JPS61176439A - Production of ceramic core - Google Patents

Production of ceramic core

Info

Publication number
JPS61176439A
JPS61176439A JP1647985A JP1647985A JPS61176439A JP S61176439 A JPS61176439 A JP S61176439A JP 1647985 A JP1647985 A JP 1647985A JP 1647985 A JP1647985 A JP 1647985A JP S61176439 A JPS61176439 A JP S61176439A
Authority
JP
Japan
Prior art keywords
pattern
binder
core
temp
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1647985A
Other languages
Japanese (ja)
Inventor
Koji Matsuoka
宏治 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1647985A priority Critical patent/JPS61176439A/en
Publication of JPS61176439A publication Critical patent/JPS61176439A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/12Treating moulds or cores, e.g. drying, hardening
    • B22C9/126Hardening by freezing

Abstract

PURPOSE:To manufacture ceramic cores which have high initial strength, permit easy handling and have good dimensional accuracy even with a small number of or large sized patterns by packing a kneaded material composed of a powdery and granular refractory material and binder into a horizontal mold and parting from the pattern drying and calcining the molding after freeze curing. CONSTITUTION:The kneaded material prepd. by mixing a refractory powdery and granular material such as molten silica powder and zircon flour and a binder such as colloidal silica and adding an additive thereto according to need is packed into the pattern coated with an antifreezing liquid such as grease and is frozen at a low temp. of about -20 deg.C. The molded material is put into an ordinary temp. furnace after parting from the pattern and is dried by low temp. heating at 100-400 deg.C. The core permits easy handling at a room temp., does not shrink and has good dimensional accuracy as the core is produced by freezing. The use of the wooden pattern is possible and the manufacture of a small number of or large-sized cores at a low cost is made possible.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、大型鋳物用のセラミック中子の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method of manufacturing a ceramic core for large castings.

(従来の技術) 精密鋳造用のセラミック中子は、耐火性粉末(溶融シリ
カ、アルミナ、ジルコン等)に、結合剤(エチルシリケ
ート加水分解液、コロイダルシリカ、熱可塑性樹脂、熱
硬化性樹脂等)及び各種の助剤を混合し、成型した後、
乾燥(脱脂)、焼成して製造されている。その成型法と
しては、主として射出成型法、押出成型法、流し込み成
型法が行なわれている。これらの各種成型法について、
以下に説明する。
(Conventional technology) Ceramic cores for precision casting are made of refractory powder (fused silica, alumina, zircon, etc.) and a binder (ethyl silicate hydrolyzate, colloidal silica, thermoplastic resin, thermosetting resin, etc.). After mixing and molding various auxiliaries,
It is manufactured by drying (degreasing) and firing. As the molding method, injection molding, extrusion molding, and casting molding are mainly used. Regarding these various molding methods,
This will be explained below.

射出成型法は、耐火材粉末に、結合剤として熱可塑性樹
脂又は熱硬化性樹脂、各種の助剤を混合し、プラスチッ
ク成型の場合と同様に、金型内に混合物を圧入し、熱可
塑性樹脂は冷却し、熱硬化性樹脂は加熱して成型するも
のである。
In the injection molding method, refractory material powder is mixed with a thermoplastic resin or thermosetting resin as a binder, and various auxiliary agents, and the mixture is press-fitted into a mold in the same way as in plastic molding. is cooled, and thermosetting resin is heated and molded.

押出成型法は、耐火性粉末と各種の結合剤及び助剤を混
合して可塑性を付与し、口金を通して該混合物を押出し
、連続的に成型するものである。この方法は、管や棒の
ように断面形状が一定のものく適用される。
In the extrusion molding method, refractory powder is mixed with various binders and auxiliary agents to impart plasticity, and the mixture is extruded through a die to continuously mold the product. This method is applied to objects with a constant cross-sectional shape, such as pipes and rods.

流し込み成型法は、耐火性粉末と結合剤(主にエチルシ
リケート加水分解液、コロイダルシリカを使用)を混合
してスラリー状とし、これを金型中に流し込んで、ゲル
化剤との反応、又は乾燥によシ硬化させて成型するもの
である。
In the pour molding method, a refractory powder and a binder (mainly ethyl silicate hydrolyzate and colloidal silica are used) are mixed to form a slurry, which is poured into a mold and reacted with a gelling agent. It is molded by drying and hardening.

しかしながら、これらの従来の成型法は、下記に示すよ
うな欠点を有する。
However, these conventional molding methods have drawbacks as shown below.

(1)金型を使用するため、少量中子や単品の中子には
、経済的に適用できない。
(1) Since a mold is used, it cannot be economically applied to small quantities of cores or single cores.

(2)金型を使用するため、製造する中子の大きさに制
限がある(特に射出成型の場合)。
(2) Since a mold is used, there is a limit to the size of the core to be manufactured (especially in the case of injection molding).

(3)流し込んでゲル化硬化させた場合、生型強度が低
く、大物中子への適用が困難である。
(3) When poured and gelled and hardened, the strength of the green mold is low and it is difficult to apply it to large cores.

又、乾燥時に、変形が生じ易い。Furthermore, deformation is likely to occur during drying.

(4)金型内で乾燥硬化させた場合、収縮による割れ、
引は巣、あるいは水分蒸発による気孔の発生が認められ
る。
(4) Cracks due to shrinkage when dried and hardened in a mold.
The occurrence of cavities or pores due to moisture evaporation is observed.

(5)  ゲル化による硬化法以外の方法は、成型時の
圧力、加熱、乾燥硬化時の加熱に耐えられないため、木
型が使用できない。
(5) Wooden molds cannot be used with methods other than the gelation curing method because they cannot withstand the pressure and heat during molding and the heat during dry curing.

(発明が解決しようとする問題点) 本発明の目的は、上記従来方法の欠点を解消し、従来の
精密鋳物より大型鋳物の品質(寸法精度、鋳肌の改善)
向上を図シ、そのための大型鋳物用のセラミック中子の
製造方法を提供することである。
(Problems to be Solved by the Invention) The purpose of the present invention is to eliminate the drawbacks of the above-mentioned conventional methods, and to improve the quality of large castings (dimensional accuracy and casting surface) compared to conventional precision castings.
The object of the present invention is to provide a method for manufacturing a ceramic core for large-sized castings.

(問題点を解決するための手段) 本発明は、上記問題点を、最近研究されつつあるセラミ
ックスの凍結圧縮成形法(1984年11月発行の「素
形材」参照)を利用して解決しようとするものであり、
該成形法によりセラミック中子を工業的規模で実用的に
製造し得る方法を提案する。
(Means for Solving the Problems) The present invention attempts to solve the above problems by utilizing a freeze compression molding method for ceramics that has recently been studied (see "Sokeiza" published in November 1984). and
We propose a method that can practically produce ceramic cores on an industrial scale using this molding method.

本発明は、粉粒状耐火材に結合剤を加えて混練し、模型
に充填した後、凍結により硬化せしめて離型し、これを
乾燥および/または焼成することを特徴とするセラミッ
ク中子の製造方法に関する。
The present invention relates to the production of a ceramic core, which is characterized in that a powdery refractory material is kneaded with a binder, filled into a model, hardened by freezing, released from the mold, and dried and/or fired. Regarding the method.

すなわち、従来は加熱やゲル化反応によって初期強度を
得ていたが、本発明では、凍結によって初期強度を発現
させることに特徴がある。
That is, conventionally, initial strength was obtained by heating or gelling reaction, but the present invention is characterized in that initial strength is developed by freezing.

材料の混合は、溶融シリカ粉本、ジルコンフラワー等の
耐火性粉粒体と、コロイダルシリカ等の結合材及び、必
要に応じて添加剤を加えて混合することによシ行われる
。混合装置は、材料が均一に混合できれば、どのような
混線機も使用できる。減圧状態で混合を行ない、混合物
を脱気できれば、なお良い。
The materials are mixed by adding and mixing refractory powder such as fused silica powder or zircon flour, a binder such as colloidal silica, and additives as necessary. Any mixer can be used as the mixing device as long as the materials can be mixed uniformly. It is even better if the mixture can be degassed by performing the mixing under reduced pressure.

成型にあたっては、混合物をスラリー状として流し込み
成型するのが最も簡単であるが、ペースト状にして低圧
による加圧成型も良い。又、成型時に、減圧、加圧、遠
心力等を利用するこ′ とも望ましい。
For molding, it is easiest to pour the mixture into a slurry and mold it, but it is also good to form a paste and mold it under low pressure. It is also desirable to use reduced pressure, increased pressure, centrifugal force, etc. during molding.

凍結硬化の凍結温度は、使用する結合剤の種類、凍結速
度等によって異なる。凍結は、低温室、冷凍室、液体N
!利用等の何れの方法でも良い。
The freezing temperature for freeze hardening varies depending on the type of binder used, freezing rate, etc. Freezing can be done in a cold room, freezer room, or liquid N.
! Any method such as usage may be used.

離型で使用する離型剤は、低温下に於ても凍結しないも
の、凍結した結合剤と付着しない離型剤を選定する必要
がある。例えば、グリース、シリコンオイル(ペースト
、液)、テフロン(スプレー)、その他市販離型剤等が
使用できる。
It is necessary to select a mold release agent used for mold release that does not freeze even at low temperatures and that does not adhere to frozen binders. For example, grease, silicone oil (paste, liquid), Teflon (spray), and other commercially available mold release agents can be used.

乾燥は、凍結状態の中子を模型から取シ出し、直ちに常
温の炉に挿入し、徐々に昇温加熱して所定の温度、例え
ば100〜400℃程度の低温で行なう。これは、水分
除去、各種助剤の除去を行ない、焼結に耐える強度を付
与するために行なうものである。従って、次の焼成にお
いて徐々に昇温加熱する手法を採れば、との昇温時に水
分等の除去が行えるので、乾燥は卒すしも必要ではない
Drying is carried out by taking out the frozen core from the model, immediately inserting it into a furnace at room temperature, and gradually increasing the temperature to a predetermined temperature, for example, at a low temperature of about 100 to 400°C. This is done to remove moisture and various auxiliary agents, and to impart strength to withstand sintering. Therefore, if a method is adopted in which the temperature is gradually increased in the next baking process, moisture and the like can be removed during the temperature rise, so that drying is not necessary.

焼成は、鋳込み、ハンドリングに耐える強度を付与する
と共に、鋳込時にガスが発生しないよう、ガス化物質を
除去するために行われる。
Firing is performed to provide strength to withstand casting and handling, and to remove gasified substances so that gas is not generated during casting.

従って、焼成温度下で分解、ガス化するような物質を添
加しない場合は必ずしも必要でなく、乾燥工程のみで充
分である。焼成温度は、耐火材の種類、粒度、結合剤の
種類、量によって異なるが、通常800℃以上で焼成が
行われる。
Therefore, if a substance that decomposes and gasifies at the firing temperature is not added, it is not necessarily necessary and only the drying step is sufficient. Although the firing temperature varies depending on the type and particle size of the refractory material, and the type and amount of the binder, firing is usually performed at 800°C or higher.

なお、本発明方法における乾燥、焼成の代表的な熱履歴
パターンを第1図に示す。第1図中の■〜■の熱履歴パ
ターンは、次の通シである。
Incidentally, a typical thermal history pattern of drying and firing in the method of the present invention is shown in FIG. The heat history patterns (■ to ■) in FIG. 1 are as follows.

■ 昇温+保持+昇温+保持+炉冷 (乾燥)    (焼成) ■ 昇温(低速)十昇温(高速)十保持+炉冷(焼 成
) ■ 昇温+保持+炉冷 (乾燥) 本発明方法に使用できる結合剤は、冷却するととくより
凍結するものであれば、何れでもよいが、凍結温度から
見て、水ガラス、コロイダルシリカ、P’7A(ポリビ
ニルアルコール)、ソの他の水溶性の有機物質等の水溶
液が好ましい。
■ Temperature increase + hold + temperature increase + hold + furnace cooling (drying) (baking) ■ Temperature increase (slow) 10 temperature increases (high speed) 10 hold + furnace cooling (baking) ■ Temperature increase + holding + furnace cooling (drying) ) The binder that can be used in the method of the present invention may be any binder as long as it freezes when cooled; Aqueous solutions of water-soluble organic substances and the like are preferred.

本発明方法は、耐火性粉末を使用したセラミック中子の
製造のみならず、寸法精度向上、鋳造欠陥防止等を目的
とした従来の中子や鋳型(主型)(ジルコンサンド、ク
ロマイトサンド等の骨材を使用)にも適用できる。また
、本発明方法においては、従来法によるセラミック中子
に添加される各種の添加剤(例えば、消泡剤、分散剤、
焼結助剤等)も、凍結硬化を阻害しない限り使用できる
The method of the present invention not only manufactures ceramic cores using refractory powder, but also manufactures conventional cores and molds (main molds) (zircon sand, chromite sand, etc.) for the purpose of improving dimensional accuracy and preventing casting defects. (using aggregate) can also be applied. In addition, in the method of the present invention, various additives (such as antifoaming agents, dispersants,
Sintering aids, etc.) can also be used as long as they do not inhibit freeze-hardening.

(作用) 本発明方法(おいては、結合剤が凍結することにより、
次の作用が発現する。すなわち、結合剤中の溶質(例え
ば、コロイダルシリカ等のゲル化物質と溶媒(例えば、
水)とが分離して凍結し、氷と、コロイダルシリカのゲ
ル化凍結物とが中子に強度を与える。また、水分(溶媒
)は、氷として凍結分離しているため、乾燥および/ま
たは焼成工種において容易に除去される。
(Function) In the method of the present invention, by freezing the binder,
The following effects occur. That is, the solute in the binder (e.g., a gelling substance such as colloidal silica) and the solvent (e.g.,
water) separates and freezes, and the ice and frozen gelled colloidal silica give strength to the core. In addition, since water (solvent) is frozen and separated as ice, it is easily removed during drying and/or firing.

しかも低温により中子の表面が乾燥するため、乾燥時の
形状保持ができる。
Moreover, since the surface of the core dries at low temperatures, it is possible to maintain its shape during drying.

(発明の効果) (1)初期強度穴のため、ノ・ンドリンクが容易である
(Effects of the invention) (1) Due to the initial strength hole, non-linking is easy.

(2)凍結硬化時に膨張するため、空隙、気孔の発生防
止、寸法精度の向上が計れる。すなわち、従来のスラリ
ーを模型中で加熱により硬化させる方法は、スラリーか
ら水分が蒸発するととくよシ硬化するため、水分蒸発時
に中子が収縮し、模型よシも小さくなる。これに対し、
本発明の凍結によシ硬化させる方法は、スラリー中の水
分(溶媒)が凍結する時に膨張するため、この膨張圧に
耐える強度を模型が持っていれば、凍結硬化した中子は
模型に忠実な型状となシ、したがって寸法精度が向上す
る。
(2) Since it expands during freeze hardening, it is possible to prevent the generation of voids and pores and improve dimensional accuracy. That is, in the conventional method of hardening a slurry by heating in a model, the slurry hardens even more when the water evaporates, so the core contracts when the water evaporates, and the size of the model also becomes smaller. In contrast,
In the freezing-hardening method of the present invention, the water (solvent) in the slurry expands when it freezes, so if the model has the strength to withstand this expansion pressure, the freeze-hardened core will be faithful to the model. This results in improved dimensional accuracy.

(3)硬化時の加熱工程がないため、模型に木型が使用
できる。従って、単品ものの中子に適用することKより
、模型費低減による中子単価の低下を実現することがで
きる。
(3) Since there is no heating process during curing, wooden molds can be used for the model. Therefore, by applying the method to a single core, it is possible to realize a reduction in the unit cost of the core due to a reduction in model cost.

(4)初期強度が大であり、硬化時の収縮割れがない。(4) High initial strength and no shrinkage cracking during curing.

また、木型の使用が可能等のことから、大型中子に適用
できる。
Furthermore, since it is possible to use a wooden mold, it can be applied to large cores.

(5)焼成時の収縮が小さい。従って、寸法精度が良好
である。
(5) Small shrinkage during firing. Therefore, the dimensional accuracy is good.

以下に、本発明の実施例を示す。Examples of the present invention are shown below.

実施例1 表1の配合により混練してスラリーとし、減圧下で脱気
した後、縦80日×横20 m X深さ30燗の木型に
流し込み、−20℃で凍結させた。3時間凍結させた後
、離型し、更に一10℃で3時間保持した後、2aO℃
×2時間(昇温速度20℃/時間)、1000℃×2時
間(昇温速度100℃/時間)で乾燥、焼成を行ない炉
冷して、試験片を製作した。得られた試験片の強度、収
縮率は、表1に示す通シであった。
Example 1 The slurry was kneaded according to the formulation shown in Table 1, degassed under reduced pressure, poured into a wooden mold measuring 80 days long x 20 m wide x 30 deep and frozen at -20°C. After freezing for 3 hours, the mold was released and kept at -10℃ for 3 hours, and then heated to 2aO℃.
A test piece was prepared by drying and firing at 1000° C. for 2 hours (heating rate 20° C./hour) and cooling in a furnace for 2 hours (heating rate 20° C./hour). The strength and shrinkage rate of the obtained test piece were as shown in Table 1.

表  1 実施例2 表2の配合によシ混線してスラリーとし、縦80m×横
20■×深さ30龍及び縦100■×横s o m x
深さ30−の木型に、実施例1と同様に凍結処理して成
型した。両型後は、低温中への放置は行なわず、直ちに
実施例1と同様の乾燥、焼成を行なった。得られた試験
片の強度、気孔率は、いずれの木型を用した場合も表2
に示す通りであった。
Table 1 Example 2 A slurry is made by mixing according to the composition of Table 2, and the size is 80 m long x 20 cm wide x 30 m deep and 100 m long x 100 cm wide x s o m x wide.
It was frozen and molded into a wooden mold with a depth of 30 mm in the same manner as in Example 1. After both molds were finished, the molds were not left in a low temperature environment, but were immediately dried and fired in the same manner as in Example 1. The strength and porosity of the obtained test pieces are shown in Table 2 regardless of which wooden mold was used.
It was as shown in

表   2 実施例3 表3の配合により混練してスラリーとし、実施例2と同
様の木型を用い、実施例2と同様に凍結処理して成型し
た。脱型後、次の条件で乾燥、焼成を行った。
Table 2 Example 3 A slurry was prepared by kneading according to the formulation shown in Table 3, and using the same wooden mold as in Example 2, it was frozen and molded in the same manner as in Example 2. After demolding, drying and firing were performed under the following conditions.

常温〜200℃ (昇温速度20℃ハ柵)200〜10
00℃洪温速度100℃ハ柵)(200℃での保持なし
) 1000℃で2時間保持後、炉冷 得られた試験片の曲げ強度はいずれの木型を用いた場合
も表3に示す通りであった。
Room temperature to 200℃ (heating rate 20℃) 200 to 10
Table 3 shows the bending strength of the test specimens obtained after 2 hours of holding at 1000°C and cooling in the furnace, regardless of the wooden mold used. It was on the street.

表  3 実施例4 実施例3の焼成工程を省き、200℃で2時間保持後、
炉冷した以外は、実施例3と同様にして実施したところ
、いずれの木型を用いた場合も曲げ強度40 k& /
 cm ”の試験片を得ることができた。
Table 3 Example 4 After omitting the firing step of Example 3 and holding at 200°C for 2 hours,
The test was carried out in the same manner as in Example 3, except that it was cooled in a furnace, and the bending strength was 40 k&/
It was possible to obtain a test piece with a diameter of 2 cm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明忙おける乾燥、焼成の代表的な熱履歴パ
ターンを示す図である。 復代理人  内 1)  明 復代理人  萩 原 亮 − 第1図 時間−
FIG. 1 is a diagram showing a typical thermal history pattern during drying and firing in the present invention. Sub-Agents 1) Meikoku Agent Ryo Hagiwara - Figure 1 Time-

Claims (1)

【特許請求の範囲】[Claims] 粉粒状耐火材に結合剤を加えて混練し、模型に充填した
後、凍結により硬化せしめて離型し、これを乾燥および
/または焼成することを特徴とするセラミック中子の製
造方法。
A method for manufacturing a ceramic core, which comprises adding a binder to a powdery refractory material, kneading the mixture, filling it into a model, hardening it by freezing, releasing it from the mold, and drying and/or firing it.
JP1647985A 1985-02-01 1985-02-01 Production of ceramic core Pending JPS61176439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1647985A JPS61176439A (en) 1985-02-01 1985-02-01 Production of ceramic core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1647985A JPS61176439A (en) 1985-02-01 1985-02-01 Production of ceramic core

Publications (1)

Publication Number Publication Date
JPS61176439A true JPS61176439A (en) 1986-08-08

Family

ID=11917418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1647985A Pending JPS61176439A (en) 1985-02-01 1985-02-01 Production of ceramic core

Country Status (1)

Country Link
JP (1) JPS61176439A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02104143U (en) * 1989-02-02 1990-08-20
GB2373205A (en) * 2001-03-13 2002-09-18 Howmet Res Corp Reducing the distortion of unfired ceramic cores
JP2009066640A (en) * 2007-09-14 2009-04-02 National Institute Of Advanced Industrial & Technology Frozen mold for casting, and method for producing the same
WO2020058393A1 (en) * 2018-09-19 2020-03-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Casting core for casting molds and method for the production thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02104143U (en) * 1989-02-02 1990-08-20
GB2373205A (en) * 2001-03-13 2002-09-18 Howmet Res Corp Reducing the distortion of unfired ceramic cores
GB2373205B (en) * 2001-03-13 2004-11-03 Howmet Res Corp Method for treating ceramic cores
JP2009066640A (en) * 2007-09-14 2009-04-02 National Institute Of Advanced Industrial & Technology Frozen mold for casting, and method for producing the same
WO2020058393A1 (en) * 2018-09-19 2020-03-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Casting core for casting molds and method for the production thereof
CN112703072A (en) * 2018-09-19 2021-04-23 弗劳恩霍夫应用研究促进协会 Casting core for a casting mould and method for producing a casting core
CN112703072B (en) * 2018-09-19 2023-08-08 弗劳恩霍夫应用研究促进协会 Casting core for casting mold and method for producing casting core
US11794236B2 (en) 2018-09-19 2023-10-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Casting core for casting molds and method for the production thereof

Similar Documents

Publication Publication Date Title
US4812278A (en) Process for preparing mold
KR900003344B1 (en) Method for preparing slipcasting mould
US4919193A (en) Mold core for investment casting, process for preparing the same and process for preparing mold for investment casting having therewithin said mold core
CN103223689B (en) Preparation method for functionally-graded mold core and mold shell integrated ceramic casting mold
KR0183997B1 (en) Slip casting method
US5906781A (en) Method of using thermally reversible material to form ceramic molds
JPS61176439A (en) Production of ceramic core
US2811760A (en) Method for the production of casting moulds
JPS63242439A (en) Production of mold for investment casting
EP0243502A1 (en) Mold for pad molding of powder
JPH0663684A (en) Production of ceramic core for casting
US5266252A (en) Ceramic slip casting technique
JPH06227854A (en) Production of formed ceramic article
JPS60253505A (en) Manufacture of ceramics product
JP3074004B2 (en) Manufacturing method of ceramic products
JPH0636954B2 (en) Composition for easily disintegrating mold
JPS61125804A (en) Manufacture of mold
RU2685827C1 (en) Method of making a ceramic shell for casting on molten patterns
JPH0339774B2 (en)
JPS6358082B2 (en)
JPH0663685A (en) Production of ceramic core for precision casting
JPH0548724B2 (en)
JPH05212487A (en) Production of casting mold
JPH06340467A (en) Production of ceramic molded body
JPS6330202A (en) Manufacture of ceramics baked body