JP2817181B2 - Manufacturing method of Bi-based superconducting ceramics sheet with high critical current density - Google Patents

Manufacturing method of Bi-based superconducting ceramics sheet with high critical current density

Info

Publication number
JP2817181B2
JP2817181B2 JP1092185A JP9218589A JP2817181B2 JP 2817181 B2 JP2817181 B2 JP 2817181B2 JP 1092185 A JP1092185 A JP 1092185A JP 9218589 A JP9218589 A JP 9218589A JP 2817181 B2 JP2817181 B2 JP 2817181B2
Authority
JP
Japan
Prior art keywords
based superconducting
thin plate
current density
critical current
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1092185A
Other languages
Japanese (ja)
Other versions
JPH02275746A (en
Inventor
幸弘 大内
忠 杉原
拓夫 武下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP1092185A priority Critical patent/JP2817181B2/en
Publication of JPH02275746A publication Critical patent/JPH02275746A/en
Application granted granted Critical
Publication of JP2817181B2 publication Critical patent/JP2817181B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、Bi−Sr−Ca−Cu−O系超電導複合酸化物
(以下、Bi系超電導複合酸化物という)のアモルファス
薄板をホットプレスすることにより、結晶を一定方向に
成長せしめ、優れた臨界電流密度を有するBi系超電導セ
ラミックス薄板を製造する方法に関するものである。こ
こで、Bi系超電導セラミックス薄板とは、Bi系超電導セ
ラミックス薄板それのみに限定されるものではなく、Bi
系超電導セラミックス薄板の積層板を含むものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention hot-presses an amorphous thin plate of Bi-Sr-Ca-Cu-O-based superconducting composite oxide (hereinafter referred to as Bi-based superconducting composite oxide). The present invention relates to a method for growing a crystal in a certain direction and producing a Bi-based superconducting ceramic thin plate having an excellent critical current density. Here, the Bi-based superconducting ceramic sheet is not limited to the Bi-based superconducting ceramic sheet, but is
It includes a laminate of a superconducting ceramic thin plate.

〔従来の技術〕 従来、Bi系超電導セラミックス薄板は、次のようにし
て作製されていた。
[Prior Art] Conventionally, a Bi-based superconducting ceramic thin plate has been manufactured as follows.

まず、原料粉末として、Biの酸化物(以下Bi2O3で示
す)、Srの炭酸塩(以下、SrCO3で示す)、Caの炭酸塩
(以下、CaCO3で示す)およびCuの酸化物(以下、CuOで
示す)の粉末を用意し、これら原料粉末を所定の割合に
配合し、混合したのち、この混合粉末を、温度:750〜90
0℃の範囲内に所定時間保持して焼成し、Bi系超電導複
合酸化物を作製する。このようにして得られたBi系複合
酸化物は粉砕された後、再び焼成される。上記焼成およ
び粉砕は2〜3回繰り替し行なったのち、最終的に粉砕
されてBi系超電導複合酸化物粉末となる。上記作製され
たBi系超電導複合酸化物粉末は、有機ビヒクルまたは有
機バインダーと混合し、塗布法またはドクターブレード
法によりそれぞれ被膜または薄板に成形し、この成形体
を乾燥したのち、大気中、温度:200〜400℃、50〜80時
間保持の条件で脱脂し、炉冷することにより被膜または
薄板状の脱脂体を作製し、この脱脂体をさらに大気中で
温度:700〜900℃、20〜40時間保持の条件で熱処理し、B
i系超電導セラミックス被膜または薄板を作製してい
た。
First, as raw material powders, Bi oxide (hereinafter referred to as Bi 2 O 3 ), Sr carbonate (hereinafter referred to as SrCO 3 ), Ca carbonate (hereinafter referred to as CaCO 3 ), and Cu oxide (Hereinafter, referred to as CuO) powder, these raw material powders are blended in a predetermined ratio, and after mixing, the mixed powder is heated at a temperature of 750 to 90.
It is kept at 0 ° C. for a predetermined time and fired to produce a Bi-based superconductive composite oxide. The Bi-based composite oxide thus obtained is pulverized and then fired again. The firing and pulverization are repeated two or three times, and finally pulverized to obtain a Bi-based superconducting composite oxide powder. The Bi-based superconducting composite oxide powder prepared above is mixed with an organic vehicle or an organic binder, formed into a coating or a thin plate by a coating method or a doctor blade method, respectively, and after drying the formed body, in air, temperature: 200 to 400 ° C., degreased under the conditions of 50 to 80 hours, and cooled in a furnace to produce a film or a thin plate-shaped degreased body.The degreased body is further heated in air at a temperature of 700 to 900 ° C., 20 to 40. Heat treatment under the condition of holding time, B
An i-based superconducting ceramic coating or thin plate was produced.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、上記Bi系超電導複合酸化物粉末は、粉
末自体の結晶の方向性が一定しないばかりでなく、上記
粉末を有機ビヒクルまたは有機バインダーと混合し、塗
布またはドクターブレード法により形成された被膜また
は薄板内に含まれるBi系超電導複合酸化物粉末の結晶の
方向もランダムであり、そのため上記被膜または薄板の
臨界電流密度が向上しないという問題点があった。
However, the Bi-based superconducting composite oxide powder is not only inconsistent in the crystal orientation of the powder itself, but also by mixing the powder with an organic vehicle or organic binder, and coating or thin plate formed by coating or doctor blade method. The crystal orientation of the Bi-based superconducting composite oxide powder contained therein is also random, which causes a problem that the critical current density of the coating or thin plate is not improved.

〔課題を解決するための手段〕[Means for solving the problem]

そこで、本発明者等は、臨界電流密度の優れたBi系超
電導セラミックス薄板を製造すべく研究を行なった結
果、 まず、Bi系超電導複合酸化物のアモルファス薄板を作
製し、この薄板の面の直角方向にホットプレスすると、
結晶はプレス方向と垂直に成長してBi系超電導セラミッ
クス薄板となり、この配向性を有するBi系超電導セラミ
ックス薄板は優れた臨界電流密度を有するという知見を
得たのである。
Therefore, the present inventors conducted research to produce a Bi-based superconducting ceramic thin plate having an excellent critical current density. Hot pressing in the direction
The crystal grows perpendicular to the pressing direction to become a Bi-based superconducting ceramic thin plate, and it has been found that the Bi-based superconducting ceramic thin plate having this orientation has an excellent critical current density.

この発明は、かかる知見にもとづいてなされたもので
あって、 Bi系超電導複合酸化物のアモルファス薄板を作製し、
この薄板の両面に圧力をかけながらホットプレスする高
臨界電流密度を有するBi系超電導セラミックス薄板の製
造法に特徴を有するものである。
The present invention has been made based on such knowledge, and has produced an amorphous thin plate of a Bi-based superconducting composite oxide,
The present invention is characterized by a method of manufacturing a Bi-based superconducting ceramic thin plate having a high critical current density by hot pressing while applying pressure to both surfaces of the thin plate.

上記薄板の両面にかけるホットプレス圧力は、100〜8
00kg/cm2であり、ホットプレス温度は600〜880℃の範囲
内であることが好ましい。
The hot pressing pressure applied to both sides of the thin plate is 100 ~ 8
00 kg / cm 2 , and the hot press temperature is preferably in the range of 600 to 880 ° C.

上記ホットプレス温度が600℃未満ではアモルファス
の結晶化は起るが超電導相が生成せず、一方880℃を越
えると部分的に溶融してしまい配向性をもつ結晶を得る
ことができないのでホットプレス温度は600〜880℃と定
めた。
If the above hot press temperature is lower than 600 ° C, amorphous crystallization occurs but no superconducting phase is generated.On the other hand, if the temperature exceeds 880 ° C, the crystals are partially melted and crystals having orientation cannot be obtained. The temperature was set at 600-880 ° C.

さらに、ホットプレス圧力が、100kg/cm2未満では結
晶は配向せず、一方、860kg/cm2を越えた圧力でホット
プレスしても塑性流動が激しく配向性は弱まってしまう
ため、ホットプレス圧力は100〜800kg/cm2と定めた。
Furthermore, if the hot pressing pressure is less than 100 kg / cm 2 , the crystals will not be oriented.On the other hand, even if hot pressing is performed at a pressure exceeding 860 kg / cm 2 , the plastic flow will be severe and the orientation will be weakened. Is defined as 100 to 800 kg / cm 2 .

上記Bi系超電導複合酸化物アモルファス薄板を本発明
の条件を満足するように両面加圧しながら加熱すると、
結晶は加圧方向に垂直に成長し、結晶のa−b面は薄板
に平行に配向し、電流は一般にa−b面に平行に流れる
から、上記ホットプレスされた薄板の臨界電流密度JC
大幅に向上するものと考えられる。上記ホットプレスの
雰囲気は真空、不活性ガスまたは大気中のうち、いずれ
の雰囲気で行なってもよい。
When heating the Bi-based superconducting composite oxide amorphous thin plate while pressing both sides so as to satisfy the conditions of the present invention,
Since the crystal grows perpendicular to the pressing direction, the a-b plane of the crystal is oriented parallel to the thin plate, and the current generally flows parallel to the a-b plane, the critical current density J C of the hot-pressed thin plate becomes large. Is considered to be greatly improved. The atmosphere of the hot press may be performed in any of vacuum, inert gas, and air.

〔実 施 例〕〔Example〕

つぎに、この発明を実施例にもとづいて具体的に説明
する。
Next, the present invention will be specifically described based on embodiments.

実施例 1 原料粉末として、Bi2O3粉末、SrCO3粉末、CaCO3粉末
およびCuO粉末を用意し、これら粉末を、 Bi2O3粉末:7.284g、 SrCO3粉末:4.614g、 CaCO3粉末:3.128g、 CuO粉末 :4.974g、 を秤量し、ボールミルで2時間混合を行なった。この混
合粉末を温度:1150℃で加熱溶融し、ついで、この溶融
体を通常の双ロール法により超急冷し、厚さ:40μmのB
i系超電導複合酸化物のアモルファステープを作製し
た。
Example 1 Bi 2 O 3 powder, SrCO 3 powder, CaCO 3 powder and CuO powder were prepared as raw material powders, and these powders were prepared as Bi 2 O 3 powder: 7.284 g, SrCO 3 powder: 4.614 g, CaCO 3 powder : 3.128 g, CuO powder: 4.974 g, were weighed and mixed in a ball mill for 2 hours. This mixed powder was heated and melted at a temperature of 1150 ° C., and then the melt was ultra-quenched by a normal twin-roll method to obtain a B: 40 μm thick
An amorphous tape of i-based superconducting composite oxide was prepared.

このアモルファステープを幅:10mm×長さ:20mmの寸法
に切断し、試験片テープを作製した。これらの試験片テ
ープを、1×10-3Torrの真空雰囲気中、第1表に示され
る条件にてホットプレスを行なった。ホットプレス圧力
は、試験片テープを両面を挾圧するようにかけた。
This amorphous tape was cut into a size of width: 10 mm × length: 20 mm to prepare a test piece tape. These test piece tapes were hot-pressed in a vacuum atmosphere of 1 × 10 −3 Torr under the conditions shown in Table 1. The hot pressing pressure was applied so as to clamp the test piece tape on both sides.

このようにして製造したホットプレス体試験片 テープの超電導臨界温度と絶対温度:77.3゜Kにおける臨
界電流密度を四端子法により測定したところ、第1表に
示される超電導臨界温度と臨界電流密度が得られた。
Hot pressed body test piece manufactured in this way The superconducting critical temperature and absolute temperature of the tape were measured by a four-terminal method at a temperature of 77.3 ° K, and the superconducting critical temperature and critical current density shown in Table 1 were obtained.

第1表の本発明法9の条件でホットプレスして得られ
たホットプレス体試験片テープの破断面のSEM観察を行
なったところ、第1図のようにプレス方向に直角に配向
した結晶組織がみられた。
The SEM observation of the fracture surface of the hot-pressed specimen tape obtained by hot-pressing under the conditions of the method 9 of the present invention shown in Table 1 was carried out, and as a result, the crystal structure oriented perpendicular to the pressing direction as shown in FIG. Was seen.

比較のために、この発明の製造法の条件を外れた温度
および圧力で試験片テープをホットプレスし、その時得
られたホットプレス体の超電導臨界温度と絶対温度:77.
3゜Kにおける臨界電流密度を測定し、さらに、従来のド
クターブレード法で作製したBi系超電導セラミックス薄
板の超電導王臨界温度と絶対温度:77.3゜Kにおける臨界
電流密度も測定し、それらの結果もあわせて第1表に示
した。
For comparison, the test piece tape was hot-pressed at a temperature and pressure outside the conditions of the production method of the present invention, and the superconducting critical temperature and the absolute temperature of the hot-pressed body obtained at that time were 77.
The critical current density at 3 ゜ K was measured, and the critical temperature and absolute temperature of the superconducting king of Bi-based superconducting ceramic thin plates manufactured by the conventional doctor blade method at 77.3 ゜ K were also measured. The results are shown in Table 1.

実施例 2 それぞれ、幅:10mm×長さ:20mm×厚さ:1mmの寸法を有
するAg薄板、ハステロイ薄板、 ステンレス鋼薄板、MgO単結晶薄板、およびSrTiO3単結
晶薄板を用意し、これら薄板を実施例1で作製したBi系
超電導複合酸化物のアモルファス薄板からなり、幅:10m
m×長さ:20mm×厚さ:4μmからなる試験片テープとを、
第2表に示されるように積層し、積層体を作製した。
Example 2 Each of Ag thin plate, Hastelloy thin plate having dimensions of width: 10 mm × length: 20 mm × thickness: 1 mm, A stainless steel thin plate, a MgO single crystal thin plate, and a SrTiO 3 single crystal thin plate were prepared, and these thin plates were made of the Bi-based superconducting composite oxide amorphous thin plate prepared in Example 1, and had a width of 10 m.
m × length: 20mm × thickness: 4μm with a test piece tape,
Lamination was performed as shown in Table 2 to produce a laminate.

これら積層体を第2表に示される条件で10-3Torrの真
空ホットプレスして積層薄板ホットプレス体を作製し、
上記積層薄板ホットプレス体の超電導臨界温度と絶対温
度77.3゜Kにおける臨界電流密度を四端子法により測定
し、それらの結果も第2表に示した。
These laminates were vacuum hot-pressed at 10 −3 Torr under the conditions shown in Table 2 to produce a laminated thin-plate hot-pressed body.
The superconducting critical temperature and the critical current density at an absolute temperature of 77.3 ° K of the hot-pressed laminated sheet were measured by a four-terminal method, and the results are also shown in Table 2.

第2表の結果から、Bi系超電導複合酸化物のアモルフ
ァス薄板を金属薄板に積層して得られたBi系超電導セラ
ミックス積層薄板であっても優れた臨界電流密度を有す
ることがわかる。
From the results shown in Table 2, it can be seen that even a Bi-based superconducting ceramic laminated sheet obtained by laminating an Bi-based superconducting composite oxide amorphous sheet on a metal sheet has an excellent critical current density.

〔発明の効果〕〔The invention's effect〕

この発明の製造法により得られたBi系超電導セラミッ
クス薄板は、いずれも優れた超電導臨界温度および臨界
電流密度を有し、上記Bi系超電導セラミックス薄板と金
属薄板との積層薄板は、基板に金属薄板を用いているた
めに、優れた超電導臨界温度および高臨界電流密度を有
すると同時に強度にも優れた特性を有し、産業上利用す
ることのできる優れたBi系超電導セラミックス薄板を提
供することができる。
Each of the Bi-based superconducting ceramic sheets obtained by the production method of the present invention has an excellent superconducting critical temperature and critical current density, and the laminated sheet of the Bi-based superconducting ceramic sheet and the metal sheet is a metal sheet on the substrate. Therefore, it is possible to provide an excellent Bi-based superconducting ceramic sheet which has excellent superconducting critical temperature and high critical current density, and also has excellent strength and at the same time, can be used industrially. it can.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、ホットプレスして得られたBi系超電導セラミ
ックス薄板のSEM観察図である。
FIG. 1 is an SEM observation diagram of a Bi-based superconducting ceramic thin plate obtained by hot pressing.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−239054(JP,A) 特開 平2−51467(JP,A) 特開 平2−64019(JP,A) 特開 平2−133320(JP,A) (58)調査した分野(Int.Cl.6,DB名) C01G 1/00 - 57/00 H01L 39/00 - 39/24 H01B 12/00 - 13/00──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-239054 (JP, A) JP-A-2-51467 (JP, A) JP-A-2-64019 (JP, A) JP-A-2- 133320 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C01G 1/00-57/00 H01L 39/00-39/24 H01B 12/00-13/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Bi−Sr−Ca−Cu−O系超電導複合酸化物
(以下、Bi系超電導複合酸化物という)のアモルファス
薄板を、その表面に対して直角方向にホットプレスする
ことを特徴とする高臨界電流密度を有するBi系超電導セ
ラミックス薄板の製造法。
An amorphous thin plate of Bi-Sr-Ca-Cu-O-based superconducting composite oxide (hereinafter referred to as Bi-based superconducting composite oxide) is hot-pressed in a direction perpendicular to the surface thereof. Of Bi-based superconducting ceramics sheet with high critical current density.
【請求項2】上記ホットプレスは、温度:600〜880℃、
圧力:100〜800kg/cm2で行なうことを特徴とする請求項
1記載の高臨界電流密度を有するBi系超電導セラミック
ス薄板の製造法。
2. The hot press is performed at a temperature of 600 to 880 ° C.
Pressure: 100~800kg / cm preparation of Bi-based superconducting ceramic thin plate having a high critical current density according to claim 1, wherein the 2 by performing.
【請求項3】上記Bi系超電導複合酸化物のアモルファス
薄板と金属薄板との積層体をホットプレスすることを特
徴とする請求項1または2記載の高臨界電流密度を有す
るBi系超電導セラミックス薄板の製造法。
3. A Bi-based superconducting ceramic thin plate having a high critical current density according to claim 1, wherein a laminate of the Bi-based superconducting composite oxide amorphous thin plate and the metal thin plate is hot-pressed. Manufacturing method.
【請求項4】上記Bi系超電導複合酸化物のアモルファス
薄板を金属酸化物からなる緩衝薄板を介して金属薄板に
積層せしめてなる積層体をホットプレスすることを特徴
とする請求項1または2記載の高臨界電流密度を有する
Bi系超電導セラミックス薄板の製造法。
4. A laminate obtained by laminating an amorphous thin plate of the Bi-based superconducting composite oxide on a metal thin plate via a buffer thin plate made of a metal oxide, and hot pressing the laminate. With high critical current density
A method for manufacturing Bi-based superconducting ceramic thin plates.
JP1092185A 1989-01-31 1989-04-12 Manufacturing method of Bi-based superconducting ceramics sheet with high critical current density Expired - Lifetime JP2817181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1092185A JP2817181B2 (en) 1989-01-31 1989-04-12 Manufacturing method of Bi-based superconducting ceramics sheet with high critical current density

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2239289 1989-01-31
JP1-22392 1989-01-31
JP1092185A JP2817181B2 (en) 1989-01-31 1989-04-12 Manufacturing method of Bi-based superconducting ceramics sheet with high critical current density

Publications (2)

Publication Number Publication Date
JPH02275746A JPH02275746A (en) 1990-11-09
JP2817181B2 true JP2817181B2 (en) 1998-10-27

Family

ID=26359602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1092185A Expired - Lifetime JP2817181B2 (en) 1989-01-31 1989-04-12 Manufacturing method of Bi-based superconducting ceramics sheet with high critical current density

Country Status (1)

Country Link
JP (1) JP2817181B2 (en)

Also Published As

Publication number Publication date
JPH02275746A (en) 1990-11-09

Similar Documents

Publication Publication Date Title
JP2817181B2 (en) Manufacturing method of Bi-based superconducting ceramics sheet with high critical current density
Shan et al. Rapid consolidation of Bi Pb Sr Ca Cu O powders by a plasma activated sintering process
JP2622123B2 (en) Method for producing flake-like oxide superconductor
US5049452A (en) Target member used for formation of superconducting film
JPH0518776B2 (en)
JPH01246107A (en) Superconducting thin film
JPS5821880A (en) Manufacture of oxide superconductive thin film
JPS63248019A (en) Manufacture of oxide superconductive thin film
JP3237952B2 (en) Manufacturing method of oxide superconducting material
JPH03279212A (en) Production of target material for forming oxide superconducting thin film
JP3164640B2 (en) Manufacturing method of oxide superconductor
JPH03228862A (en) Superconductor and its production
JPH01227480A (en) Manufacture of superconducting thin-film
JPH0388716A (en) Production of oxide superconducting thin film
JPH07106904B2 (en) Method of manufacturing thin film superconductor
JPH02162616A (en) Manufacture of oxide high-temperature superconducting film
JP3314102B2 (en) Manufacturing method of oxide superconductor
JPH0193463A (en) Production of superconducting ceramic material
JPH09143000A (en) Joining method of oxide superconductor
JPH0465306A (en) Oxide superconductor thin film
JPH0195411A (en) Manufacture of superconducting thin film
JPS63307614A (en) High-temperature oxide superconductor thin film
JPH01160859A (en) Oxide superconductor of complex type
JPH07106902B2 (en) Method of manufacturing thin film superconductor
JPH02252620A (en) Production of scaly bi-based superconducting oxide powder having uniform directional property