JPH05195017A - Production of high-density iron-base metal powder sintered compact with deformation reduced in sintering - Google Patents

Production of high-density iron-base metal powder sintered compact with deformation reduced in sintering

Info

Publication number
JPH05195017A
JPH05195017A JP2991192A JP2991192A JPH05195017A JP H05195017 A JPH05195017 A JP H05195017A JP 2991192 A JP2991192 A JP 2991192A JP 2991192 A JP2991192 A JP 2991192A JP H05195017 A JPH05195017 A JP H05195017A
Authority
JP
Japan
Prior art keywords
sintering
binder
metal powder
iron
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2991192A
Other languages
Japanese (ja)
Inventor
Keiichi Maruta
慶一 丸田
Hiroshi Otsubo
宏 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2991192A priority Critical patent/JPH05195017A/en
Publication of JPH05195017A publication Critical patent/JPH05195017A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a high-density iron-base metal powder sintered compact with the deformation reduced by removing a binder from the compact of a mixture of the iron-base metal powder having a specified grain diameter and the binder and sintering the compact on a ceramic sheet having high heat conductivity and specific heat. CONSTITUTION:An iron-base metal powder of SUS 316L, etc., having 1-18mum average grain diameter is prepared by the atomization method, etc. About 10% of a binder is added to the powder, and the mixture is compacted. The binder is removed by heating, and then the compact is sintered to obtain a high-density iron-base metal powder sintered compact. In this case, the compact freed of the binder is placed on a ceramic sheet having >=40W/m.K and 27W/m.K heat conductivity respectively at 300 K and 1200 K and having >=1.0kJ /kg.K specific heat at 1200K, the sheet is preferably placed on a graphite sheet, and sintering is carried out. Consequently, the temp. distribution in a sintering furnace is reduced, the reaction of the floor sheet with the sintered compact is prevented, and a sintered compact is obtained with the deformation in sintering reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粉末冶金法による高密
度かつ形状変化の少ない鉄系金属粉末焼結体の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an iron-based metal powder sintered body having a high density and a small change in shape by powder metallurgy.

【0002】[0002]

【従来の技術】従来行われている粉末冶金では平均粒径
60〜100μm 程度の鉄系金属粉末(以下粉末と略
す)を用いるが、最終焼結体の密度比がせいぜい90%
どまりで、機械的特性、磁気的特性または耐食性が溶製
材に比較して劣る問題があった。近年になって、平均粒
径20μm 以下の微粉を用いる技術が発達したことで、
焼結体密度比が95%以上を達成することができるよう
になった。成形方法としては、結合剤として熱可塑性樹
脂などを混合してコンパウンドを作って利用する射出成
形や、スリップ法、または微粉を造粒してプレズ成形に
供する方法が開発されている。しかし、結合材を混合し
て成形する方法では、焼結時に部品の形状がくずれやす
いという問題があった。射出成形の場合、成形体では結
合剤によって保形されているため、この結合剤が焼結前
に除去されると、一時的に部品は著しく脆くなり、外部
からの影響を受け易くなる。この場合、外部の影響とは
部品の自重や炉内の温度分布、部品内の温度分布、焼結
時に部品を置く敷板と部品との摩擦等の相互作用などが
ある。とくに温度分布の影響は大きく、炉内の各位置で
の部品収縮率、または部品内部での収縮率の均一性を低
下させる。そして、この収縮率の不均一によって部品の
形状が大きくくずれ、最終的な部品の形状が設計値より
著しく変形してしまうことがある。温度分布ができるの
は、炉内に挿入される部品と敷板の昇温の不均一のため
であり、敷板の比熱、熱伝導率が大きく影響する。通常
使用されている敷板はアルミナ板であるが、アルミナは
熱伝導率が高くなく、このため炉内温度分布を発生させ
る要因となっていた。
2. Description of the Related Art Conventional powder metallurgy uses iron-based metal powder (hereinafter abbreviated as powder) having an average particle size of 60 to 100 μm, but the density ratio of the final sintered body is 90% at most.
However, there was a problem that mechanical properties, magnetic properties or corrosion resistance were inferior to those of the ingot. With the recent development of technology that uses fine powder with an average particle size of 20 μm or less,
It has become possible to achieve a sintered body density ratio of 95% or more. As a molding method, there have been developed an injection molding method in which a thermoplastic resin or the like is mixed as a binder to form a compound, a slip method, or a method in which fine powder is granulated and used for pres molding. However, the method in which the binder is mixed and molded has a problem that the shape of the component is likely to collapse during sintering. In the case of injection molding, since the shape of the molded body is retained by the binder, if the binder is removed before sintering, the parts become temporarily extremely brittle and easily affected by the outside. In this case, the external influences include the weight of the component, the temperature distribution in the furnace, the temperature distribution in the component, the interaction between the component and the floor plate on which the component is placed during sintering, and the like. Especially, the influence of the temperature distribution is great, and the shrinkage rate of the parts at each position in the furnace or the uniformity of the shrinkage rate inside the parts is reduced. Then, due to the non-uniformity of the shrinkage ratio, the shape of the component may be largely deformed, and the final shape of the component may be significantly deformed from the design value. The reason why the temperature distribution is possible is that the temperature of the components inserted into the furnace and the temperature of the floor plate are not uniform, and the specific heat and the thermal conductivity of the floor plate have a great influence. A commonly used floor plate is an alumina plate, but alumina does not have a high thermal conductivity, which has been a factor causing the temperature distribution in the furnace.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、平均
粒径1〜18μm の粉末を用いて、焼結後に高密度を達
成し、かつ焼結時の保形性を向上させた焼結体の製造方
法を提案することである。
It is an object of the present invention to use a powder having an average particle size of 1 to 18 μm to achieve high density after sintering and to improve shape retention during sintering. It is to propose a method of manufacturing the body.

【0004】[0004]

【課題を解決するための手段】本発明は、平均粒径1
〜18μm の鉄系金属粉末に結合剤を添加混合して成形
し、該成形体中の結合剤を除去した後、温度300Kに
おける熱伝導率が40W/m・K以上で、かつ温度12
00Kにおける熱伝導率が7W/m・K以上、かつ温度
1200Kにおける比熱が1.0kJ/kg・K以上で
あるセラミック板上に該成形体を置いて焼結することを
特徴とする焼結時形状変形の少ない高密度鉄系金属粉末
焼結体の製造方法であり、平均粒径1〜18μm の鉄
系金属粉末に結合剤を添加混合して成形し、該成形体中
の結合剤を除去した後、温度300Kにおける熱伝導率
が40W/m・K以上で、かつ温度1200Kにおける
熱伝導率が7W/m・K以上、かつ温度1200Kにお
ける比熱が1.0kJ/kg・K以上であるセラミック
板上に該成形体を置いて、その板を黒鉛板上に載せて焼
結することを特徴とする焼結時形状変形の少ない高密度
鉄系金属粉末焼結体の製造方法である。
The present invention has an average particle size of 1
After adding and mixing a binder to an iron-based metal powder having a particle size of up to 18 μm to remove the binder from the molded body, the thermal conductivity at a temperature of 300 K is 40 W / m · K or more and the temperature is 12
At the time of sintering, characterized in that the compact is placed on a ceramic plate having a thermal conductivity of 00 W at 7 W / m · K or more and a specific heat at a temperature of 1200 K of 1.0 kJ / kg · K or more and is sintered. A method for producing a high-density iron-based metal powder sintered body with little shape deformation, by adding and mixing a binder to iron-based metal powder having an average particle size of 1 to 18 μm, and molding to remove the binder in the molded body. After that, a ceramic having a thermal conductivity of 40 W / m · K or more at a temperature of 300 K, a thermal conductivity of 7 W / m · K or more at a temperature of 1200 K, and a specific heat of 1.0 kJ / kg · K or more at a temperature of 1200 K. A method for producing a high-density iron-based metal powder sintered body having a small shape deformation during sintering, which comprises placing the molded body on a plate and placing the plate on a graphite plate for sintering.

【0005】[0005]

【作用】以下に本発明の具体的構成について述べる。ま
ず、粉末粒径が1〜18μm と規定したのは、焼結を促
進させ高密度化を達成するためである。この場合、粉末
は単一のアトマイズ粉でも混合粉末でも構わない。使用
する粉末の粒径が小さいため粉末のみでは成形が困難で
あり、また、成形したとしても成形体表面に割れなどの
欠陥を生じたり、金型を傷めるなどの問題がある。そこ
で粉末に結合剤を混合して成形を行う。結合剤としては
ワックス、樹脂またはこれらの混合物を用いても良い。
成形方法は射出成形、押し出し成形、プレス成形のいず
れでも良いが、結合材の混合量は成形する方法によって
異なる。例えば、射出成形では結合剤は10〜15重量
%必要であり、プレス成形では0.5〜2重量%であ
る。
The specific structure of the present invention will be described below. First, the powder particle size is defined to be 1 to 18 μm in order to accelerate sintering and achieve high density. In this case, the powder may be a single atomized powder or a mixed powder. Since the powder to be used has a small particle size, it is difficult to mold the powder alone, and even if the powder is molded, there are problems such as generation of defects such as cracks on the surface of the molded body and damage to the mold. Therefore, the powder is mixed with a binder and molded. Wax, resin or a mixture thereof may be used as the binder.
The molding method may be injection molding, extrusion molding, or press molding, but the amount of the binder mixed depends on the molding method. For example, injection molding requires 10 to 15 wt% binder and press molding 0.5 to 2 wt%.

【0006】成形後、結合剤を除去するため非酸化性雰
囲気中で加熱する。加熱温度および昇温速度は結合剤の
分解、蒸発する温度によって適当なパターンを選択す
る。その後、焼結を行うが、部品を載せる敷板として焼
結炉内の温度分布を少なくするには、比熱および熱伝導
率の高いものが望ましく、また、焼結温度は1000〜
1500℃で適当な温度が選ばれるが、焼結体と反応し
たり溶融することのないセラミック系材料が望ましい。
発明者らは種々のセラミック系材料について検討した結
果、温度300K以上で、熱伝導率が40W/m・K以
上、かつ温度1200Kにおける熱伝導率が7W/m・
K以上で、比熱が1.0kJ/kg・K以上である特性
を有する材料を用いた板が適当であるとの結論を得た。
各温度での熱伝導率および比熱がこれらの値より低い
と、敷板自身の温度が上がり難く温度分布の発生につな
がる。これらの板は単独で使用しても良いが、十分な大
きさのものがない場合には、黒鉛板上にこれらの板を置
き、その上に成形体を置いて焼結しても良い。以上、示
したような本発明の方法によれば、焼結時の部品の形状
くずれが少ない高密度焼結体を製造することができる。
After molding, heating is performed in a non-oxidizing atmosphere to remove the binder. As the heating temperature and the heating rate, an appropriate pattern is selected depending on the temperature at which the binder decomposes and evaporates. After that, sintering is performed, but in order to reduce the temperature distribution in the sintering furnace as a floor plate on which parts are placed, one having high specific heat and high thermal conductivity is desirable, and the sintering temperature is 1000 to
Although a suitable temperature of 1500 ° C. is selected, a ceramic material that does not react with the sintered body or melt is desirable.
As a result of studying various ceramic-based materials, the inventors have found that the thermal conductivity is 40 W / mK or higher at a temperature of 300 K or higher and the thermal conductivity is 7 W / mK at a temperature of 1200 K.
It was concluded that a plate made of a material having a specific heat of 1.0 kJ / kg · K or more at a temperature of K or higher is suitable.
When the thermal conductivity and the specific heat at each temperature are lower than these values, the temperature of the floorboard itself is hard to rise, which leads to the generation of temperature distribution. These plates may be used alone, but when there is no one of sufficient size, these plates may be placed on a graphite plate, and a compact may be placed on the graphite plate for sintering. As described above, according to the method of the present invention as described above, it is possible to manufacture a high-density sintered body in which the shape of the component is not deformed at the time of sintering.

【0007】[0007]

【実施例】以下、実施例について説明する。 実施例1 SUS316L組成に調整した平均粒径13.4 μm の
水アトマイズ粉末を噴霧製造した。この粉末に結合剤を
10重量%加え、混練して原料コンパウンドを製造し
た。このコンパウンドを射出成形して、図1および図2
に形状を示すリング(外径40mm、内径31mm、厚
さ3mm)および円筒カップ(外径30mm、内径26
mm、高さ30mm)を製造した。結合剤の除去は窒素
雰囲気中10℃/hで最高温度650℃まで加熱して行
った。その後、C、Oが適正な値であることを確認し
て、焼結を行った。試験片は、厚さ2mm、60mm角
のAlN板(純度98%、120mm X 250mm
X 4mm)上においた。このような試験片を載せた
AlN板を焼結炉に40枚挿入して焼結した。一方、同
じ試験片を密度比90%のアルミナ板(純度95%、1
20mm X250mm X 4mm)上に置いて、上
述と同じように40枚を挿入して焼結した。この2バッ
チの焼結体について、リングは真円度計で内径の真円度
を測定した。円筒カップは敷板に接触している最下面と
最上面の2面で内径を2方向について測定し、また最下
面の真円度を測定した。さらに各焼結体の密度をアルキ
メデス法で測定し、考えられる不純物の分析を実施し
た。
EXAMPLES Examples will be described below. Example 1 A water atomized powder having an average particle size of 13.4 μm adjusted to a SUS316L composition was spray-manufactured. A binder was added to the powder in an amount of 10% by weight and kneaded to produce a raw material compound. This compound was injection molded to produce
Ring (outer diameter 40 mm, inner diameter 31 mm, thickness 3 mm) and cylindrical cup (outer diameter 30 mm, inner diameter 26)
mm, height 30 mm). The binder was removed by heating in a nitrogen atmosphere at 10 ° C./h to a maximum temperature of 650 ° C. Then, after confirming that C and O were proper values, sintering was performed. The test piece is a 2 mm thick, 60 mm square AlN plate (purity 98%, 120 mm X 250 mm).
X 4 mm). Forty AlN plates on which such test pieces were placed were inserted into a sintering furnace and sintered. On the other hand, the same test piece was used for an alumina plate with a density ratio of 90% (purity: 95%, 1
20 mm x 250 mm x 4 mm) and 40 sheets were inserted and sintered in the same manner as described above. With respect to these two batches of sintered bodies, the circularity of the inner diameter of the ring was measured with a circularity meter. The inner diameter of the cylindrical cup was measured in two directions on the lowermost surface and the uppermost surface in contact with the floor plate, and the roundness of the lowermost surface was measured. Furthermore, the density of each sintered body was measured by the Archimedes method, and possible impurities were analyzed.

【0008】表1に実験結果をまとめて示す。AlN板
を使用したものは、アルミナ板を使用したものに比べ
て、リングの真円度が向上している。とくに高い円筒カ
ップ型においても形状の変形が少なく、良好な状態での
焼結が行われたことを示している。焼結密度はともに9
5%以上が達成されており、表2に示すように板からの
不純物も認められなかった。
Table 1 collectively shows the experimental results. The circularity of the ring is improved in the case of using the AlN plate as compared with the case of using the alumina plate. Even in the case of a particularly high cylindrical cup type, there is little deformation of the shape, indicating that the sintering was performed in a good state. Sintered density is 9
5% or more was achieved, and no impurities from the plate were observed as shown in Table 2.

【0009】[0009]

【表1】 [Table 1]

【0010】[0010]

【表2】 [Table 2]

【0011】実施例2 ここでは、アルミナおよびAlN以外の材質についての
検討を行った。表3に示すSiC、BeO、MgO、C
aO、安定化ZrO2 、BN、ムライト(3Al2O32Si
O2)の板を用いた。各板の300K、1200Kでの比
熱および熱伝導率を表3に示してある。これらの板を用
いて、実施例1と同じ実験を行った。実験結果を表4、
5に示す。
Example 2 Here, materials other than alumina and AlN were examined. SiC, BeO, MgO, C shown in Table 3
aO, stabilized ZrO 2 , BN, mullite (3Al 2 O 3 2Si
A plate of O 2 ) was used. The specific heat and thermal conductivity at 300K and 1200K of each plate are shown in Table 3. The same experiment as in Example 1 was conducted using these plates. The experimental results are shown in Table 4,
5 shows.

【0012】[0012]

【表3】 [Table 3]

【0013】[0013]

【表4】 [Table 4]

【0014】表4に示すように、SiC、BeO、Mg
O、を用いたものは、実施例1の結果と比較しても良好
な結果を示している。一方、CaOおよび安定化ZrO
2 を用いたものはアルミナに比較しても変形が大きい結
果になった。また表5に示すように、BNでは焼結体と
反応して溶融した。ZrO2 、ムライトを用いたもので
は焼結体中にSiが著しく増加し、焼結密度も低くなっ
た。
As shown in Table 4, SiC, BeO, Mg
Those using O, also showed good results in comparison with the results of Example 1. On the other hand, CaO and stabilized ZrO
The result of using 2 is larger than that of alumina. Further, as shown in Table 5, BN reacted with the sintered body and melted. In the case of using ZrO 2 or mullite, Si was remarkably increased in the sintered body and the sintered density was lowered.

【0015】[0015]

【表5】 [Table 5]

【0016】実施例3 ここでは、使用する粉末粒径の影響を示す。SUS31
6L組成に調整し、平均粒径がそれぞれ2.3、5.
6、8.9、13.4、19.5、22.8μmの粉末
を水アトマイズによって噴霧製造した。この粉末を用い
て実施例1と同じようにしてリングおよび円筒カップを
射出成形によって製造し、脱脂を同じ要領で行った。そ
の後、敷板を実施例1と同じAlNとアルミナ板を用い
て焼結を行った。実験結果を表6に示す。粉末粒径が
2.3、5.6、8.9、13.4μm のものは焼結密
度が95%以上が得られており、形状の変形について
は、いずれもAlNのものが良好な結果を示した。しか
し、粒径が19.5、22.8μm の2つについては、
密度が低く、敷板の違いによる効果も小さくなってい
る。
Example 3 Here, the influence of the particle size of the powder used is shown. SUS31
The composition was adjusted to a 6 L composition and the average particle diameters were 2.3 and 5.
6, 8.9, 13.4, 19.5, 22.8 μm powders were spray produced by water atomization. Rings and cylindrical cups were produced by injection molding using this powder in the same manner as in Example 1, and degreasing was performed in the same manner. Then, the floor plate was sintered using the same AlN and alumina plate as in Example 1. The experimental results are shown in Table 6. Sintering densities of 95% or more were obtained for powders with particle diameters of 2.3, 5.6, 8.9 and 13.4 μm, and AlN had good results in terms of shape deformation. showed that. However, for the two with particle sizes of 19.5 and 22.8 μm,
The density is low, and the effect due to the difference in floor plate is also small.

【0017】[0017]

【表6】 [Table 6]

【0018】実施例4 ここでは、黒鉛板を用いた場合の効果について示す。S
iC、AlN、BeO、MgOで製造された50mm
X 50mmで厚さ1.5mmの薄板を用いた。試験片
は実施例1と同じようにして成形し、脱脂を行った。こ
の試験片を上述の薄板上に載せて、この板を175mm
X 124mm、厚さ4mmの黒鉛板上において、焼
結を行った。焼結条件は実施例1と同じである。実験結
果を表7に示す。いずれの板を用いても形状変化の少な
い良好な焼結体が得られた。
Example 4 Here, the effect of using a graphite plate will be described. S
50mm made of iC, AlN, BeO, MgO
A thin plate having a thickness of X 50 mm and a thickness of 1.5 mm was used. The test piece was molded and degreased in the same manner as in Example 1. This test piece is placed on the above-mentioned thin plate, and this plate is 175 mm.
Sintering was performed on a graphite plate of 124 mm X and 4 mm thickness. The sintering conditions are the same as in Example 1. The experimental results are shown in Table 7. A good sintered body with little change in shape was obtained using any of the plates.

【0019】[0019]

【表7】 [Table 7]

【0020】[0020]

【発明の効果】以上示したように、本発明によれば、焼
結時の形状変形を抑制して高密度焼結体を得ることがで
きるため、粉末冶金で焼結部品を製造することにおいて
有用性が高い。
As described above, according to the present invention, since it is possible to obtain a high-density sintered body by suppressing the shape deformation during sintering, it is possible to manufacture a sintered part by powder metallurgy. Highly useful.

【図面の簡単な説明】[Brief description of drawings]

【図1】リング試験片の形状を示す平面図である。FIG. 1 is a plan view showing the shape of a ring test piece.

【図2】円筒カップ試験片の形状を示す断面図である。FIG. 2 is a cross-sectional view showing the shape of a cylindrical cup test piece.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径1〜18μm の鉄系金属粉末に
結合剤を添加混合して成形し、該成形体中の結合剤を除
去した後、温度300Kにおける熱伝導率が40W/m
・K以上で、かつ温度1200Kにおける熱伝導率が7
W/m・K以上、かつ温度1200Kにおける比熱が
1.0kJ/kg・K以上であるセラミック板上に該成
形体を置いて焼結することを特徴とする焼結時形状変形
の少ない高密度鉄系金属粉末焼結体の製造方法。
1. A binder is added to an iron-based metal powder having an average particle diameter of 1 to 18 μm, and the mixture is molded, and after removing the binder in the molded body, the thermal conductivity at a temperature of 300 K is 40 W / m.
・ K and above, and thermal conductivity at temperature 1200K is 7
High density with little shape deformation during sintering, characterized by placing the compact on a ceramic plate having a specific heat of 1.0 kJ / kg · K or more at a temperature of 1200 K or more and W / m · K or more and sintering. A method for producing an iron-based metal powder sintered body.
【請求項2】 平均粒径1〜18μm の鉄系金属粉末に
結合剤を添加混合して成形し、該成形体中の結合剤を除
去した後、温度300Kにおける熱伝導率が40W/m
・K以上で、かつ温度1200Kにおける熱伝導率が7
W/m・K以上、かつ温度1200Kにおける比熱が
1.0kJ/kg・K以上であるセラミック板上に該成
形体を置いて、その板を黒鉛板上に載せて焼結すること
を特徴とする焼結時形状変形の少ない高密度鉄系金属粉
末焼結体の製造方法。
2. An iron-based metal powder having an average particle size of 1 to 18 μm is mixed with a binder and molded, and after removing the binder in the molded body, the thermal conductivity at a temperature of 300 K is 40 W / m.
・ K and above, and thermal conductivity at temperature 1200K is 7
The molded body is placed on a ceramic plate having a specific heat of W / m · K or higher and a specific heat at a temperature of 1200 K of 1.0 kJ / kg · K or higher, and the plate is placed on a graphite plate and sintered. A method for producing a high-density iron-based metal powder sintered body, which has little shape deformation during sintering.
JP2991192A 1992-01-22 1992-01-22 Production of high-density iron-base metal powder sintered compact with deformation reduced in sintering Pending JPH05195017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2991192A JPH05195017A (en) 1992-01-22 1992-01-22 Production of high-density iron-base metal powder sintered compact with deformation reduced in sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2991192A JPH05195017A (en) 1992-01-22 1992-01-22 Production of high-density iron-base metal powder sintered compact with deformation reduced in sintering

Publications (1)

Publication Number Publication Date
JPH05195017A true JPH05195017A (en) 1993-08-03

Family

ID=12289178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2991192A Pending JPH05195017A (en) 1992-01-22 1992-01-22 Production of high-density iron-base metal powder sintered compact with deformation reduced in sintering

Country Status (1)

Country Link
JP (1) JPH05195017A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015014041A (en) * 2013-07-08 2015-01-22 住友電工焼結合金株式会社 Sinter hardening method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015014041A (en) * 2013-07-08 2015-01-22 住友電工焼結合金株式会社 Sinter hardening method

Similar Documents

Publication Publication Date Title
JPH05195017A (en) Production of high-density iron-base metal powder sintered compact with deformation reduced in sintering
JPH0770610A (en) Method for sintering injection-molded product
JP2001247367A (en) Silicon carbide sintered compact and method for producing the same
KR100502815B1 (en) Porous Ceramic Material with Double Pore Structures and Manufacturing Process therefor
WO2006114849A1 (en) Miniature bearing and method for manufacturing the same
JP2004292894A (en) Silver clay for forming porous sintered compact
JPH1029871A (en) Granule for ceramic compacting
JPH04285141A (en) Manufacture of ferrous sintered body
JPH06279124A (en) Production of silicon nitride sintered compact
JP3570676B2 (en) Porous ceramic body and method for producing the same
JP4789293B2 (en) SiC sintered body
JPS6235995B2 (en)
JPH10121107A (en) Production of sintered member
JPH0687664A (en) Production of silicon nitride sintered compact
JP2747627B2 (en) Silicon nitride based sintered body and method for producing the same
JP2000203940A (en) Silicon carbide sintered body and its production
JPS6344713B2 (en)
JPH0564806A (en) Manufacture of ceramic
JPS61186264A (en) Manufacture of silicon nitride sintered body
JPH0733291B2 (en) Method for manufacturing silicon nitride sintered body
JP3877813B2 (en) Large aluminum nitride sintered body and manufacturing method thereof
JPH01168845A (en) Iron-iron oxide sintered compact and its production
JPH04238866A (en) Production of tube of sintered material of silicon carbide
JPH0571540B2 (en)
JPH0246121B2 (en) SERAMITSUKUSUSHOKETSUTAINOSEIZOHOHO