JP4537669B2 - Silicon carbide-based bonded component and method for manufacturing the same - Google Patents

Silicon carbide-based bonded component and method for manufacturing the same Download PDF

Info

Publication number
JP4537669B2
JP4537669B2 JP2003188954A JP2003188954A JP4537669B2 JP 4537669 B2 JP4537669 B2 JP 4537669B2 JP 2003188954 A JP2003188954 A JP 2003188954A JP 2003188954 A JP2003188954 A JP 2003188954A JP 4537669 B2 JP4537669 B2 JP 4537669B2
Authority
JP
Japan
Prior art keywords
silicon carbide
sic
bonded
silicon
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003188954A
Other languages
Japanese (ja)
Other versions
JP2005022905A (en
Inventor
章子 須山
常治 亀田
義康 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003188954A priority Critical patent/JP4537669B2/en
Publication of JP2005022905A publication Critical patent/JP2005022905A/en
Application granted granted Critical
Publication of JP4537669B2 publication Critical patent/JP4537669B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、強度などの機械的特性や熱伝導率などの熱的特性を改善した炭化ケイ素基接合部品とその製造方法に関する。
【0002】
【従来の技術】
炭化ケイ素(SiC)セラミックスは、耐環境性、耐熱性、耐摩耗性、高剛性、高熱伝導性、低熱膨張性などの優れた特性を有することから、高温構造部材や耐摩耗性部材などとして使用されている。特に、近年ではSiCセラミックスの特性を活かして、半導体製造装置用治具を始めとする半導体関連部品への実用化が進められている。さらに、原子力やガスタービンなどのエネルギー機器、ポンプ部品、メカニカルシール部品、摺動部品、熱交換器部品などの産業機器への適用化研究も進められている。
【0003】
SiCセラミックスの製造方法としては、通常のセラミックス材料と同様な焼結助剤を用いた粉末焼結法の他に、反応焼結法が知られている。SiCの反応焼結法は、例えば骨材としてのSiC粉末と炭素粉末や樹脂などとの混合物を所望の形状に成形し、この成形体をケイ素の溶融温度以上に加熱しつつ、溶融したケイ素を含浸することにより行われる。SiCの反応焼結は炭素とケイ素の反応を伴う焼結法である。SiC基反応焼結体は、粉末焼結法に比べて焼結温度が低く、また焼結時の寸法収縮が小さいために、ニアネットに作製して加工コストが低減できるというような利点を有する。
【0004】
ところで、上述したようなSiC基反応焼結体を各種装置部品や部材などに適用するにあたって、大型構造物や複雑形状部品などについては一体の反応焼結体で作製することが困難な場合がある。このような場合には、複数のSiC基反応焼結体を部品ユニットとして用意し、これら部品ユニットを接合して大型構造物や複雑形状部品などを作製することが考えられる。セラミックス部材同士の接合方法としては、例えば活性金属を含有するろう材を用いた接合法や、セラミックス部材表面をメタライズした後にろう付けする方法などが知られているが、これらろう材を用いた接合法は接合層として金属層が残るため、接合部品の耐熱性が接合層(金属層)の耐熱温度によって制限されるというような難点がある。
【0005】
一方、特許文献1にはSiC体(SiC基焼結体、もしくはその前駆体としての成形体や仮焼体)と多孔質SiC体(SiCの反応焼結工程における成形体、仮焼体、焼結体など)とを、SiC微粉末を含有する熱硬化性樹脂からなるバインダ層を介して重ね合わせ、多孔質SiC体の上面側から溶融シリコンを含浸することによって、SiC体と多孔質SiC体とを接合する方法が記載されている。この接合方法ではバインダ層中の炭素と溶融シリコンとを反応させることで、SiC体と多孔質SiC体とを反応焼結SiC層で接合している。
【0006】
しかしながら、上記した接合方法では樹脂バインダ中の炭素と多孔質SiC体を介して含浸した溶融シリコンとを反応させているため、接合層におけるSiCの反応生成過程を十分に制御することができず、接合層としての反応焼結SiC層の微構造が不均一になったり、また反応焼結SiC層に多量のポアが発生したり、さらに遊離シリコン層が接合層に生成するなどして、接合体の強度を十分に高めることができないという問題がある。さらに、接着層に樹脂バインダを使用した場合、溶融シリコンとの反応が不均一になりやすく、これによって遊離カーボンが残存しやすいという問題もある。このような遊離カーボンは接合強度の低下原因となる。
【0007】
【特許文献1】
特公平5-79630号公報
【0008】
【発明が解決しようとする課題】
上述したように、SiC基反応焼結体は焼結時の寸法収縮が小さいために、ニアネットに作製して加工コストが低減できるなどの利点を有するものの、大型構造物や複雑形状部品については一体のSiC基反応焼結体では作製することが困難な場合がある。そこで、複数の部品ユニットを接合して大型構造物や複雑形状部品などを作製することが検討されているが、ろう材を用いた接合法は耐熱温度が接合層(金属層)によって制限されるという難点がある。一方、従来の反応焼結を利用した接合法は遊離シリコン層が接合層に生成したり、また反応焼結SiC層(接合層)の微構造や密度などの制御が不十分であることから、高強度の接合部品を得るまでには至っていない。
【0009】
本発明はこのような課題に対処するためになされたもので、反応焼結を利用した接合層の微構造などを制御することによって、強度などの機械的特性を再現性よく高めることを可能にした炭化ケイ素基接合部品とその製造方法を提供することを目的としている。
【0010】
【課題を解決するための手段】
本発明の炭化ケイ素基接合部品は、炭化ケイ素基反応焼結体からなる複数の部品ユニットを、接合層を介して接合してなる炭化ケイ素基接合部品において、前記接合層は、平均結晶粒径が0.1〜30μmの範囲の炭化ケイ素結晶粒と、前記炭化ケイ素結晶粒の隙間にネットワーク状に連続して存在するシリコン相とから主として構成されており、かつ前記シリコン相を5〜50体積%の範囲で含有することを特徴としている。
【0011】
本発明の炭化ケイ素基接合部品においては、炭化ケイ素結晶粒とその隙間にネットワーク状に連続して存在するシリコン相とから主として構成される接合層、すなわち反応焼結接合層で複数の部品ユニットを一体的に接合している。このような反応焼結接合層において、本発明では炭化ケイ素結晶粒やその隙間に存在するシリコン相の微構造、具体的には炭化ケイ素結晶粒の平均結晶粒径やシリコン相のネットワーク構造などを制御しているため、接合層自体の強度および部品ユニットに対する接合強度を再現性よく高めることができる。また、熱伝導率などの熱的特性も高めることができる。これらによって、優れた強度、耐久性、信頼性、熱的特性を有する炭化ケイ素基接合部品を提供することが可能となる。
【0012】
本発明の第1の炭化ケイ素基接合部品の製造方法は、炭化ケイ素基反応焼結体からなる複数の部品ユニットを接合して炭化ケイ素基接合部品を製造するにあたり、前記複数の部品ユニットに対応する複数の成形体を作製する工程と、前記複数の成形体を有機系接着剤で接着する工程と、前記複数の成形体を接着した後に熱処理し、前記有機系接着剤による接着部を、炭素を主体とする気孔率が20〜70%の範囲の多孔質体とする工程と、前記多孔質体とした接着部を含めて、前記複数の成形体に溶融したシリコンを含浸させ、前記複数の成形体をそれぞれ反応焼結させて前記複数の部品ユニットとすると共に、前記複数の部品ユニット間を、反応生成した平均結晶粒径が0.1〜30μmの範囲の炭化ケイ素結晶粒と前記炭化ケイ素結晶粒の隙間にネットワーク状に連続して存在する5〜50体積%の範囲のシリコン相とから主として構成される接合層で一体的に接合する工程とを有することを特徴としている。
【0013】
また、第2の炭化ケイ素基接合部品の製造方法は、炭化ケイ素基反応焼結体からなる複数の部品ユニットを接合して炭化ケイ素基接合部品を製造するにあたり、前記炭化ケイ素基反応焼結体からなる複数の部品ユニットの接合面に存在するシリコンをそれぞれ除去する工程と、前記複数の部品ユニットの接合面間を有機系接着剤で接着する工程と、前記複数の部品ユニットを接着した後に熱処理し、前記有機系接着剤による接着部を、炭素を主体とする気孔率が20〜70%の範囲の多孔質体とする工程と、前記多孔質体とした接着部に溶融したシリコンを含浸させ、前記複数の部品ユニット間を、反応生成した平均結晶粒径が0.1〜30μmの範囲の炭化ケイ素結晶粒と前記炭化ケイ素結晶粒の隙間にネットワーク状に連続して存在する5〜50体積%の範囲のシリコン相とから主として構成される接合層で一体的に接合する工程とを有することを特徴としている。
【0014】
本発明の炭化ケイ素基接合部品の製造方法においては、炭化ケイ素基反応焼結体からなる複数の部品ユニットを、成形体や焼結体の接着に用いた有機系接着剤層と溶融シリコンとの反応に基づく反応焼結接合層で接合一体化している。すなわち、炭化ケイ素基反応焼結体からなる複数の部品ユニットを、反応生成した炭化ケイ素結晶粒とその隙間にネットワーク状に連続して存在するシリコン相とで一体的に接合している。このような反応焼結接合層によれば、複数の部品ユニットを高強度に接合することができるため、大型構造物や複雑形状部品などを効率よく、かつ低コストで作製することが可能となる。また、熱伝導率などの熱的特性も高めることができる。
【0015】
【発明の実施の形態】
以下、本発明を実施するための形態について説明する。
図1は本発明の一実施形態による炭化ケイ素(SiC)基接合部品の概略構造を模式的に示す断面図である。同図に示すSiC基接合部品1は、SiC基反応焼結体からなる複数の部品ユニット、具体的には第1および第2の部品ユニット2、3を有している。これらSiC基反応焼結体からなる部品ユニット2、3は、接合層4を介して接合されており、これらによってSiC基接合部品1が構成されている。なお、ここでは2個の部品ユニット2、3を用いた接合部品1を示したが、接合部品1を構成する部品ユニットの数は2個に限られるものではなく、3個もしくはそれ以上であってもよい。
【0016】
接合層4はSiCの反応焼結を利用した反応焼結接合層であり、図2に微細構造を拡大して示すように、反応焼結により生成したSiC結晶粒5と、これらSiC結晶粒5の隙間にネットワーク状に連続して存在する遊離シリコン(Si)相6とから主として構成されている。このような反応焼結接合層4は、反応焼結SiC結晶粒5と遊離Si相6とによる微構造を制御することで、接合層4自体の強度および部品ユニット2、3に対する接合強度、ひいては接合部品1としての強度を高めることを可能にしたものである。
【0017】
SiC結晶粒5の微構造については、平均結晶粒径が0.1〜30μmの範囲となるように粒子形状を制御する。SiC結晶粒5の平均結晶粒径が30μmを超えると反応焼結接合層4自体の強度などが低下し、部品ユニット2、3間の強度を十分に発現させることができない。一方、SiC結晶粒5の平均結晶粒径が0.1μm未満であると、製造プロセスの観点から遊離Si相6をネットワーク状に存在させた微構造を安定して得ることができないため、接合部品1の歩留りが低下したり、また接合部品1の信頼性や耐久性が不足することになる。
【0018】
上述したような反応焼結SiC結晶粒5の平均結晶粒径は0.5〜10μmの範囲に制御することがより好ましい。なお、SiC結晶粒5の平均結晶粒径は、接合層4の任意の断面を鏡面仕上げした後、光学顕微鏡(金属顕微鏡)または電子顕微鏡を用いて組織観察を行い、この拡大組織写真を画像処理することにより求めた値とする。
【0019】
SiC結晶粒5の隙間に存在する遊離Si相6の微構造については、連続したネットワーク構造を有することが重要である。この遊離Si相6のネットワーク構造が分断されると比較的多量の気孔の発生などを招き、反応焼結接合層4の強度が低下する。言い換えると、反応焼結接合層4はSiC結晶粒5の隙間に遊離Si相6を連続して存在させることで緻密な反応焼結層とされている。反応焼結接合層4の気孔率は、例えば5%以下であることが好ましい。気孔率が5%を超えると、部品ユニット2、3間の接合強度が十分に発現しないため、例えば構造材料に求められる特性を十分に得ることはできない。
【0020】
また、反応焼結接合層4における遊離Si相6の含有量は5〜50体積%の範囲とすることが好ましい。遊離Si相6の含有量が5重量%未満であると、ネットワーク構造が分断されやすくなる。接合層4中の遊離Si相6の含有量が50体積%を超えるということは、破壊の起点となりやすい遊離Si相6の増加を意味する。これらによって、遊離Si相6の含有量が5〜50体積%の範囲を外れると、接合層4自体の強度や部品ユニット2、3間の接合強度が低下しやすくなる。遊離Si相6の含有量は10〜40体積%の範囲とすることが望ましい。なお、遊離Si相5の含有量は組織観察写真の画像処理結果と密度から、SiおよびSiCの理論密度に基づいて算出するものとする。
【0021】
このような反応焼結接合層4の厚さ(平均厚さ)は1〜200μmの範囲とすることが好ましい。厚さが1μm未満の反応焼結接合層4は、接合されていない箇所が発生するなどして製造プロセス上作製が困難であると共に、反応焼結接合層4自体の強度、ひいては接合部品1の信頼性や耐久性も低下する。一方、反応焼結接合層4の厚さが200μmを超えると、接合部品1の強度の低下要因となる。反応焼結接合層4の厚さは3〜120μmの範囲とすることがより好ましい。
【0022】
さらに、反応焼結接合層4は図3に示すような3層構造を有していることが好ましい。図3に示す反応焼結接合層4は、各部品ユニット(SiC基反応焼結体)2、3に接する層(側面層)11、12と、これら側面層11、12の中央部に位置する層(中央層)13とを具備している。側面層11、12は中央層13より部品ユニット2、3を構成するSiC基反応焼結体に近い構造を有している。また、中央層13の厚さは0.5〜100μmの範囲とすることが好ましい。このような3層構造の反応焼結接合層4を部品ユニット2、3間に介在させることによって、接合部品1の信頼性や耐久性をさらに高めることができる。
【0023】
上記した3層構造の反応焼結接合層4における側面層11、12と中央層13の組成に関しては、側面層11、12の遊離Siの含有量比が中央層13のそれより高いことが好ましい。具体的には、側面層11、12は中央層13より遊離Siの含有量比が10〜70%高いことが好ましい。このように、側面層11、12の遊離Siの含有量比を中央層13より高くすることによって、接合部品1の信頼性や耐久性をより一層高めることができる。このような3層構造の反応焼結接合層4は、有機系接着剤で接着した後の熱処理条件などに基づいて、炭素を主体とする多孔質体の構造などを制御することにより得ることができる。
【0024】
この実施形態のSiC基接合部品1は、反応焼結接合層4の微構造、具体的には反応焼結接合層4を構成する反応焼結SiC結晶粒5の平均結晶粒径、SiC結晶粒5の隙間に存在する遊離Si相6の状態や含有量、さらには反応焼結接合層4の構造などを制御しているため、反応焼結接合層4自体の強度を高めることができると共に、反応焼結接合層4による部品ユニット2、3間の接合強度を向上させることが可能となる。これらによって、高強度の接合部品1を再現性よく提供することができる。さらに、反応焼結接合層4は部品ユニット2、3を構成するSiC基反応焼結体と同様な構成を有しているため、接合部品1の耐熱温度が接合層4で制限されるようなこともない。また、熱伝導率などの熱的特性も高めることができる。
【0025】
そして、SiC基反応焼結体からなる部品ユニット2、3の形状を作製が容易な形状とし、予めそのような形状に作製した部品ユニット2、3を、反応焼結接合層4で一体的に接合することによって、SiC基接合部品1として大型構造物や複雑形状部品などを得ることができる。このようなSiC基接合部品1は、部品ユニット2、3を構成するSiC基反応焼結体の利点と、接合体として利点を併せ持ち、かつ反応焼結接合層4に基づいて高強度化(高接合強度化)することを可能にしたものである。
【0026】
なお、部品ユニット2、3を構成するSiC基反応焼結体は特に限定されるものではなく、各種の反応焼結法で作製したSiC基焼結体を適用することができる。ただし、SiC基反応焼結体自体の強度も接合部品1の強度に影響を及ぼすことから、例えば曲げ強度が500MPa以上、破壊靭性値が3MPa/m1/2以上というような機械的特性を有するSiC基反応焼結体を使用することが好ましい。
【0027】
このような機械的特性を有するSiC基反応焼結体は、例えば骨材として配合され、平均結晶粒径が0.1〜10μmの範囲のSiC結晶粒と、反応焼結SiCに基づくと共に、平均結晶粒径が0.01〜2μmの範囲のSiC結晶粒とでSiCマトリックスを構成し、このSiCマトリックスのSiC結晶粒の隙間に遊離Si相を例えば5〜50体積%(より好ましくは5〜30体積%)の範囲でネットワーク状に連続して存在させることにより得られる。適量の遊離Si相で緻密化されていると共に、ネットワーク構造の遊離Si相をSiC結晶粒の隙間に微細かつ均質に存在させ、かつSiC結晶粒の平均結晶粒径を適度な範囲に制御したSiC基反応焼結体によれば、良好な強度や破壊靭性値などが得られる。
【0028】
上述したように、本発明のSiC基接合部品1によれば、より複雑な形状の部品や大型の構造物を一体的に作製することができ、さらにはそのような部品や構造物の強度を高めることが可能となる。これは、複雑形状部品や大型構造物の作製コストの低減や作製効率の向上、さらには信頼性や耐久性などの向上に大きく寄与するものである。加えて、熱伝導率などの熱的特性も高めることができる。SiC基接合部品1の典型的な強度は、例えば平均曲げ強度で150MPa以上1000MPa以下である。また、反応焼結接合層4の典型的な硬度はHv1200以上Hv2200以下、ヤング率は300GPa以上420GPa以下である。
【0029】
この実施形態のSiC基接合部品1は、半導体製造装置用治具、半導体関連部品(ヒートシンクやダミーウエハなど)、ガスタービン用高温構造部材、宇宙および航空用構造部材、メカニカルシール部材、ブレーキ用部材、摺動部品、ミラー部品、ポンプ部品、熱交換器部品、化学プラント要素部品などの各種装置部品や装置部材などに好適に用いられるものである。特に、SiC基接合部品1は高強度を有することから、強度が求められる装置部品や部材に適用することが可能となる。これは安価なSiC基反応焼結体の適用範囲、適用分野などの拡大に大きく寄与するものである。
【0030】
この実施形態のSiC基接合部品1は、例えば以下のようにして作製される。ここで、反応焼結を適用した接合部品1の製造方法は、部品ユニットを成形体(例えばSiCとカーボンとの混合物からなる成形体)の段階で接合する方法(第1の製造方法)と、部品ユニットを焼結体とした後に接合する方法(第2の製造方法)とに大別される。まず、部品ユニットを成形体の段階で接合する第1の製造方法について、図4を参照して説明する。
【0031】
すなわち、図4(a)に示すように、2個もしくはそれ以上の成形体21を用意する。成形体21はSiC基反応焼結体の基礎となるものであって、例えばSiC粉末とカーボン粉末との混合物、さらに必要に応じて有機バインダや有機溶媒などを添加、混合した混合物やスラリーなどを、所望の形状に例えば加圧成形した成形体が用いられる。成形体21におけるSiC粉末とカーボン粉末との配合比は、質量比で10:1〜10:10の範囲とすることが好ましく、さらには10:3〜10:5の範囲とすることが望ましい。なお、カーボン粉末に代えて樹脂などを使用することもできる。
【0032】
SiC粉末とカーボン粉末などとの混合物は、例えば粉体加圧成形や圧力鋳込み成形などを適用して所望形状に成形される。粉体加圧成形を適用する場合の圧力は0.5〜2MPa程度とすることが好ましい。粉体の加圧成形には金型プレス、ラバープレス、冷間等方圧プレスなどを使用することができる。圧力鋳込み成形を適用する場合には、混合物を水または有機系溶媒に分散させてスラリーを作製し、このスラリーを成形型内に圧力を加えつつ鋳込んで所望形状に成形する。鋳込み時の圧力は0.5〜10MPa程度とすることが好ましい。このような加圧成形を適用することで、適度な密度(粉体の充填状態)を有する成形体が得られる。
【0033】
次に、図4(b)に示すように、2個の成形体21を有機系接着剤22で接着する。有機系接着剤22は特に限定されるものではなく、熱処理後にカーボンが残留するものであれば種々の接着剤を使用することができる。次いで、図4(c)に示すように、熱処理を施して有機系接着剤22をカーボンを主体とする多孔質体23とする。すなわち、カーボンを主成分とする多孔質体23で2個の成形体21を繋げた予備接合体24を作製する。
【0034】
接合部を構成する多孔質体23の気孔率は20〜70%の範囲とすることが好ましい。多孔質体23の気孔率が20%未満であるとSiC生成時の体積膨張分のため、溶融Siの含浸量が不十分になるなどして、遊離炭素が残存しやすくなる。遊離炭素は接合層4自体の強度や接合強度の低下要因となる。一方、多孔質体23の気孔率が70%を超えると、溶融Siの含浸工程後に遊離Si相として存在するSi量が多くなりすぎて、やはり接合層4自体の強度や接合強度が低下するおそれがある。
【0035】
上述したような予備接合体24をSiの融点以上の温度、具体的には1400℃以上の温度に加熱し、この加熱状態の予備接合体24に対して溶融Siを含浸する。溶融Siの含浸は、例えば減圧下または不活性雰囲気下で実施する。成形体21の大きさにもよるが、溶融Siの含浸は迅速(秒の単位)に行われ、次いで溶融Siとカーボン粉末との反応も迅速(分の単位)に行われる。このような溶融Siの含浸工程において、2個の成形体21はそれぞれ反応焼結されると同時に、接合部の多孔質体23も反応焼結される。
【0036】
すなわち、成形体21中のカーボンおよび接合部の多孔質体23を構成するカーボンは、それぞれ高温下で溶融Siと接触して反応し、例えば成形体21中の骨材SiCより平均結晶粒径が小さいSiCを生成する。成形体21部分においては、骨材SiCと反応焼結SiCの結晶粒の隙間に、反応に関与しなかったSiが遊離Si相としてネットワーク状に連続して存在するSiC基反応焼結体が形成される。接合部においては、反応焼結SiC結晶粒の隙間に遊離Si相がネットワーク状に連続して存在する反応焼結接合層4が形成される。この反応焼結接合層4の形成と同時に、2個のSiC基反応焼結体が一体的に接合される。
【0037】
このようにして、図4(d)に示すように、2個のSiC基反応焼結体25が反応焼結接合層4で接合一体化された接合体26が得られる。接合体26は機械加工などによる最終加工が施されてSiC基接合部品となる。なお、上述したような反応焼結工程によれば、成形体からの焼結収縮を極めて小さくすることができる。例えば、焼結時の収縮量を±3%以内、さらには±1%以内とすることができる。このように、焼結時の収縮量を大幅に小さくすることによって、最終寸法への加工コストを削減することが可能となる。
【0038】
次に、焼結体を接合する第2の製造方法について、図5を参照して説明する。
まず、図5(a)に示すように、2個もしくはそれ以上のSiC基反応焼結体28を用意する。SiC基反応焼結体28には、上述した第1の製造方法における成形体の作製工程、成形体への溶融Siの含浸工程などを経て作製された焼結体を適用することができる。ただし、他の反応焼結工程で作製したSiC基反応焼結体であっても同様に使用することが可能である。
【0039】
2個のSiC基反応焼結体28については、予め接合面29に存在するSiを熱処理や薬品処理で除去しておく。このように、SiC基反応焼結体28の接合面29に存在するSiを予め除去しておくことによって、溶融Siの含浸工程で作製される最終的な反応焼結接合層4とSiC基反応焼結体28との密着性、さらには接合強度を高めることが可能となる。
【0040】
次いで、図5(b)に示すように、2個のSiC基反応焼結体28を有機系接着剤22で接着する。有機系接着剤22は第1の方法と同様にして多孔質体23とする。このようにして、図5(c)に示すように、カーボンを主体とする多孔質体23で2個のSiC基反応焼結体28を繋げた予備接合体24を作製する。接合部を構成する多孔質体23の気孔率は、第1の製造方法と同様に20〜70%の範囲とすることが好ましい。
【0041】
上述したような予備接合体24をSiの融点以上の温度に加熱し、この加熱状態の予備接合体24に対して溶融Siを含浸する。溶融Siは特に接合部の多孔質体23に対して含浸する。この溶融Siの含浸工程において、接合部の多孔質体23を反応焼結させると同時に、2個のSiC基反応焼結体28を一体的に接合する。すなわち、接合部の多孔質体23を構成するカーボンは、高温下で溶融Siと反応してSiCを生成し、さらにこのSiC結晶粒の隙間に遊離Si相がネットワーク状に連続して存在する。
【0042】
このようにして反応焼結接合層4が形成されると同時に、2個のSiC基反応焼結体28が一体的に接合される。すなわち、図5(d)に示すように、2個のSiC基反応焼結体28が反応焼結接合層4で接合一体化された接合体26が得られる。2個のSiC基反応焼結体28はそれぞれ部品ユニットを構成するものである。接合体26は機械加工などによる最終加工が施されてSiC基接合部品となる。反応焼結接合層4はそれ自体の強度に優れると共に、SiC基反応焼結体28に対する接合強度も優れることから、2個のSiC基反応焼結体28を高強度に接合することが可能となる。
【0043】
上述したようSiC基接合部品の製造方法においては、SiC基反応焼結体からなる複数の部品ユニットを、成形体21や焼結体28の接着に用いた有機系接着剤層22と溶融Siとの反応に基づく反応焼結接合層4で接合一体化している。反応焼結接合層4は図2に示したように反応焼結SiC結晶粒5とその隙間にネットワーク状に連続して存在するSi相6とから構成されており、複数の部品ユニット間の高強度接合を実現するものである。従って、このような反応焼結接合層4を利用した接合部品の製造方法によれば、大型構造物や複雑形状部品などを効率よくかつ低コストで作製することが可能となる。なお、ここで言う部品とは、複数集まって全体を構成する、普通の意味での部品のほかに、装置などに付属的に用いられる治具、部材、あるいは装飾品なども含むものである。
【0044】
【実施例】
次に、本発明の具体的な実施例およびその評価結果について述べる。
【0045】
実施例1
平均粒子径が0.5μmの炭化ケイ素(α−SiC)粉末と、平均粒子径が0.01μmのカーボン粉末(カーボンブラック)とを、質量比で10:3(=SiC:C)となるように混合した。さらに、この混合粉末を適当量の有機バインダと共に混合した後、溶媒中に分散させてスラリーを調製した。次いで、圧力鋳込み成形機を用いて、スラリーを成形型内に1MPaの圧力で加圧しながら充填した。このようにして、所定の成形体密度を有する板状成形体を2個作製した。
【0046】
次に、上記した2個の板状成形体を自然乾燥した後、有機系接着剤で接着した。この接着物を不活性ガス雰囲気中にて100〜700℃の温度で加熱・保持し、有機系接着剤層をカーボンが主体の多孔質体とした。多孔質体の気孔率は30〜60%であった。この多孔質体で2個の板状成形体を繋げた予備接合体を、減圧下または不活性ガス雰囲気中にて1400℃以上の温度に加熱し、この加熱状態を維持した成形体および接合層(多孔質体)に溶融したシリコンを含浸した。
【0047】
この溶融シリコンの含浸工程において、2個の板状成形体をそれぞれ反応焼結させてSiC基反応焼結体とすると同時に、これらSiC基反応焼結体を反応焼結接合層で接合した接合体を得た。このような接合体を製造条件を変えて複数作製した。得られた接合体について、反応焼結接合層の微構造を電子顕微鏡で観察したところ、接合層は多孔質体のカーボンと溶融シリコンとが反応して生成したSiC結晶粒と、その隙間にネットワーク状に連続して存在する遊離Si相とで構成されていることが確認された。
【0048】
上述した各接合体において、反応焼結接合層におけるSiC結晶粒の平均結晶粒径は0.5〜20μm、気孔率は0〜20%、Si含有量は10〜40体積%、平均厚さは10〜120μmであった。これらの接合体の表面を研磨加工した後、後述する特性評価に供した。
【0049】
実施例2
平均粒子径が0.2μmの炭化ケイ素(α−SiC)粉末と、平均粒子径が0.01μmのカーボン粉末(カーボンブラック)とを、質量比で10:2(=SiC:C)となるように混合した。さらに、この混合粉末を適当量の有機バインダと共に混合して造粒粉末を作製した。次いで、上記造粒粉末を成形型に充填した後、加圧成形機を用いて2MPaの圧力で加圧成形した。このようにして、所定の成形体密度を有する板状成形体を2個作製した。
【0050】
次に、上記した2個の成形体を不活性ガス雰囲気中にて600℃の温度で加熱・保持し、有機バインダを除去(脱脂)した。この脱脂後の成形体を、減圧下または不活性ガス雰囲気中にて1400℃以上の温度に加熱し、この加熱状態を維持した成形体に溶融したシリコンを含浸させた。この溶融シリコンの含浸工程で成形体を反応焼結させることによって、2個のSiC基反応焼結体を得た。
【0051】
得られた2個のSiC基反応焼結体の接合面に酸(フッ硝酸)処理を施して、接合面のSiを除去した。次いで、これら2個のSiC基反応焼結体の接合面を有機系接着剤で接着した。この接着物を不活性ガス雰囲気中にて100〜700℃の温度で加熱・保持し、有機系接着剤をカーボンが主体の多孔質体(気孔率=30〜60%)とした。この多孔質体で2個のSiC基反応焼結体を繋げた予備接合体を、減圧下または不活性ガス雰囲気中にて1400℃以上の温度に加熱し、この加熱状態を維持した接合体に溶融したシリコンを含浸した。
【0052】
この溶融シリコンの含浸工程において、2個のSiC基反応焼結体を反応焼結接合層で接合した接合体を得た。このような接合体を製造条件を変えて複数作製した。得られた接合体について、反応焼結接合層の微構造を電子顕微鏡で観察したところ、接合層は多孔質体のカーボンと溶融シリコンとが反応して生成したSiC結晶粒と、その隙間にネットワーク状に連続して存在する遊離Si相とで構成されていることが確認された。
【0053】
上述した各接合体において、反応焼結接合層におけるSiC結晶粒の平均結晶粒径は0.5〜20μm、気孔率は0.5〜3%、Si含有量は10〜40体積%、平均厚さは10〜120μmであった。これらの接合体の表面を研磨加工した後、後述する特性評価に供した。
【0054】
比較例1
実施例1と同様にして作製した2個の成形体を自然乾燥した後、不活性ガス雰囲気中にて600℃の温度で加熱・保持し、有機バインダを除去(脱脂)した。これら2個の成形体の間に金属Si箔を挟んで密着させた状態で固定した後、減圧下または不活性ガス雰囲気中にて1400℃以上の温度に加熱し、この加熱状態を維持しつつ溶融したシリコンを含浸した。
【0055】
この溶融シリコンの含浸工程において、2個の成形体をそれぞれ反応焼結させてSiC基反応焼結体とすると共に、これら2個のSiC基反応焼結体を接合した接合体を得た。このような接合体を複数作製した。得られた接合体において、2個のSiC基反応焼結体はSi相で接合されていることが確認された。これら接合体の表面を研磨加工した後、後述する特性評価に供した。
【0056】
比較例2
実施例1と同様にして作製した2個の成形体を自然乾燥し、これら成形体の間にポリカルボシラン(有機ケイ素樹脂)を挟んで密着させて固定した後、不活性ガス雰囲気中にて1000℃の温度で加熱・保持して有機バインダを除去した。ここで、接着部分はSiCが主体の多孔質体となっていた。このSiC多孔質体で接着した2個の成形体を減圧下または不活性ガス雰囲気中にて1400℃以上の温度に加熱し、この加熱状態を維持しつつ溶融したシリコンを含浸した。
【0057】
この溶融シリコンの含浸工程において、2個の成形体をそれぞれ反応焼結させてSiC基反応焼結体とすると共に、これら2個のSiC基反応焼結体を接合した接合体を得た。このような接合体を複数作製した。得られた接合体において、2個のSiC基反応焼結体はSiが充填されたSiC多孔質体で接合されていることが確認された。これらの接合体の表面を研磨加工した後、後述する特性評価に供した。
【0058】
比較例3
実施例1と同様にして作製した2個の成形体を自然乾燥した後、不活性ガス雰囲気中にて500℃の温度で加熱・保持して有機バインダを除去した。次いで、各成形体を減圧下または不活性ガス雰囲気中にて1400℃以上の温度に加熱し、この加熱状態を維持しつつ溶融したシリコンを含浸して反応焼結させた。
【0059】
得られた2個のSiC基反応焼結体の接合面に、酸化物セラミックスの原料粉末からなるスラリーを塗布し、この塗布層を介してSiC基反応焼結体同士を接着・固定した。この状態で加圧しながら1000℃に加熱して、接合面の酸化物セラミックスを焼結させて接合した。このような接合体を複数作製した。得られた接合体において、2個のSiC基反応焼結体は酸化物セラミックス層を介して接合されていることが確認された。これら接合体の表面を研磨加工した後、後述する特性評価に供した。
【0060】
上述した実施例1〜2および比較例1〜3による各SiC基反応焼結体の接合体の機械的特性および熱的特性を以下のようにして測定した。すなわち、まず各接合体から幅4mm×厚さ3mm×長さ40mmの曲げ試験片を加工した。この際、接合面が試験片の長手方向に対して垂直方向になると共に、接合層が試験片の中央に位置するようにした。この曲げ試験片を用いて、スパン30mm、ヘッドスピード0.5mm/minの条件下で3点曲げ試験(室温)で行った。その結果を表1および図6に示す。なお、曲げ試験の測定結果は各例の接合体における最大値と最小値を示す。
【0061】
さらに、各接合体から直径10mm×厚さ2mmの熱伝導率測定試験片を加工した。この際、接合面が直径10mmの面と平行になると共に、接合層が試験片の中央に位置するようにした。このような熱伝導率測定試験片を用いて、ファインセラミックスのレーザフラッシュ法による熱拡散率・比熱容量・熱伝導率試験方法(JIS R 1611)に準拠して、熱伝導率を室温で測定した。その結果を表1および図7に示す。なお、熱伝導率の測定結果は各例の接合体における最大値と最小値を示す。
【0062】
【表1】

Figure 0004537669
【0063】
表1、図6および図7から明らかなように、実施例1および実施例2の接合方法で作製した接合体は曲げ強度の値にばらつきがあるものの、比較例1〜3による接合体に比べて曲げ強度の値が大幅に向上していることが分かる。また、実施例1および実施例2の接合方法で作製した接合体は、母材と同等の高い熱伝導率を示しているのに対して、比較例1〜3による接合体は熱伝導率が接合部で大幅に低下することが分かる。なお、実施例1および実施例2における曲げ強度値のばらつきは、接合層における微構造の状態などが影響しているものと考えられる。以下の実施例においては、接合層の微構造と曲げ強度との関係を調べた結果について述べる。
【0064】
実施例3〜7、比較例4〜5
平均粒子径が2μmの炭化ケイ素(α−SiC)粉末と、平均粒子径が0.5μmのカーボン粉末(カーボンブラック)とを、質量比で10:3(=SiC:C)となるように混合した。さらに、この混合粉末を適当量の有機バインダと共に混合した後、溶媒中に分散させてスラリーを調製した。次いで、圧力鋳込み成形機を用いて、スラリーを成形型内に0.5MPaの圧力で加圧しながら充填した。このようにして、所定の成形体密度を有する板状成形体を作製した。
【0065】
次に、上記した板状成形体を自然乾燥した後、2個の板状成形体を有機系接着剤で接着した。この接着物を不活性ガス雰囲気中にて100〜600℃の温度で加熱・保持し、有機バインダを脱脂すると共に、有機系接着剤層をカーボンが主体の多孔質体とした。この際、有機系接着剤の濃度や塗布方法を調節して、接着層の厚さが異なる試料を複数作製した。これらの予備接合体を減圧下または不活性ガス雰囲気中にて1400℃以上の温度に加熱し、この加熱状態を維持した成形体および接合層(多孔質体)に溶融したシリコンを含浸した。
【0066】
溶融シリコンの含浸工程において、それぞれ2個の板状成形体をそれぞれ反応焼結させてSiC基反応焼結体とする同時に、これらSiC基反応焼結体を反応焼結接合層で接合した接合体を得た。得られた各接合体について、反応焼結接合層を構成するSiC結晶粒の平均結晶粒径を測定した。さらに、各接合体の曲げ強度を、実施例1と同様にして測定した。その結果を表2および図8に示す。なお、表2中の比較例は反応焼結SiC結晶粒の平均結晶粒径を本発明の範囲外としたものであり、本発明との比較のために示したものである。
【0067】
【表2】
Figure 0004537669
【0068】
表2および図8から明らかなように、反応焼結接合層を構成するSiC結晶粒の平均結晶粒径を1〜30μmの範囲に制御した場合に、優れた強度を有する接合体が得られることが分かる。これらの接合層において、反応焼結SiC結晶粒の隙間にはネットワーク構造のSi相が連続して存在していた。なお、反応焼結SiC結晶粒の平均結晶粒径と強度との関係は、SiC基反応焼結体を接着した後に溶融シリコンを含浸した場合においても同様な傾向を示した。
【0069】
実施例8〜14
平均粒子径が1.2μmの炭化ケイ素(α−SiC)粉末と、平均粒子径が0.05μmのカーボン粉末(カーボンブラック)とを、質量比で10:5(=SiC:C)となるように混合した。さらに、この混合粉末を適当量の有機バインダと共に混合した後、溶媒中に分散させてスラリーを調製した。次いで、圧力鋳込み成形機を用いて、スラリーを成形型内に2MPaの圧力で加圧しながら充填した。このようにして、所定の成形体密度を有する板状成形体を作製した。
【0070】
次に、上記した板状成形体を自然乾燥した後、2個の板状成形体を有機系接着剤で接着した。この接着物を不活性ガス雰囲気中にて400℃の温度で加熱・保持し、有機バインダを脱脂すると共に、有機系接着剤層をカーボンが主体の多孔質体とした。この際、有機系接着剤の濃度や塗布方法を調節して、接着層の厚さが異なる試料を複数作製した。これらの予備接合体を減圧下または不活性ガス雰囲気中にて1400℃以上の温度に加熱し、この加熱状態を維持した成形体および接合層(多孔質体)に溶融したシリコンを含浸した。
【0071】
溶融シリコンの含浸工程において、それぞれ2個の板状成形体をそれぞれ反応焼結させてSiC基反応焼結体とする同時に、これらSiC基反応焼結体を反応焼結接合層で接合した接合体を得た。得られた各接合体について、反応焼結接合層の平均厚さを測定した。さらに、各接合体の曲げ強度を、実施例1と同様にして測定した。その結果を表3および図9に示す。
【0072】
【表3】
Figure 0004537669
【0073】
表3および図9から明らかなように、反応焼結接合層の厚さが1〜200μmの範囲の場合に、優れた強度を有する接合体が再現性よく得られることが分かる。なお、これらの接合層は反応焼結SiC結晶粒とその隙間に存在するネットワーク構造のSi相とから構成されていた。反応焼結接合層の厚さと強度との関係は、SiC基反応焼結体を接着した後に溶融シリコンを含浸した場合においても同様な傾向を示した。
【0074】
実施例15〜18
平均粒子径が5μmの炭化ケイ素(α−SiC)粉末と、平均粒子径が0.5μmのカーボン粉末(カーボンブラック)とを、質量比で10:4(=SiC:C)となるように混合した。さらに、この混合粉末を適当量の有機バインダと共に混合した後、溶媒中に分散させてスラリーを調製した。次いで、圧力鋳込み成形機を用いて、スラリーを成形型内に1.5MPaの圧力で加圧しながら充填した。このようにして、所定の成形体密度を有する板状成形体を作製した。
【0075】
次に、上記した板状成形体を自然乾燥した後、2個の板状成形体を有機系接着剤で接着した。この接着物を不活性ガス雰囲気中にて100〜600℃の温度で加熱・保持し、有機バインダを脱脂すると共に、有機系接着剤層をカーボンが主体の多孔質体とした。この際、有機系接着剤の濃度や塗布方法を調節して、接着層の厚さが異なる試料を複数作製した。これらの予備接合体を減圧下または不活性ガス雰囲気中にて1400℃以上の温度に加熱し、この加熱状態を維持した成形体および接合層(多孔質体)に溶融したシリコンを含浸した。
【0076】
溶融シリコンの含浸工程において、それぞれ2個の板状成形体をそれぞれ反応焼結させてSiC基反応焼結体とする同時に、これらSiC基反応焼結体を反応焼結接合層で接合した接合体を得た。得られた各接合体について、反応焼結接合層の気孔率を測定した。さらに、各接合体の曲げ強度を、実施例1と同様にして測定した。その結果を表4および図10に示す。
【0077】
【表4】
Figure 0004537669
【0078】
表4および図10から明らかなように、反応焼結接合層の気孔率が5%以下の場合、特に気孔率が2%以下の場合に、優れた強度を有する接合体が再現性よく得られることが分かる。なお、これらの接合層は反応焼結SiC結晶粒とその隙間に存在するネットワーク構造のSi相とから構成されていた。反応焼結接合層の気孔率と強度との関係は、SiC基反応焼結体を接着した後に溶融シリコンを含浸した場合においても同様な傾向を示した。
【0079】
実施例19〜21、参考例1〜2
平均粒子径が5μmの炭化ケイ素(α−SiC)粉末と、平均粒子径が1μmのカーボン粉末(カーボンブラック)とを、質量比で10:2(=SiC:C)となるように混合した。さらに、この混合粉末を適当量の有機バインダと共に混合した後、溶媒中に分散させてスラリーを調製した。次いで、圧力鋳込み成形機を用いて、スラリーを成形型内に5MPaの圧力で加圧しながら充填した。このようにして、所定の成形体密度を有する板状成形体を作製した。
【0080】
次に、上記した板状成形体を自然乾燥した後、2個の板状成形体を有機系接着剤で接着した。この接着物を不活性ガス雰囲気中にて400℃の温度で加熱・保持し、有機バインダを脱脂すると共に、有機系接着剤層をカーボンが主体の多孔質体とした。この際、有機系接着剤の濃度を調節して、接着剤の塗布濃度が異なる試料を複数作製した。これらの予備接合体を減圧下または不活性ガス雰囲気中にて1400℃以上の温度に加熱し、この加熱状態を維持した成形体および接合層(多孔質体)に溶融したシリコンを含浸した。
【0081】
溶融シリコンの含浸工程において、それぞれ2個の板状成形体をそれぞれ反応焼結させてSiC基反応焼結体とする同時に、これらSiC基反応焼結体を反応焼結接合層で接合した接合体を得た。得られた各接合体について、反応焼結接合層のSi含有量を測定した。さらに、各接合体の曲げ強度を、実施例1と同様にして測定した。その結果を表5および図11に示す。
【0082】
【表5】
Figure 0004537669
【0083】
表5および図11から明らかなように、反応焼結接合層のSi含有量が5〜50体積%の場合に、優れた強度を有する接合体が再現性よく得られることが分かる。なお、これらの接合層は反応焼結SiC結晶粒とその隙間に存在するネットワーク構造のSi相とから構成されていた。反応焼結接合層のSi含有量と強度との関係は、SiC基反応焼結体を接着した後に溶融シリコンを含浸した場合においても同様な傾向を示した。
【0084】
実施例2223
平均粒子径が0.5μmの炭化ケイ素(α−SiC)粉末と、平均粒子径が0.01μmのカーボン粉末(カーボンブラック)とを、質量比で10:3(=SiC:C)となるように混合した。さらに、この混合粉末を適当量の有機バインダと共に混合した後、溶媒中に分散させてスラリーを調製した。次いで、圧力鋳込み成形機を用いて、スラリーを成形型内に1MPaの圧力で加圧しながら充填した。このようにして、所定の成形体密度を有する板状成形体を作製した。
【0085】
次に、上記した板状成形体を自然乾燥した後、2個の板状成形体を有機系接着剤で接着した。この接着物を不活性ガス雰囲気中にて100〜700℃の温度で加熱・保持し、有機バインダを脱脂すると共に、有機系接着剤層をカーボンが主体の多孔質体とした。この際、有機系接着剤層をカーボン主体の多孔質体とする熱処理において、昇温速度を調節して気孔径分布が異なる試料を作製した。これらの予備接合体を減圧下または不活性ガス雰囲気中にて1400℃以上の温度に加熱し、この加熱状態を維持した成形体および接合層(多孔質体)に溶融したシリコンを含浸した。
【0086】
溶融シリコンの含浸工程において、それぞれ2個の板状成形体をそれぞれ反応焼結させてSiC基反応焼結体とする同時に、これらSiC基反応焼結体を反応焼結接合層で接合した接合体を得た。このようにして、接合層が3層構造になっている接合体(実施例22)と1層構造の接合体(実施例23)とを作製した。なお、反応焼結接合層の微構造は金属顕微鏡で観察して同定した。さらに、各接合体の曲げ強度を、実施例1と同様にして測定した。その結果を表6および図12に示す。
【0087】
【表6】
Figure 0004537669
【0088】
表6および図12から明らかなように、3層構造の反応焼結接合層を有する場合に、より優れた強度を有する接合体が再現性よく得られ、接合体の耐久性や信頼性を高めることができる。なお、反応焼結接合層の構造と強度との関係は、SiC基反応焼結体を接着した後に溶融シリコンを含浸した場合においても同様な傾向を示した。
【0089】
実施例2430
上記した実施例22において、熱処理における昇温速度を調節して気孔径分布が異なる試料を複数作製する以外は、実施例22と同様にして接合体をそれぞれ作製した。これら各接合体において、3層構造の反応焼結接合層における中央層の平均厚さを測定した。さらに、各接合体の曲げ強度を、実施例1と同様にして測定した。その結果を表7および図13に示す。
【0090】
【表7】
Figure 0004537669
【0091】
表7および図13から明らかなように、3層構造の反応焼結接合層における中央層の厚さが0.5〜100μmの範囲の場合に、より優れた強度を有する接合体が再現性よく得られ、接合体の耐久性や信頼性を高めることができる。なお、反応焼結接合層の構造と強度との関係は、SiC基反応焼結体を接着した後に溶融シリコンを含浸した場合においても同様な傾向を示した。
【0092】
実施例3137
上記した実施例22において、熱処理における昇温速度を調節して気孔径分布が異なる試料を複数作製する以外は、実施例22と同様にして接合体をそれぞれ作製した。これら各接合体において、3層構造の反応焼結接合層における中央層と側面層の各Si含有量を測定した。また、これらSi含有量が側面層の中央層に対するSi含有比を求めた。さらに、各接合体の曲げ強度を、実施例1と同様にして測定した。その結果を表8および図14に示す。
【0093】
【表8】
Figure 0004537669
【0094】
表8および図14から明らかなように、中央層に対する各側面層のSi含有比が10〜70%高い場合に、より優れた強度を有する接合体が再現性よく得られ、接合体の耐久性や信頼性を高めることができる。なお、反応焼結接合層の構造と強度との関係は、SiC基反応焼結体を接着した後に溶融シリコンを含浸した場合においても同様な傾向を示した。
【0095】
【発明の効果】
以上説明したように、本発明の炭化ケイ素基接合部品によれば、SiC基反応焼結体からなる複数の部品ユニット間の接合強度を再現性よく高めることができる。従って、優れた強度、耐久性、信頼性などを有する炭化ケイ素基接合部品、特に大型構造物や複雑形状部品などを安定して提供することが可能となる。また、本発明の炭化ケイ素基接合部品の製造方法によれば、SiC基反応焼結体からなる複数の部品ユニットを高強度に接合することができるため、例えば大型構造物や複雑形状部品などを効率よくかつ低コストで作製することが可能となる。
【図面の簡単な説明】
【図1】 本発明の一実施形態による炭化ケイ素基接合部品の概略構造を示す斜視図である。
【図2】 図1に示す炭化ケイ素基接合部品の接合層部分の微構造を模式的に示す拡大断面図である。
【図3】 図1に示す炭化ケイ素基接合部品の接合層の層構造を模式的に示す断面図である。
【図4】 本発明の第1の製造方法による炭化ケイ素基接合部品の製造工程を示す断面である。
【図5】 本発明の第2の製造方法による炭化ケイ素基接合部品の製造工程を示す断面である。
【図6】 本発明の実施例による炭化ケイ素基接合部品の曲げ強度の測定結果を比較例の測定結果と共に示す図である。
【図7】 本発明の実施例による炭化ケイ素基接合部品の熱伝導率の測定結果を比較例の測定結果と共に示す図である。
【図8】 本発明の実施例による炭化ケイ素基接合部品の接合層における炭化ケイ素結晶粒の平均結晶粒径と曲げ強度との関係を示す図である。
【図9】 本発明の実施例による炭化ケイ素基接合部品の接合層の厚さと曲げ強度との関係を示す図である。
【図10】 本発明の実施例による炭化ケイ素基接合部品の接合層の気孔率と曲げ強度との関係を示す図である。
【図11】 本発明の実施例による炭化ケイ素基接合部品の接合層のシリコン含有量と曲げ強度との関係を示す図である。
【図12】 本発明の実施例による炭化ケイ素基接合部品の接合層の層構造と曲げ強度との関係を示す図である。
【図13】 本発明の実施例による炭化ケイ素基接合部品の3層構造接合層における中央層の厚さと曲げ強度との関係を示す図である。
【図14】 本発明の実施例による炭化ケイ素基接合部品の3層構造接合層におけるシリコン含有比の厚さと曲げ強度との関係を示す図である。
【符号の説明】
1……炭化ケイ素基接合部品、2,3……炭化ケイ素基反応焼結体からなる部品ユニット、4……反応焼結接合層、5……炭化ケイ素結晶粒、6……遊離シリコン相、21……成形体、22……有機系接着剤層、25,28……炭化ケイ素基反応焼結体、26……接合体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a silicon carbide based bonded part having improved mechanical characteristics such as strength and thermal characteristics such as thermal conductivity, and a method for manufacturing the same.
[0002]
[Prior art]
Silicon carbide (SiC) ceramics have excellent properties such as environmental resistance, heat resistance, wear resistance, high rigidity, high thermal conductivity, and low thermal expansion, so they are used as high temperature structural members and wear resistant members. Has been. In particular, practical application to semiconductor-related parts such as jigs for semiconductor manufacturing apparatuses has been promoted in recent years by utilizing the characteristics of SiC ceramics. In addition, research into the application of energy equipment such as nuclear power and gas turbines, industrial equipment such as pump parts, mechanical seal parts, sliding parts, heat exchanger parts, etc. is also underway.
[0003]
As a method for producing SiC ceramics, a reactive sintering method is known in addition to a powder sintering method using a sintering aid similar to a normal ceramic material. The SiC reactive sintering method is, for example, forming a mixture of SiC powder as an aggregate and carbon powder or resin into a desired shape, and heating the molded body to a temperature higher than the melting temperature of silicon, This is done by impregnation. The reactive sintering of SiC is a sintering method involving the reaction of carbon and silicon. The SiC-based reaction sintered body has the advantage that the sintering temperature is lower than that of the powder sintering method and the dimensional shrinkage during sintering is small, so that it can be manufactured in a near net and the processing cost can be reduced. .
[0004]
By the way, when the SiC-based reaction sintered body as described above is applied to various apparatus parts and members, it may be difficult to produce a large structure or a complex-shaped part with an integral reaction sintered body. . In such a case, it is conceivable that a plurality of SiC-based reaction sintered bodies are prepared as component units, and these component units are joined to produce a large structure or a complex shaped component. Known methods for joining ceramic members include, for example, a joining method using a brazing material containing an active metal and a brazing method after metalizing the ceramic member surface. Since the metal layer remains as a bonding layer in the legal method, there is a problem that the heat resistance of the bonded component is limited by the heat resistance temperature of the bonding layer (metal layer).
[0005]
On the other hand, Patent Document 1 discloses a SiC body (a SiC-based sintered body, or a molded body or a calcined body as a precursor thereof) and a porous SiC body (a molded body, a calcined body, a sintered body in a SiC reactive sintering process). The SiC body and the porous SiC body by superimposing them through a binder layer made of a thermosetting resin containing SiC fine powder and impregnating molten silicon from the upper surface side of the porous SiC body. Is described. In this joining method, the SiC body and the porous SiC body are joined with the reaction sintered SiC layer by reacting carbon in the binder layer with molten silicon.
[0006]
However, in the bonding method described above, since the carbon in the resin binder and the molten silicon impregnated through the porous SiC body are reacted, the reaction generation process of SiC in the bonding layer cannot be sufficiently controlled, The microstructure of the reaction-sintered SiC layer as the bonding layer becomes uneven, a large amount of pores are generated in the reaction-sintered SiC layer, and a free silicon layer is formed in the bonding layer. There is a problem that the strength of can not be sufficiently increased. Further, when a resin binder is used for the adhesive layer, there is a problem that the reaction with the molten silicon tends to be non-uniform, and free carbon tends to remain. Such free carbon causes a decrease in bonding strength.
[0007]
[Patent Document 1]
Japanese Patent Publication No. 5-79630
[0008]
[Problems to be solved by the invention]
As mentioned above, the SiC-based reaction sintered body has the advantage that it can be manufactured in a near net because the dimensional shrinkage at the time of sintering is small. It may be difficult to produce with an integrated SiC-based reaction sintered body. Therefore, it is considered to join a plurality of component units to produce a large structure or a complex shaped part. However, the heat resistance temperature of the joining method using the brazing material is limited by the joining layer (metal layer). There is a difficulty. On the other hand, the conventional bonding method using reactive sintering produces a free silicon layer in the bonding layer, and the control of the microstructure and density of the reactive sintered SiC layer (bonding layer) is insufficient. It has not yet been achieved to obtain high-strength bonded parts.
[0009]
The present invention has been made to cope with such problems, and by controlling the microstructure of the bonding layer using reactive sintering, it is possible to enhance mechanical properties such as strength with good reproducibility. An object of the present invention is to provide a silicon carbide-based bonded part and a method for manufacturing the same.
[0010]
[Means for Solving the Problems]
  The silicon carbide based bonded component of the present invention is a silicon carbide based bonded component formed by bonding a plurality of component units made of a silicon carbide based reactive sintered body via a bonding layer, wherein the bonding layer has an average crystal grain size Is mainly composed of silicon carbide crystal grains in the range of 0.1 to 30 μm and a silicon phase continuously present in a network form in the gaps between the silicon carbide crystal grains.And containing the silicon phase in the range of 5 to 50% by volume.It is characterized by that.
[0011]
In the silicon carbide-based bonded component of the present invention, a plurality of component units are formed by a bonding layer mainly composed of silicon carbide crystal grains and a silicon phase continuously present in the gap in the form of a network, that is, a reactive sintered bonding layer. They are joined together. In such a reactive sintered bonding layer, in the present invention, the silicon carbide crystal grains and the microstructure of the silicon phase existing in the gaps, specifically, the average crystal grain size of the silicon carbide crystal grains and the network structure of the silicon phase, etc. Since it is controlled, the strength of the bonding layer itself and the bonding strength to the component unit can be increased with good reproducibility. Also, thermal characteristics such as thermal conductivity can be enhanced. By these, it becomes possible to provide a silicon carbide based bonded part having excellent strength, durability, reliability, and thermal characteristics.
[0012]
  The first method for manufacturing a silicon carbide-based bonded part according to the present invention corresponds to the plurality of component units in manufacturing a silicon carbide-based bonded part by bonding a plurality of component units made of a silicon carbide-based reaction sintered body. A step of producing a plurality of molded bodies, a step of bonding the plurality of molded bodies with an organic adhesive, a heat treatment after bonding the plurality of molded bodies, and a bonding portion formed by the organic adhesive with carbon. Including a step of forming a porous body having a porosity of 20 to 70% as a main component and an adhesive portion made of the porous body, the plurality of molded bodies are impregnated with molten silicon, Each of the molded bodies is subjected to reaction sintering to form the plurality of component units, and between the plurality of component units, the silicon carbide crystal grains having a reaction-generated average crystal grain size in the range of 0.1 to 30 μm and the silicon carbide Crystal grain Present continuously in network form in the gapIn the range of 5-50% by volumeAnd a step of integrally bonding with a bonding layer mainly composed of a silicon phase.
[0013]
  The second method for manufacturing a silicon carbide-based bonded component is the method for manufacturing a silicon carbide-based bonded component by bonding a plurality of component units made of a silicon carbide-based bonded component. Removing the silicon present on the bonding surfaces of the plurality of component units, bonding the bonding surfaces of the plurality of component units with an organic adhesive, and heat treatment after bonding the plurality of component units Then, the step of making the bonded portion made of the organic adhesive into a porous body mainly composed of carbon and having a porosity of 20 to 70%, and the bonded portion made of the porous body are impregnated with molten silicon. The plurality of component units are continuously present in the form of a network in the gap between the silicon carbide crystal grains having an average crystal grain size in the range of 0.1 to 30 μm produced by reaction.In the range of 5-50% by volumeAnd a step of integrally bonding with a bonding layer mainly composed of a silicon phase.
[0014]
In the method for producing a silicon carbide-based bonded component according to the present invention, a plurality of component units made of a silicon carbide-based reactive sintered body are used to form an organic adhesive layer used for bonding a molded body or a sintered body and molten silicon. Bonding is integrated with a reaction-sintered bonding layer based on the reaction. That is, a plurality of component units made of a silicon carbide-based reaction sintered body are integrally joined with the silicon carbide crystal grains produced by reaction and the silicon phase continuously present in the gaps in the form of a network. According to such a reaction-sintered bonding layer, since a plurality of component units can be bonded with high strength, it becomes possible to efficiently produce a large structure or a complex shaped component at a low cost. . Also, thermal characteristics such as thermal conductivity can be enhanced.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, modes for carrying out the present invention will be described.
FIG. 1 is a cross-sectional view schematically showing a schematic structure of a silicon carbide (SiC) -based bonded component according to an embodiment of the present invention. The SiC-based joining component 1 shown in the figure has a plurality of component units, specifically, first and second component units 2 and 3 made of a SiC-based reaction sintered body. The component units 2 and 3 made of these SiC-based reaction sintered bodies are bonded via the bonding layer 4, and the SiC-based bonded component 1 is constituted by these. In addition, although the joining component 1 using the two component units 2 and 3 is shown here, the number of the component units constituting the joining component 1 is not limited to two, but three or more. May be.
[0016]
The bonding layer 4 is a reaction-sintered bonding layer using reaction sintering of SiC. As shown in an enlarged view of the fine structure in FIG. 2, SiC crystal grains 5 generated by reaction sintering, and these SiC crystal grains 5. And a free silicon (Si) phase 6 continuously present in a network in the gap. Such a reaction-sintered bonding layer 4 controls the microstructure of the reaction-sintered SiC crystal grains 5 and the free Si phase 6 so that the strength of the bonding layer 4 itself and the bonding strength to the component units 2 and 3, It is possible to increase the strength of the joined component 1.
[0017]
As for the microstructure of the SiC crystal grains 5, the particle shape is controlled so that the average crystal grain size is in the range of 0.1 to 30 μm. If the average crystal grain size of the SiC crystal grains 5 exceeds 30 μm, the strength of the reaction-sintered bonding layer 4 itself is lowered, and the strength between the component units 2 and 3 cannot be expressed sufficiently. On the other hand, if the average crystal grain size of the SiC crystal grains 5 is less than 0.1 μm, it is impossible to stably obtain a microstructure in which the free Si phase 6 exists in a network form from the viewpoint of the manufacturing process. The yield of the joint is reduced, and the reliability and durability of the joining component 1 are insufficient.
[0018]
It is more preferable to control the average crystal grain size of the reaction sintered SiC crystal grains 5 as described above in the range of 0.5 to 10 μm. The average crystal grain size of the SiC crystal grains 5 is obtained by mirror-finishing an arbitrary cross section of the bonding layer 4 and then observing the structure using an optical microscope (metal microscope) or an electron microscope, and image-processing the enlarged structure photograph. The value obtained by doing
[0019]
Regarding the microstructure of the free Si phase 6 existing in the gaps between the SiC crystal grains 5, it is important to have a continuous network structure. When the network structure of the free Si phase 6 is divided, a relatively large amount of pores are generated, and the strength of the reaction sintered bonding layer 4 is lowered. In other words, the reaction-sintered bonding layer 4 is formed into a dense reaction-sintered layer by allowing the free Si phase 6 to continuously exist in the gaps between the SiC crystal grains 5. The porosity of the reaction sintered bonding layer 4 is preferably 5% or less, for example. When the porosity exceeds 5%, the bonding strength between the component units 2 and 3 is not sufficiently exhibited, and thus, for example, characteristics required for a structural material cannot be sufficiently obtained.
[0020]
Further, the content of the free Si phase 6 in the reaction sintered bonding layer 4 is preferably in the range of 5 to 50% by volume. When the content of the free Si phase 6 is less than 5% by weight, the network structure is easily divided. That the content of the free Si phase 6 in the bonding layer 4 exceeds 50% by volume means an increase in the free Si phase 6 that tends to be a starting point of fracture. Accordingly, when the content of the free Si phase 6 is out of the range of 5 to 50% by volume, the strength of the bonding layer 4 itself and the bonding strength between the component units 2 and 3 are likely to be lowered. The content of the free Si phase 6 is desirably in the range of 10 to 40% by volume. The content of the free Si phase 5 is calculated based on the theoretical density of Si and SiC from the image processing result and density of the structure observation photograph.
[0021]
The thickness (average thickness) of the reactive sintered bonding layer 4 is preferably in the range of 1 to 200 μm. The reaction-sintered bonding layer 4 having a thickness of less than 1 μm is difficult to produce in the manufacturing process due to the occurrence of unbonded parts, and the strength of the reaction-sintered bonding layer 4 itself, and hence the bonding component 1 Reliability and durability are also reduced. On the other hand, when the thickness of the reactive sintered bonding layer 4 exceeds 200 μm, it causes a reduction in the strength of the bonded component 1. The thickness of the reactive sintered bonding layer 4 is more preferably in the range of 3 to 120 μm.
[0022]
Furthermore, it is preferable that the reactive sintered bonding layer 4 has a three-layer structure as shown in FIG. The reaction-sintered bonding layer 4 shown in FIG. 3 is located in layers (side layers) 11 and 12 in contact with the component units (SiC-based reaction sintered bodies) 2 and 3 and in the center of these side layers 11 and 12. And a layer (center layer) 13. The side layers 11 and 12 have a structure closer to the SiC-based reaction sintered body constituting the component units 2 and 3 than the central layer 13. The thickness of the central layer 13 is preferably in the range of 0.5 to 100 μm. By interposing the reaction sintered bonding layer 4 having such a three-layer structure between the component units 2 and 3, the reliability and durability of the bonded component 1 can be further improved.
[0023]
Regarding the composition of the side layers 11 and 12 and the central layer 13 in the above-described reaction sintered bonding layer 4 having the three-layer structure, the content ratio of free Si in the side layers 11 and 12 is preferably higher than that of the central layer 13. . Specifically, the side layers 11 and 12 preferably have a free Si content ratio of 10 to 70% higher than that of the central layer 13. Thus, by making the content ratio of free Si of the side layers 11 and 12 higher than that of the central layer 13, the reliability and durability of the joined component 1 can be further enhanced. Such a reaction-sintered bonding layer 4 having a three-layer structure can be obtained by controlling the structure of a porous body mainly composed of carbon based on the heat treatment conditions after bonding with an organic adhesive. it can.
[0024]
The SiC-based joining component 1 of this embodiment includes a microstructure of the reaction-sintered bonding layer 4, specifically, an average crystal grain size of the reaction-sintered SiC crystal grains 5 constituting the reaction-sintered bonding layer 4, and SiC crystal grains. Since the state and content of the free Si phase 6 existing in the gaps 5 and the structure of the reaction sintered bonding layer 4 are controlled, the strength of the reaction sintered bonding layer 4 itself can be increased, It becomes possible to improve the bonding strength between the component units 2 and 3 by the reaction sintered bonding layer 4. By these, the high-strength joining component 1 can be provided with good reproducibility. Furthermore, since the reaction-sintered bonding layer 4 has the same configuration as the SiC-based reaction sintered body constituting the component units 2 and 3, the heat resistance temperature of the bonded component 1 is limited by the bonding layer 4. There is nothing. Also, thermal characteristics such as thermal conductivity can be enhanced.
[0025]
Then, the shape of the component units 2 and 3 made of the SiC-based reaction sintered body is made easy to manufacture, and the component units 2 and 3 previously manufactured in such a shape are integrally formed with the reaction sintered bonding layer 4. By joining, a large-sized structure, a complex shaped part, etc. can be obtained as the SiC-based joining part 1. Such a SiC-based joining component 1 has both the advantages of the SiC-based reaction sintered body constituting the component units 2 and 3 and the advantage as a joined body, and has high strength (higher strength based on the reaction-sintered bonding layer 4). It is possible to increase the bonding strength.
[0026]
In addition, the SiC group reaction sintered body which comprises the component units 2 and 3 is not specifically limited, The SiC group sintered body produced with various reaction sintering methods is applicable. However, since the strength of the SiC-based reaction sintered body itself also affects the strength of the bonded part 1, for example, the bending strength is 500 MPa or more and the fracture toughness value is 3 MPa / m.1/2It is preferable to use a SiC-based reaction sintered body having the above mechanical characteristics.
[0027]
The SiC-based reaction sintered body having such mechanical characteristics is blended as an aggregate, for example, and based on the SiC crystal grains having an average crystal grain size in the range of 0.1 to 10 μm and the reaction sintered SiC, and the average crystal grains A SiC matrix is composed of SiC crystal grains having a diameter in the range of 0.01 to 2 μm, and free Si phase is, for example, 5 to 50% by volume (more preferably 5 to 30% by volume) in the gaps between the SiC crystal grains of the SiC matrix. It is obtained by making it continuously exist in a network form in the range. SiC which is densified with an appropriate amount of free Si phase, has a free Si phase with a network structure finely and uniformly present in the gaps of SiC crystal grains, and controls the average crystal grain size of SiC crystal grains within an appropriate range According to the base reaction sintered body, good strength, fracture toughness value and the like can be obtained.
[0028]
As described above, according to the SiC-based joint component 1 of the present invention, it is possible to integrally produce a more complex shaped component or a large structure, and further to improve the strength of such a component or structure. It becomes possible to raise. This greatly contributes to the reduction of the manufacturing cost of complex shaped parts and large structures, the improvement of manufacturing efficiency, and the improvement of reliability and durability. In addition, thermal characteristics such as thermal conductivity can be enhanced. A typical strength of the SiC-based bonded component 1 is, for example, an average bending strength of 150 MPa or more and 1000 MPa or less. The typical hardness of the reaction sintered bonding layer 4 is Hv1200 or higher and Hv2200 or lower, and the Young's modulus is 300GPa or higher and 420GPa or lower.
[0029]
The SiC-based bonded component 1 of this embodiment includes a jig for a semiconductor manufacturing apparatus, a semiconductor-related component (such as a heat sink and a dummy wafer), a high-temperature structural member for a gas turbine, a structural member for space and aviation, a mechanical seal member, a brake member, It is suitably used for various apparatus parts and apparatus members such as sliding parts, mirror parts, pump parts, heat exchanger parts, chemical plant element parts and the like. In particular, since the SiC-based bonded component 1 has high strength, it can be applied to apparatus components and members that require strength. This greatly contributes to the expansion of the application range and field of application of inexpensive SiC-based reaction sintered bodies.
[0030]
The SiC-based bonded component 1 of this embodiment is manufactured as follows, for example. Here, the manufacturing method of the joined component 1 to which reaction sintering is applied includes a method (first manufacturing method) of joining a component unit at a stage of a molded body (for example, a molded body made of a mixture of SiC and carbon), It is roughly divided into a method (second manufacturing method) in which the component unit is joined after being made into a sintered body. First, the 1st manufacturing method which joins a component unit in the stage of a molded object is demonstrated with reference to FIG.
[0031]
That is, as shown in FIG. 4A, two or more molded bodies 21 are prepared. The molded body 21 is the basis of the SiC-based reaction sintered body. For example, a mixture of SiC powder and carbon powder, an organic binder, an organic solvent, etc. are added as necessary, and a mixed mixture or slurry is added. For example, a compact that is pressure-molded into a desired shape is used. The compounding ratio of the SiC powder and the carbon powder in the molded body 21 is preferably in the range of 10: 1 to 10:10, and more preferably in the range of 10: 3 to 10: 5. A resin or the like can be used instead of the carbon powder.
[0032]
The mixture of SiC powder and carbon powder is formed into a desired shape by applying, for example, powder pressing or pressure casting. The pressure when applying powder pressure molding is preferably about 0.5 to 2 MPa. A mold press, a rubber press, a cold isostatic press, or the like can be used for pressure molding of the powder. When pressure casting is applied, a slurry is prepared by dispersing the mixture in water or an organic solvent, and the slurry is cast into a molding die while applying pressure to form a desired shape. The pressure during casting is preferably about 0.5 to 10 MPa. By applying such pressure molding, a molded body having an appropriate density (filled state of powder) can be obtained.
[0033]
Next, as shown in FIG. 4B, the two molded bodies 21 are bonded with an organic adhesive 22. The organic adhesive 22 is not particularly limited, and various adhesives can be used as long as carbon remains after the heat treatment. Next, as shown in FIG. 4C, heat treatment is performed to make the organic adhesive 22 a porous body 23 mainly composed of carbon. That is, a preliminary bonded body 24 in which two molded bodies 21 are connected by a porous body 23 mainly composed of carbon is produced.
[0034]
It is preferable that the porosity of the porous body 23 constituting the joint is in the range of 20 to 70%. If the porosity of the porous body 23 is less than 20%, the amount of molten Si impregnated becomes insufficient due to the volume expansion during SiC generation, and free carbon tends to remain. Free carbon becomes a factor of lowering the strength of the bonding layer 4 itself and the bonding strength. On the other hand, if the porosity of the porous body 23 exceeds 70%, the amount of Si existing as a free Si phase after the impregnation step with molten Si increases so that the strength and bonding strength of the bonding layer 4 itself may be lowered. There is.
[0035]
The pre-joint 24 as described above is heated to a temperature not lower than the melting point of Si, specifically 1400 ° C. or higher, and the pre-joint 24 in this heated state is impregnated with molten Si. The impregnation with molten Si is performed, for example, under reduced pressure or in an inert atmosphere. Although depending on the size of the compact 21, the impregnation with molten Si is performed quickly (units of seconds), and then the reaction between the molten Si and the carbon powder is also performed quickly (units of minutes). In such a molten Si impregnation step, the two molded bodies 21 are each subjected to reaction sintering, and at the same time, the porous body 23 at the joint is also subjected to reaction sintering.
[0036]
That is, the carbon in the molded body 21 and the carbon constituting the porous body 23 at the joint portion react with each other in contact with molten Si at a high temperature. For example, the average crystal grain size is larger than the aggregate SiC in the molded body 21. Create small SiC. In the formed body 21 portion, a SiC-based reaction sintered body is formed in which Si that has not participated in the reaction continuously exists in a network form as a free Si phase in the gap between the crystal grains of the aggregate SiC and the reaction sintered SiC. Is done. In the bonded portion, a reactive sintered bonding layer 4 is formed in which free Si phases are continuously present in a network in the gaps between the reactive sintered SiC crystal grains. Simultaneously with the formation of the reactive sintered bonding layer 4, the two SiC-based reactive sintered bodies are integrally bonded.
[0037]
In this way, as shown in FIG. 4D, a joined body 26 in which two SiC-based reaction sintered bodies 25 are joined and integrated by the reaction sintered joining layer 4 is obtained. The joined body 26 is subjected to final processing such as machining and becomes a SiC-based joined component. In addition, according to the reaction sintering process as described above, the sintering shrinkage from the molded body can be extremely reduced. For example, the amount of shrinkage during sintering can be within ± 3%, and further within ± 1%. Thus, the processing cost to the final dimension can be reduced by significantly reducing the amount of shrinkage during sintering.
[0038]
Next, the 2nd manufacturing method which joins a sintered compact is demonstrated with reference to FIG.
First, as shown in FIG. 5A, two or more SiC-based reaction sintered bodies 28 are prepared. As the SiC-based reaction sintered body 28, a sintered body produced through the process for producing a molded body in the first manufacturing method described above, the step of impregnating the molded body with molten Si, and the like can be applied. However, even SiC-based reaction sintered bodies produced in other reaction sintering processes can be used in the same manner.
[0039]
For the two SiC-based reaction sintered bodies 28, Si existing on the bonding surface 29 is previously removed by heat treatment or chemical treatment. In this way, by removing in advance Si existing on the bonding surface 29 of the SiC-based reaction sintered body 28, the final reaction-sintered bonding layer 4 produced in the molten Si impregnation step and the SiC-based reaction are obtained. It becomes possible to increase the adhesion to the sintered body 28 and further the bonding strength.
[0040]
Next, as shown in FIG. 5B, the two SiC-based reaction sintered bodies 28 are bonded with the organic adhesive 22. The organic adhesive 22 is made the porous body 23 in the same manner as in the first method. In this way, as shown in FIG. 5C, the pre-joined body 24 in which the two SiC-based reaction sintered bodies 28 are connected by the porous body 23 mainly composed of carbon is produced. It is preferable that the porosity of the porous body 23 constituting the joint is in the range of 20 to 70% as in the first manufacturing method.
[0041]
The pre-joint 24 as described above is heated to a temperature equal to or higher than the melting point of Si, and the pre-joint 24 in this heated state is impregnated with molten Si. In particular, the molten Si impregnates the porous body 23 at the joint. In this molten Si impregnation step, the porous body 23 at the joint is reactively sintered, and at the same time, the two SiC-based reactive sintered bodies 28 are integrally joined. That is, the carbon constituting the porous body 23 at the joint reacts with molten Si at a high temperature to produce SiC, and free Si phases are continuously present in the gaps between the SiC crystal grains.
[0042]
In this way, the reaction-sintered bonding layer 4 is formed, and at the same time, the two SiC-based reaction sintered bodies 28 are integrally bonded. That is, as shown in FIG. 5 (d), a joined body 26 in which two SiC-based reaction sintered bodies 28 are joined and integrated by the reaction sintered joining layer 4 is obtained. Each of the two SiC-based reaction sintered bodies 28 constitutes a component unit. The joined body 26 is subjected to final processing such as machining and becomes a SiC-based joined component. The reaction-sintered bonding layer 4 is excellent in its own strength, and also has excellent bonding strength with respect to the SiC-based reaction sintered body 28, so that it is possible to bond two SiC-based reaction sintered bodies 28 with high strength. Become.
[0043]
As described above, in the method for manufacturing a SiC-based bonded component, a plurality of component units made of a SiC-based reaction sintered body are combined with the organic adhesive layer 22 used for bonding the molded body 21 and the sintered body 28, molten Si, The reaction sintering joining layer 4 based on the above reaction is joined and integrated. As shown in FIG. 2, the reaction-sintered bonding layer 4 is composed of reaction-sintered SiC crystal grains 5 and Si phases 6 continuously present in the gaps in the form of a network. Strength bonding is realized. Therefore, according to the method for manufacturing a bonded part using such a reaction-sintered bonding layer 4, it is possible to efficiently produce a large structure, a complex-shaped part, or the like at a low cost. In addition, the parts mentioned here include jigs, members, ornaments, and the like that are attached to the apparatus and the like in addition to the parts in a normal sense that constitute a whole by collecting a plurality of parts.
[0044]
【Example】
Next, specific examples of the present invention and evaluation results thereof will be described.
[0045]
Example 1
Silicon carbide (α-SiC) powder having an average particle diameter of 0.5 μm and carbon powder (carbon black) having an average particle diameter of 0.01 μm are mixed so that the mass ratio is 10: 3 (= SiC: C). did. Furthermore, this mixed powder was mixed with an appropriate amount of an organic binder, and then dispersed in a solvent to prepare a slurry. Next, the slurry was filled into the mold while being pressurized at a pressure of 1 MPa using a pressure casting molding machine. In this way, two plate-shaped molded bodies having a predetermined molded body density were produced.
[0046]
Next, the above two plate-like molded bodies were naturally dried and then adhered with an organic adhesive. This adhesive was heated and held at a temperature of 100 to 700 ° C. in an inert gas atmosphere to make the organic adhesive layer a porous body mainly composed of carbon. The porosity of the porous body was 30 to 60%. The pre-joined body in which two plate-shaped compacts are connected with this porous body is heated to a temperature of 1400 ° C. or higher under reduced pressure or in an inert gas atmosphere, and the compact and the joining layer that maintain this heating state The (porous body) was impregnated with molten silicon.
[0047]
In this molten silicon impregnation step, each of the two plate-shaped compacts is subjected to reaction sintering to obtain a SiC-based reaction sintered body, and at the same time, a joined body in which these SiC-based reaction sintered bodies are joined together by a reactive sintered joining layer. Got. A plurality of such joined bodies were produced under different manufacturing conditions. When the microstructure of the reaction-sintered bonding layer of the obtained bonded body was observed with an electron microscope, the bonding layer was formed by reacting porous carbon and molten silicon with SiC crystal grains, and a network in the gap between them. It was confirmed that it was composed of a free Si phase continuously present in the shape.
[0048]
In each bonded body described above, the average crystal grain size of the SiC crystal grains in the reaction sintered bonding layer is 0.5 to 20 μm, the porosity is 0 to 20%, the Si content is 10 to 40% by volume, and the average thickness is 10 to It was 120 μm. After polishing the surfaces of these joined bodies, they were subjected to characteristic evaluation described later.
[0049]
Example 2
Silicon carbide (α-SiC) powder having an average particle diameter of 0.2 μm and carbon powder (carbon black) having an average particle diameter of 0.01 μm are mixed so that the mass ratio is 10: 2 (= SiC: C). did. Furthermore, this mixed powder was mixed with an appropriate amount of an organic binder to produce a granulated powder. Subsequently, after the granulated powder was filled in a mold, it was pressure molded at a pressure of 2 MPa using a pressure molding machine. In this way, two plate-shaped molded bodies having a predetermined molded body density were produced.
[0050]
Next, the two molded bodies described above were heated and held at a temperature of 600 ° C. in an inert gas atmosphere to remove (degrease) the organic binder. The degreased molded body was heated to a temperature of 1400 ° C. or higher under reduced pressure or in an inert gas atmosphere, and the molded body maintained in this heated state was impregnated with molten silicon. Two SiC-based reaction sintered bodies were obtained by reaction-sintering the molded body in this molten silicon impregnation step.
[0051]
The joint surfaces of the obtained two SiC-based reaction sintered bodies were subjected to an acid (hydrofluoric acid) treatment to remove Si on the joint surfaces. Next, the bonding surfaces of these two SiC-based reaction sintered bodies were bonded with an organic adhesive. This adhesive was heated and held at a temperature of 100 to 700 ° C. in an inert gas atmosphere to make the organic adhesive a porous body mainly composed of carbon (porosity = 30 to 60%). A pre-joined body in which two SiC-based reaction sintered bodies are connected with this porous body is heated to a temperature of 1400 ° C. or higher under reduced pressure or in an inert gas atmosphere, and a joined body that maintains this heated state is obtained. Molten silicon was impregnated.
[0052]
In this molten silicon impregnation step, a joined body was obtained by joining two SiC-based reaction sintered bodies with a reaction sintered joining layer. A plurality of such joined bodies were produced under different manufacturing conditions. When the microstructure of the reaction-sintered bonding layer of the obtained bonded body was observed with an electron microscope, the bonding layer was formed by reacting porous carbon and molten silicon with SiC crystal grains and a network in the gap between them. It was confirmed that it was composed of a free Si phase continuously present in the shape.
[0053]
In each bonded body described above, the average crystal grain size of the SiC crystal grains in the reaction sintered bonding layer is 0.5 to 20 μm, the porosity is 0.5 to 3%, the Si content is 10 to 40% by volume, and the average thickness is 10 to 10%. It was 120 μm. After polishing the surfaces of these joined bodies, they were subjected to characteristic evaluation described later.
[0054]
Comparative Example 1
Two molded bodies produced in the same manner as in Example 1 were naturally dried, and then heated and held at a temperature of 600 ° C. in an inert gas atmosphere to remove (degrease) the organic binder. After fixing the metal Si foil sandwiched between these two molded bodies and fixing them, they were heated to a temperature of 1400 ° C. or higher under reduced pressure or in an inert gas atmosphere while maintaining this heating state. Molten silicon was impregnated.
[0055]
In this molten silicon impregnation step, the two compacts were each subjected to reaction sintering to obtain a SiC-based reaction sintered body, and a joined body in which these two SiC-based reaction sintered bodies were joined was obtained. A plurality of such joined bodies were produced. In the obtained joined body, it was confirmed that two SiC group reaction sintered compacts were joined by Si phase. After polishing the surfaces of these joined bodies, they were subjected to characteristic evaluation described later.
[0056]
Comparative Example 2
Two molded bodies produced in the same manner as in Example 1 were air-dried and fixed by sandwiching polycarbosilane (organosilicon resin) between the molded bodies, and then in an inert gas atmosphere. The organic binder was removed by heating and holding at a temperature of 1000 ° C. Here, the bonded portion was a porous body mainly composed of SiC. The two molded bodies bonded with this SiC porous body were heated to a temperature of 1400 ° C. or higher under reduced pressure or in an inert gas atmosphere, and impregnated with molten silicon while maintaining this heating state.
[0057]
In this molten silicon impregnation step, the two compacts were each subjected to reaction sintering to obtain a SiC-based reaction sintered body, and a joined body in which these two SiC-based reaction sintered bodies were joined was obtained. A plurality of such joined bodies were produced. In the obtained joined body, it was confirmed that the two SiC-based reaction sintered bodies were joined by a SiC porous body filled with Si. After polishing the surfaces of these joined bodies, they were subjected to characteristic evaluation described later.
[0058]
Comparative Example 3
Two molded bodies produced in the same manner as in Example 1 were naturally dried and then heated and held at a temperature of 500 ° C. in an inert gas atmosphere to remove the organic binder. Next, each molded body was heated to a temperature of 1400 ° C. or higher under reduced pressure or in an inert gas atmosphere, and melted silicon was impregnated and reaction-sintered while maintaining this heated state.
[0059]
A slurry made of oxide ceramic raw material powder was applied to the joining surface of the two obtained SiC-based reaction sintered bodies, and the SiC-based reaction sintered bodies were bonded and fixed to each other through this coating layer. In this state, heating was performed at 1000 ° C. while pressurizing, and the oxide ceramics on the joint surfaces were sintered and joined. A plurality of such joined bodies were produced. In the obtained joined body, it was confirmed that the two SiC-based reaction sintered bodies were joined via the oxide ceramic layer. After polishing the surfaces of these joined bodies, they were subjected to characteristic evaluation described later.
[0060]
The mechanical characteristics and thermal characteristics of the joined bodies of the SiC-based reaction sintered bodies according to Examples 1-2 and Comparative Examples 1-3 described above were measured as follows. That is, first, a bending test piece having a width of 4 mm, a thickness of 3 mm, and a length of 40 mm was processed from each joined body. At this time, the bonding surface was perpendicular to the longitudinal direction of the test piece, and the bonding layer was positioned at the center of the test piece. Using this bending test piece, a three-point bending test (room temperature) was performed under the conditions of a span of 30 mm and a head speed of 0.5 mm / min. The results are shown in Table 1 and FIG. In addition, the measurement result of a bending test shows the maximum value and the minimum value in the joined body of each example.
[0061]
Furthermore, a thermal conductivity measurement test piece having a diameter of 10 mm and a thickness of 2 mm was processed from each joined body. At this time, the joining surface was parallel to a surface having a diameter of 10 mm, and the joining layer was positioned at the center of the test piece. Using such a thermal conductivity measurement test piece, the thermal conductivity was measured at room temperature according to the thermal diffusivity, specific heat capacity, and thermal conductivity test method (JIS R 1611) of fine ceramics by the laser flash method. . The results are shown in Table 1 and FIG. In addition, the measurement result of thermal conductivity shows the maximum value and the minimum value in the joined body of each example.
[0062]
[Table 1]
Figure 0004537669
[0063]
As is apparent from Table 1, FIG. 6 and FIG. 7, the joined bodies produced by the joining methods of Example 1 and Example 2 vary in bending strength values, but compared to the joined bodies according to Comparative Examples 1-3. It can be seen that the value of the bending strength is greatly improved. Moreover, while the joined body produced by the joining method of Example 1 and Example 2 shows high thermal conductivity equivalent to the base material, the joined bodies according to Comparative Examples 1 to 3 have thermal conductivity. It turns out that it falls significantly in a junction part. In addition, it is thought that the dispersion | variation in the bending strength value in Example 1 and Example 2 has influenced the state of the microstructure in a joining layer. In the following examples, the results of examining the relationship between the microstructure of the bonding layer and the bending strength will be described.
[0064]
Examples 3-7, Comparative Examples 4-5
Silicon carbide (α-SiC) powder having an average particle diameter of 2 μm and carbon powder (carbon black) having an average particle diameter of 0.5 μm were mixed so as to have a mass ratio of 10: 3 (= SiC: C). . Furthermore, this mixed powder was mixed with an appropriate amount of an organic binder, and then dispersed in a solvent to prepare a slurry. Next, the slurry was filled into the mold while being pressurized at a pressure of 0.5 MPa using a pressure casting molding machine. In this manner, a plate-shaped molded body having a predetermined molded body density was produced.
[0065]
Next, after the above plate-shaped molded body was naturally dried, the two plate-shaped molded bodies were bonded with an organic adhesive. This adhesive was heated and held at a temperature of 100 to 600 ° C. in an inert gas atmosphere to degrease the organic binder, and the organic adhesive layer was a porous body mainly composed of carbon. At this time, a plurality of samples having different adhesive layer thicknesses were prepared by adjusting the concentration of the organic adhesive and the application method. These pre-bonded bodies were heated to a temperature of 1400 ° C. or higher under reduced pressure or in an inert gas atmosphere, and the molded body and the bonding layer (porous body) maintained in this heated state were impregnated with molten silicon.
[0066]
In the molten silicon impregnation step, each of the two plate-shaped compacts is subjected to reaction sintering to form a SiC-based reaction sintered body, and at the same time, these SiC-based reaction sintered bodies are joined together by a reaction sintered joining layer. Got. About each obtained joined body, the average crystal grain diameter of the SiC crystal grain which comprises the reaction sintering joining layer was measured. Further, the bending strength of each joined body was measured in the same manner as in Example 1. The results are shown in Table 2 and FIG. In addition, the comparative example in Table 2 made the average crystal grain diameter of the reaction sintered SiC crystal grain out of the scope of the present invention, and is shown for comparison with the present invention.
[0067]
[Table 2]
Figure 0004537669
[0068]
As is apparent from Table 2 and FIG. 8, a bonded body having excellent strength can be obtained when the average crystal grain size of the SiC crystal grains constituting the reactive sintered bonding layer is controlled in the range of 1 to 30 μm. I understand. In these bonding layers, a Si phase having a network structure was continuously present in the gaps between the reaction sintered SiC crystal grains. The relationship between the average crystal grain size and the strength of the reaction sintered SiC crystal grains showed the same tendency even when the SiC-based reaction sintered body was bonded and then impregnated with molten silicon.
[0069]
Examples 8-14
Silicon carbide (α-SiC) powder having an average particle diameter of 1.2 μm and carbon powder (carbon black) having an average particle diameter of 0.05 μm are mixed so that the mass ratio is 10: 5 (= SiC: C). did. Furthermore, this mixed powder was mixed with an appropriate amount of an organic binder, and then dispersed in a solvent to prepare a slurry. Next, the slurry was filled into the mold while being pressurized at a pressure of 2 MPa using a pressure casting molding machine. In this manner, a plate-shaped molded body having a predetermined molded body density was produced.
[0070]
Next, after the above plate-shaped molded body was naturally dried, the two plate-shaped molded bodies were bonded with an organic adhesive. This adhesive was heated and held at 400 ° C. in an inert gas atmosphere to degrease the organic binder, and the organic adhesive layer was a porous body mainly composed of carbon. At this time, a plurality of samples having different adhesive layer thicknesses were prepared by adjusting the concentration of the organic adhesive and the application method. These pre-bonded bodies were heated to a temperature of 1400 ° C. or higher under reduced pressure or in an inert gas atmosphere, and the molded body and the bonding layer (porous body) maintained in this heated state were impregnated with molten silicon.
[0071]
In the molten silicon impregnation step, each of the two plate-shaped compacts is subjected to reaction sintering to form a SiC-based reaction sintered body, and at the same time, these SiC-based reaction sintered bodies are joined together by a reaction sintered joining layer. Got. About each obtained joined body, the average thickness of the reaction sintering joining layer was measured. Further, the bending strength of each joined body was measured in the same manner as in Example 1. The results are shown in Table 3 and FIG.
[0072]
[Table 3]
Figure 0004537669
[0073]
As is apparent from Table 3 and FIG. 9, it can be seen that when the thickness of the reactive sintered bonding layer is in the range of 1 to 200 μm, a bonded body having excellent strength can be obtained with good reproducibility. In addition, these joining layers were comprised from the reaction-sintered SiC crystal grain and the Si phase of the network structure which exists in the clearance gap. The relationship between the thickness and strength of the reaction sintered bonding layer showed the same tendency even when the SiC-based reaction sintered body was bonded and then impregnated with molten silicon.
[0074]
Examples 15-18
Silicon carbide (α-SiC) powder having an average particle diameter of 5 μm and carbon powder (carbon black) having an average particle diameter of 0.5 μm were mixed so as to have a mass ratio of 10: 4 (= SiC: C). . Furthermore, this mixed powder was mixed with an appropriate amount of an organic binder, and then dispersed in a solvent to prepare a slurry. Next, the slurry was filled into the mold while being pressurized at a pressure of 1.5 MPa using a pressure casting molding machine. In this manner, a plate-shaped molded body having a predetermined molded body density was produced.
[0075]
Next, after the above plate-shaped molded body was naturally dried, the two plate-shaped molded bodies were bonded with an organic adhesive. This adhesive was heated and held at a temperature of 100 to 600 ° C. in an inert gas atmosphere to degrease the organic binder, and the organic adhesive layer was a porous body mainly composed of carbon. At this time, a plurality of samples having different adhesive layer thicknesses were prepared by adjusting the concentration of the organic adhesive and the application method. These pre-bonded bodies were heated to a temperature of 1400 ° C. or higher under reduced pressure or in an inert gas atmosphere, and the molded body and the bonding layer (porous body) maintained in this heated state were impregnated with molten silicon.
[0076]
In the molten silicon impregnation step, each of the two plate-shaped compacts is subjected to reaction sintering to form a SiC-based reaction sintered body, and at the same time, these SiC-based reaction sintered bodies are joined together by a reaction sintered joining layer. Got. About each obtained joined body, the porosity of the reaction sintering joining layer was measured. Further, the bending strength of each joined body was measured in the same manner as in Example 1. The results are shown in Table 4 and FIG.
[0077]
[Table 4]
Figure 0004537669
[0078]
As can be seen from Table 4 and FIG. 10, when the porosity of the reaction sintered bonding layer is 5% or less, particularly when the porosity is 2% or less, a bonded body having excellent strength can be obtained with good reproducibility. I understand that. In addition, these joining layers were comprised from the reaction-sintered SiC crystal grain and the Si phase of the network structure which exists in the clearance gap. The relationship between the porosity and strength of the reaction sintered bonding layer showed the same tendency even when the SiC-based reaction sintered body was bonded and then impregnated with molten silicon.
[0079]
Example 19-21, Reference Examples 1-2
  Silicon carbide (α-SiC) powder having an average particle diameter of 5 μm and carbon powder (carbon black) having an average particle diameter of 1 μm were mixed so as to have a mass ratio of 10: 2 (= SiC: C). Furthermore, this mixed powder was mixed with an appropriate amount of an organic binder, and then dispersed in a solvent to prepare a slurry. Next, the slurry was filled into the mold while being pressurized at a pressure of 5 MPa using a pressure casting molding machine. In this manner, a plate-shaped molded body having a predetermined molded body density was produced.
[0080]
Next, after the above plate-shaped molded body was naturally dried, the two plate-shaped molded bodies were bonded with an organic adhesive. This adhesive was heated and held at 400 ° C. in an inert gas atmosphere to degrease the organic binder, and the organic adhesive layer was a porous body mainly composed of carbon. At this time, by adjusting the concentration of the organic adhesive, a plurality of samples having different application concentrations of the adhesive were produced. These pre-bonded bodies were heated to a temperature of 1400 ° C. or higher under reduced pressure or in an inert gas atmosphere, and the molded body and the bonding layer (porous body) maintained in this heated state were impregnated with molten silicon.
[0081]
In the molten silicon impregnation step, each of the two plate-shaped compacts is subjected to reaction sintering to form a SiC-based reaction sintered body, and at the same time, these SiC-based reaction sintered bodies are joined together by a reaction sintered joining layer. Got. About each obtained joined body, Si content of the reaction sintering joining layer was measured. Further, the bending strength of each joined body was measured in the same manner as in Example 1. The results are shown in Table 5 and FIG.
[0082]
[Table 5]
Figure 0004537669
[0083]
As is apparent from Table 5 and FIG. 11, it can be seen that when the Si content of the reactive sintered bonding layer is 5 to 50% by volume, a bonded body having excellent strength can be obtained with good reproducibility. In addition, these joining layers were comprised from the reaction-sintered SiC crystal grain and the Si phase of the network structure which exists in the clearance gap. The relationship between the Si content and the strength of the reaction-sintered bonding layer showed the same tendency even when the SiC-based reaction sintered body was bonded and then impregnated with molten silicon.
[0084]
Example22~23
  Silicon carbide (α-SiC) powder having an average particle diameter of 0.5 μm and carbon powder (carbon black) having an average particle diameter of 0.01 μm are set to 10: 3 (= SiC: C) in mass ratio. Mixed. Furthermore, this mixed powder was mixed with an appropriate amount of an organic binder, and then dispersed in a solvent to prepare a slurry. Next, the slurry was filled into the mold while being pressurized at a pressure of 1 MPa using a pressure casting molding machine. In this manner, a plate-shaped molded body having a predetermined molded body density was produced.
[0085]
Next, after the above plate-shaped molded body was naturally dried, the two plate-shaped molded bodies were bonded with an organic adhesive. This adhesive was heated and held at a temperature of 100 to 700 ° C. in an inert gas atmosphere to degrease the organic binder and to make the organic adhesive layer a porous body mainly composed of carbon. At this time, samples having different pore diameter distributions were prepared by adjusting the temperature rising rate in the heat treatment using the organic adhesive layer as a porous body mainly composed of carbon. These pre-bonded bodies were heated to a temperature of 1400 ° C. or higher under reduced pressure or in an inert gas atmosphere, and the molded body and the bonding layer (porous body) maintained in this heated state were impregnated with molten silicon.
[0086]
  In the molten silicon impregnation step, each of the two plate-shaped compacts is subjected to reaction sintering to form a SiC-based reaction sintered body, and at the same time, these SiC-based reaction sintered bodies are joined with a reaction-sintered joining layer. Got. In this way, a joined body having a three-layer joining layer (Example22) And one-layer structure (Example)23). The microstructure of the reaction sintered bonding layer was identified by observing with a metal microscope. Further, the bending strength of each joined body was measured in the same manner as in Example 1. The results are shown in Table 6 and FIG.
[0087]
[Table 6]
Figure 0004537669
[0088]
As is apparent from Table 6 and FIG. 12, when a reaction sintered bonding layer having a three-layer structure is provided, a bonded body having superior strength can be obtained with good reproducibility, and the durability and reliability of the bonded body are improved. be able to. The relationship between the structure and strength of the reaction sintered bonding layer showed the same tendency even when the SiC-based reaction sintered body was bonded and impregnated with molten silicon.
[0089]
Example24~30
  Example above22In Example, except that a plurality of samples having different pore size distributions were prepared by adjusting the heating rate in the heat treatment.22The joined bodies were produced in the same manner as described above. In each of these joined bodies, the average thickness of the central layer in the reaction sintered joining layer having a three-layer structure was measured. Further, the bending strength of each joined body was measured in the same manner as in Example 1. The results are shown in Table 7 and FIG.
[0090]
[Table 7]
Figure 0004537669
[0091]
As is apparent from Table 7 and FIG. 13, when the thickness of the central layer in the reaction-sintered bonding layer having a three-layer structure is in the range of 0.5 to 100 μm, a bonded body having superior strength can be obtained with good reproducibility. The durability and reliability of the joined body can be increased. The relationship between the structure and strength of the reaction sintered bonding layer showed the same tendency even when the SiC-based reaction sintered body was bonded and impregnated with molten silicon.
[0092]
Example31~37
  Example above22In Example, except that a plurality of samples having different pore size distributions were prepared by adjusting the heating rate in the heat treatment.22The joined bodies were produced in the same manner as described above. In each of these joined bodies, each Si content of the central layer and the side layer in the reaction sintered joining layer having a three-layer structure was measured. Moreover, Si content ratio calculated | required with respect to the center layer of these side surfaces layers was calculated | required. Further, the bending strength of each joined body was measured in the same manner as in Example 1. The results are shown in Table 8 and FIG.
[0093]
[Table 8]
Figure 0004537669
[0094]
As is apparent from Table 8 and FIG. 14, when the Si content ratio of each side layer with respect to the central layer is 10 to 70% higher, a bonded body having superior strength can be obtained with good reproducibility, and the durability of the bonded body And can improve reliability. The relationship between the structure and strength of the reaction sintered bonding layer showed the same tendency even when the SiC-based reaction sintered body was bonded and impregnated with molten silicon.
[0095]
【The invention's effect】
As described above, according to the silicon carbide-based bonded component of the present invention, the bonding strength between a plurality of component units made of a SiC-based reactive sintered body can be increased with good reproducibility. Accordingly, it is possible to stably provide silicon carbide based bonded parts having excellent strength, durability, reliability, and the like, particularly large structures and complex shaped parts. In addition, according to the method for manufacturing a silicon carbide-based bonded component of the present invention, a plurality of component units made of a SiC-based reaction sintered body can be bonded with high strength. It can be produced efficiently and at low cost.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a schematic structure of a silicon carbide based bonded part according to an embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional view schematically showing a microstructure of a bonding layer portion of the silicon carbide based bonded component shown in FIG.
3 is a cross-sectional view schematically showing a layer structure of a bonding layer of the silicon carbide based bonded component shown in FIG. 1. FIG.
FIG. 4 is a cross-sectional view showing a process for manufacturing a silicon carbide based bonded part according to the first manufacturing method of the present invention.
FIG. 5 is a cross-sectional view showing a manufacturing process of a silicon carbide based bonded part according to a second manufacturing method of the present invention.
FIG. 6 is a diagram showing the measurement result of the bending strength of the silicon carbide based bonded part according to the example of the present invention together with the measurement result of the comparative example.
FIG. 7 is a diagram showing the measurement result of the thermal conductivity of the silicon carbide based bonded part according to the example of the present invention together with the measurement result of the comparative example.
FIG. 8 is a diagram showing the relationship between the average crystal grain size of silicon carbide crystal grains and the bending strength in the bonding layer of the silicon carbide-based bonded component according to the example of the present invention.
FIG. 9 is a diagram showing the relationship between the thickness of the bonding layer and the bending strength of the silicon carbide-based bonded component according to the embodiment of the present invention.
FIG. 10 is a diagram showing the relationship between the porosity of the bonding layer and the bending strength of the silicon carbide-based bonded component according to the example of the present invention.
FIG. 11 is a diagram showing the relationship between the silicon content of the bonding layer and the bending strength of the silicon carbide-based bonded component according to the example of the present invention.
FIG. 12 is a diagram showing the relationship between the layer structure of the bonding layer and the bending strength of the silicon carbide-based bonded component according to the example of the present invention.
FIG. 13 is a diagram showing the relationship between the thickness of the center layer and the bending strength in the three-layer structure bonding layer of the silicon carbide based bonded component according to the example of the present invention.
FIG. 14 is a view showing the relationship between the silicon content ratio thickness and the bending strength in the three-layer structure bonding layer of the silicon carbide-based bonding component according to the example of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Silicon carbide group joining components, 2, 3 ... Parts unit which consists of silicon carbide group reaction sintered body, 4 ... Reaction sintering joining layer, 5 ... Silicon carbide crystal grain, 6 ... Free silicon phase, 21 ... Molded body, 22 ... Organic adhesive layer, 25,28 ... Silicon carbide based reaction sintered body, 26 ... Joint body

Claims (8)

炭化ケイ素基反応焼結体からなる複数の部品ユニットを、接合層を介して接合してなる炭化ケイ素基接合部品において、
前記接合層は、平均結晶粒径が0.1〜30μmの範囲の炭化ケイ素結晶粒と、前記炭化ケイ素結晶粒の隙間にネットワーク状に連続して存在するシリコン相とから主として構成されており、かつ前記シリコン相を5〜50体積%の範囲で含有することを特徴とする炭化ケイ素基接合部品。
In a silicon carbide based bonded component formed by bonding a plurality of component units made of a silicon carbide based reaction sintered body via a bonding layer,
The bonding layer is mainly composed of silicon carbide crystal grains having an average crystal grain size in the range of 0.1 to 30 μm, and a silicon phase continuously present in a network form in the gaps between the silicon carbide crystal grains, And the silicon carbide based joining component characterized by containing the said silicon phase in 5-50 volume%.
請求項1記載の炭化ケイ素基接合部品において、
前記接合層の厚さが1〜200μmの範囲であることを特徴とする炭化ケイ素基接合部品。
The silicon carbide based bonded component according to claim 1,
A silicon carbide based bonded part, wherein the bonding layer has a thickness in the range of 1 to 200 μm.
請求項1または請求項2記載の炭化ケイ素基接合部品において、
前記接合層の気孔率が5%以下であることを特徴とする炭化ケイ素基接合部品。
In the silicon carbide based bonded part according to claim 1 or 2,
A silicon carbide based bonded part, wherein the bonding layer has a porosity of 5% or less.
請求項1ないし請求項のいずれか1項記載の炭化ケイ素基接合部品において、
前記接合部品の平均曲げ強度が150MPa以上1000MPa以下であることを特徴とする炭化ケイ素基接合部品。
In the silicon carbide based bonded part according to any one of claims 1 to 3 ,
An average bending strength of the joined part is 150 MPa or more and 1000 MPa or less.
炭化ケイ素基反応焼結体からなる複数の部品ユニットを接合して炭化ケイ素基接合部品を製造するにあたり、
前記複数の部品ユニットに対応する複数の成形体を作製する工程と、
前記複数の成形体を有機系接着剤で接着する工程と、
前記複数の成形体を接着した後に熱処理し、前記有機系接着剤による接着部を、炭素を主体とする気孔率が20〜70%の範囲の多孔質体とする工程と、
前記多孔質体とした接着部を含めて、前記複数の成形体に溶融したシリコンを含浸させ、前記複数の成形体をそれぞれ反応焼結させて前記複数の部品ユニットとすると共に、前記複数の部品ユニット間を、反応生成した平均結晶粒径が0.1〜30μmの範囲の炭化ケイ素結晶粒と前記炭化ケイ素結晶粒の隙間にネットワーク状に連続して存在する5〜50体積%の範囲のシリコン相とから主として構成される接合層で一体的に接合する工程と
を有することを特徴とする炭化ケイ素基接合部品の製造方法。
In manufacturing a silicon carbide based bonded component by bonding a plurality of component units made of a silicon carbide based reactive sintered body,
Producing a plurality of molded bodies corresponding to the plurality of component units;
Bonding the plurality of molded bodies with an organic adhesive;
A step of bonding the plurality of molded bodies and then heat-treating the bonded portion with the organic adhesive into a porous body having a porosity mainly composed of carbon of 20 to 70%;
The plurality of molded bodies including the bonding portion formed as the porous body are impregnated with molten silicon, and the plurality of molded bodies are each subjected to reaction sintering to form the plurality of component units, and the plurality of components. Between the units, silicon carbide crystal grains having an average crystal grain size in the range of 0.1 to 30 μm and silicon in a range of 5 to 50% by volume existing continuously in a network between the silicon carbide crystal grains. And a step of integrally bonding with a bonding layer mainly composed of a phase.
請求項記載の炭化ケイ素基接合部品の製造方法において、
前記シリコンの含浸工程で、接着された前記複数の成形体を1400℃以上の温度に加熱しつつ、前記成形体および前記接着部に減圧下または不活性雰囲気下で前記溶融したシリコンを含浸させることを特徴とする炭化ケイ素基接合部品の製造方法。
In the manufacturing method of the silicon carbide based joining component of Claim 5 ,
In the silicon impregnation step, the melted silicon is impregnated under reduced pressure or in an inert atmosphere while heating the plurality of bonded compacts to a temperature of 1400 ° C. or higher. A method for producing a silicon carbide based bonded part.
炭化ケイ素基反応焼結体からなる複数の部品ユニットを接合して炭化ケイ素基接合部品を製造するにあたり、
前記炭化ケイ素基反応焼結体からなる複数の部品ユニットの接合面に存在するシリコンをそれぞれ除去する工程と、
前記複数の部品ユニットの接合面間を有機系接着剤で接着する工程と、
前記複数の部品ユニットを接着した後に熱処理し、前記有機系接着剤による接着部を、炭素を主体とする気孔率が20〜70%の範囲の多孔質体とする工程と、
前記多孔質体とした接着部に溶融したシリコンを含浸させ、前記複数の部品ユニット間を、反応生成した平均結晶粒径が0.1〜30μmの範囲の炭化ケイ素結晶粒と前記炭化ケイ素結晶粒の隙間にネットワーク状に連続して存在する5〜50体積%の範囲のシリコン相とから主として構成される接合層で一体的に接合する工程と
を有することを特徴とする炭化ケイ素基接合部品の製造方法。
In manufacturing a silicon carbide based bonded component by bonding a plurality of component units made of a silicon carbide based reactive sintered body,
Removing each silicon present on the joint surfaces of the plurality of component units made of the silicon carbide based reaction sintered body;
Adhering between bonding surfaces of the plurality of component units with an organic adhesive;
A step of bonding the plurality of component units and then heat-treating the bonded portion with the organic adhesive into a porous body having a porosity mainly composed of carbon of 20 to 70%;
The silicon carbide crystal grains having an average crystal grain size in the range of 0.1 to 30 μm and the silicon carbide crystal grains produced by impregnating the melted silicon into the porous bonded portion and reacting between the plurality of component units. And a step of integrally bonding with a bonding layer mainly composed of a silicon phase in a range of 5 to 50% by volume present continuously in a network in the gap of Production method.
請求項7記載の炭化ケイ素基接合部品の製造方法において、
前記シリコンの含浸工程で、接着された前記複数の焼結体を1400℃以上の温度に加熱しつつ、前記接着部に減圧下または不活性雰囲気下で前記溶融したシリコンを含浸させることを特徴とする炭化ケイ素基接合部品の製造方法。
The method of manufacturing a silicon carbide based cemented part according to claim 7 Symbol mounting,
In the silicon impregnation step, the bonded portions are impregnated with the molten silicon under reduced pressure or in an inert atmosphere while heating the plurality of bonded sintered bodies to a temperature of 1400 ° C. or higher. A method for manufacturing a silicon carbide based bonded part.
JP2003188954A 2003-06-30 2003-06-30 Silicon carbide-based bonded component and method for manufacturing the same Expired - Lifetime JP4537669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003188954A JP4537669B2 (en) 2003-06-30 2003-06-30 Silicon carbide-based bonded component and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003188954A JP4537669B2 (en) 2003-06-30 2003-06-30 Silicon carbide-based bonded component and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2005022905A JP2005022905A (en) 2005-01-27
JP4537669B2 true JP4537669B2 (en) 2010-09-01

Family

ID=34187327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003188954A Expired - Lifetime JP4537669B2 (en) 2003-06-30 2003-06-30 Silicon carbide-based bonded component and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4537669B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5322382B2 (en) 2006-11-30 2013-10-23 株式会社東芝 Ceramic composite member and manufacturing method thereof
JP5498191B2 (en) 2009-02-16 2014-05-21 株式会社東芝 Hydrogen power storage system and hydrogen power storage method
JP5652845B2 (en) 2009-06-01 2015-01-14 Nec東芝スペースシステム株式会社 Optical equipment for spacecraft
JP5359630B2 (en) * 2009-07-14 2013-12-04 住友電気工業株式会社 SiC structure, semiconductor device, and method of manufacturing SiC structure
JP5773331B2 (en) 2010-05-27 2015-09-02 Toto株式会社 Manufacturing method of ceramic joined body
JP6066644B2 (en) * 2012-09-26 2017-01-25 日本特殊陶業株式会社 Manufacturing method of ceramic joined body
JP6236314B2 (en) * 2013-12-27 2017-11-22 日本特殊陶業株式会社 Silicon carbide bonded body and method for manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3311553C2 (en) * 1983-03-30 1985-11-14 Kernforschungsanlage Jülich GmbH, 5170 Jülich Process for joining molded parts with silicon carbide surfaces
JPS60122774A (en) * 1983-12-05 1985-07-01 日産自動車株式会社 Method of bonding silicon carbide sintered body
JPH0264063A (en) * 1988-08-30 1990-03-05 Shin Etsu Chem Co Ltd Production of bonding type silicon carbide molded article
JPH03112871A (en) * 1989-09-27 1991-05-14 Eagle Ind Co Ltd Silicon carbide zygote and its junction

Also Published As

Publication number Publication date
JP2005022905A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
JP5322382B2 (en) Ceramic composite member and manufacturing method thereof
US8568650B2 (en) Silicon carbide matrix composite material, process for producing the same and process for producing part of silicon carbide matrix composite material
JP5496888B2 (en) Method for producing aluminum-diamond composite
KR101960264B1 (en) Residual stress free joined SiC ceramics and the processing method of the same
WO2012165208A1 (en) Joint of metal material and ceramic-carbon composite material, method for producing same, carbon material joint, jointing material for carbon material joint, and method for producing carbon material joint
CN115286394A (en) Preparation method of silicon carbide ceramic material for binder jet printing
JP5773331B2 (en) Manufacturing method of ceramic joined body
JP4537669B2 (en) Silicon carbide-based bonded component and method for manufacturing the same
JP4381207B2 (en) Process for producing reaction sintered silicon carbide structure
JP5549314B2 (en) INORGANIC FIBER CERAMIC CERAMIC BODY, COMPOSITE THEREOF, AND METHOD FOR PRODUCING THEM
CN108048685B (en) TiC/SiC/Al composite material
JP2001522343A (en) Method for manufacturing sintered ceramic body of aluminum nitride
JP2012246172A (en) Joined body of metal material and ceramics-carbon composite material, and method for producing the same
JP5085575B2 (en) Process for producing reaction sintered silicon carbide structure
JP5320132B2 (en) Porous body, metal-ceramic composite material, and production method thereof
JP2004131318A (en) Joined body of silicon carbide-based member and method of manufacturing the same
JP3035230B2 (en) Manufacturing method of multilayer ceramics
JP5069050B2 (en) Joining method and joined body
JP2006027946A (en) Silicon carbide-based joined structure, and method and apparatus for manufacturing silicon carbide-based joined structure
JP2012012665A (en) Metal-ceramic composite material
JP5009072B2 (en) JOINT BODY AND MANUFACTURING METHOD THEREOF
JP2007055897A (en) Silicon/silicon carbide composite material
TW201226205A (en) A multilayer article with bronze layer and stacked silicon carbide ceramic layer, and method for manufacturing same
JPS63166782A (en) Composite ceramic sintered body and manufacture
JP2012006820A (en) Ceramic joined body and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100210

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4537669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

EXPY Cancellation because of completion of term