JP4666791B2 - CONNECTED BODY AND METHOD FOR PRODUCING THE SAME - Google Patents

CONNECTED BODY AND METHOD FOR PRODUCING THE SAME Download PDF

Info

Publication number
JP4666791B2
JP4666791B2 JP2001053171A JP2001053171A JP4666791B2 JP 4666791 B2 JP4666791 B2 JP 4666791B2 JP 2001053171 A JP2001053171 A JP 2001053171A JP 2001053171 A JP2001053171 A JP 2001053171A JP 4666791 B2 JP4666791 B2 JP 4666791B2
Authority
JP
Japan
Prior art keywords
molded body
recess
silicon nitride
paste
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001053171A
Other languages
Japanese (ja)
Other versions
JP2002255666A (en
Inventor
政宏 佐藤
隆晶 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001053171A priority Critical patent/JP4666791B2/en
Publication of JP2002255666A publication Critical patent/JP2002255666A/en
Application granted granted Critical
Publication of JP4666791B2 publication Critical patent/JP4666791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、接合体及びその製造方法に関し、特に、大型及び/又は複雑形状で、高温での信頼性が高い接合体とその製造方法に関するものであり、ピストンピン、エンジンバルブ等の自動車用部品やガスタービンエンジン用部品などの熱機関用部品として好適なものである。
【0002】
【従来技術】
従来、エンジニアリングセラミックスとして知られている窒化珪素質焼結体は、耐熱性、耐熱衝撃性、耐摩耗性及び耐酸化性に優れることから、特にガスタービンやターボロータ等の熱機関用部品としての応用が進められている。
【0003】
窒化珪素は難焼結材であることから焼結性を向上させるため、窒化珪素粉末に対し、焼結助剤としてY23などの希土類元素酸化物や酸化アルミニウムなどを添加した成形体を、加圧焼成し、窒化珪素結晶相を主体とし、希土類元素、珪素、アルミニウム、酸素及び窒素とからなる非晶質の粒界相により構成された焼結体を得ることが知られている。
【0004】
しかし、大型や複雑なセラミック焼結体を作製するためには、成形体の加工に大型の工作機械を要したり、また、複雑かつ煩雑な加工が必要になり、時には複雑すぎて加工が困難となることがある。
【0005】
そこで、大型や複雑なセラミックスを得るために、接合という手法が用いられている。例えば、特開平5−270933号公報では、セラミック製品を幾つかの部位に分け、各部位の形状を有する焼結体を作製し、スラリーを接合面に塗布し、加熱処理による固相接合により接合体を形成することが提案されている。
【0006】
また、接合部の強度を向上するため、嵌合による接合が特開平9−263455号公報で提案されている。この方法では射出成形した翼部脱脂体と、静水圧加圧成形した軸部脱脂体とを嵌合することにより接合している。
【0007】
【発明が解決しようとする課題】
しかしながら、特開平5−270932号に記載の構造体は、結合剤がガラス質であるため、高温での酸化特性や強度特性が劣化するため、自動車用部品やガスタービンエンジン用部品などの熱機関用部品として用いることができないという問題があった。
【0008】
また、複雑形状で複数の焼結体を接合する場合、接合部に均一に圧力が加わるように、外部から応力を印加すると強度の弱い部位が欠損したり、クラックが発生し、特に、成形体を接合する場合には、圧力を加えることが困難であるという問題があった。
【0009】
一方、特開平9−263455号公報に記載の方法では、嵌合時によって引抜き強度を高める効果があるものの、適応可能な形状に制限があり、例えばロータなど中実形状品は可能であるが、リング形状の接合には不向きであるという問題があった。また2種類の成形方法を用いて成形体を作製するため、コストアップの要因となった。
【0010】
従って、本発明は、高温で高い強度を維持し、かつ信頼性の高い接合体とその接合体を簡便な工程で製造する製造方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明の接合体は、成形体同士の間に、収縮率の小さい組成の接合層を設けることにより、収縮差に基づく嵌合力による応力を加えることができ、接合力を向上できるという知見に基づくものである。この接合層は成形体と同様な組成のセラミックを用いることができるため、接合部幅に比べて比較的接合部深さが比較的小さな場合でも、室温から高温まで高い強度を有することができ、また、接合部にスラリーを塗布するだけであるため、成形体の形状に影響されることがないという特徴を有してている。
【0012】
即ち、表面に凹部を有する第1の窒化珪素質部材と、該凹部内に嵌合されてなる第2の窒化珪素質部材と、第1及び第2の窒化珪素質部材間に設けられた20〜200μmの接合部とを具備し、前記凹部の最大径Wに対する前記凹部の深さdの比d/Wが0.04〜0.4であり、且つ接合強度が引抜き強度で200MPa以上であることを特徴とするものである。
【0013】
これによって、複雑な形状においても高温で高い強度を有し、信頼性の高い接合体を実現でき、熱機関に最適なセラミック部品を提供できる。しかも、接合部の深さが比較的浅い場合でも接合力が高く、高信頼性の接合体が得られる。
【0014】
特に、前記接合部に含まれる焼結助剤量が、前記窒化珪素質部材に含まれる焼結助剤量よりも少ないことが好ましい。接合部の焼結助剤量が窒化珪素部材より少ないため、焼成時に接合部の焼成収縮率を窒化珪素部材の焼成収縮率よりも小さくでき、その結果、上述したような圧縮応力が接合部に嵌合力として働き、引抜き強度をより高めることが実現できる。
【0015】
また、本発明の接合体の製造方法は、窒化珪素と焼結助剤とを含む混合粉末で少なくとも2つの成形体1及び2を作製する工程と、該成形体の焼成収縮率より小さい焼成収縮率を有するセラミックペーストを作製する工程と、前記成形体1の表面に、最大径Wに対する深さdの比d/Wが0.04〜0.4となるように凹部を形成する工程と、前記成形体1の凹部又は前記成形体2の少なくとも一接合面に前記セラミックペーストを塗布し、前記凹部内に成形体2を嵌合して接合成形体を作製する工程と、該接合成形体を焼成して接合体を得る工程とからなることを特徴としている。この方法により、複雑な部品においても簡便な方法で接合部に圧縮応力を生じさせ、高い接合力を得ることができる。
【0016】
特に、前記ペーストが珪素粉末を含み、該珪素粉末の含有量が、前記複数の成形体に含まれる珪素粉末の含有量より大きいことが好ましい。これにより、簡単に収縮率の小さい接合層を得ることができる。
【0017】
さらに、前記ペースト中の焼結助剤の含有量が、前記複数の成形体中の焼結助剤の含有量より小さいことが好ましい。これにより、さらに簡単に収縮率の小さい接合層を得ることができる。
【0018】
【発明の実施の形態】
本発明の接合体は、複数の窒化珪素質焼結体が嵌合部において接合されてなる接合体であって、例えば、図1に示すように、2個の成形体1、2を準備し、成形体1の凹状の窪みにペースト3を塗布又は充填し、成形体2を該窪みに挿入して接合成形体5を形成する。そして、これを焼成して、図2に示すように、複数の焼結体11、12の間に接合部13を設けた接合体15を作製することができる。
【0019】
この接合部13を形成する際に、ペースト3中の粉体の収縮率が成形体1、2の収縮率よりも小さいことが重要であり、その結果、焼成時にこの収縮差により接合部13に嵌合の圧縮応力を生じさせ、接合を強固にすることができるのである。
【0020】
ここで、接合部の最大径をW、接合部の深さをdとしたとき、最大径Wに対する深さdの比d/Wが0.04〜0.4であることが重要で、特に0.06〜0.3、更には0.08〜0.2が好ましい。比d/Wが0.04に満たないと嵌合力が十分に発生せず、特に、最大径Wが30mm以下では、深さが1.2mm以下となり、高い接合力を有し、高信頼性の接合体が実現できないためである。また、比d/Wが0.4を越えると取扱いが困難になるとともに、接合時に気泡を取込易くなり、強度劣化や試料破損を招くという問題が生じるためである。
【0021】
また、接合部13の厚みが20〜200μmであることが重要である。即ち、20μm未満では嵌合によって発生する接合力が不十分であり、200μmを越えると焼結体11、12にかかる応力が高くなり、接合部13に欠陥を生じる可能性がある。そして、より高い接合強度を得るため、特に40〜150μm、さらには60〜100μmの厚みにすることが好ましい。
【0022】
そして、本発明によれば、接合体15の引抜き強度が200MPa以上であることが重要であり、これにより、エンジン部品やガスタービンエンジン部品等の構造部品として適応することが可能となる。また、より機械的信頼性を高めるために、特に250MPa以上、さらには300MPa以上が好ましい。
【0023】
また、本発明は、複雑形状、例えば図3に示すように、窒化珪素質焼結体からなる一対の部材21a、21bが窒化珪素質焼結体からなる複数の支柱22を挟持する構造を有しており、前記支柱22と前記一対の部材21a、21bの少なくとも一方とが接合されてなる形状の接合に好適に用いることができる。即ち、これらの形状を一体で成形することは困難であり、切削での作製はコストがかかる。従来の接合では焼結体同士を接合するため、焼成時の変形のため精度が低い。これに対し、本発明では、簡便で低コストな工程でこのような複雑形状の接合体が精度よく、高い強度で実現できる。
【0024】
特に、部材21a及び21bに形成された凹部24に、支柱22が嵌合されており、凹部の内部に接合層23が設けられている。そして、接合部の厚みを20〜200μm、比d/Wを0.04〜0.4に設定することによって引抜き強度を200MPa以上にすることができ、信頼性の高い接合体を実現できる。
【0025】
以上のように構成された本発明の接合体は、複雑な部品特にリング形状などにおいても簡便な方法で接合部に嵌合力を生じさせ、高い接合力を得ることができる。
【0026】
次に、本発明の接合体を作製する方法について説明する。
【0027】
まず、成形体を作製する。即ち、窒化珪素及び焼結助剤を含む混合粉末を作製し、この混合粉末を用いて各種の公知の成形法例えばプレス法、CIP法、鋳込み法等により成形体を作製する。これらの成形体の接合部にはたとえばリングと円柱、リングとリング等の組合せにおいて、少なくとも一方に嵌合するための凹部を有していることが重要である。
【0028】
また、ペーストを作成する。即ち、窒化珪素及び焼結助剤を含む混合粉末に対して、溶媒を加えペーストとする。有機溶媒としては融点の高いフタル酸ジ−n−ブチル(DBP)、フタル酸ジ−オクチル(DOP)、高級アルコール、炭化水素等を用いることが溶媒の蒸発を防ぎ、接合時におけるスラリー固化による接合不良を防ぐために好ましい。
【0029】
そして、上記ペーストの混合粉末の収縮率が、成形体の混合粉末の収縮率より小さいことが重要である。上記ペースト中の粉末と成形体の収縮率差は、5%以上、特に10%以上さらには12%以上小さいことが好ましく、具体的には、成形体の収縮率にもよるが、ペースト中の粉末の収縮率を15%以下、特に10%以下、さらには8%以下に設定することが、接合部に嵌合力を生じさせ、接合強度を高めるために好ましい。
【0030】
このような嵌合力を発生するためには、ペースト中の組成が成形体の組成と類似であってもよいが、異なっていることが好ましい。例えば、ペースト中の珪素の含有量が成形体中の珪素の含有量より大きくすることによって、成形体の収縮率をペーストの収縮率よりも大きくでき、嵌合部においては、凹部に差し込まれた成形体が凹部を有する成形体によって締め付けられ、圧縮応力が発生して引抜き強度を向上させることができる。
【0031】
しかも、窒化及び焼成後には焼結体と略同一の組成にすることも可能であり、所望の組成を選択することによって、より高温で高強度、高信頼性の接合体を実現することができる。
【0032】
また、ペースト中の焼結助剤の含有量を、成形体中の焼結助剤の含有量より小さくすることによっても、上記珪素の含有量を変えた時と同じ効果が得られ、高い引抜き強度を実現できる。
【0033】
さらには、溶媒量を減らすことによって、接合スラリーの粉体濃度を高めることによっても収縮率を抑えすことができ、上記と同じ効果が得られる。
【0034】
このような手法を用いて嵌合することによって、嵌合力を発生させて引き抜き強度を高めると共に、接合部位の面積をより大きくすることによる接合強度向上の効果も有し、これら2つの効果が相まって高温高強度、高信頼性の接合体を得ることができる。
【0035】
なお、ペーストの混合粉末の収縮率とは、ペーストを特定形状にしたものを乾燥し、焼成する際の焼成前後の寸法から測定した収縮率を示すもので、具体的には、容器等にペーストを充填して乾燥して成形体を得、その収縮率を測定する。
【0036】
接合体は所望により脱脂を行った後、1700〜1900℃、好ましくは1750〜1850℃の不活性雰囲気中において焼成する。成形体および接合層の焼結性を向上させるため、1700℃以上の温度が必要で、焼結助剤の分解を抑制するためには1900℃以下であることが重要である。
【0037】
また、本発明の接合体の製造方法は、複雑形状を有する部材の製造に好適に応用できる。例えば、図4に示すセラミックノズルは、一対のリング状部材31a、31bが、複数のベーン32上下から挟持する構造をしており、リング状部材31aと個々のベーン32とが本発明の接合体の製造方法により接合されてなり、また、リング状部材31bも同様に個々のベーン32と接合され、接合部33がそれぞれ形成されている。
【0038】
即ち、リング状部材31a、31bに凹部を設け、そこに両端部にペーストを塗布されたベーン32が挿入され、全体を組み上げた後上下のリング状部材31a及び31b間に5MPa以下の圧力を加えて圧着し、焼成してセラミックノズルを作製することができる。
【0039】
ここで、スラリーの収縮率はリング状部材31a、31bの成形体の収縮率よりも小さく、焼結により嵌合力が発生し、リング状部材31a、31bとベーン32はそれぞれ強固に接合される。接合体の比d/Wが0.04〜0.4、接合部の厚みが凹部の底部及び側面において20〜200μmとすることにより、引抜き強度200MPa以上を実現できる。
【0040】
従来、焼結体を作製した後、接合を行うために再度焼成していたが、本発明では同時焼成が可能であり、このように一度の焼成で大型、複雑形状の部品を作成することができ、簡便な方法により高強度と高信頼性を有する接合体が得られる。
【0041】
【実施例】
BET10m2/g、α率90%の窒化珪素粉末、純度99.9%の珪素粉末との合量90重量%に対して、純度99.9%、平均粒径5μmのY23、Yb23、Nd23、Er23を10重量%の割合で添加し、IPAを溶媒として24時間混合した。混合したスラリーを乾燥し、得られた混合粉末に対してパラフィンワックスを全量中10%添加し、整粒した。
【0042】
この混合粉末を金型プレスにより縦30mm、横30mm、長さ30mmの成形立方体を作製した。そして、一つの表面に直径10.5mm及び表1に示す深さの穴を作製した。
【0043】
また、これとは別個に、直径30mm、長さ30mmの円柱形状の成形体を作製し、加工によって直径10mm、長さ30mmの円柱成形体を得た。
【0044】
また、ペーストを作製した。即ち、上記の成形体を作製するために用いた窒化珪素粉末、純度99.9%、平均粒径5μmのY23、純度99.9%、平均粒径5μmのSi粉末及び溶媒としてDBP(ジブチルフタレート)を表1の割合で混合し、接合用のペーストを作製した。
【0045】
このペーストを成形立方体の穴に底部及び壁面に塗布した後、円柱成形体を挿入し、これを乾燥、脱脂し、表1に示す焼成条件にて焼成した。得られた接合体の立方体部を固定し、円柱部に溝加工を施し、その部分を利用して引張ることにより破断荷重を測定し、引抜き強度として計算した。
【0046】
なお、ペーストの収縮率は、ペーストだけを別途容器に充填して乾燥し、接合体と同一焼成条件で焼成して、焼成前後の寸法から収縮率を測定した。また、成形体の収縮率は20%であった。
【0047】
さらに、接合面を光学顕微鏡写真にて観察し、接合層の厚みを測定した。結果を表1に示した。
【0048】
【表1】

Figure 0004666791
【0049】
本発明の試料No.2〜7、9〜18、21〜26及び28〜30は、20〜180μmの厚みの接合部が設けられ、嵌合接合により200MPa以上の高い引抜き強度を示した。
【0050】
一方、比d/Wが0.04に満たない本発明の範囲外の試料No.1は、嵌合力が加わらないため引張り強度が110MPaと低かった。また、比d/Wが0.4を越えるに本発明の範囲外の試料No.8は、引抜き強度が150MPaと低かった。
【0051】
また、スラリーの収縮率が成形体の収縮率より大きい本発明の範囲外の試料No.19は、嵌合力が加わらないため引抜き強度が100MPaと低かった。
【0052】
さらに、接合部が10μmと薄い本発明の範囲外の試料No.20は、嵌合の効果が不十分なため、引抜き強度が120MPaと低かった。また、接合部が250μmと厚い本発明の範囲外の試料No.27は、引抜き強度が80MPaと低かった。
【0053】
【発明の効果】
本発明の接合体は、接合部の収縮率を成形体の収縮率よりも小さくするとともに、その厚みを制御することによって、接合部に嵌合による圧縮力を発生せしめ、高い接合強度を実現することができる。
【図面の簡単な説明】
【図1】本発明の接合体を焼成前に形成した接合成形体の概略断面図を示すものである。
【図2】本発明の接合体の構造を示す断面図である。
【図3】本発明の複雑形状の接合体の接合状態を示す断面図である。
【図4】本発明の接合体の製造方法を用いて作製したセラミックノズルを示す斜視図である。
【符号の説明】
1、2・・・成形体
3・・・ペースト
5・・・接合成形体
11、12・・・焼結体
13・・・接合部
15・・・接合体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a joined body and a manufacturing method thereof, and more particularly to a joined body having a large size and / or complicated shape and high reliability at a high temperature and a manufacturing method thereof, and automotive parts such as a piston pin and an engine valve. And parts for heat engines such as gas turbine engine parts.
[0002]
[Prior art]
Conventionally, silicon nitride-based sintered bodies known as engineering ceramics have excellent heat resistance, thermal shock resistance, wear resistance, and oxidation resistance, so that they are particularly useful as parts for heat engines such as gas turbines and turbo rotors. Application is underway.
[0003]
Since silicon nitride is a difficult-to-sinter material, in order to improve the sinterability, a molded body in which rare earth element oxides such as Y 2 O 3 or aluminum oxide is added as a sintering aid to silicon nitride powder. It is known to obtain a sintered body that is fired under pressure and is composed of an amorphous grain boundary phase mainly composed of a silicon nitride crystal phase and composed of rare earth elements, silicon, aluminum, oxygen, and nitrogen.
[0004]
However, in order to produce a large and complex ceramic sintered body, a large machine tool is required to process the molded body, and complicated and complicated processing is required. Sometimes it is too complicated and difficult to process. It may become.
[0005]
Therefore, in order to obtain large and complex ceramics, a technique called bonding is used. For example, in Japanese Patent Application Laid-Open No. 5-270933, ceramic products are divided into several parts, sintered bodies having shapes of the respective parts are produced, slurry is applied to the joining surfaces, and joined by solid-phase joining by heat treatment. It has been proposed to form a body.
[0006]
Further, in order to improve the strength of the joint, joining by fitting is proposed in Japanese Patent Laid-Open No. 9-263455. In this method, the wing part degreased body molded by injection molding and the shaft part degreased body molded by isostatic pressing are fitted together to be joined.
[0007]
[Problems to be solved by the invention]
However, in the structure described in JP-A-5-270932, since the binder is glassy, the oxidation characteristics and strength characteristics at high temperatures deteriorate, so that heat engines such as automobile parts and gas turbine engine parts are used. There was a problem that it could not be used as a part for a car.
[0008]
In addition, when joining a plurality of sintered bodies with complex shapes, when stress is applied from the outside so that pressure is uniformly applied to the joints, weak parts are lost or cracks occur. In the case of joining, there is a problem that it is difficult to apply pressure.
[0009]
On the other hand, in the method described in JP-A-9-263455, although there is an effect of increasing the pulling strength by fitting, there is a limit to the shape that can be adapted, for example, a solid shape product such as a rotor is possible. There is a problem that it is not suitable for ring-shaped joining. Moreover, since a molded object was produced using two types of molding methods, it caused an increase in cost.
[0010]
Accordingly, an object of the present invention is to provide a bonded body that maintains high strength at a high temperature and has high reliability, and a manufacturing method for manufacturing the bonded body in a simple process.
[0011]
[Means for Solving the Problems]
The joined body of the present invention is based on the knowledge that by providing a joining layer having a composition with a small shrinkage ratio between molded bodies, stress due to a fitting force based on a shrinkage difference can be applied, and the joining force can be improved. Is. Since this bonding layer can use a ceramic having the same composition as the molded body, even when the bonding depth is relatively small compared to the bonding width, it can have high strength from room temperature to high temperature, In addition, since only the slurry is applied to the joint, the shape of the molded body is not affected.
[0012]
That is, a first silicon nitride member having a recess on the surface, a second silicon nitride member fitted in the recess, and 20 provided between the first and second silicon nitride members. A ratio d / W of the depth d of the recess to the maximum diameter W of the recess is 0.04 to 0.4, and the bonding strength is 200 MPa or more in terms of pullout strength. It is characterized by this.
[0013]
Accordingly, a highly reliable bonded body having a high strength even at a high temperature even in a complicated shape can be realized, and a ceramic component optimal for a heat engine can be provided. In addition, even when the depth of the bonded portion is relatively shallow, the bonding force is high and a highly reliable bonded body can be obtained.
[0014]
In particular, it is preferable that the amount of sintering aid contained in the joint is smaller than the amount of sintering aid contained in the silicon nitride member. Since the amount of sintering aid in the joint is smaller than that of the silicon nitride member, the firing shrinkage rate of the joint during firing can be made smaller than the firing shrinkage rate of the silicon nitride member. As a result, the compressive stress as described above is applied to the joint. It works as a fitting force, and it is possible to realize a higher pulling strength.
[0015]
In addition, the method for producing a joined body of the present invention includes a step of producing at least two molded bodies 1 and 2 with a mixed powder containing silicon nitride and a sintering aid, and a firing shrinkage smaller than the firing shrinkage ratio of the molded body. A step of producing a ceramic paste having a rate, a step of forming a recess on the surface of the molded body 1 such that a ratio d / W of the depth d to the maximum diameter W is 0.04 to 0.4, Applying the ceramic paste to at least one joint surface of the molded body 1 or the molded body 2 and fitting the molded body 2 in the recess to produce a bonded molded body; and And a step of obtaining a joined body by firing. By this method, even in a complex part, a compressive stress can be generated in the joint portion by a simple method, and a high joining force can be obtained.
[0016]
In particular, it is preferable that the paste contains silicon powder, and the content of the silicon powder is larger than the content of silicon powder contained in the plurality of molded bodies. Thereby, a joining layer with a small shrinkage rate can be obtained easily.
[0017]
Furthermore, it is preferable that the content of the sintering aid in the paste is smaller than the content of the sintering aid in the plurality of molded bodies. Thereby, a joining layer with a small shrinkage rate can be obtained more easily.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The joined body of the present invention is a joined body in which a plurality of silicon nitride sintered bodies are joined at a fitting portion. For example, as shown in FIG. Then, the paste 3 is applied or filled into the concave recess of the molded body 1, and the molded body 2 is inserted into the recess to form the bonded molded body 5. And this is baked and the joined body 15 which provided the junction part 13 between the some sintered compacts 11 and 12 as shown in FIG. 2 can be produced.
[0019]
When forming the joint portion 13, it is important that the shrinkage rate of the powder in the paste 3 is smaller than the shrinkage rate of the compacts 1 and 2. The compressive stress of the fitting is generated, and the joining can be strengthened.
[0020]
Here, when the maximum diameter of the joint is W and the depth of the joint is d, it is important that the ratio d / W of the depth d to the maximum diameter W is 0.04 to 0.4. 0.06-0.3, Furthermore, 0.08-0.2 are preferable. When the ratio d / W is less than 0.04, the fitting force is not sufficiently generated. Particularly, when the maximum diameter W is 30 mm or less, the depth is 1.2 mm or less, and has a high joining force and high reliability. This is because the joined body cannot be realized. Further, if the ratio d / W exceeds 0.4, handling becomes difficult, and bubbles are easily taken in at the time of joining, resulting in problems such as strength deterioration and sample breakage.
[0021]
Moreover, it is important that the thickness of the joint portion 13 is 20 to 200 μm. That is, if it is less than 20 μm, the joining force generated by the fitting is insufficient, and if it exceeds 200 μm, the stress applied to the sintered bodies 11 and 12 becomes high, and there is a possibility that a defect occurs in the joint 13. And in order to obtain higher joining strength, it is preferable to set it as the thickness of 40-150 micrometers especially 60-100 micrometers especially.
[0022]
And according to this invention, it is important that the drawing strength of the joined body 15 is 200 Mpa or more, and it becomes possible to adapt as structural components, such as an engine component and a gas turbine engine component. Further, in order to further increase the mechanical reliability, it is particularly preferably 250 MPa or more, more preferably 300 MPa or more.
[0023]
Further, the present invention has a complicated shape, for example, a structure in which a pair of members 21a and 21b made of a silicon nitride sintered body sandwich a plurality of columns 22 made of a silicon nitride sintered body, as shown in FIG. Therefore, it can be suitably used for joining in a shape in which the column 22 and at least one of the pair of members 21a and 21b are joined. That is, it is difficult to integrally form these shapes, and manufacturing by cutting is costly. In conventional joining, since sintered bodies are joined together, the accuracy is low due to deformation during firing. On the other hand, in the present invention, such a complex-shaped joined body can be realized with high accuracy and high strength by a simple and low-cost process.
[0024]
In particular, the support column 22 is fitted into the recess 24 formed in the members 21a and 21b, and the bonding layer 23 is provided inside the recess. And by setting the thickness of a junction part to 20-200 micrometers and ratio d / W to 0.04-0.4, drawing strength can be made 200 Mpa or more, and a reliable joining body is realizable.
[0025]
The joined body of the present invention configured as described above can generate a fitting force in a joined portion by a simple method even in a complicated part, particularly a ring shape, and can obtain a high joining force.
[0026]
Next, a method for producing the joined body of the present invention will be described.
[0027]
First, a molded body is produced. That is, a mixed powder containing silicon nitride and a sintering aid is produced, and a molded body is produced using the mixed powder by various known forming methods such as a press method, a CIP method, a casting method and the like. It is important that the joints of these molded bodies have a recess for fitting to at least one of a combination of a ring and a cylinder, a ring and a ring, or the like.
[0028]
Also create a paste. That is, a solvent is added to a mixed powder containing silicon nitride and a sintering aid to obtain a paste. Use of di-n-butyl phthalate (DBP), di-octyl phthalate (DOP), higher alcohols, hydrocarbons, etc. with high melting point as the organic solvent prevents evaporation of the solvent, and joining by slurry solidification during joining It is preferable in order to prevent defects.
[0029]
And it is important that the shrinkage rate of the mixed powder of the paste is smaller than the shrinkage rate of the mixed powder of the compact. The difference in shrinkage between the powder in the paste and the molded body is preferably 5% or more, particularly preferably 10% or more, and more preferably 12% or less. Specifically, depending on the shrinkage rate of the molded body, It is preferable to set the shrinkage ratio of the powder to 15% or less, particularly 10% or less, and further 8% or less in order to generate a fitting force at the joint and increase the joint strength.
[0030]
In order to generate such a fitting force, the composition in the paste may be similar to the composition of the molded body, but is preferably different. For example, by making the silicon content in the paste larger than the silicon content in the molded body, the shrinkage rate of the molded body can be made larger than the shrinkage rate of the paste, and the fitting portion is inserted into the recess. The molded body is clamped by the molded body having the recesses, and a compressive stress is generated to improve the pull-out strength.
[0031]
Moreover, it is possible to make the composition substantially the same as that of the sintered body after nitriding and firing, and by selecting a desired composition, it is possible to realize a bonded body with higher strength and higher reliability at a higher temperature. .
[0032]
Also, by making the content of the sintering aid in the paste smaller than the content of the sintering aid in the molded body, the same effect as when the silicon content is changed can be obtained, and high drawing Strength can be realized.
[0033]
Further, by reducing the amount of solvent, the shrinkage rate can be suppressed by increasing the powder concentration of the joining slurry, and the same effect as described above can be obtained.
[0034]
By fitting using such a method, the pulling strength is increased by generating a fitting force, and there is also an effect of improving the joining strength by increasing the area of the joining portion, and these two effects are combined. A bonded body having high temperature, high strength and high reliability can be obtained.
[0035]
The shrinkage ratio of the mixed powder of the paste indicates the shrinkage ratio measured from the dimensions before and after firing when the paste having a specific shape is dried and fired. Specifically, the paste is applied to a container or the like. And dried to obtain a molded body, and the shrinkage rate is measured.
[0036]
The bonded body is degreased as desired, and then fired in an inert atmosphere of 1700 to 1900 ° C, preferably 1750 to 1850 ° C. In order to improve the sinterability of the molded body and the bonding layer, a temperature of 1700 ° C. or higher is necessary, and in order to suppress decomposition of the sintering aid, it is important that the temperature is 1900 ° C. or lower.
[0037]
Moreover, the manufacturing method of the conjugate | zygote of this invention can be applied suitably for manufacture of the member which has a complicated shape. For example, the ceramic nozzle shown in FIG. 4 has a structure in which a pair of ring-shaped members 31a and 31b are sandwiched from above and below a plurality of vanes 32, and the ring-shaped members 31a and individual vanes 32 are joined to each other according to the present invention. In addition, the ring-shaped member 31b is similarly bonded to the individual vanes 32 to form the bonding portions 33, respectively.
[0038]
That is, the ring-shaped members 31a and 31b are provided with recesses, and the vanes 32 coated with paste are inserted into both ends thereof. After the whole is assembled, a pressure of 5 MPa or less is applied between the upper and lower ring-shaped members 31a and 31b. The ceramic nozzle can be manufactured by pressure bonding and firing.
[0039]
Here, the shrinkage rate of the slurry is smaller than the shrinkage rate of the molded body of the ring-shaped members 31a and 31b, and a fitting force is generated by sintering, so that the ring-shaped members 31a and 31b and the vane 32 are firmly joined. By setting the ratio d / W of the joined body to 0.04 to 0.4 and the thickness of the joined portion to 20 to 200 μm at the bottom and side surfaces of the recess, a pulling strength of 200 MPa or more can be realized.
[0040]
Conventionally, after the sintered body was produced, it was fired again for bonding. However, in the present invention, simultaneous firing is possible, and thus large-sized and complex-shaped parts can be created by a single firing. And a joined body having high strength and high reliability can be obtained by a simple method.
[0041]
【Example】
BET 10 m 2 / g, α ratio 90% silicon nitride powder, purity 99.9% of the total amount of 90% by weight, purity 99.9%, average particle size 5 μm of Y 2 O 3 , Yb 2 O 3 , Nd 2 O 3 and Er 2 O 3 were added at a ratio of 10% by weight, and mixed for 24 hours using IPA as a solvent. The mixed slurry was dried, and 10% of the total amount of paraffin wax was added to the obtained mixed powder to adjust the particle size.
[0042]
Using this mixed powder, a molded cube having a length of 30 mm, a width of 30 mm, and a length of 30 mm was produced by a die press. And the hole of diameter 10.5mm and the depth shown in Table 1 was produced on one surface.
[0043]
Separately, a cylindrical shaped body having a diameter of 30 mm and a length of 30 mm was produced, and a cylindrical shaped body having a diameter of 10 mm and a length of 30 mm was obtained by processing.
[0044]
Moreover, the paste was produced. That is, silicon nitride powder used for producing the above-mentioned molded body, Y 2 O 3 having a purity of 99.9% and an average particle diameter of 5 μm, Si powder having a purity of 99.9% and an average particle diameter of 5 μm, and DBP as a solvent (Dibutyl phthalate) was mixed at a ratio shown in Table 1 to prepare a paste for bonding.
[0045]
After this paste was applied to the bottom and the wall surface of the hole of the molded cube, the cylindrical molded body was inserted, dried and degreased, and fired under the firing conditions shown in Table 1. The cube part of the obtained joined body was fixed, the groove part was given to the cylindrical part, the breaking load was measured by pulling using that part, and it calculated as a drawing strength.
[0046]
In addition, the shrinkage rate of the paste was measured by measuring the shrinkage rate from the dimensions before and after firing by filling only the paste in a separate container and drying it, firing it under the same firing conditions as the joined body. Further, the shrinkage rate of the molded body was 20%.
[0047]
Furthermore, the bonding surface was observed with an optical microscope photograph, and the thickness of the bonding layer was measured. The results are shown in Table 1.
[0048]
[Table 1]
Figure 0004666791
[0049]
Sample No. of the present invention. 2-7, 9-18, 21-26, and 28-30 were provided with 20-180-micrometer-thick junction parts, and showed high pulling strength of 200 MPa or more by fitting joining.
[0050]
On the other hand, the sample No. in which the ratio d / W is not less than 0.04 is outside the scope of the present invention. No. 1 had a low tensile strength of 110 MPa because no fitting force was applied. In addition, when the ratio d / W exceeds 0.4, the sample No. In No. 8, the drawing strength was as low as 150 MPa.
[0051]
In addition, sample Nos. Out of the scope of the present invention have a slurry shrinkage ratio larger than that of the molded body. No. 19 had a pulling strength as low as 100 MPa because no fitting force was applied.
[0052]
Furthermore, the sample No. 5 outside the scope of the present invention has a thin junction of 10 μm. No. 20 had a pull-out strength as low as 120 MPa because the fitting effect was insufficient. In addition, the sample No. 4 outside the scope of the present invention was thick with a junction of 250 μm. In No. 27, the drawing strength was as low as 80 MPa.
[0053]
【The invention's effect】
In the joined body of the present invention, the shrinkage rate of the joint portion is made smaller than the shrinkage rate of the molded body, and the thickness is controlled to generate a compressive force due to fitting in the joined portion, thereby realizing high joint strength. be able to.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a bonded molded body formed by firing the bonded body of the present invention before firing.
FIG. 2 is a cross-sectional view showing the structure of the joined body of the present invention.
FIG. 3 is a cross-sectional view showing a joined state of a complex shaped joined body of the present invention.
FIG. 4 is a perspective view showing a ceramic nozzle produced by using the method for producing a joined body according to the present invention.
[Explanation of symbols]
1, 2 ... Molded body 3 ... Paste 5 ... Bonded molded body 11, 12 ... Sintered body 13 ... Joint 15 ... Joint body

Claims (5)

表面に凹部を有する第1の窒化珪素質部材と、該凹部内に嵌合されてなる第2の窒化珪素質部材と、第1及び第2の窒化珪素質部材間に設けられた20〜200μmの接合部とを具備し、前記凹部の最大径Wに対する前記凹部の深さdの比d/Wが0.04〜0.4であり、且つ接合強度が引抜き強度で200MPa以上であることを特徴とする接合体。A first silicon nitride member having a recess on the surface, a second silicon nitride member fitted into the recess, and 20 to 200 μm provided between the first and second silicon nitride members. The ratio d / W of the depth d of the recess to the maximum diameter W of the recess is 0.04 to 0.4, and the bonding strength is 200 MPa or more in terms of pullout strength. Characteristic joined body. 前記接合部に含まれる焼結助剤量が、前記窒化珪素質部材に含まれる焼結助剤量よりも少ないことを特徴とする請求項1記載の接合体。2. The joined body according to claim 1, wherein the amount of the sintering aid contained in the joint is less than the amount of the sintering aid contained in the silicon nitride member. 窒化珪素と焼結助剤とを含む混合粉末で少なくとも2つの成形体1及び2を作製する工程と、該成形体の焼成収縮率より小さい焼成収縮率を有するセラミックペーストを作製する工程と、前記成形体1の表面に、最大径Wに対する深さdの比d/Wが0.04〜0.4となるように凹部を形成する工程と、前記成形体1の凹部又は前記成形体2の少なくとも一接合面に前記セラミックペーストを塗布し、前記凹部内に成形体2を嵌合して接合成形体を作製する工程と、該接合成形体を焼成して接合体を得る工程とからなることを特徴とする接合体の製造方法。A step of producing at least two shaped bodies 1 and 2 with a mixed powder containing silicon nitride and a sintering aid, a step of producing a ceramic paste having a firing shrinkage ratio smaller than the firing shrinkage rate of the shaped body, A step of forming a recess on the surface of the molded body 1 such that a ratio d / W of the depth d to the maximum diameter W is 0.04 to 0.4, and a recess of the molded body 1 or of the molded body 2 The method comprises a step of applying the ceramic paste to at least one joint surface, fitting the molded body 2 in the concave portion to produce a joint molded body, and a step of firing the joint molded body to obtain a joined body. The manufacturing method of the joined body characterized by these. 前記ペーストが珪素粉末を含み、該珪素粉末の含有量が、前記複数の成形体に含まれる珪素粉末の含有量より大きいことを特徴とする請求項3記載の接合体の製造方法。The method for producing a joined body according to claim 3, wherein the paste contains silicon powder, and the content of the silicon powder is larger than the content of silicon powder contained in the plurality of molded bodies. 前記ペースト中の焼結助剤の含有量が、前記複数の成形体中の焼結助剤の含有量より小さいことを特徴とする請求項3又は4記載の接合体の製造方法。The method for producing a joined body according to claim 3 or 4, wherein the content of the sintering aid in the paste is smaller than the content of the sintering aid in the plurality of molded bodies.
JP2001053171A 2001-02-27 2001-02-27 CONNECTED BODY AND METHOD FOR PRODUCING THE SAME Expired - Fee Related JP4666791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001053171A JP4666791B2 (en) 2001-02-27 2001-02-27 CONNECTED BODY AND METHOD FOR PRODUCING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001053171A JP4666791B2 (en) 2001-02-27 2001-02-27 CONNECTED BODY AND METHOD FOR PRODUCING THE SAME

Publications (2)

Publication Number Publication Date
JP2002255666A JP2002255666A (en) 2002-09-11
JP4666791B2 true JP4666791B2 (en) 2011-04-06

Family

ID=18913675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001053171A Expired - Fee Related JP4666791B2 (en) 2001-02-27 2001-02-27 CONNECTED BODY AND METHOD FOR PRODUCING THE SAME

Country Status (1)

Country Link
JP (1) JP4666791B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7695580B2 (en) * 2006-01-17 2010-04-13 Air Products And Chemicals, Inc. Method of forming a ceramic to ceramic joint
JP6700836B2 (en) * 2016-02-16 2020-05-27 三菱重工業株式会社 Joining structure, combustor, and combustion device
US11554992B2 (en) * 2016-07-27 2023-01-17 Kyocera Corporation Bonded ceramic assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63139071A (en) * 1986-12-01 1988-06-10 本田技研工業株式会社 Ceramic body joining method
JPH05148048A (en) * 1991-11-29 1993-06-15 Sumitomo Cement Co Ltd Joining agent for silicon nitride ceramics
JP2001010872A (en) * 1999-06-21 2001-01-16 Toshiba Ceramics Co Ltd Ceramic joined product and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63139071A (en) * 1986-12-01 1988-06-10 本田技研工業株式会社 Ceramic body joining method
JPH05148048A (en) * 1991-11-29 1993-06-15 Sumitomo Cement Co Ltd Joining agent for silicon nitride ceramics
JP2001010872A (en) * 1999-06-21 2001-01-16 Toshiba Ceramics Co Ltd Ceramic joined product and its production

Also Published As

Publication number Publication date
JP2002255666A (en) 2002-09-11

Similar Documents

Publication Publication Date Title
KR101960264B1 (en) Residual stress free joined SiC ceramics and the processing method of the same
US20070225151A1 (en) Silicon carbide matrix composite material, process for producing the same and process for producing part of silicon carbide matrix composite material
WO1996009266A1 (en) Bonded body of aluminum and silicon nitride and production method thereof
JP4666791B2 (en) CONNECTED BODY AND METHOD FOR PRODUCING THE SAME
JP2500138B2 (en) Method of manufacturing ceramics with pores
JP2012082095A (en) Method of joining two or more ceramic members mutually
JP5067751B2 (en) Ceramic joined body and manufacturing method thereof
JP4537669B2 (en) Silicon carbide-based bonded component and method for manufacturing the same
JPH057353B2 (en)
JPH1171186A (en) Bound structure of ceramic to metal and its binding
JP5166223B2 (en) Method for joining members to be joined of silicon nitride ceramics
JP3942288B2 (en) Method for producing setter material for firing ceramics
JP2964101B2 (en) Adiabatic piston head and method of manufacturing the same
JP2002193682A (en) Bonded body and its manufacturing method, and ceramic nozzle
KR100420243B1 (en) Joining method of silicon nitride and metal using in-situ buffer-layer
JPH1192245A (en) Ceramic member joined with intermediate material and joining thereof
JPS5884186A (en) Ceramics bonding method
JPH0229632B2 (en)
JP2678775B2 (en) Method for manufacturing high-density silicon nitride sintered body
JP2005335253A (en) Method for producing ceramic junction body
JP2002167284A (en) Joint body and method of manufacturing it
JPH05330936A (en) Functionally gradient material
JPH04292486A (en) Adiabatic piston and production thereof
JPH0229633B2 (en)
JPH01103964A (en) Production of composite reinforced ceramic member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees