JPH01239026A - Production of oxide superconducting form - Google Patents

Production of oxide superconducting form

Info

Publication number
JPH01239026A
JPH01239026A JP63065231A JP6523188A JPH01239026A JP H01239026 A JPH01239026 A JP H01239026A JP 63065231 A JP63065231 A JP 63065231A JP 6523188 A JP6523188 A JP 6523188A JP H01239026 A JPH01239026 A JP H01239026A
Authority
JP
Japan
Prior art keywords
oxide
composite oxide
melt
superconducting
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63065231A
Other languages
Japanese (ja)
Other versions
JP2610033B2 (en
Inventor
Toshiaki Shibata
柴田 俊昭
Tsutomu Minami
努 南
Noboru Toge
峠 登
Masahiro Tatsumisuna
昌弘 辰巳砂
Ryoji Sedaka
良司 瀬高
Wataru Komatsu
亘 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP63065231A priority Critical patent/JP2610033B2/en
Publication of JPH01239026A publication Critical patent/JPH01239026A/en
Application granted granted Critical
Publication of JP2610033B2 publication Critical patent/JP2610033B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain the title high-density form of high critical current density, by covering a specific composite oxide melt around a core to make a shaping followed by cooling and then heat treatment. CONSTITUTION:Firstly, a Bi-alkali metal-Cu-O-based composite oxide with the composition range capable of obtaining vitreous phase [e.g., Bi(Sr,Ca)xCuyOz (x is 1-4; y is 1-4; z is 1-10); Ca/(Sr+Ca)=0.2-3] is heated to 900-1,300 deg.C in an electric furnace 10 and melted to produce a composite oxide melt 12. Second, this melt 12 is covered around a core 9 followed by feeding a cooling glass 14 to quench the covered core at a rate of >=100 deg.C/sec to obtain a composite wire 13 with oxide melt layer converted into amorphous phase. Thence, this composite wire 13 is heat treated at 390-890 deg.C, thus obtaining the objective superconducting form.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高密度で、高い臨界電流密度(JC)の値を有
する、Bi−アルカリ土金属−Cu −0系の酸化物超
電導成形体の製造方法に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention is directed to a Bi-alkaline earth metal-Cu-0 based oxide superconducting molded body having high density and a high critical current density (JC) value. This relates to a manufacturing method.

(従来の技術〕 最近、従来のY−Ba−C,u−○系の酸化物超電導体
よりも臨界温度(Tc)が高い酸化物超電導体として、
Bi−アルカリ土金属−Cu −0系の酸化物超電導体
が発見されて、注目されている。
(Prior art) Recently, as an oxide superconductor with a higher critical temperature (Tc) than the conventional Y-Ba-C, u-○ system oxide superconductor,
A Bi-alkaline earth metal-Cu-0 based oxide superconductor has been discovered and is attracting attention.

即ちこのBi−アルカリ土金属−Cu−0系の酸化′+
!yJ超電導体は、 (1)ロー界温度(T、)が105に付近と従来のY−
B a −Cu −0系の酸化物超電導体よりも15度
近く高い。
That is, the oxidation of this Bi-alkaline earth metal-Cu-0 system
! The yJ superconductor has the following characteristics: (1) The low field temperature (T, ) is around 105 and the conventional Y-
It is nearly 15 degrees higher than the B a -Cu -0-based oxide superconductor.

(2) Y −B a −Cu −0系の酸化物超電導
体よりも安定で、水にも強(、酸素も抜けにくい。
(2) It is more stable than the Y-B a -Cu-0-based oxide superconductor, and is resistant to water (and does not easily escape oxygen).

(3)希土類元素を必要としない為、原料費が安い。(3) Raw material costs are low because rare earth elements are not required.

等の利点を有しており、その実用化が期待されている。It has the following advantages, and its practical application is expected.

従来、酸化物系超電導成形体の製造方法としては、YX
Ba、Cu等の金属類の酸化物、炭酸塩等を原料とし、
これらの−次原料粉体を混合した混合物を仮焼結する事
によって複合酸化物とし、これを粉砕して得られる二次
原料粉体を所望の形状に成形して焼結する。
Conventionally, YX
Using oxides and carbonates of metals such as Ba and Cu as raw materials,
A mixture of these secondary raw material powders is temporarily sintered to form a composite oxide, which is pulverized to form the resulting secondary raw material powder into a desired shape and sintered.

又超電導線条体とするには、超電導体となる酸化物の粉
末材料を銀、銀合金或いは銅合金等の金属管内に充填し
、これを伸線、スウェージング、溝ロール、平ロール等
により線或いは薄板に冷間加工して所望寸法の線条体と
し、更に熱処理を施して酸化物系超電導線条体とする。
In addition, to make a superconducting wire, oxide powder material to become a superconductor is filled into a metal tube made of silver, silver alloy, copper alloy, etc., and then it is processed by wire drawing, swaging, grooved rolls, flat rolls, etc. The wire or thin plate is cold-worked into a wire of desired dimensions, and then heat-treated to form an oxide-based superconducting wire.

更に他の方法としては、酸化物粉末とバインダーとを混
練してペースト物となした後、該ペースト物を押出加工
等により線材化したり、或いはこれを芯材の外周上にコ
ーティングし、次いで脱バインダーを含む熱処理を行な
う0等の方法が一最的な方法として試みられている。
Still other methods include kneading oxide powder and a binder to form a paste, and then forming the paste into a wire by extrusion processing, or coating the outer periphery of a core material and then removing the paste. A method such as 0, which involves heat treatment containing a binder, has been tried as the most effective method.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

然しなからこれらの方法においては、超電導成形体とな
る物質に酸化物の粉末を使用している為、高減面率の加
工を施しても、熱処理後の超電導成形体の密度は、その
真密度に近い値が得られず、その為得られる超電導成形
体の臨界電流密度(J、)が低いと言う問題点があり、
Bi−アルカリ土金属−Cu−0系の酸化物超電導体に
ついても同様であった。
However, in these methods, since oxide powder is used as the material that becomes the superconducting compact, even if processing is performed with a high area reduction rate, the density of the superconducting compact after heat treatment is not the same as its true density. There is a problem that a value close to the density cannot be obtained, and therefore the critical current density (J,) of the obtained superconducting compact is low.
The same was true for the Bi-alkaline earth metal-Cu-0 based oxide superconductor.

〔課題を解決する為の手段] 本発明は上記の点に鑑み鋭意検討の結果なされたもので
あり、その目的とするところは、高密度で高いしn界電
流密度(J、)の値を有するBi−アルカリ土金属−C
u −0系の酸化物超電導体の製造方法を提供する事で
ある。
[Means for Solving the Problems] The present invention has been made as a result of intensive studies in view of the above points, and its purpose is to achieve a high density and high value of n-field current density (J,). Bi-alkaline earth metal-C
An object of the present invention is to provide a method for producing a u-0-based oxide superconductor.

即ち本発明は、ガラス質相が得られる組成範囲の、Bi
1アルカリ土金属、Cuの金属元素及び酸素から構成さ
れる複合酸化物を加熱して溶融させた後、前記複合酸化
物l容融体を直接、或いは所望の芯材の周囲に被覆して
賦形し、ついで10””C/ s e c以上の冷却速
度で冷却して、前記酸化物溶融体層をアモルファス質相
とした後、得られた成形体を390〜890 ’Cの温
度範囲内で熱処理する事を特徴とするものである。
That is, the present invention provides Bi within a composition range in which a glassy phase is obtained.
1. After heating and melting a composite oxide composed of an alkaline earth metal, a metal element of Cu, and oxygen, the composite oxide molten material is applied directly or by coating around a desired core material. After cooling the oxide melt layer to an amorphous phase by cooling at a cooling rate of 10''C/sec or more, the obtained molded body is cooled within a temperature range of 390 to 890'C. It is characterized by heat treatment.

本発明は、Bi−アルカリ土金属−Cu −0系酸化物
超電導体となる材料粉末等を、ガラス質相が得られる組
成範囲で使用し、これを−旦溶融させた後、これを急冷
凝固させる事によってアモルファス質相とし、ついで熱
処理することにより、高密度で均質なりi−アルカリ土
金属−Cu−0系の酸化物超電導成形体を得ようとする
ものである。前記材料粉末をガラス質相化する組成範囲
で用いる事により、高温に加熱して溶融させた際に、比
較的広い温度範囲内にて該複合酸化物系溶融体を線条体
等に成形加工するのに好適な粘性が得られる様にしよう
とするものである。
In the present invention, a material powder, etc. that becomes a Bi-alkaline earth metal-Cu-0 based oxide superconductor is used in a composition range that allows a glassy phase to be obtained, and after being melted, it is rapidly solidified. The purpose is to obtain a high-density and homogeneous i-alkaline earth metal-Cu-0 based oxide superconducting molded body by making it into an amorphous phase and then heat-treating it. By using the material powder in a composition range that turns it into a glassy phase, when heated to a high temperature and melted, the composite oxide melt can be formed into a filament, etc. within a relatively wide temperature range. The aim is to obtain a viscosity suitable for

本発明において、ガラス質相が得られる組成範囲のBi
−アルカリ土金属−Cu −0系酸化物としては、例え
ばB i=1とした時、Bi(Sr、c a ) xc
 u yoz (但しx= 1〜4、y=1〜4、z 
= 1〜10、Ca/ (Sr+Ca)=0.2〜3)
で表される複合酸化物を用いる事が出来る。
In the present invention, Bi within a composition range in which a glassy phase is obtained.
-Alkaline earth metal-Cu-0-based oxides include, for example, when Bi=1, Bi(Sr, ca) xc
u yoz (however, x = 1 to 4, y = 1 to 4, z
= 1~10, Ca/(Sr+Ca)=0.2~3)
A complex oxide represented by can be used.

前記組成範囲の複合酸化物を加熱して溶融させる温度範
囲は、900℃未満であると得られる複合酸化物溶融体
の粘性が高すぎて成形性に乏しく、1300℃を超える
と粘性が低くなりすぎて、成形性が悪くなると共に、溶
融する為のルツボの寿命も短くなるので、900〜13
00℃の温度範囲に加熱するのが好ましい。
If the temperature range for heating and melting the composite oxide in the above composition range is less than 900°C, the resulting composite oxide melt will have too high a viscosity and poor moldability, and if it exceeds 1300°C, the viscosity will become low. If the temperature is too high, the moldability will deteriorate and the life of the crucible for melting will also be shortened.
Preferably, it is heated to a temperature range of 00°C.

又複合酸化物溶融体を凝固させる際の冷却速度は、10
2°(:/sec未満であると、偏析が無くて充分に均
質なアモルファス質相が得られないので、102”C/
SeC以上の冷却速度で冷却する事が望ましい。
In addition, the cooling rate when solidifying the composite oxide melt is 10
If it is less than 2° (:/sec, there will be no segregation and a sufficiently homogeneous amorphous phase will not be obtained.
It is desirable to cool at a cooling rate higher than that of SeC.

又この様にして得られたBi−アルカリ土金属−Cu 
−0系複合酸化物のアモルファス質相を熱処理する際の
温度範囲は、390℃未満であると結晶化が起こらなく
て、超電導体にならなく、又890℃を超えると前記ア
モルファス質相の溶融が起こり易いので、390〜89
0℃の温度範囲内にするのが望ましい。
Moreover, Bi-alkaline earth metal-Cu obtained in this way
The temperature range when heat-treating the amorphous phase of the -0-based composite oxide is that if it is less than 390°C, crystallization will not occur and it will not become a superconductor, and if it exceeds 890°C, the amorphous phase will melt. is likely to occur, so 390-89
It is desirable that the temperature be within the temperature range of 0°C.

次に本発明の実施態様を図面を参照しながら、具体的に
説明する。
Next, embodiments of the present invention will be specifically described with reference to the drawings.

先ずBizOz、5rCO,、CaCO3、CuO等の
一次原料扮体を混合した混合物を仮焼成する事によって
複合酸化物とした後、該複合酸化物を電気炉、高周波誘
導加熱炉、赤外線加熱炉等で加熱して溶融させた後、得
られた溶融物を急冷する。
First, a mixture of primary raw materials such as BizOz, 5rCO, CaCO3, and CuO is calcined to form a composite oxide, and then the composite oxide is heated in an electric furnace, high-frequency induction heating furnace, infrared heating furnace, etc. After heating and melting, the resulting melt is rapidly cooled.

而して複合酸化物バルクを得ようとする場合は、例えば
第1図に示す様に、複合酸化物溶融体2を2枚の金属板
1の間で急冷して複合酸化物バルク3としたり、或いは
鋳型に複合酸化物熔融体を注湯する等の手段を用いる事
が出来る。
When trying to obtain a composite oxide bulk, for example, as shown in FIG. 1, a composite oxide melt 2 is rapidly cooled between two metal plates 1 to obtain a composite oxide bulk 3. Alternatively, a method such as pouring a composite oxide melt into a mold can be used.

又比較的長尺の線条体を得ようとする場合は、第2図(
a)又は(b)に示す様な、単ロール法又は双ロール法
を用いる事が出来る。即ち第2図(a)においては、電
気炉5で加熱された複合酸化@fJ溶融体4は、回転す
る1個のロール6上に落下して急冷され、複合酸化物線
条体8となる。又第2図(b)においては、前記複合酸
化物溶融体4は、回転するl紐のロール6A、6B間に
落下して急冷され、複合酸化物線条体8となる。
In addition, when trying to obtain a relatively long striatum, the method shown in Figure 2 (
A single roll method or a twin roll method as shown in a) or (b) can be used. That is, in FIG. 2(a), the composite oxide@fJ melt 4 heated in the electric furnace 5 falls onto one rotating roll 6 and is rapidly cooled to become the composite oxide filament 8. . Further, in FIG. 2(b), the composite oxide melt 4 falls between the rotating L string rolls 6A and 6B and is rapidly cooled to become a composite oxide filament 8.

この際超電導体となる原料物質を溶融させる為のルツボ
としては、これら原料粉末と反応しない塩基性ルツボ、
例えばマグネシア(MgO)、カルシア(Cab)、安
定化ジルコニア(ZrO□+y20.)等を用いる事が
望ましい。
At this time, the crucible for melting the raw materials that will become the superconductor is a basic crucible that does not react with these raw material powders,
For example, it is desirable to use magnesia (MgO), calcia (Cab), stabilized zirconia (ZrO□+y20.), or the like.

第3図は、複合酸化物溶融体を芯材の周囲に被電気炉1
0によって加熱された複合酸化物溶融体12を芯材9の
周囲に被覆した後、冷却用ガス14によって急冷して、
複合線材13が得られる。
Figure 3 shows a composite oxide melt placed around a core material in an electric furnace 1.
After the composite oxide melt 12 heated by 0 is coated around the core material 9, it is rapidly cooled by the cooling gas 14,
A composite wire 13 is obtained.

面この際、芯材9としては例えば、Cu、Cu合金、S
US、T i、Ni、、pt、pt金合金を用いる事が
出来る。
At this time, the core material 9 is, for example, Cu, Cu alloy, S
US, Ti, Ni, PT, and PT gold alloys can be used.

〔作用〕[Effect]

本発明の方法においては、B1、アルカリ土金属、Cu
等を含む原料物質を、ガラス質相が得られる組成範囲で
一旦溶融させた後、これを象、冷凝固させてアモルファ
ス質相化した後、熱処理して結晶化させて、酸化物超電
導成形体としているので、得られる酸化物超電導成形体
は均質であって、且つ密度が向上しており、臨界電流密
度(J、)の大きいB1−アルカリ土金属−Cu−0系
酸化物超電導線条体を得る事が出来る。
In the method of the present invention, B1, alkaline earth metal, Cu
After melting the raw materials including the above in a composition range that allows a glassy phase to be obtained, this is then cooled and solidified to form an amorphous phase, and then heat-treated to crystallize it to produce an oxide superconducting molded body. Therefore, the obtained oxide superconducting molded body is homogeneous and has improved density, and is a B1-alkaline earth metal-Cu-0 based oxide superconducting wire body with a large critical current density (J). can be obtained.

〔実施例1〕 次に本発明を実施例により更に具体的に説明する。l1
3+zot、S r C(L、CaC0,、CuOを、
Bi:Sr:Ca:Cu=4:2:2:6 (モル比)
となる様に秤量、混合した後、大気中で850℃X8h
r仮焼成した。これを電気炉で加熱して溶融させた後、
第1図に示す様に2枚の銅板(板1!10mm)の間で
象、冷し、所望形状に成形して、複合酸化物ベレットと
した。尚複合酸化物の溶融に用いたルツボはMgO製の
ものを使用し、溶融温度は1100’Cとした。又前記
2枚の!rl板の温度を変えて、得られたベレットの厚
さを調整した。以上で得られた各々のベレットを、大気
中で870℃X6hr熱処理を施した後、口n異温度(
Tc) 、M体窒素温度(77K)における臨界電流密
度(Je)等の超電導特性を測定した。これらの結果を
第1表に示した。
[Example 1] Next, the present invention will be explained in more detail with reference to Examples. l1
3+zot, S r C (L, CaC0,, CuO,
Bi:Sr:Ca:Cu=4:2:2:6 (molar ratio)
After weighing and mixing so that
It was pre-fired. After heating and melting this in an electric furnace,
As shown in FIG. 1, it was placed between two copper plates (plates 1 to 10 mm thick), cooled, and formed into a desired shape to obtain a composite oxide pellet. The crucible used to melt the composite oxide was made of MgO, and the melting temperature was 1100'C. Also, the two photos above! The thickness of the resulting pellet was adjusted by changing the temperature of the RL plate. Each of the pellets obtained above was heat-treated at 870°C for 6 hours in the atmosphere.
Tc), superconducting properties such as critical current density (Je) at M body nitrogen temperature (77 K) were measured. These results are shown in Table 1.

第1表から明らかな様に、本発明方法により製造した本
発明測高1〜3では臨界電流密度(JC)が大きく、臨
界温度(T c )も高い酸化物系超電導成形体が得ら
れている。一方酸化物溶融体の冷却速度が遅すぎた比較
測高1は低い臨界電流密度(JC)の値のものしか得ら
れなかった。
As is clear from Table 1, oxide-based superconducting molded bodies with high critical current density (JC) and high critical temperature (T c ) were obtained in Inventive Measurements 1 to 3 produced by the inventive method. There is. On the other hand, Comparative Measurement 1, in which the cooling rate of the oxide melt was too slow, could only obtain a low critical current density (JC) value.

(実施例2〕 実施例1と同様な方法で用意した複合酸化物の溶融体を
、第2図(a)に示した方法により、外径150mmφ
の銅ロールを用いて象、冷し、テープ状に成形した。こ
の際該銅ロールの周速を変えて、得られたテープの厚さ
を調整した。しかる後、これらに実施例1と同様の熱処
理を施した後、実施例1と同様の超電導特性を測定した
。これらの結果を第2表に示した。向比較の為、実施例
1と同様の方法で得られた仮焼成粉をそのまま外径10
mmφ、厚さ1mmのベレットに成形し、同様な熱処理
を施した場合についても超電導特性を測定し、その結果
も第2表に併記した。
(Example 2) A composite oxide melt prepared in the same manner as in Example 1 was heated to an outer diameter of 150 mmφ by the method shown in FIG. 2(a).
Using a copper roll, it was cooled and formed into a tape. At this time, the thickness of the obtained tape was adjusted by changing the peripheral speed of the copper roll. Thereafter, these were subjected to the same heat treatment as in Example 1, and then the superconducting properties as in Example 1 were measured. These results are shown in Table 2. For comparison, the calcined powder obtained in the same manner as in Example 1 was used as it was with an outer diameter of 10
The superconducting properties were also measured when the pellets were molded into mmφ and 1 mm thick and subjected to similar heat treatment, and the results are also listed in Table 2.

第2表から明らかな様に15本発明方法により製造した
本発明測高4〜5のテープは、臨界電流密度(J、)が
大きく、臨界温度(TC)も高い、テープ状のB1−3
 r−Ca−Cu−0系の酸化物系超電導体が得られて
いる。一方原料粉体の加熱溶融を行なわなかった比較測
高2のベレットは低い臨界電流密度(J、)の値しか得
られなかった。
As is clear from Table 2, the tapes of the present invention height measurements 4 and 5 manufactured by the method of the present invention have a high critical current density (J, ) and a high critical temperature (TC), and are tape-shaped B1-3.
An r-Ca-Cu-0 based oxide superconductor has been obtained. On the other hand, the pellet of Comparative Height Measurement 2 in which the raw material powder was not heated and melted obtained only a low value of critical current density (J,).

(実施例3〕 実施例1と同様な方法で用意した複合酸化物の熔融体を
、第2図(b)に示した方法により、外径50mmφの
一対の鋼ロールを用いて急冷し、テープ状に成形した。
(Example 3) A molten composite oxide prepared in the same manner as in Example 1 was rapidly cooled using a pair of steel rolls with an outer diameter of 50 mm in the method shown in FIG. It was formed into a shape.

この際F[ロールの周速を変えて、得られたテープの厚
さを調整した。しかる後、これらに実施例1と同様の熱
処理を施した後、実施例1と同様の超電導特性を測定し
た。これらの結果を第3表に示した。
At this time, the thickness of the obtained tape was adjusted by changing the circumferential speed of the F roll. Thereafter, these were subjected to the same heat treatment as in Example 1, and then the superconducting properties as in Example 1 were measured. These results are shown in Table 3.

第3表から明らかな様に、本発明方法により製造した本
発明測高6〜8のテープは、臨界電流密度(Jc)が大
きく、臨界温度(T、)も高いBi−S r −Ca 
−Cu −0系の酸化物系超電導テープが得られている
As is clear from Table 3, the tapes No. 6 to 8 of the present invention manufactured by the method of the present invention have a high critical current density (Jc) and a high critical temperature (T).
-Cu -0 based oxide superconducting tape has been obtained.

〔実施例4] 実施例1と同様の仮焼成粉を、第2図(b)の方法によ
り、実施例3と同様に加熱溶融した後急冷し、テープ状
に成形し、得られたテープ状成形体を種々の熱処理温度
で熱処理した後、臣n界温度(Tc) 、液体窒素l温
度(77°K)におけるし−界電流密度(J、)等の超
電導特性を測定した。
[Example 4] The same calcined powder as in Example 1 was heated and melted in the same manner as in Example 3 by the method shown in FIG. 2(b), and then rapidly cooled and formed into a tape shape. After the molded bodies were heat treated at various heat treatment temperatures, superconducting properties such as field temperature (Tc) and field current density (J, ) at liquid nitrogen temperature (77°K) were measured.

これらの結果を第4表に示した。These results are shown in Table 4.

第4表 第4表から明らかな様に、本発明方法により製造した本
発明測高1〜3のテープは、臨界電流密度(JC)が大
きく、臨界温度(T c )も高いBi−S r −C
a −Cu −0系の酸化物超電導テープが得られてい
る。一方、熱処理温度が低すぎた比較例孔1のテープは
、熱処理時に結晶化が起こらなくて、液体窒素温度(7
7K)迄冷却しても超電導状態が得られなく、又熱処理
温度が高すぎた比較例孔2のテープは、熱処理時に材料
が一部熔融し、低い公庄界電流密度(JC)の値しか得
られなかった。
Table 4 As is clear from Table 4, the tapes of the height measurements 1 to 3 of the present invention manufactured by the method of the present invention have a high critical current density (JC) and a high critical temperature (T c ). -C
An a-Cu-0 based oxide superconducting tape has been obtained. On the other hand, the tape of Comparative Example Hole 1, in which the heat treatment temperature was too low, did not crystallize during heat treatment, and the temperature of liquid nitrogen (7
In the case of the comparative example hole 2 tape in which a superconducting state could not be obtained even after cooling to 7 K) and the heat treatment temperature was too high, part of the material melted during heat treatment, and only a low common field current density (JC) value was obtained. I couldn't.

(実施例5〕 Biz○□、5rCO*、CaCO2、CuOを、Bi
:Sr:Ca:Cu=4:2:2:6(モル比)となる
様に秤量、混合した後、大気中で850℃X8hr仮焼
成した。これを電気炉で加熱して溶融させた後、第3図
の方法により各種の芯材(外径0.3 m mφ)の周
囲に被覆し、象、冷して各種複合線材を製造した。尚ル
ツボはMgO製のものを使用した。
(Example 5) Biz○□, 5rCO*, CaCO2, CuO, Bi
:Sr:Ca:Cu=4:2:2:6 (molar ratio) after weighing and mixing, and then pre-calcining in the atmosphere at 850°C for 8 hours. After heating and melting this in an electric furnace, it was coated around various core materials (outer diameter 0.3 mmφ) by the method shown in FIG. 3, and then cooled to produce various composite wires. The crucible used was made of MgO.

これらに大気中で熱処理を施して超電導複合線材とした
後、臣n界温度(Tc)、液体窒素温度(77K)にお
ける臨界電流密度(JC)等の超電導特性を測定した。
These were subjected to heat treatment in the atmosphere to form superconducting composite wires, and then superconducting properties such as critical temperature (Tc) and critical current density (JC) at liquid nitrogen temperature (77K) were measured.

これらについて、超電導複合線材の製造条件を第5表に
、該超電導複合線材の超電導特性を第6表に示した。
Regarding these, the manufacturing conditions of the superconducting composite wire are shown in Table 5, and the superconducting properties of the superconducting composite wire are shown in Table 6.

第6表 第 6 表 (続き) 第6表から明らかな様に、本発明方法により製造した本
発明測高1−12では、り2界電流密度(JC)が大き
く、臨界温度(T、)も高いBi−S r −Ca −
Cu −0系の酸化物超電導複合線材が得られている。
Table 6 Table 6 (Continued) As is clear from Table 6, the present invention height measurement 1-12 manufactured by the present invention method has a large field current density (JC) and a critical temperature (T). is also high Bi-S r -Ca -
A Cu-0 based oxide superconducting composite wire has been obtained.

−古筆3図の方法において、酸化物溶融体の温度が低す
ぎた比較測高1は、酸化物超電導体の被覆にコーティン
グむらが発生して、健全な複合線材が得られなく、又酸
化物l容融体の冷却速度が遅すぎた比較測高2(ガス冷
却無し)は低い臨界電流密度(Jc)Lか得られなかっ
た。更に熱処理温度が低す、ぎた比較測高3は、熱処理
時に結晶化が起こらなくて、液体窒素温度(77K)迄
冷却しても超電導状態が得られなく、又熱処理温度が高
すぎた比較測高4は、熱処理時に材料が一部溶融し、低
いνn臨界電流密度Jc)の値しか得られなかった。
- In the method shown in Fig. 3, Comparative height measurement 1 in which the temperature of the oxide melt was too low resulted in uneven coating of the oxide superconductor, making it impossible to obtain a sound composite wire; Comparative height measurement 2 (without gas cooling), in which the cooling rate of the l-volume melt was too slow, could not obtain a low critical current density (Jc)L. Furthermore, Comparative Measurement 3, in which the heat treatment temperature was low, did not crystallize during heat treatment, and a superconducting state could not be obtained even when cooled to liquid nitrogen temperature (77K), and Comparative Measurement 3, in which the heat treatment temperature was too high, For High 4, the material partially melted during heat treatment, and only a low value of νn critical current density Jc) was obtained.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、高密度で、臨界電流密度(J、
)の大きいBi−アルカリ土金属−Cu−〇系の酸化物
系超電導成形体を得る事が出来る等、工業上顕著な効果
を奏するものである。
According to the method of the invention, at high density, critical current density (J,
) It is possible to obtain a Bi-alkaline earth metal-Cu-〇-based oxide superconducting molded body, which brings about remarkable industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図(a)、(b)及び第3図は、本発明に
よる酸化物系超電導成形体の製造方法の一例を示す説明
図である。 1−金属板、2−・酸化物/8融体、3−酸化物バルク
、4−酸化物溶融体、5−電気炉、6.6A、6B−ロ
ール、7−ルツボ、8−酸化物線条体、9−芯材、10
−・電気炉、11−〜ヒーター、12−酸化物溶融体、
13−〜複合線材、14−冷却用ガス、15 ルツボ。 特許出願人 古河電気工業株式会社 第1図 第2図
FIG. 1, FIG. 2(a), (b), and FIG. 3 are explanatory diagrams showing an example of the method for manufacturing an oxide-based superconducting molded body according to the present invention. 1- Metal plate, 2- Oxide/8 melt, 3- Oxide bulk, 4- Oxide melt, 5- Electric furnace, 6.6A, 6B- Roll, 7- Crucible, 8- Oxide wire Strip, 9-core material, 10
-・Electric furnace, 11-~heater, 12-oxide melt,
13--Composite wire, 14-Cooling gas, 15 Crucible. Patent applicant Furukawa Electric Co., Ltd. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims]  ガラス質相が得られる組成範囲の、Bi、アルカリ土
金属、Cuの金属元素及び酸素から構成される複合酸化
物を加熱して溶融させた後、前記複合酸化物溶融体を直
接、或いは所望の芯材の周囲に被覆して賦形し、ついで
10^2℃/sec以上の冷却速度で冷却して、前記酸
化物溶融体層をアモルファス質相とした後、得られた成
形体を390〜890℃の温度範囲内で熱処理する事を
特徴とする酸化物系超電導成形体の製造方法。
After heating and melting a composite oxide composed of Bi, alkaline earth metal, Cu metal elements and oxygen in a composition range that provides a glassy phase, the composite oxide melt is directly or The core material is coated and shaped, and then cooled at a cooling rate of 10^2°C/sec or more to turn the oxide melt layer into an amorphous phase. A method for producing an oxide-based superconducting molded body, characterized by heat treatment within a temperature range of 890°C.
JP63065231A 1988-03-18 1988-03-18 Method for producing oxide-based superconducting molded body Expired - Lifetime JP2610033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63065231A JP2610033B2 (en) 1988-03-18 1988-03-18 Method for producing oxide-based superconducting molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63065231A JP2610033B2 (en) 1988-03-18 1988-03-18 Method for producing oxide-based superconducting molded body

Publications (2)

Publication Number Publication Date
JPH01239026A true JPH01239026A (en) 1989-09-25
JP2610033B2 JP2610033B2 (en) 1997-05-14

Family

ID=13280933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63065231A Expired - Lifetime JP2610033B2 (en) 1988-03-18 1988-03-18 Method for producing oxide-based superconducting molded body

Country Status (1)

Country Link
JP (1) JP2610033B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01235103A (en) * 1988-03-15 1989-09-20 Toray Ind Inc Superconducting material
JPH01305823A (en) * 1988-06-02 1989-12-11 Sumitomo Electric Ind Ltd Each production of superconductor and superconducting wire rod
US7015161B2 (en) 1999-07-07 2006-03-21 Hoya Corporation Substrate for information recording medium and magnetic recording medium composed of crystallized glass

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212226A (en) * 1988-02-18 1989-08-25 Sanyo Electric Co Ltd Production of oxide superconducting material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212226A (en) * 1988-02-18 1989-08-25 Sanyo Electric Co Ltd Production of oxide superconducting material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01235103A (en) * 1988-03-15 1989-09-20 Toray Ind Inc Superconducting material
JPH01305823A (en) * 1988-06-02 1989-12-11 Sumitomo Electric Ind Ltd Each production of superconductor and superconducting wire rod
US7015161B2 (en) 1999-07-07 2006-03-21 Hoya Corporation Substrate for information recording medium and magnetic recording medium composed of crystallized glass

Also Published As

Publication number Publication date
JP2610033B2 (en) 1997-05-14

Similar Documents

Publication Publication Date Title
JPH01239026A (en) Production of oxide superconducting form
JPH027309A (en) Manufacture of oxide type superconductive wire
JP3049314B1 (en) Manufacturing method of oxide superconducting composite wire
JPS63276819A (en) Manufacture of ceramic superconductive filament
JP2593520B2 (en) Method for producing oxide-based superconducting wire
JP2573961B2 (en) Superconducting wire manufacturing method
JPS63225413A (en) Manufacture of compound superconductive wire
JPH0193463A (en) Production of superconducting ceramic material
JPH01204314A (en) Manufacture of oxide superconductor
JP2583288B2 (en) Method for producing flake-like oxide superconductor
JPH01239713A (en) Manufacture of oxide superconductive wire
JPH01176608A (en) Manufacture of oxide superconductive linear body
JP2556545B2 (en) Method for manufacturing oxide superconducting wire
JPH01175128A (en) Manufacture of oxide superconducting linear body
JPH02192401A (en) Production of oxide superconductor and oxide superconducting wire
JPH04138629A (en) Manufacture of superconducting insulated wire
JPS63264822A (en) Manufacture of ceramic superconductive mold
JPH01169820A (en) Manufacture of oxide superconductive wire
JP2685951B2 (en) Method for manufacturing bismuth-based superconductor
JPS63259926A (en) Manufacture of superconductive wire
JPH02158012A (en) Manufacture of oxide superconductive liner body
JPH01286210A (en) Manufacture of oxide superconducting filament body
JPH02278616A (en) Manufacture of multicore-type oxide superconductor
JPH04132616A (en) Production of bismuth-based oxide superconductor
JPS63266716A (en) Manufacture of oxide superconductor