JPH1177635A - Production of hollow ceramic sintered object - Google Patents

Production of hollow ceramic sintered object

Info

Publication number
JPH1177635A
JPH1177635A JP23838297A JP23838297A JPH1177635A JP H1177635 A JPH1177635 A JP H1177635A JP 23838297 A JP23838297 A JP 23838297A JP 23838297 A JP23838297 A JP 23838297A JP H1177635 A JPH1177635 A JP H1177635A
Authority
JP
Japan
Prior art keywords
hollow
ceramic molded
ceramic
sintered body
ceramic sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23838297A
Other languages
Japanese (ja)
Inventor
Keisuke Makino
圭祐 牧野
Kenichi Mizuno
賢一 水野
Toru Shimamori
融 島森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP23838297A priority Critical patent/JPH1177635A/en
Publication of JPH1177635A publication Critical patent/JPH1177635A/en
Pending legal-status Critical Current

Links

Landscapes

  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

PROBLEM TO BE SOLVED: To markedly enhance yield at the time of production of a hollow ceramic sintered object. SOLUTION: A raw material powder is used to be formed into a square pillar by a handpress and isotropic pressure press is applied to this pillar. Next, the square pellar 11 is cut by green processing so as to form the same upper and lower shapes and the cut bonding surfaces are flatly ground to form planar bonding surfaces 14, 15. Further, recessed parts 16, 17 becoming a hollow part 3 are formed by green processing to obtain first and second ceramic molded objects 18, 19. By this method, the first and second ceramic molded objects 18, 19 bisected by a plane containing an axial line are obtained. Thereafter, ethanol is applied to the bonding surfaces of the first and second ceramic molded objects 18, 19 and both bonding surfaces 14, 15 are combined with each other to obtain a bonded object 22. Thereafter, the bonded object 22 is baked in a nitrogen atmosphere under normal pressure at 1700 deg.C for 4 hr to obtain a pipe being a hollow ceramic sintered object.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、少なくとも2つの
セラミック成形体を接合し焼結することにより中空状セ
ラミック焼結体を製造する方法に関する。
The present invention relates to a method for manufacturing a hollow ceramic sintered body by joining and sintering at least two ceramic molded bodies.

【0002】[0002]

【従来の技術】従来より、少なくとも2つのセラミック
成形体を接合し焼結することにより中空状セラミック焼
結体を製造する方法としては、特開昭64−33080
号公報に開示されたものが知られている。
2. Description of the Related Art Conventionally, a method of manufacturing a hollow ceramic sintered body by joining and sintering at least two ceramic molded bodies is disclosed in Japanese Patent Application Laid-Open No. Sho 64-33080.
The one disclosed in Japanese Patent Application Laid-Open Publication No. H10-260, 1993 is known.

【0003】即ち、特開昭64−33080号公報に
は、図11に示すように、2つの構成部分31、32か
らなるパイプ30が記載されている。このパイプ30を
製造するには、まず構成部分31、32を嵩密度の密度
差が5〜15%となるように成形し、次いで両者を接合
したあとコールドアイソスタティックプレス(以下「C
IP」という)に付し、その後焼成している。
[0003] In other words, Japanese Patent Application Laid-Open No. Sho 64-33080 describes a pipe 30 composed of two components 31, 32 as shown in FIG. In order to manufacture the pipe 30, first, the constituent parts 31 and 32 are formed so that the difference in bulk density is 5 to 15%, and then the two are joined, and then a cold isostatic press (hereinafter referred to as "C").
IP ”), and then fired.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、特開昭
64−33080号公報の製造方法によれば、構成部分
31、32の密度差が5〜15%であるため、両構成部
分31、32を接合したのちCIPを行っている時に割
れるとか、焼結時にひびが入るとか、仮に焼結できたと
しても両者の寸法が合わないとかの不具合が生じるおそ
れがあった。
However, according to the manufacturing method disclosed in JP-A-64-33080, since the density difference between the constituent parts 31 and 32 is 5 to 15%, the two constituent parts 31 and 32 are not combined. There was a possibility that cracks would occur during CIP after joining, cracks would occur during sintering, or even if sintering could be performed, the dimensions would not match.

【0005】本発明は上記課題に鑑みなされたものであ
り、中空状セラミック焼結体を製造する際の歩留まりが
著しく向上する中空状セラミック焼結体の製造方法を提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide a method for producing a hollow ceramic sintered body that significantly improves the yield when producing the hollow ceramic sintered body.

【0006】[0006]

【課題を解決するための手段、発明の実施の形態及び発
明の効果】上記課題を解決するため、本発明の中空状セ
ラミック焼結体の製造方法は、少なくとも一つの軸線に
沿って連通する中空部を有する中空状セラミック焼結体
の製造方法において、中空状セラミック焼結体を軸線に
沿った面で中空部とともに2以上に分割したときの各形
状に対応するセラミック成形体を、それぞれの密度差が
5%以内となるように成形する成形工程と、成形工程で
製造したセラミック成形体同士を等方圧プレスにより接
合する接合工程と、接合工程で接合したセラミック成形
体を焼結して中空状セラミック焼結体とする焼結工程と
を含んでなることを特徴とする。
Means for Solving the Problems, Embodiments of the Invention, and Effects of the Invention In order to solve the above-mentioned problems, a method of manufacturing a hollow ceramic sintered body according to the present invention comprises a hollow ceramic body communicating with at least one axis. In the method for producing a hollow ceramic sintered body having a portion, the ceramic molded body corresponding to each shape when the hollow ceramic sintered body is divided into two or more together with the hollow portion along a surface along the axis is formed by a density A molding step of molding so that the difference is within 5%, a joining step of joining the ceramic molded bodies manufactured in the molding step by isostatic pressing, and sintering the ceramic molded bodies joined in the joining step to form a hollow. And a sintering step of forming a ceramic sintered body.

【0007】本発明は、セラミック焼結体中に例えば
パイプ形状の中空部が貫通する様に、少なくとも一つの
軸線に沿って連通する中空部を有する中空状セラミック
焼結体の製造方法である。本発明においては、まず、目
的とする中空状セラミック焼結体を、軸線に沿った面で
中空部とともに2以上に分割したときの各形状に対応す
るセラミック成形体を成形する(成形工程)。
The present invention is a method for manufacturing a hollow ceramic sintered body having at least one hollow portion communicating along at least one axis such that a hollow portion in the form of, for example, a pipe penetrates through the ceramic sintered body. In the present invention, first, a ceramic molded body corresponding to each shape when the target hollow ceramic sintered body is divided into two or more together with the hollow portion along the axis (molding step).

【0008】このとき、各セラミック成形体の密度差が
5%以内となるようにする。密度差がこの範囲を超える
場合には、接合工程において等方圧プレスを行う時に割
れたり、焼結工程の際にクラックや割れが入ったり、焼
結後に寸法が合わなかったりするおそれがある。これら
の問題点は、本発明で製造しようとするセラミック焼結
体が中空状であるため、一層起こりやすい。つまり、各
セラミック成形体の密度差を5%以内とすれば、等方圧
プレスを行う時の割れ、焼結工程の際のクラックや割れ
の発生、焼結後の寸法の不一致を防止できる。それによ
り、製造の際の歩留まりが向上する。
At this time, the density difference between the ceramic molded bodies is set to be within 5%. If the density difference exceeds this range, there is a possibility that cracks will occur during isostatic pressing in the joining step, cracks and cracks will occur during the sintering step, and dimensions will not match after sintering. These problems are more likely to occur because the ceramic sintered body to be manufactured in the present invention is hollow. That is, if the density difference between the ceramic molded bodies is within 5%, it is possible to prevent cracks during isostatic pressing, cracks and cracks during the sintering step, and mismatching of dimensions after sintering. Thereby, the yield at the time of manufacturing is improved.

【0009】特に本発明では、例えば軸線に対して垂直
にセラミック成形体を分割して形成するのではなく、軸
線に沿って分割してセラミック成形体を形成する。従っ
て、例えばパイプ形状の様に、中空部が軸線に沿って長
く伸びている部材の場合には、接合面が長く伸びること
になり、例えば軸線に沿って垂直に分割した場合と比べ
て、接合面にかかる力が分散するので、焼成前及び焼成
後において変形・破損し難い。
In particular, in the present invention, for example, the ceramic molded body is not divided and formed along the axis, but divided along the axis to form the ceramic molded body. Therefore, for example, in the case of a member in which the hollow portion extends long along the axis, such as a pipe shape, the joining surface extends long, for example, compared with the case where the hollow portion is vertically divided along the axis, Since the force applied to the surface is dispersed, it is difficult to deform or break before and after firing.

【0010】更に、本発明の様に軸線に沿った面により
分割することにより、その接合面が広くなるので、等方
圧プレスを行う時の割れ、焼結工程の際のクラックや割
れの発生、焼結後の寸法の不一致を一層好適に防止でき
る。尚、軸線に沿った面として、平面を採用すると、分
割が容易であるので好ましいが、多少の曲面や途中で折
れ曲がっている様な面も採用できる。特に、軸線の沿っ
た面が、軸線を含む平面であると、分割される中空部も
同じ形状となるので、等方圧プレスを行う時の割れ、焼
結工程の際のクラックや割れの発生、焼結後の寸法の不
一致をより一層好適に防止できるとともに、セラミック
成形体の形状が単純化され、その作業性が向上するとい
う利点がある。
[0010] Further, since the joint surface is widened by dividing the surface along the axis line as in the present invention, cracks during the isostatic pressing and cracks and cracks during the sintering process are generated. In addition, mismatching of dimensions after sintering can be more suitably prevented. In addition, it is preferable to adopt a flat surface as the surface along the axis line, since it is easy to divide the surface, but it is also possible to adopt a slightly curved surface or a surface that is bent in the middle. In particular, if the surface along the axis is a plane including the axis, the divided hollow portions have the same shape, so that cracks occur during isostatic pressing, cracks and cracks during the sintering process In addition, there is an advantage that the mismatch of dimensions after sintering can be more preferably prevented, and the shape of the ceramic molded body is simplified, and the workability thereof is improved.

【0011】成形工程において、各セラミック成形体の
密度差を5%以内とするには、例えば、1つの粗セラミ
ック成形体を成形し、この粗セラミック成形体から各セ
ラミック成形体を得るようにしてもよい。この場合、各
セラミック成形体の密度は元となる粗セラミック成形体
と一致するため、密度差をほぼゼロにすることができ
る。あるいは、各セラミック成形体を成形するに当り、
セラミック組成物を等方圧プレス、射出成形又は押出成
形等にて、予め成形時のプレス圧と密度の関係を求めた
上で、成形・生加工を行ってもよい。このうち、CIP
のような等方圧プレスにて成形することが、密度の管理
を容易に行うことができ、しかも射出成形等に比べて設
備費や成形コストが嵩まない点で好ましい。なお、成形
体の密度は周知の方法を用いて測定することができる
が、複雑形状の場合には、例えば、既知の密度を有する
不溶性の樹脂又はゴムを用いて成形体に一定量被覆し、
この状態でアルキメデス法を用いて密度を測定するのが
好ましい。
In the forming step, in order to keep the density difference between the ceramic molded bodies within 5%, for example, one coarse ceramic molded body is formed and each ceramic molded body is obtained from the coarse ceramic molded body. Is also good. In this case, since the density of each ceramic molded body matches the original coarse ceramic molded body, the difference in density can be made substantially zero. Alternatively, in forming each ceramic molded body,
The ceramic composition may be subjected to molding / raw processing after obtaining the relationship between the press pressure and the density at the time of molding by isostatic pressing, injection molding, extrusion molding or the like. Of these, CIP
Molding with an isotropic pressure press such as that described above is preferred in that the density can be easily controlled and the equipment cost and molding cost are not increased as compared with injection molding or the like. Incidentally, the density of the molded body can be measured using a known method, but in the case of a complicated shape, for example, a fixed amount is coated on the molded body using an insoluble resin or rubber having a known density,
In this state, it is preferable to measure the density using the Archimedes method.

【0012】続いて、セラミック成形体同士を等方圧
プレスにより接合する(接合工程)。等方圧プレスの圧
力値は、接合後のセラミック成形体の密度が成形工程で
得られたセラミック成形体の密度よりも大きくなるよう
に定める。例えば、成形工程を1.5t/cm2 のCI
Pで行った場合、接合工程では1.5〜10t/cm 2
のCIPを行うことが好ましい。尚、接合後のセラミッ
ク成形体を焼結前に加工する(例えば合わせ面の段差を
なくすように切削する等)場合には、密度が大きくなり
過ぎないように圧力値を定める(上述の例では例えば
1.5〜2t/cm2 )。
Subsequently, the ceramic molded bodies are subjected to isotropic pressure.
Joining by pressing (joining step). Isostatic pressing pressure
The force value depends on the density of the ceramic compact after joining during the molding process.
So that it is larger than the density of the obtained ceramic compact
Set forth in For example, the molding process is performed at 1.5 t / cmTwoCI of
P, 1.5 to 10 t / cm in the bonding step Two
Is preferably performed. In addition, the ceramic after joining
Before sintering (for instance,
In such a case, the density increases.
The pressure value is determined so that it is not too long (in the above example, for example,
1.5-2t / cmTwo).

【0013】この接合工程において、等方圧プレスによ
り接合する前に、各セラミック成形体同士の接合面を合
わせたあと、ラテックス等により少なくとも合わせ面を
シールすることが好ましい。これは、等方圧プレスを行
う際には加圧媒体中で加圧するが、この加圧媒体が合わ
せ面に侵入しないようにするためである。尚、ラテック
ス等は、焼成前に手で取り除いてもよいし、焼成温度以
下又は材料に悪影響を与えない温度以下(例えば450
℃の炉)で焼いてもよい。
In this joining step, it is preferable that before joining by isostatic pressing, the joining surfaces of the respective ceramic molded bodies are matched, and at least the joining surfaces are sealed with latex or the like. This is because when the isotropic pressure press is performed, pressure is applied in a pressurized medium, but this pressurized medium does not enter the mating surface. The latex or the like may be removed by hand before firing, or may be removed at a temperature lower than the firing temperature or at a temperature that does not adversely affect the material (for example, 450
℃ oven).

【0014】また、接合工程において、等方圧プレスに
より接合する前に、各セラミック成形体の接合面に揮発
性液体を塗布して湿潤させたあと各接合面を合わせても
よい。あるいは、各セラミック成形体同士の接合面を合
わせたあと、その合わせ面に揮発性液体を流し込んでも
よい。いずれの場合も、各接合面は弱い力ながら接合す
るため、等方圧プレスを行う上で取り扱いが容易とな
る。ここで、揮発性液体としては、例えばエタノール、
メタノール、アセトン等が挙げられる。また、各セラミ
ック成形体同士の接合面を合わせたあと、その合わせ面
に共素地泥漿を流し込んでもよい。この場合、合わせ面
に隙間があったとしても、共素地泥漿により埋めること
ができる。ここで、共素地泥漿としては、例えば揮発性
液体にセラミック成形体のセラミック成分を分散させた
ものが挙げられる。
In the joining step, before joining by isostatic pressing, a volatile liquid may be applied to the joining surface of each ceramic molded body and wetted, and then the joining surfaces may be joined. Alternatively, after the joining surfaces of the respective ceramic molded bodies are joined, a volatile liquid may be poured into the joining surfaces. In any case, since the joining surfaces are joined with a small force, the handling is easy in performing the isostatic pressing. Here, as the volatile liquid, for example, ethanol,
Methanol, acetone and the like can be mentioned. Further, after the joining surfaces of the respective ceramic molded bodies are joined, the co-base slurry may be poured into the joining surfaces. In this case, even if there is a gap in the mating surface, the mating surface can be filled with the slurry. Here, examples of the co-base slurry include those obtained by dispersing a ceramic component of a ceramic molded body in a volatile liquid.

【0015】また、セラミック成形体同士の接合面の形
状は特に限定されるものではないが、平面状であれば、
例えば平面研削やフライズにより、接合面を容易に形成
できるので好ましい。 最後に、接合したセラミック成形体を焼結して中空状
セラミック焼結体とする(焼結工程)。このときの焼成
温度は、用いるセラミック材料に応じて適宜定める。
[0015] The shape of the joining surface between the ceramic molded bodies is not particularly limited.
For example, the surface to be bonded can be easily formed by surface grinding or milling, which is preferable. Finally, the joined ceramic molded body is sintered to form a hollow ceramic sintered body (sintering step). The firing temperature at this time is appropriately determined according to the ceramic material used.

【0016】以上のように、本発明の中空状セラミック
焼結体の製造方法によれば、軸線に沿った面にて分割す
ることにより、その製造作業が容易であり、各作業工程
における破損等を防止することができる。また、接合工
程において等方圧プレスを行う時に割れたり、焼結工程
の際にひびが入ったり、焼結後に寸法が合わなかったり
するおそれがないため、中空状セラミック焼結体を製造
する際の歩留まりが著しく向上するという効果が得られ
る。更に、大型部品、長尺部品または複雑形状品は生加
工が困難なので、本発明の製造方法を適用することによ
りコスト低減、歩留まり及び寸法精度の向上を図ること
ができる。
As described above, according to the method for manufacturing a hollow ceramic sintered body of the present invention, by dividing the sintered body along a plane along the axis, the manufacturing operation is easy, and breakage or the like in each operation process can be achieved. Can be prevented. Also, since there is no risk of cracking during the isostatic pressing in the joining step, cracking during the sintering step, or dimensions mismatching after sintering, when manufacturing a hollow ceramic sintered body, Has an effect that the yield is significantly improved. Furthermore, since large parts, long parts, or complicated-shaped parts are difficult to be raw-processed, cost reduction, yield, and dimensional accuracy can be improved by applying the manufacturing method of the present invention.

【0017】[0017]

【実施例】以下に、本発明の好適な実施例を図面に基づ
いて説明する。尚、本発明の実施の形態は、下記の実施
例に何ら限定されるものではなく、本発明の技術的範囲
に属する限り種々の形態を採り得ることはいうまでもな
い。 (実施例1)図1は中空状セラミック焼結体の製造方法
を示す説明図、図2は中空状セラミック焼結体の実施例
であるパイプの斜視図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. The embodiments of the present invention are not limited to the following examples at all, and it goes without saying that various embodiments can be adopted as long as they belong to the technical scope of the present invention. (Embodiment 1) FIG. 1 is an explanatory view showing a method of manufacturing a hollow ceramic sintered body, and FIG. 2 is a perspective view of a pipe which is an embodiment of the hollow ceramic sintered body.

【0018】本実施例は、下記の成形工程、接合工程、
焼結工程を経ることにより図2に示すパイプ1を製造し
た一例であり、このパイプ1は、直方体状のセラミック
焼結体本体2内部に、略直角に曲がったパイプ形状の中
空部3を有するものである。尚、中空部3の両端は、セ
ラミック焼結体本体2の隣合う平面2a,2bに開口し
ている。 [1]成形工程 まず、α−Si34、Y23、AlN、Al23の各
粉末を、重量比で88:6:3:3で湿式混合してスラ
リーを得た。このスラリーを、スプレードライでプレス
用に乾燥造粒して粉末を得た。この粉末を、プレス用金
型(図示せず)内に入れ、ハンドプレス(例えば100
kg/cm2)にて、図1(a)に示す角柱(粗セラミ
ック成形体)11を形成した。
In this embodiment, the following molding step, joining step,
This is an example in which the pipe 1 shown in FIG. 2 is manufactured through a sintering process. This pipe 1 has a pipe-shaped hollow portion 3 that is bent at substantially a right angle inside a rectangular parallelepiped ceramic sintered body 2. Things. Both ends of the hollow portion 3 are open to the adjacent flat surfaces 2 a and 2 b of the ceramic sintered body 2. [1] forming step First, α-Si 3 N 4, Y 2 O 3, AlN, each powder of Al 2 O 3, a weight ratio of 88: 6: 3: to obtain a slurry by wet mixing by 3. The slurry was dried and granulated for spray pressing by spray drying to obtain a powder. This powder is placed in a press mold (not shown) and hand pressed (for example, 100
kg / cm 2 ), a prism (coarse ceramic molded body) 11 shown in FIG. 1A was formed.

【0019】その後、この角柱11をポリウレタン袋で
真空パックして被覆し、生加工し易い強度となる様に、
等方圧プレス(例えば1.5t/cm2)をかけた。 次に、角柱11を、図1(b)に示す様に、生加工で
上下が同じ形状となる様に切断して、第1及び第2粗セ
ラミック分割体12,13を得た。
Thereafter, the prism 11 is vacuum-packed and covered with a polyurethane bag, and has a strength that facilitates raw processing.
An isotropic pressure press (for example, 1.5 t / cm 2 ) was applied. Next, as shown in FIG. 1B, the prism 11 was cut by raw processing so that the upper and lower portions had the same shape, and first and second coarse ceramic divided bodies 12 and 13 were obtained.

【0020】次に、図1(c)に示す様に、第1及び
第2粗セラミック分割体12,13の接合面側を、例え
ば生加工用平面研削盤を用いて平面研削し、平面状の接
合面14,15を形成した。更に、中空部3となる凹部
16,17を、フライス盤により生加工で作製して、第
1及び第2セラミック成形体18,19を得た。これに
より、中空部3の軸線に沿った面、詳しくは軸線を含む
平面により2分割された第1及び第2セラミック成形体
18,19が得られる。
Next, as shown in FIG. 1 (c), the joint surfaces of the first and second coarse ceramic divided bodies 12 and 13 are ground by using, for example, a surface grinding machine for raw processing to obtain a planar shape. Are formed. Further, the concave portions 16 and 17 serving as the hollow portions 3 were formed by raw processing using a milling machine to obtain first and second ceramic molded bodies 18 and 19. Thereby, the first and second ceramic molded bodies 18 and 19 divided into two along the axis of the hollow portion 3 along the axis, more specifically, the plane including the axis are obtained.

【0021】つまり、第1及び第2セラミック成形体1
8、19は、製造しようとするパイプ1をその中空部3
の軸線を含む平面で2分割したときの各形状に対応した
形状である。尚、第1及び第2セラミック成形体18、
19は、共に粗セラミック成形体11を生加工したもの
であるため、両者の密度差はほぼゼロであり、5%以内
である。 [2]接合工程 第1セラミック成形体18の接合面14と第2セラミッ
ク成形体19の接合面15にエタノールを塗布して湿潤
させ、図1(d)に示す様に、両接合面14,15を合
わせ、接合体22を得た。このようにエタノールを塗布
して接合面14,15を合わせることで、すでに弱い力
ながら接合していた。
That is, the first and second ceramic molded bodies 1
8 and 19 show that the pipe 1 to be manufactured is
Are shapes corresponding to the respective shapes when divided into two by a plane including the axis of. Note that the first and second ceramic molded bodies 18,
19 is a result of raw processing of the crude ceramic molded body 11, so that the difference in density between the two is almost zero and within 5%. [2] Joining Step Ethanol is applied to the joining surface 14 of the first ceramic molded body 18 and the joining surface 15 of the second ceramic molded body 19 to wet them, and as shown in FIG. 15 were combined to obtain a joined body 22. By applying ethanol in this way and joining the joining surfaces 14 and 15, the joining was already performed with a weak force.

【0022】尚、合わせられた接合面14,15を合わ
せ面23と称するが、合わせ面23の位置決めは、両セ
ラミック成形体18,19の外周寸法を正確にしておく
ことで、精度の高いものとできる。次いで、上記成形体
と同じ組成の粉末をエタノールに懸濁させた共素地泥漿
を、接合体22の合わせ面23に流し込んだ。このよう
に共素地泥漿を流し込むことで、合わせ面23の隙間が
埋められた。
The joined surfaces 14 and 15 are referred to as a mating surface 23. The positioning of the mating surface 23 is performed by making the outer dimensions of both the ceramic molded bodies 18 and 19 accurate so that a high precision can be obtained. And can be. Next, a co-base slurry in which a powder having the same composition as the above-mentioned molded body was suspended in ethanol was poured into the mating surface 23 of the joined body 22. The gap between the mating surfaces 23 was filled by pouring the co-base ground slurry in this manner.

【0023】続いて、エタノールを充分蒸発させた後、
接合体22の全面にラテックスを塗布し、乾燥させた。
このラテックスは、第1及び第2セラミック成形体1
8、19の収縮に追従し、後述するCIPを行うときの
加圧媒体の侵入を防ぐものである。
Subsequently, after evaporating the ethanol sufficiently,
Latex was applied to the entire surface of the joined body 22 and dried.
This latex is used for the first and second ceramic moldings 1.
This is to follow the contraction of 8 and 19 and prevent the intrusion of the pressurized medium when performing the CIP described later.

【0024】尚、接合一体化までの両セラミック成形体
18,19がずれたり、離れたりしない様に、輪ゴム2
1等で補助的に固定することができる。続いて、ラテッ
クスをコーティングした接合体22を4t/cm2 の圧
力でCIPを行った。その後、この接合体22を焼成温
度以下である450℃の炉で焼くことによりラテックス
を除去した。 [3]焼結工程 CIPを行った接合体22を常圧の窒素雰囲気中、17
00℃で4時間という条件下で焼成を行い、中空状セラ
ミック焼結体である図2のパイプ1を得た。
Note that the rubber band 2 is not shifted or separated from the two ceramic molded bodies 18 and 19 until the joining is integrated.
It can be fixed auxiliary by 1 or the like. Subsequently, the bonded body 22 coated with the latex was subjected to CIP at a pressure of 4 t / cm 2 . Thereafter, the bonded body 22 was baked in a furnace at 450 ° C., which is lower than the calcination temperature, to remove latex. [3] Sintering Step The bonded body 22 subjected to the CIP is placed in a nitrogen atmosphere at normal pressure for 17 minutes.
Firing was performed at 00 ° C. for 4 hours to obtain a hollow ceramic sintered body, pipe 1 in FIG.

【0025】このパイプ1にはひび割れや寸法違いなど
が生じていなかった。また、このパイプ1は、溶鉱炉部
品や鉄製造プラント部品として十分な強度を有してい
た。この様に、本実施例では、中空部3の軸線を含む平
面によって2分割された第1セラミック成形体18,1
9を用い、それを両接合面14,15にて接合し、焼成
してパイプ1を製造するので、歩留まりが良いだけでな
く、その製造が容易であるという利点がある。
The pipe 1 had no cracks or dimensional differences. This pipe 1 had sufficient strength as a blast furnace part or an iron manufacturing plant part. As described above, in the present embodiment, the first ceramic molded bodies 18, 1 divided into two by the plane including the axis of the hollow portion 3.
Since the pipe 9 is used and joined at both joining surfaces 14 and 15 and fired to produce the pipe 1, there is an advantage that not only the yield is good but also the production is easy.

【0026】尚、このパイプ1の中空部3の開口端の周
辺を、接続する部材に応じて、適宜加工してもよい。こ
の加工は、生の状態や焼成後に行なうことができる。 [その他の実施例]図3〜図6に示すような中空状セラ
ミック焼結体についても、上記実施例と同様にして製造
することができる。 (実施例2)即ち、図3に示す様に、四角柱が直角に曲
がった形状の中空状セラミック焼結体31を製造する際
には、各セラミック成形体の形状は、同様に曲がった形
状で、中空部32の軸線を含む平面aにより切断して2
分割した形状に対応させてもよい。尚、軸線に沿って更
に多数に分割してもよい(例えば4分割など)。 (実施例3)図4に示す様に、円筒が直角に曲がった形
状の実施例3の中空状セラミック焼結体41を製造する
際には、各セラミック成形体の形状は、同様に曲がった
形状で、中空部42の軸線を含む平面bにより切断して
2分割した形状に対応させてもよい。尚、軸線に沿って
更に多数に分割してもよい(例えば4分割など)。 (実施例4)図5に示す様に、直方体中に内部の径が大
きな円柱状の中空部52を有する中空状セラミック焼結
体51を製造する際には、各セラミック成形体の形状
は、中空部52の軸線を含む平面cにより切断して2分
割した形状に対応させてもよい。尚、軸線に沿って更に
多数に分割してもよい(例えば4分割など)。 (実施例5)図6に示す様に、内部の径が大きな円柱状
の中空部62を有するパイプ状の中空状セラミック焼結
体11を製造する際には、各セラミック成形体の形状
は、中空部62の軸線を含む平面dにより切断して2分
割した形状に対応させてもよい。尚、軸線に沿って更に
多数に分割してもよい(例えば4分割など)。
The periphery of the open end of the hollow portion 3 of the pipe 1 may be appropriately processed according to the members to be connected. This processing can be performed in a raw state or after firing. [Other Embodiments] Hollow ceramic sintered bodies as shown in FIGS. 3 to 6 can be manufactured in the same manner as in the above embodiment. (Example 2) That is, as shown in FIG. 3, when manufacturing a hollow ceramic sintered body 31 having a rectangular prism bent at a right angle, the shape of each ceramic molded body is similarly bent. And cut along a plane a including the axis of the hollow portion 32 to obtain 2
It may correspond to the divided shape. In addition, you may divide | segment further along an axis (for example, four divisions etc.). Embodiment 3 As shown in FIG. 4, when manufacturing the hollow ceramic sintered body 41 of Embodiment 3 in which the cylinder is bent at a right angle, the shape of each ceramic molded body is similarly bent. The shape may correspond to a shape that is cut by a plane b including the axis of the hollow portion 42 and divided into two. In addition, you may divide | segment further along an axis (for example, four divisions etc.). (Embodiment 4) As shown in FIG. 5, when manufacturing a hollow ceramic sintered body 51 having a cylindrical hollow portion 52 having a large internal diameter in a rectangular parallelepiped, the shape of each ceramic molded body is as follows. The hollow portion 52 may be cut along a plane c including the axis thereof to correspond to a shape divided into two. In addition, you may divide | segment further along an axis (for example, four divisions etc.). (Embodiment 5) As shown in FIG. 6, when manufacturing a pipe-shaped hollow ceramic sintered body 11 having a cylindrical hollow portion 62 having a large internal diameter, the shape of each ceramic molded body is as follows. The hollow portion 62 may be cut along a plane d including the axis to correspond to a shape divided into two. In addition, you may divide | segment further along an axis (for example, four divisions etc.).

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1の中空状セラミック焼結体の製造方
法を示す説明図である。
FIG. 1 is an explanatory diagram illustrating a method for manufacturing a hollow ceramic sintered body of Example 1.

【図2】 実施例1の中空状セラミック焼結体を示す斜
視図である。
FIG. 2 is a perspective view showing a hollow ceramic sintered body of Example 1.

【図3】 実施例2の中空状セラミック焼結体を示す斜
視図である。
FIG. 3 is a perspective view showing a hollow ceramic sintered body of Example 2.

【図4】 実施例3の中空状セラミック焼結体を示す斜
視図である。
FIG. 4 is a perspective view showing a hollow ceramic sintered body of Example 3.

【図5】 実施例4の中空状セラミック焼結体を示す斜
視図である。
FIG. 5 is a perspective view showing a hollow ceramic sintered body of Example 4.

【図6】 実施例5の中空状セラミック焼結体を示す斜
視図である。
FIG. 6 is a perspective view showing a hollow ceramic sintered body of Example 5.

【符号の説明】[Explanation of symbols]

1・・・パイプ、 3,32,42,52,62・・・中空部、 11・・・角柱、 12・・・第2セラミック成形体、 14,15・・・接合面、 18・・・第1セラミック成形体、 22・・・接合体、 23・・・合わせ面、 31,41,51,61・・・中空状セラミック焼結体 DESCRIPTION OF SYMBOLS 1 ... Pipe, 3, 32, 42, 52, 62 ... Hollow part, 11 ... Square pillar, 12 ... 2nd ceramic molding, 14, 15 ... Joining surface, 18 ... 1st ceramic molded body, 22 ... joined body, 23 ... mating surface, 31, 41, 51, 61 ... hollow ceramic sintered body

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一つの軸線に沿って連通する
中空部を有する中空状セラミック焼結体の製造方法にお
いて、 前記中空状セラミック焼結体を前記軸線に沿った面で前
記中空部とともに2以上に分割したときの各形状に対応
するセラミック成形体を、それぞれの密度差が5%以内
となるように成形する成形工程と、 前記成形工程で製造したセラミック成形体同士を等方圧
プレスにより接合する接合工程と、 前記接合工程で接合したセラミック成形体を焼結して中
空状セラミック焼結体とする焼結工程とを含んでなるこ
とを特徴とする中空状セラミック焼結体の製造方法。
1. A method of manufacturing a hollow ceramic sintered body having a hollow portion communicating along at least one axis, wherein the hollow ceramic sintered body is two or more together with the hollow portion on a surface along the axis. Forming a ceramic molded body corresponding to each shape when divided into a shape such that the difference in density is within 5%, and joining the ceramic molded bodies produced in the molding step by isotropic pressure pressing A sintering step of sintering the ceramic molded body joined in the joining step to form a hollow ceramic sintered body.
【請求項2】 前記成形工程において、前記軸線に沿っ
た面として、該軸線を含む平面を用いることを特徴とす
る請求項1記載の中空状セラミック焼結体の製造方法。
2. The method for producing a hollow ceramic sintered body according to claim 1, wherein in the forming step, a plane including the axis is used as a surface along the axis.
【請求項3】 前記成形工程において、1つの粗セラミ
ック成形体を成形し、該粗セラミック成形体から各セラ
ミック成形体を得ることを特徴とする請求項1又は2に
記載の中空状セラミック焼結体の製造方法。
3. The hollow ceramic sintered body according to claim 1, wherein in the forming step, one coarse ceramic molded body is molded, and each ceramic molded body is obtained from the coarse ceramic molded body. How to make the body.
【請求項4】 前記成形工程において、等方圧プレスを
利用して成形することを特徴とする請求項1〜3のいず
れかに記載の中空状セラミック焼結体の製造方法。
4. The method for producing a hollow ceramic sintered body according to claim 1, wherein the forming step is performed by using an isostatic press.
【請求項5】 前記成形工程において、前記セラミック
成形体を成形した後に生加工を施すことを特徴とする請
求項1〜4のいずれかに記載の中空状セラミック焼結体
の製造方法。
5. The method for producing a hollow ceramic sintered body according to claim 1, wherein in the forming step, green processing is performed after forming the ceramic molded body.
【請求項6】 前記接合工程において、前記セラミック
成形体同士を等方圧プレスにより接合する前に、前記セ
ラミック成形体同士の接合面に共素地泥漿を流し込むこ
とを特徴とする請求項1〜5のいずれかに記載の中空状
セラミック焼結体の製造方法。
6. The method according to claim 1, wherein in the joining step, before the ceramic molded bodies are joined to each other by isostatic pressing, co-base slurry is poured into a joint surface between the ceramic molded bodies. The method for producing a hollow ceramic sintered body according to any one of the above.
【請求項7】 前記接合工程において、前記セラミック
成形体同士の接合面が平面状であることを特徴とする請
求項1〜7のいずれかに記載の中空状セラミック焼結体
の製造方法。
7. The method for producing a hollow ceramic sintered body according to claim 1, wherein in the bonding step, a bonding surface between the ceramic molded bodies is planar.
JP23838297A 1997-09-03 1997-09-03 Production of hollow ceramic sintered object Pending JPH1177635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23838297A JPH1177635A (en) 1997-09-03 1997-09-03 Production of hollow ceramic sintered object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23838297A JPH1177635A (en) 1997-09-03 1997-09-03 Production of hollow ceramic sintered object

Publications (1)

Publication Number Publication Date
JPH1177635A true JPH1177635A (en) 1999-03-23

Family

ID=17029366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23838297A Pending JPH1177635A (en) 1997-09-03 1997-09-03 Production of hollow ceramic sintered object

Country Status (1)

Country Link
JP (1) JPH1177635A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005186033A (en) * 2003-12-26 2005-07-14 Fuji Xerox Co Ltd Manufacturing method of micro reactor chip
JP2007095383A (en) * 2005-09-27 2007-04-12 Kyocera Corp Support for cell of fuel cell and method of manufacturing it, as well as cell of fuel cell and method of manufacturing it
JP2018149481A (en) * 2017-03-13 2018-09-27 太平洋セメント株式会社 Manufacturing apparatus of microparticle by spray pyrolysis process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005186033A (en) * 2003-12-26 2005-07-14 Fuji Xerox Co Ltd Manufacturing method of micro reactor chip
JP4492120B2 (en) * 2003-12-26 2010-06-30 富士ゼロックス株式会社 Microreactor chip fabrication method
JP2007095383A (en) * 2005-09-27 2007-04-12 Kyocera Corp Support for cell of fuel cell and method of manufacturing it, as well as cell of fuel cell and method of manufacturing it
JP2018149481A (en) * 2017-03-13 2018-09-27 太平洋セメント株式会社 Manufacturing apparatus of microparticle by spray pyrolysis process

Similar Documents

Publication Publication Date Title
US4248813A (en) Process for producing high density sintered products
EP0255577B1 (en) Method of producing mold for slip casting
JP2009535622A5 (en) Pressure sensor using near net shape sintered ceramic
JPS55161902A (en) Ceramic turbine rotor
EP0177355B1 (en) Method for manufacturing a composite ceramic structure
JPH1177635A (en) Production of hollow ceramic sintered object
Wang et al. Joining of advanced ceramics in green state
JPH09277219A (en) Manufacture of hollow ceramic sintered body
JPH02279570A (en) Production of structural ceramics body
US5084329A (en) Ceramic joined body
JPH0375510B2 (en)
JP2000072558A (en) Production of ceramic part having cermet body
JP2997180B2 (en) Manufacturing method of ceramic products
JPH0410905A (en) Production of ceramic component part
JPS63236605A (en) Method of preparing moved earth made of ceramics
JPS6143163B2 (en)
JPS63170278A (en) Method of joining ceramic structure
JP2002255666A (en) Jointed body and method of producing the same
JPH1053453A (en) Production of high density ceramics
JPS62142701A (en) Molding method using ceramic and metallic powder
JPH04305070A (en) Ceramic joined body and production thereof
JPS63170277A (en) Method of joining ceramic structure
JP3007456B2 (en) Manufacturing method of hollow ceramic body
JPH0776134B2 (en) Adhesive for silicon carbide based compact and method for producing silicon carbide based sintered body
JPH09174293A (en) Forming method