds %, the smoothness of the mold surface in contact with the powder may not be maintained, or the powder may enter the pores, which is undesirable.
炭素質材料のうちで黒鉛は特に加工性が良好なため寸法
精度の高い任意の形状の型が容易に入手できるなとの利
点がある。Among carbonaceous materials, graphite has particularly good workability, so it has the advantage that molds of arbitrary shapes with high dimensional accuracy can be easily obtained.
なお、使用する炭素質の型と粉粒体の界面において、焼
成により大きな結合力を生ずるので、この性質を利用し
て型そのものを反応焼結体の被覆層とした複合形セラミ
ックスを得ることができる。Note that firing produces a large bonding force at the interface between the carbonaceous mold and the powder, so it is possible to utilize this property to obtain composite ceramics in which the mold itself is covered with a reactive sintered body. can.
一方、反応焼結体そのものを目的の製品とするため型の
剥離(必要(こより分割型とすれば良い)が必要な場合
には、粉粒体と接する型の内面に紙を介在させるとか、
窒化ホウ素粉を塗布するとかの手段を探れば雛型は容易
となり、型の再利用が図れる。また復雑な形状で彫型が
困難な場合には、酸化雰囲気中で数百度に加熱すれば、
炭素質型は容易に消滅し、反応焼結体が健全な状態で得
られる。On the other hand, if the reaction sintered body itself is to be made into the desired product, and it is necessary to separate the mold (it is better to use a split mold), paper may be interposed on the inner surface of the mold in contact with the powder or granules.
If you find a way to apply boron nitride powder, it will be easier to make a template, and you can reuse the mold. In addition, if the shape is complicated and difficult to carve, heating it to several hundred degrees in an oxidizing atmosphere will make it possible to
The carbonaceous type easily disappears, and a reaction sintered body is obtained in a healthy state.
利用する粉粒体としては、金属ケイ素車味、あるいは金
属ケイ素と炭化ケイ素、窒化ケイ素あるいはアルミナと
の配合物なと、目的に応じ金属ケイ常に他の粉粒体を混
合することができる。またそれらの粒度、配合遺なとは
、目的とする製品の性質に適合するよう71で宜選択ず
れは良い。The powder to be used may be silicon metal or a mixture of silicon metal and silicon carbide, silicon nitride, or alumina, and other powders may be mixed with the silicon metal depending on the purpose. In addition, their particle size and composition may be selected as appropriate to suit the properties of the intended product.
粉粒体を型に充填する場合、種々な方法を採ることがで
きるが、復雑な形状の型に在っては振動成形法によるこ
とが好ましく、黒鉛質の型はその壁面と粉粒体との間の
摩擦が4\さいので、このような際には特に何利である
。なお、粉粒体の充填に先立って、または途中で型の内
部(こ同種または異種のセラミック成形体を挿入ずれば
、挿々の複合形反応焼結セラミックスが得られる。When filling a mold with powder or granules, various methods can be used, but it is preferable to use the vibration molding method for molds with complex shapes. Since the friction between the If a ceramic molded body of the same type or a different type is inserted into the mold before or during the filling of the powder, composite reactive sintered ceramics can be obtained.
充填粥、型こと窒化焼成炉内に装入し窒素または窒紫含
勾不活性雰囲気中で加熱昇温を行なう。The filled porridge is charged into a nitriding furnace, also known as a mold, and heated and heated in an inert atmosphere containing nitrogen or nitrogen.
加熱は、基塩から1000°Gまでは比較的速い50〜
150°C/hrの昇温速度て、窒化反応が開始する1
000°Gを超えて1400°Cまては比較的遅い5〜
50°C/hrの昇温速度で加熱することが好ましくそ
の後、製品によって異なるが最高温度で10〜200詩
間保持して充分な窒化反応を起させる。Heating is relatively fast from base to 1000°G at 50~
The nitriding reaction starts at a heating rate of 150°C/hr.
Exceeding 000°G and reaching 1400°C is relatively slow5~
It is preferable to heat at a heating rate of 50°C/hr, and then maintain the maximum temperature for 10 to 200 cycles, depending on the product, to cause a sufficient nitriding reaction.
窒化焼成炉内に送入されるガスは、反応成分である窒素
を含んだ不活性のものが用いられ、窒7;カスエ11.
独、酸累や二酸化炭素を除去した燃・腕廃ガス等を用い
ることができる。The gas fed into the nitriding furnace is an inert gas containing nitrogen, which is a reaction component.
In Germany, combustion/arm waste gas from which acid accumulation and carbon dioxide have been removed can be used.
以上述へた如く、本発明方法によれは、成形後離型する
ことなく焼結工程に移行されるため、保形に配慮する必
要がなく、結合剤も一般に不要なので作業が単純化され
、生産性が向」―すると共に復雑な形状でも寸法精度の
良いセラミック成)1ツ物が得られる。As mentioned above, in the method of the present invention, the mold is transferred to the sintering process without being released from the mold after molding, so there is no need to take shape retention into consideration, and binders are generally not required, so the work is simplified. Productivity is improved, and a single ceramic product with good dimensional accuracy can be obtained even with complex shapes.
以下、本発明を実施例により具体的(こ、説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.
実施例1〜5
金属ケイ繁茂および炭化ケイ繁茂を、それぞれ粉砕・分
級し、第1表に丞した配合の粉粒体を用意し、内面に窒
化ホウ素粉を塗付した内径600 mm外径100 m
m長さ300 mmの円筒形黒鉛型(気孔林528%)
に振動成形機を用いて充填した。Examples 1 to 5 Silica metal and silicon carbide were respectively crushed and classified to prepare granules having the composition shown in Table 1, and boron nitride powder was applied to the inner surface of the powder. m
Cylindrical graphite type with a length of 300 mm (528% pore forest)
was filled using a vibration molding machine.
成形品を雛型することなく型と共に焼成炉に装人し、窒
素ガス雰囲気中で、1000℃までは120℃/ hr
、 1000°Cを超えて1400℃までは10°
C/hrの速度で昇温し、以後その温度で80時間保持
した。r)却後距型し、得られた林状反応焼結体の物理
的性負を測定した。The molded product is placed in a firing furnace together with the mold without being used as a template, and heated at 120°C/hr up to 1000°C in a nitrogen gas atmosphere.
, 10° above 1000°C and up to 1400°C
The temperature was raised at a rate of C/hr and then maintained at that temperature for 80 hours. r) After casting, the physical properties of the obtained forest-like reaction sintered bodies were measured.
比較例1〜2
プコJ油例1および4と同じ配合の粉粒体に、結合剤と
してメチルセルローズを0.4組字%添加(水溶液で)
して埋合し、押出し成形により直径60m1nの棒状体
を得た。Comparative Examples 1 to 2 0.4% methyl cellulose was added as a binder to the powder and granules having the same formulation as Puco J Oil Examples 1 and 4 (in an aqueous solution)
A rod-shaped body with a diameter of 60 ml was obtained by extrusion molding.
該棒状体を実施例]〜5と同し方法で焼成し、得られた
反応焼結体の物理的性質を測定した。The rod-shaped body was fired in the same manner as in Examples] to 5, and the physical properties of the obtained reaction sintered body were measured.
以−(−の結果をまとめて、同じく第1122に示す。The following results are summarized and are also shown in No. 1122.
以下余白
実施例6
気孔率26%、肉厚5m+n、外径がそれぞれ90i7
]111と49 mmで長さが400 mmの2本の黒
鉛管を用忍し、太い方の内面および細い方の外面に窒化
ホウ素粉を塗布して2重に直豆させ、底部に閉塞栓を設
けて二つの管の中間部に実施例1と同じ粉粒体を振動成
形機により充填した。Below is the margin Example 6 Porosity 26%, wall thickness 5m+n, outer diameter 90i7 each
] Two graphite pipes of 111 mm and 49 mm and 400 mm in length were coated with boron nitride powder on the inner surface of the thicker one and the outer surface of the thinner one, and then straightened in double layers, and a blockage plug was installed at the bottom. The same granular material as in Example 1 was filled into the middle part of the two tubes using a vibration molding machine.
これを型と共に実施例1〜5と同様に焼成した硯、雌型
し円筒の反応焼結体を得た。このものの物理的性質は、
実施例1とほぼ同様であった。This was fired together with the mold in the same manner as in Examples 1 to 5 to obtain a reaction sintered body in the form of an inkstone and a female mold. The physical properties of this thing are
It was almost the same as Example 1.
比較例3
比較例1と同じ捏合物を用いて外径80 mm 、そし
て肉厚20111171の円筒体を押出し成形したが、
グリーン成形体の保形が極めて困難であると共に、得ら
れた焼結体の形4犬は不良で、圧縮強さも実施例6と比
軸して極めて低かった。Comparative Example 3 A cylindrical body with an outer diameter of 80 mm and a wall thickness of 20111171 mm was extruded using the same mixture as in Comparative Example 1.
It was extremely difficult to maintain the shape of the green molded body, the shape of the obtained sintered body was poor, and the compressive strength was also extremely low compared to Example 6.
実施例7
細い力の黒鉛管の夕1面に窒化ホウ素粉を塗布しなかっ
たことを除いては、実施例6と同様に成形および焼成を
行なった。Example 7 Molding and firing were carried out in the same manner as in Example 6, except that boron nitride powder was not applied to the other side of the fine graphite tube.
内面に黒船管が強固に結合した円筒形の捏合形セラミッ
クスが得られた。A cylindrical kneaded ceramic with Kurofune tube firmly bonded to the inner surface was obtained.
特許出願人 日本軽金属株式会社 代理人 弁理士 松永圭司Patent applicant: Nippon Light Metal Co., Ltd. Agent: Patent Attorney Keiji Matsunaga
Claims (1)
は金属ケイ繁茂を含む粉粒体を充填し、次いで該粉粒体
が充填された該成形型を窒素雰囲気中または窒素を含イ
コする不活性雰囲気中で焼成することを特徴とする反応
焼結セラミックスの製造法。 2、炭素質成形型の気孔イ(が20〜42%であること
を特徴とする特γ「請求の範囲751項記載の反応焼木
古セラミックスの製造法。[Scope of Claims] 1. Filling a carbonaceous mold with good air permeability with metal silica or powder containing metal silica, and then placing the mold filled with the powder in a nitrogen atmosphere. Alternatively, a method for producing reactive sintered ceramics characterized by firing in an inert atmosphere containing nitrogen. 2. A method for producing reactive fired wood ceramics according to claim 751, characterized in that the pores of the carbonaceous mold are 20 to 42%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58063079A JPS59190275A (en) | 1983-04-12 | 1983-04-12 | Manufacture of reaction sintered ceramics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58063079A JPS59190275A (en) | 1983-04-12 | 1983-04-12 | Manufacture of reaction sintered ceramics |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59190275A true JPS59190275A (en) | 1984-10-29 |
JPS6235995B2 JPS6235995B2 (en) | 1987-08-05 |
Family
ID=13218966
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58063079A Granted JPS59190275A (en) | 1983-04-12 | 1983-04-12 | Manufacture of reaction sintered ceramics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59190275A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006306681A (en) * | 2005-04-28 | 2006-11-09 | National Institute Of Advanced Industrial & Technology | Method for manufacturing large-sized thin-walled ceramic body |
JP2012524706A (en) * | 2009-04-23 | 2012-10-18 | サン−ゴバン・インダストリエ・ケラミク・レーデンタール・ゲー・エム・ベー・ハー | Method, apparatus and use thereof for making ceramic molded parts |
CN109721381A (en) * | 2019-02-20 | 2019-05-07 | 中国人民解放军海军工程大学 | The preparation method of silicon nitride shell reinforcing silicon nitride foam ceramic |
-
1983
- 1983-04-12 JP JP58063079A patent/JPS59190275A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006306681A (en) * | 2005-04-28 | 2006-11-09 | National Institute Of Advanced Industrial & Technology | Method for manufacturing large-sized thin-walled ceramic body |
JP2012524706A (en) * | 2009-04-23 | 2012-10-18 | サン−ゴバン・インダストリエ・ケラミク・レーデンタール・ゲー・エム・ベー・ハー | Method, apparatus and use thereof for making ceramic molded parts |
CN109721381A (en) * | 2019-02-20 | 2019-05-07 | 中国人民解放军海军工程大学 | The preparation method of silicon nitride shell reinforcing silicon nitride foam ceramic |
CN109721381B (en) * | 2019-02-20 | 2021-03-30 | 中国人民解放军海军工程大学 | Preparation method of silicon nitride shell reinforced silicon nitride foam ceramic |
Also Published As
Publication number | Publication date |
---|---|
JPS6235995B2 (en) | 1987-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FI84343B (en) | FOERFARANDE FOER FRAMSTAELLNING AV ETT SJAELVBAERANDE KERAMISKT KOMPOSITSTYCKE OCH ETT SAODANT KOMPOSITSTYCKE. | |
US6582651B1 (en) | Metallic articles formed by reduction of nonmetallic articles and method of producing metallic articles | |
US4164424A (en) | Alumina core having a high degree of porosity and crushability characteristics | |
US4184885A (en) | Alumina core having a high degree of porosity and crushability characteristics | |
JP2000202573A (en) | Core composition excellent in characteristic used for casting in application to gas turbine and article | |
JPS6047225B2 (en) | Manufacturing method for densified silicon products | |
JPH0768066B2 (en) | Heat resistant composite and method for producing the same | |
US4108672A (en) | Alumina core for casting DS materials | |
US4221748A (en) | Method for making porous, crushable core having a porous integral outer barrier layer having a density gradient therein | |
JPH10504935A (en) | Hydrogen torch | |
US4191721A (en) | Making ceramic articles having a high degree of porosity and crushability characteristics | |
JPS6350310B2 (en) | ||
JPS59190275A (en) | Manufacture of reaction sintered ceramics | |
JP3094148B2 (en) | Manufacturing method of lightweight refractory | |
JP2651170B2 (en) | Ceramics porous body | |
JP2004292894A (en) | Silver clay for forming porous sintered compact | |
KR20000067656A (en) | Manufacturing Method of Silicon Carbide Ceramic Seals by Liquid Phase Reaction Sintering | |
JPS59156954A (en) | Manufacture of porous ceramics | |
JP2696734B2 (en) | Manufacturing method of silicon nitride sintered body | |
JPS62123070A (en) | Manufacture of boron nitride base sintered body | |
JP2508511B2 (en) | Alumina composite | |
JPH03150276A (en) | Multilayered ceramic material and production thereof | |
JPS6256368A (en) | Manufacture of silicon carbide sintered body | |
JPH0127993B2 (en) | ||
JPH05195017A (en) | Production of high-density iron-base metal powder sintered compact with deformation reduced in sintering |