JP2017141152A - Method for producing ceramic molded body and apparatus for producing the same used therefor - Google Patents

Method for producing ceramic molded body and apparatus for producing the same used therefor Download PDF

Info

Publication number
JP2017141152A
JP2017141152A JP2017011533A JP2017011533A JP2017141152A JP 2017141152 A JP2017141152 A JP 2017141152A JP 2017011533 A JP2017011533 A JP 2017011533A JP 2017011533 A JP2017011533 A JP 2017011533A JP 2017141152 A JP2017141152 A JP 2017141152A
Authority
JP
Japan
Prior art keywords
substrate
coating film
molded body
ceramic molded
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017011533A
Other languages
Japanese (ja)
Other versions
JP6754305B2 (en
Inventor
木村 禎一
Teiichi Kimura
禎一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Fine Ceramics Center
Original Assignee
Japan Fine Ceramics Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Fine Ceramics Center filed Critical Japan Fine Ceramics Center
Priority to CN201780009909.5A priority Critical patent/CN108602726B/en
Priority to KR1020187024275A priority patent/KR20180111860A/en
Priority to EP20176252.3A priority patent/EP3718987B1/en
Priority to PCT/JP2017/003859 priority patent/WO2017135387A1/en
Priority to KR1020247005130A priority patent/KR20240025053A/en
Priority to EP17747538.1A priority patent/EP3412642B1/en
Priority to US16/074,683 priority patent/US11027454B2/en
Priority to TW106103721A priority patent/TWI717462B/en
Publication of JP2017141152A publication Critical patent/JP2017141152A/en
Application granted granted Critical
Publication of JP6754305B2 publication Critical patent/JP6754305B2/en
Priority to US17/206,717 priority patent/US11724415B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently producing a ceramic molded body, in which deformation along a surface of a substrate is suppressed and occurrence of cracks is suppressed, and an apparatus therefor, in a method for producing a defatted ceramic molded body on the substrate by using a slurry containing ceramic particles and a polymer binder.SOLUTION: A method for producing a ceramic molded body 22 includes: an application step to apply a slurry containing ceramic particles and a polymer binder to a surface of a substrate 15; and a defatting step to defat a coated film by heating the substrate 15 with the coated film obtained by the application step from the lower side of the substrate 15 with the coated film, in this order, in which the lower surface of the substrate 15 with the coated film is ununiformly heated in the defatting step. An apparatus for producing the same includes a heat-treating part to heat the substrate from the lower side, in which the heat-treating part includes a protrusion in point contact with or in line contact with a substrate part of the substrate 15 with the coated film.SELECTED DRAWING: Figure 2

Description

本発明は、セラミックス粒子及び高分子バインダーを含有するスラリーを用いて、変形、割れ等が抑制された、脱脂成形体を効率よく製造する方法、並びに、その製造方法に用いる製造装置に関する。   The present invention relates to a method for efficiently producing a degreased molded article in which deformation, cracking, and the like are suppressed using a slurry containing ceramic particles and a polymer binder, and a production apparatus used for the production method.

例えば、板状のセラミックス成形体を製造する場合、セラミックス粒子と、高分子バインダーを媒体に溶解したバインダー溶液とを混合して調製した、スラリー、ペースト又は粉体を、プレス成形、スラリーの鋳込み、射出成形、押出成形、スクリーン印刷等に供する方法がある。これらのうち、基材の上でセラミックス成形体を製造する方法として、水溶性バインダーと、セラミック粉末と、水とを含み、体積固形分比率が2%以上5%未満であるセラミックスラリー組成物を支持体上に流延してシート状に成形し、セラミックスラリーの乾燥、脱脂及び焼成を行うことを特徴とするシート状セラミックの製造方法が知られている(特許文献1参照)。   For example, when producing a plate-like ceramic molded body, a slurry, paste or powder prepared by mixing ceramic particles and a binder solution in which a polymer binder is dissolved in a medium, press molding, slurry casting, There are methods for injection molding, extrusion molding, screen printing, and the like. Among these, as a method for producing a ceramic molded body on a substrate, a ceramic slurry composition containing a water-soluble binder, ceramic powder, and water, and having a volume solid content ratio of 2% or more and less than 5%. A method for producing a sheet-shaped ceramic is known, which is cast on a support and molded into a sheet, and the ceramic slurry is dried, degreased and fired (see Patent Document 1).

特開2004−315307号公報JP 2004-315307 A

スラリーを基材に塗布し、塗膜付き基材を均一に加熱して、塗膜からバインダー及び媒体を除去する場合、得られるセラミックス成形体の寸法精度の悪化、反り、割れ等の問題を起こすことがあった(図8参照)。
本発明は、セラミックス粒子及び高分子バインダーを含有するスラリーを用いて、基材の上で脱脂されたセラミックス成形体を製造する方法において、基材の表面に沿って変形が抑制され、割れの発生も抑制されたセラミックス成形体を効率よく製造する方法及びそのための製造装置を提供することを目的とする。
When the slurry is applied to the substrate and the substrate with the coating film is uniformly heated to remove the binder and the medium from the coating film, problems such as deterioration of the dimensional accuracy, warpage, and cracking of the resulting ceramic molded body are caused. (See Fig. 8).
The present invention relates to a method for producing a ceramic molded body degreased on a base material using a slurry containing ceramic particles and a polymer binder, and deformation is suppressed along the surface of the base material, thereby generating cracks. It is an object of the present invention to provide a method for efficiently producing a ceramic molded body that is also suppressed and a production apparatus therefor.

本発明は、以下に示される。
1.セラミックス粒子及び高分子バインダーを含有するスラリーを基材の表面に塗布する塗布工程と、該塗布工程により得られた塗膜付き基材を、該塗膜付き基材の下方から加熱して塗膜の脱脂を行う脱脂工程とを、順次、備える、セラミックス成形体の製造方法であって、
脱脂工程において、塗膜付き基材の下面を不均一加熱することを特徴とする、セラミックス成形体の製造方法。
2.上記脱脂工程における加熱温度が200℃以上である上記項1に記載のセラミックス成形体の製造方法。
3.上記スラリーに含まれる上記セラミックス粒子の濃度が30〜80体積%である上記項1又は2に記載のセラミックス成形体の製造方法。
4.上記項1乃至3のいずれか一項に記載のセラミックス成形体の製造方法に用いられる、セラミックス成形体の製造装置であって、
セラミックス粒子及び高分子バインダーを含有するスラリーを基材の表面に塗布して形成された塗膜付き基材を載置し、且つ、該塗膜付き基材を下方から加熱する熱処理部を備え、上記熱処理部は、上記塗膜付き基材の基材部と点接触又は線接触する凸部を含むことを特徴とするセラミックス成形体の製造装置。
The present invention is shown below.
1. A coating step in which a slurry containing ceramic particles and a polymer binder is applied to the surface of a substrate, and a substrate with a coating film obtained by the coating step is heated from below the substrate with a coating film to form a coating film A degreasing step for performing degreasing, and sequentially comprising a ceramic molded body manufacturing method,
In the degreasing process, the lower surface of the base material with a coating film is heated nonuniformly, The manufacturing method of the ceramic molded body characterized by the above-mentioned.
2. Item 2. The method for producing a ceramic molded article according to Item 1, wherein the heating temperature in the degreasing step is 200 ° C or higher.
3. Item 3. The method for producing a ceramic molded article according to Item 1 or 2, wherein the concentration of the ceramic particles contained in the slurry is 30 to 80% by volume.
4). A ceramic molded body manufacturing apparatus used in the method for manufacturing a ceramic molded body according to any one of Items 1 to 3,
A substrate with a coating film formed by applying a slurry containing ceramic particles and a polymer binder to the surface of the substrate is placed, and a heat treatment unit for heating the substrate with a coating film from below is provided. The said heat processing part contains the convex part which carries out a point contact or a line contact with the base material part of the said base material with a coating film, The manufacturing apparatus of the ceramic molded body characterized by the above-mentioned.

本発明によれば、セラミックス粒子からなるセラミックス成形体であって、変形が抑制され、割れの発生も抑制されたセラミックス成形体を、基材の上で効率よく製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, it is a ceramic molded object which consists of ceramic particle | grains, Comprising: A deformation | transformation is suppressed and the ceramic molded object by which generation | occurrence | production of the crack was suppressed can be efficiently manufactured on a base material.

本発明のセラミックス成形体の製造方法において塗膜付き基材が載置される熱源(熱処理部)に形成されている凸部を上から見た概略図である。(A)及び(B)は、凸部のパターンが点である熱源を示し、(C)及び(D)は、凸部のパターンが線の組合せである熱源を示す。It is the schematic which looked at the convex part currently formed in the heat source (heat processing part) in which the base material with a coating film is mounted in the manufacturing method of the ceramic molded body of this invention. (A) and (B) show the heat source whose convex part pattern is a point, and (C) and (D) show the heat source whose convex part pattern is a combination of lines. 本発明のセラミックス成形体の製造方法において、塗膜付き基材を加熱し脱脂する方法の1例を示す概略断面図である。It is a schematic sectional drawing which shows one example of the method of heating and degreasing a base material with a coating film in the manufacturing method of the ceramic molded body of this invention. 本発明のセラミックス成形体の製造方法において、塗膜付き基材の加熱し脱脂する方法の他例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the method of heating and degreasing the base material with a coating film in the manufacturing method of the ceramic molded body of this invention. 実施例1で得られたセラミックス成形体を示す画像である。2 is an image showing a ceramic molded body obtained in Example 1. FIG. 実施例1で得られたセラミックス成形体の断面を示す画像である。2 is an image showing a cross section of the ceramic molded body obtained in Example 1. FIG. 実施例2で得られたセラミックス成形体を示す画像である。3 is an image showing a ceramic molded body obtained in Example 2. 比較例1で得られたセラミックス成形体を示す画像である。3 is an image showing a ceramic molded body obtained in Comparative Example 1. 塗膜付き基材を均一加熱し脱脂する方法の1例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the method of heating uniformly and degreasing the base material with a coating film.

以下、本発明を詳細に説明する。
本発明は、セラミックス粒子及び高分子バインダーを含有するスラリーを基材の表面に塗布する塗布工程と、該塗布工程により得られた塗膜付き基材を、該塗膜付き基材の下方から加熱して塗膜の脱脂を行う脱脂工程とを、順次、備える、セラミックス成形体の製造方法であって、脱脂工程において、塗膜付き基材の下面を不均一加熱することを特徴とする。本発明では、塗布工程及び脱脂工程を繰り返し行うことができる。
Hereinafter, the present invention will be described in detail.
The present invention includes a coating step in which a slurry containing ceramic particles and a polymer binder is applied to the surface of a substrate, and a substrate with a coating film obtained by the coating step is heated from below the substrate with a coating film. And a degreasing step for degreasing the coating film in order, and a method for producing a ceramic molded body, wherein the lower surface of the substrate with the coating film is heated non-uniformly in the degreasing step. In the present invention, the coating process and the degreasing process can be repeated.

上記塗布工程で用いるスラリーは、セラミックス粒子及び高分子バインダーを含有し、通常、水又は有機溶剤からなる媒体を含有する。
上記セラミックス粒子は、好ましくは、酸化物、窒化物、酸窒化物、炭化物、炭窒化物等の無機化合物からなる粒子である。上記スラリーに含まれるセラミックス粒子の種類は、1種のみであってよいし、2種以上であってもよい。
酸化物としては、酸化アルミニウム、ムライト、酸化マグネシウム、酸化亜鉛、酸化チタン、酸化鉄、酸化イットリウム、酸化ジルコニウム、チタン酸バリウム等を用いることができる。
窒化物としては、窒化珪素、窒化アルミニウム、窒化チタン、窒化ジルコニウム、窒化タンタル、窒化鉄等を用いることができる。
酸窒化物としては、サイアロン、酸窒化珪素等を用いることができる。
炭化物としては、炭化珪素、炭化チタン、炭化ホウ素等を用いることができる。
炭窒化物としては、炭窒化チタン、炭窒化ニオブ、炭窒化ジルコニウム等を用いることができる。
The slurry used in the coating step contains ceramic particles and a polymer binder, and usually contains a medium composed of water or an organic solvent.
The ceramic particles are preferably particles made of an inorganic compound such as an oxide, nitride, oxynitride, carbide, carbonitride. The type of ceramic particles contained in the slurry may be only one type or two or more types.
As the oxide, aluminum oxide, mullite, magnesium oxide, zinc oxide, titanium oxide, iron oxide, yttrium oxide, zirconium oxide, barium titanate, or the like can be used.
As the nitride, silicon nitride, aluminum nitride, titanium nitride, zirconium nitride, tantalum nitride, iron nitride, or the like can be used.
As the oxynitride, sialon, silicon oxynitride, or the like can be used.
As the carbide, silicon carbide, titanium carbide, boron carbide, or the like can be used.
As the carbonitride, titanium carbonitride, niobium carbonitride, zirconium carbonitride and the like can be used.

上記セラミックス粒子の形状は、特に限定されないが、いずれも中実体の、球状、楕円球状、多面体状、線状、板状、不定形状等とすることができる。また、上記セラミックス粒子の平均粒子径は、特に限定されないが、好ましくは10nm〜100μm、より好ましくは100nm〜10μmである。尚、2種以上の異なる形状のセラミックス粒子を用いるか、又は、粒子径の異なるセラミックス粒子を用いることにより、高密度のセラミックス成形体を効率よく製造することができる。   The shape of the ceramic particles is not particularly limited, but any of them can be solid, spherical, elliptical, polyhedral, linear, plate-like, indefinite, or the like. The average particle size of the ceramic particles is not particularly limited, but is preferably 10 nm to 100 μm, more preferably 100 nm to 10 μm. In addition, a high-density ceramic molded object can be efficiently manufactured by using the ceramic particle of 2 or more types of different shapes, or using the ceramic particle from which a particle diameter differs.

上記スラリーに含まれるセラミックス粒子の濃度は、高密度のセラミックス成形体の効率的な製造の観点から、好ましくは30〜80体積%、より好ましくは40〜70体積%、更に好ましくは50〜60体積%である。   The concentration of the ceramic particles contained in the slurry is preferably 30 to 80% by volume, more preferably 40 to 70% by volume, and still more preferably 50 to 60% by volume, from the viewpoint of efficient production of a high-density ceramic molded body. %.

上記高分子バインダーは、水及び有機溶剤の少なくとも一方からなる媒体に溶解又は分散するものであれば、特に限定されない。本発明においては、水を主とする媒体を用いることが好ましく、この場合、ポリビニルアルコール、ポリビニルアセタール、アクリル系ポリマー、ポリ酢酸ビニル、ポリビニルブチラール等が好ましい。   The polymer binder is not particularly limited as long as it is dissolved or dispersed in a medium composed of at least one of water and an organic solvent. In the present invention, it is preferable to use a medium mainly composed of water. In this case, polyvinyl alcohol, polyvinyl acetal, acrylic polymer, polyvinyl acetate, polyvinyl butyral and the like are preferable.

上記スラリーに含まれる高分子バインダーの濃度は、高密度のセラミックス成形体の効率的な製造の観点から、好ましくは0.1〜20体積%、より好ましくは1〜10体積%、更に好ましくは2〜5体積%である。   The concentration of the polymer binder contained in the slurry is preferably 0.1 to 20% by volume, more preferably 1 to 10% by volume, and still more preferably 2 from the viewpoint of efficient production of a high-density ceramic molded body. ~ 5% by volume.

本発明により得られるセラミックス成形体は、後述のように、焼結体の製造原料、粒子配列体、粒子充填体等、広い用途で用いることができるので、上記スラリーは、他の成分として、分散剤、焼結助剤、表面修飾剤等を含有することができる。   Since the ceramic molded body obtained by the present invention can be used in a wide range of applications such as a raw material for manufacturing a sintered body, a particle array, and a particle filler, as described later, the slurry is dispersed as another component. An agent, a sintering aid, a surface modifier, and the like can be contained.

上記塗布工程では、スラリーを基材の表面に塗布する。上記基材は、脱脂工程において変質又は変形しないものであれば、特に限定されない。上記基材を構成する材料は、通常、無機材料であり、金属(合金を含む)及びセラミックスのいずれでもよく、これらの複合物であってもよい。また、脱脂工程における加熱により、基材とセラミックス成形体とが一体化するものであってもよい。
また、上記基材の形状は、特に限定されず、通常、スラリーの塗布面を平坦としたものが用いられるが、スラリーの塗布面に凹部又は凸部が形成されたものであってもよい。
In the application step, the slurry is applied to the surface of the substrate. The base material is not particularly limited as long as it does not change or deform in the degreasing step. The material constituting the substrate is usually an inorganic material, and may be any of metals (including alloys) and ceramics, or a composite thereof. Moreover, the base material and the ceramic molded body may be integrated by heating in the degreasing step.
Further, the shape of the base material is not particularly limited, and normally, a slurry having a flat slurry application surface is used, but a concave or convex portion may be formed on the slurry application surface.

上記塗布工程において、スラリーを基材の表面に塗布する方法は、特に限定されないが、通常、基材の表面形状、スラリーの構成成分等に応じて、適宜、選択される。好ましい塗布方法は、スクリーン印刷、ドクターブレード法、スピンコート法、カーテンコーター法、ディップコート法等である。   In the application step, the method for applying the slurry to the surface of the substrate is not particularly limited, but is usually selected appropriately according to the surface shape of the substrate, the constituent components of the slurry, and the like. Preferred coating methods include screen printing, doctor blade method, spin coating method, curtain coater method, dip coating method and the like.

上記塗布工程により得られる塗膜の厚さの上限は、セラミックス成形体の効率的な製造の観点から、好ましくは10mm、より好ましくは500μmである。
上記塗布工程により得られた塗膜付き基材は、直ぐに、脱脂工程に供してよいし、塗膜の変形を抑制する、脱泡する、高分子バインダーを固化させる等の目的で、上限を10時間とした静置を行ってもよい。
The upper limit of the thickness of the coating film obtained by the coating step is preferably 10 mm, more preferably 500 μm, from the viewpoint of efficient production of the ceramic molded body.
The substrate with a coating film obtained by the coating process may be immediately subjected to a degreasing process, and the upper limit is set to 10 for the purpose of suppressing deformation of the coating film, defoaming, solidifying the polymer binder, and the like. You may leave still with time.

上記脱脂工程では、塗膜付き基材を、その下方から加熱し、この塗膜付き基材の下面に対して不均一加熱を行う。「不均一加熱」とは、塗膜付き基材を、好ましくは水平方向に配置し、その加熱開始時において、塗膜付き基材の下面のうち、所望の温度で加熱される部分と、それより低い温度で加熱される部分とが形成されるように、部分的に温度差が生じるように加熱することである。これにより、得られるセラミックス成形体の変形が抑制され、割れの発生も抑制される。本発明において、基材15の表面に塗膜20が形成されてなる塗膜付き基材の下面を不均一に加熱する方法は、特に限定されない。例えば、図2に示すように、塗膜付き基材を、凸部を有する熱源10の該凸部の上に載置し、この凸部の形状(塗膜付き基材の下面と接触する部分の平面形状)を、図1に示す点、線等とした熱源により加熱する方法(以下、「方法(1)」という)や、図3に示すように、塗膜付き基材を、その下面の一部が熱源11に対して露出するように断熱材18の上に載置した状態で加熱する方法(以下、「方法(2)」という)等が挙げられる。   In the degreasing step, the substrate with the coating film is heated from below, and the lower surface of the substrate with the coating film is heated unevenly. “Non-uniform heating” means that a substrate with a coating film is preferably arranged in a horizontal direction, and at the start of heating, a portion of the lower surface of the substrate with a coating film that is heated at a desired temperature, Heating is performed so that a temperature difference is partially generated so that a portion heated at a lower temperature is formed. Thereby, a deformation | transformation of the ceramic molded object obtained is suppressed and generation | occurrence | production of a crack is also suppressed. In the present invention, the method for heating the lower surface of the substrate with a coating film in which the coating film 20 is formed on the surface of the substrate 15 is not particularly limited. For example, as shown in FIG. 2, a base material with a coating film is placed on the convex part of the heat source 10 having a convex part, and the shape of this convex part (the part in contact with the lower surface of the base material with a coating film) 1) is heated by a heat source having the points, lines, and the like shown in FIG. 1 (hereinafter referred to as “method (1)”), and as shown in FIG. And a method of heating in a state of being placed on the heat insulating material 18 so as to be partially exposed to the heat source 11 (hereinafter referred to as “method (2)”).

上記方法(1)は、図2に示され、所定の温度に加熱された熱源10の凸部の上に塗膜付き基材を載置する方法である。例えば、図1に示す点、線等のパターン部を有する凸部の直上における基材及び塗膜は、所定温度で瞬時に加熱され、高分子バインダーがガス化し、発生したガスは、塗膜中において、凸部の直上の脱脂部から離れる方向に流れるとともに、伝熱されて、徐々に脱脂される。即ち、基材15が凸部と接触していない部分の塗膜は、初期においては、所定温度より低い温度で加熱され、脱脂が不完全であるが、時間の経過とともに、所定温度に達し、十分に脱脂されたセラミックス成形体22が得られる。基材15及び塗膜20の全面が均一に加熱されると、図8に示すように、変形、割れ等が顕著なセラミックス成形体22が得られるが、本発明では、これが抑制される。
上記方法(1)により塗膜付き基材を加熱する場合、熱源10としては、いずれも、凸部を有するヒーターを用いることが好ましく、抵抗加熱ヒーター、赤外線ランプ加熱ヒーター、マイクロ波加熱ヒーター、高周波誘導加熱ヒーター等を用いることができる。
The method (1) is a method of placing a substrate with a coating film on the convex portion of the heat source 10 shown in FIG. 2 and heated to a predetermined temperature. For example, the base material and the coating film immediately above the convex portions having pattern portions such as dots and lines shown in FIG. 1 are instantaneously heated at a predetermined temperature, the polymer binder is gasified, and the generated gas is in the coating film. In the above, the oil flows in a direction away from the degreasing portion directly above the convex portion, and is heat-transferred and gradually degreased. That is, the coating film of the part where the base material 15 is not in contact with the convex part is heated at a temperature lower than a predetermined temperature in the initial stage, and degreasing is incomplete, but with the passage of time, reaches the predetermined temperature, A sufficiently degreased ceramic molded body 22 is obtained. When the entire surface of the base material 15 and the coating film 20 is uniformly heated, as shown in FIG. 8, a ceramic molded body 22 having remarkable deformation, cracking, and the like is obtained, but this is suppressed in the present invention.
When heating the substrate with a coating film by the above method (1), it is preferable to use a heater having a convex portion as the heat source 10, and a resistance heater, an infrared lamp heater, a microwave heater, a high frequency An induction heater or the like can be used.

上記方法(2)は、図3に示され、所定の温度に加熱された熱源11の上方に、断熱材18の上であって、基材15の下面の一部が露出するように塗膜付き基材を載置する方法である。下面側が露出した基材15の上の塗膜は、所定温度で瞬時に加熱され、高分子バインダーがガス化し、発生したガスは、塗膜中において、断熱材18の直上の方に流れるとともに、伝熱されて、徐々に脱脂される。即ち、基材15が断熱材18と接触している部分の塗膜は、初期においては、所定温度より低い温度で加熱され、脱脂が不完全であるが、時間の経過とともに、所定温度に達し、十分に脱脂されたセラミックス成形体22が得られる。尚、断熱材18は、セラミックス等からなる中実体又は多孔体等とすることができる。
上記方法(2)により塗膜付き基材を加熱する場合、熱源11としては、抵抗加熱ヒーター、赤外線ランプ加熱ヒーター、マイクロ波加熱ヒーター、高周波誘導加熱ヒーター等を用いることができる。尚、これらのヒーターは、基材15側に凸部を有してもよい。
The method (2) is shown in FIG. 3, and the coating film is formed on the heat insulating material 18 above the heat source 11 heated to a predetermined temperature so that a part of the lower surface of the base material 15 is exposed. This is a method of placing the attached substrate. The coating film on the base material 15 exposed on the lower surface side is instantaneously heated at a predetermined temperature, the polymer binder is gasified, and the generated gas flows in the coating film to the position immediately above the heat insulating material 18, Heat is transferred and gradually degreased. That is, the coating film in the portion where the base material 15 is in contact with the heat insulating material 18 is initially heated at a temperature lower than a predetermined temperature, and degreasing is incomplete, but the predetermined temperature is reached as time passes. A sufficiently degreased ceramic molded body 22 is obtained. The heat insulating material 18 can be a solid body or a porous body made of ceramics or the like.
When the substrate with a coating film is heated by the above method (2), as the heat source 11, a resistance heater, an infrared lamp heater, a microwave heater, a high frequency induction heater, or the like can be used. In addition, these heaters may have a convex part on the base material 15 side.

上記脱脂工程における加熱温度は、セラミックス粒子の種類、高分子バインダーの種類等に応じて、適宜、選択されるが、好ましくは200℃以上、より好ましくは300℃以上である。尚、高密度のセラミックス成形体が効率よく得られることから、加熱温度の上限は、通常、500℃である。上記塗膜付き基材の加熱は、終始、一定温度で行ってよいし、昇温を組み合わせた方法で行ってもよい。
上記塗膜付き基材の加熱時間は、塗膜の厚さ、面積等により、適宜、選択されるが、好ましくは1〜30分間、より好ましくは3〜15分間、更に好ましくは5〜10分間である。
上記塗膜付き基材の加熱は、その下面、即ち、基材に対して行うものである。本発明においては、基材に対する加熱と、塗膜面に対する加熱とを行ってもよいが、その場合、塗膜面に対する加熱の上限温度(雰囲気温度)は、通常、300℃、好ましくは150〜200℃である。塗膜面の加熱温度が高すぎると、塗膜の割れや変形が発生する場合がある。
上記脱脂工程における加熱雰囲気は、セラミックス粒子の種類等により、適宜、選択され、大気、酸素ガス、窒素ガス、アルゴンガス等とすることができる。
上記脱脂工程では、塗膜の表面の一部又は全面に耐熱性部材を載置した状態で塗膜付き基材の加熱を行ってもよい。
The heating temperature in the degreasing step is appropriately selected according to the type of ceramic particles, the type of polymer binder, and the like, but is preferably 200 ° C. or higher, more preferably 300 ° C. or higher. The upper limit of the heating temperature is usually 500 ° C. because a high-density ceramic molded body can be obtained efficiently. The substrate with a coating film may be heated at a constant temperature from the beginning to the end, or may be performed by a method in which temperature increases are combined.
The heating time of the substrate with a coating film is appropriately selected depending on the thickness, area, etc. of the coating film, but is preferably 1 to 30 minutes, more preferably 3 to 15 minutes, and further preferably 5 to 10 minutes. It is.
The heating of the substrate with a coating film is performed on the lower surface, that is, the substrate. In the present invention, heating to the substrate and heating to the coating surface may be performed. In that case, the upper limit temperature (atmospheric temperature) of heating to the coating surface is usually 300 ° C., preferably 150 to 200 ° C. If the heating temperature of the coating surface is too high, the coating film may be cracked or deformed.
The heating atmosphere in the degreasing step is appropriately selected depending on the type of ceramic particles and the like, and can be air, oxygen gas, nitrogen gas, argon gas, or the like.
In the degreasing step, the substrate with a coating film may be heated in a state where a heat-resistant member is placed on a part or the entire surface of the coating film.

上記脱脂工程により、上記塗布工程による塗膜の厚さに対して、通常、30〜70%の厚さに収縮した脱脂皮膜(セラミックス成形体)が得られる。スラリーに含まれるセラミックス粒子の種類及び基材の構成材料によっては、脱脂皮膜及び基材を一体化させることができる。   By the said degreasing process, the degreasing | defatting film | membrane (ceramic molded object) shrunk | reduced to 30 to 70% of thickness normally with respect to the thickness of the coating film by the said application | coating process is obtained. Depending on the type of ceramic particles contained in the slurry and the constituent material of the substrate, the degreasing film and the substrate can be integrated.

本発明においては、上記のように、塗布工程及び脱脂工程を繰り返すことができる。即ち、1回目の製造で得られた脱脂皮膜の全面又は一部表面に対して、更に、これらの工程を繰り返すと、厚肉化や、部分的に積層することによる立体化を行うことができる。尚、塗布工程及び脱脂工程を繰り返すに際して、塗布工程で用いるスラリーの構成(セラミックス粒子の種類、濃度等)を変化させてもよい。   In the present invention, the coating process and the degreasing process can be repeated as described above. That is, if these steps are further repeated on the entire surface or a part of the surface of the degreasing film obtained in the first production, the thickness can be increased or three-dimensionalization can be performed by partial lamination. . In addition, when repeating an application | coating process and a degreasing process, you may change the structure (a kind, density | concentration, etc. of ceramic particle | grains) of the slurry used at an application | coating process.

本発明により、一定体積に占めるセラミックス粒子の合計体積の割合(以下、「充填密度」という)が、好ましくは74%以上、より好ましくは85%以上、更に好ましくは90%以上であるセラミックス成形体を得ることができる。尚、この充填密度は、アルキメデス法、かさ密度法等により測定することができる。   According to the present invention, the ratio of the total volume of ceramic particles occupying a certain volume (hereinafter referred to as “packing density”) is preferably 74% or more, more preferably 85% or more, and still more preferably 90% or more. Can be obtained. The packing density can be measured by Archimedes method, bulk density method, or the like.

本発明のセラミックス成形体の製造装置(以下、「本発明の製造装置」という)は、セラミックス粒子及び高分子バインダーを含有するスラリーを基材の表面に塗布して形成された塗膜付き基材を載置し、且つ、該塗膜付き基材を下方から加熱する熱処理部を備え、上記熱処理部は、上記塗膜付き基材の基材部と点接触又は線接触する凸部を含むことを特徴とする。   The ceramic molded body manufacturing apparatus of the present invention (hereinafter referred to as “the manufacturing apparatus of the present invention”) is a base material with a coating film formed by applying a slurry containing ceramic particles and a polymer binder to the surface of the base material. And a heat treatment part that heats the substrate with a coating film from below, and the heat treatment part includes a convex part that makes point contact or line contact with the substrate part of the substrate with the coating film. It is characterized by.

上記熱処理部は、塗膜付き基材をその基材部で加熱するものであり、基材部と点接触又は線接触する凸部の平面形状は、例えば、図1に示されたものとすることができる。図1は、塗膜付き基材を載置する熱処理部に形成されている凸部を上から見た図であり、いずれも、塗膜付き基材を傾斜させることなく安定して支持し、不均一加熱することができる平面形状を例示したものである。(A)は、平面形状が円形の凸部を、(B)は、平面形状が四角形の凸部(4箇所)を、(C)は、三角形の外形線からなる凸部を、(D)は、十字線からなる凸部を、それぞれ示す。
上記熱処理部は、抵抗加熱ヒーター、赤外線ランプ加熱ヒーター、マイクロ波加熱ヒーター、高周波誘導加熱ヒーター等により構成されていることが好ましい。
The said heat processing part heats a base material with a coating film with the base material part, and the planar shape of the convex part which carries out a point contact or a line contact with a base material part shall be what was shown by FIG. be able to. FIG. 1 is a top view of a convex portion formed in a heat treatment part on which a substrate with a coating film is placed, both of which stably support the substrate with a coating without tilting, The planar shape which can be heated non-uniformly is illustrated. (A) is a convex part having a circular planar shape, (B) is a convex part (four places) having a rectangular planar shape, (C) is a convex part having a triangular outline (D). Indicates a convex portion formed of a crosshair.
The heat treatment section is preferably composed of a resistance heater, an infrared lamp heater, a microwave heater, a high frequency induction heater, or the like.

本発明の製造装置は、上記のように、特定の熱処理部を備え、塗膜付き基材を下方から加熱する構造を有する限りにおいて、他の構成要素は、特に限定されない。また、本発明の製造装置は、密閉系の装置であってよいし、開放系の装置であってもよい。また、バッチ式及び連続式のいずれであってもよい。
密閉系の製造装置の場合、装置内の雰囲気を調整する手段、脱脂により発生したガスを装置外へ排気する手段、塗膜面を加熱する手段、装置内で塗膜付き基材を作製する手段、複数の塗膜付き基材を連続的に処理するための搬出手段、外部で作製した塗膜付き基材を、装置内に搬入し、脱脂後に、搬出する手段、冷却する手段等を備えることができる。
開放系の製造装置の場合、脱脂により発生したガスを装置外へ排気する手段、塗膜面を加熱する手段、装置内で塗膜付き基材を作製する手段、複数の塗膜付き基材を連続的に処理するための搬出手段、外部で作製した塗膜付き基材を、装置内に搬入し、脱脂後に、搬出する手段、冷却する手段等を備えることができる。
As long as the manufacturing apparatus of the present invention has a structure that includes the specific heat treatment section and heats the substrate with a coating film from below as described above, other components are not particularly limited. The manufacturing apparatus of the present invention may be a closed system apparatus or an open system apparatus. Moreover, any of a batch type and a continuous type may be sufficient.
In the case of a closed-type manufacturing apparatus, means for adjusting the atmosphere in the apparatus, means for exhausting gas generated by degreasing to the outside of the apparatus, means for heating the coating surface, and means for producing a substrate with a coating film in the apparatus , A means for carrying out a plurality of coating-coated substrates continuously, a coating-coated substrate prepared externally, loaded into the apparatus, and degreased, then carried out, cooled, etc. Can do.
In the case of an open-type manufacturing apparatus, means for exhausting the gas generated by degreasing to the outside of the apparatus, means for heating the coating surface, means for producing a substrate with a coating film in the apparatus, and a plurality of substrates with coating films A carrying-out means for continuously processing, a coating-coated substrate prepared outside, are carried into the apparatus, and after degreasing, a means for carrying out, a means for cooling, and the like can be provided.

以下、実施例を挙げて、本発明の実施の形態を更に具体的に説明する。但し、本発明は、これらの実施例に何ら制約されるものではない。   Hereinafter, the embodiment of the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

実施例1
不均一形状であり、且つ、平均粒子径が0.5μmである酸化アルミニウム粒子と、水にポリビニルアルコールを溶解させた水溶液とを混合して、スラリーを調製した。このスラリーに含まれる酸化アルミニウム粒子及びポリビニルアルコールの含有割合は、それぞれ、55体積%及び4体積%である。
次に、上記スラリーを、酸化アルミニウム焼結体からなる板状基材(20mm×20mm×2mm)の表面に滴下し、ドクターブレードを用いて板状基材の全面に塗布することにより、厚さ0.5mmの塗膜付き基材を得た。そして、この塗膜付き基材を、大気中、20℃で10分間静置した。
その後、上記塗膜付き基材を、予め、赤外線加熱により表面温度を500℃とした板状ステンレスヒーターであって、中央に高さ1.2mm、直径2mmの半球状の突起が形成されたステンレスヒーター10の突起の上に載置し、基材15の下面の局部的加熱を10分間行い、塗膜20の脱脂を行った(図2参照)。これにより、厚さが約300μmの酸化アルミニウム膜を得た。膜厚のばらつきは見られなかった。
得られた酸化アルミニウム膜の平面及び断面を、SEMにより観察した。平面画像である図4によれば、変形及び割れがないことが分かる。また、破断面を作製した後の断面画像である図5によれば、全体に渡って、酸化アルミニウム粒子が高密度で膜を形成していることが分かる。尚、かさ密度法により、酸化アルミニウム粒子の充填密度を測定したところ、92%であった。
Example 1
Aluminum oxide particles having a non-uniform shape and an average particle size of 0.5 μm were mixed with an aqueous solution in which polyvinyl alcohol was dissolved in water to prepare a slurry. The content rates of aluminum oxide particles and polyvinyl alcohol contained in this slurry are 55% by volume and 4% by volume, respectively.
Next, the slurry is dropped onto the surface of a plate-like substrate (20 mm × 20 mm × 2 mm) made of an aluminum oxide sintered body, and applied to the entire surface of the plate-like substrate using a doctor blade to obtain a thickness. A 0.5 mm coated substrate was obtained. And this base material with a coating film was left still at 20 degreeC in air | atmosphere for 10 minutes.
Thereafter, the base material with the coating film is a plate-like stainless steel heater whose surface temperature is 500 ° C. by infrared heating in advance, and a stainless steel in which a hemispherical projection having a height of 1.2 mm and a diameter of 2 mm is formed at the center. It was mounted on the protrusion of the heater 10 and the lower surface of the base material 15 was locally heated for 10 minutes to degrease the coating film 20 (see FIG. 2). Thereby, an aluminum oxide film having a thickness of about 300 μm was obtained. There was no variation in film thickness.
The plane and cross section of the obtained aluminum oxide film were observed by SEM. According to FIG. 4 which is a planar image, it can be seen that there is no deformation or cracking. Moreover, according to FIG. 5 which is a cross-sectional image after producing the fractured surface, it can be seen that aluminum oxide particles form a film with high density throughout. The filling density of the aluminum oxide particles measured by the bulk density method was 92%.

実施例2
酸化アルミニウム焼結体からなる板状基材のサイズを、50mm×50mm×1mmとし、塗膜厚さを0.3mmとした以外は、実施例1と同じ操作を行って、厚さが約185μmの酸化アルミニウム膜を得た。
図6に示すように、得られた酸化アルミニウム膜には、変形及び割れが見られず、また、膜厚のばらつきは見られなかった。また、かさ密度法により、酸化アルミニウム粒子の充填密度を測定したところ、91%であった。
Example 2
The thickness was about 185 μm by performing the same operation as in Example 1 except that the size of the plate-like substrate made of the aluminum oxide sintered body was 50 mm × 50 mm × 1 mm and the coating thickness was 0.3 mm. An aluminum oxide film was obtained.
As shown in FIG. 6, the obtained aluminum oxide film was not deformed or cracked, and no variation in film thickness was observed. Moreover, when the packing density of the aluminum oxide particles was measured by the bulk density method, it was 91%.

比較例1
実施例1と同様にして作製した塗膜付き基材を、マッフル炉の中に配置した耐熱レンガの上に載置した。そして、大気中、80℃で2時間、次いで、500℃で2時間の加熱を行った。これにより、平均厚さが約300μmの酸化アルミニウム膜を得た。
得られた酸化アルミニウム膜は、図7に示すように、割れており、また、厚さ方向に変形を生じていた。
Comparative Example 1
The base material with a coating film produced in the same manner as in Example 1 was placed on a heat-resistant brick placed in a muffle furnace. Then, heating was performed in the atmosphere at 80 ° C. for 2 hours and then at 500 ° C. for 2 hours. Thereby, an aluminum oxide film having an average thickness of about 300 μm was obtained.
The obtained aluminum oxide film was cracked as shown in FIG. 7 and was deformed in the thickness direction.

本発明により、焼成して焼結体とするためのセラミックス成形体、粒子配列体、粒子充填体等のセラミックス成形体等を得ることができる。   According to the present invention, it is possible to obtain a ceramic molded body, such as a ceramic molded body, a particle array, and a particle packed body for firing into a sintered body.

10:熱源(熱処理部)、11:熱源、15:基材、18:断熱材、20:塗膜、22:セラミックス成形体   10: heat source (heat treatment part), 11: heat source, 15: base material, 18: heat insulating material, 20: coating film, 22: ceramic molded body

Claims (4)

セラミックス粒子及び高分子バインダーを含有するスラリーを基材の表面に塗布する塗布工程と、該塗布工程により得られた塗膜付き基材を、該塗膜付き基材の下方から加熱して前記塗膜の脱脂を行う脱脂工程とを、順次、備える、セラミックス成形体の製造方法であって、
前記脱脂工程において、前記塗膜付き基材の下面を不均一加熱することを特徴とする、セラミックス成形体の製造方法。
A coating step in which a slurry containing ceramic particles and a polymer binder is applied to the surface of the substrate, and a substrate with a coating film obtained by the coating step is heated from below the substrate with a coating film to apply the coating. A degreasing step for degreasing a film, in order, a method for producing a ceramic molded body,
In the said degreasing process, the lower surface of the said base material with a coating film is heated nonuniformly, The manufacturing method of the ceramic molded object characterized by the above-mentioned.
前記脱脂工程における加熱温度が200℃以上である請求項1に記載のセラミックス成形体の製造方法。   The method for producing a ceramic molded body according to claim 1, wherein a heating temperature in the degreasing step is 200 ° C or higher. 前記スラリーに含まれる前記セラミックス粒子の濃度が30〜80体積%である請求項1又は2に記載のセラミックス成形体の製造方法。   The method for producing a ceramic molded body according to claim 1 or 2, wherein the concentration of the ceramic particles contained in the slurry is 30 to 80% by volume. 請求項1乃至3のいずれか一項に記載のセラミックス成形体の製造方法に用いられる、セラミックス成形体の製造装置であって、
セラミックス粒子及び高分子バインダーを含有するスラリーを基材の表面に塗布して形成された塗膜付き基材を載置し、且つ、該塗膜付き基材を下方から加熱する熱処理部を備え、前記熱処理部は、前記塗膜付き基材の基材部と点接触又は線接触する凸部を含むことを特徴とするセラミックス成形体の製造装置。
A ceramic molded body manufacturing apparatus used in the method for manufacturing a ceramic molded body according to any one of claims 1 to 3,
A substrate with a coating film formed by applying a slurry containing ceramic particles and a polymer binder to the surface of the substrate is placed, and a heat treatment unit for heating the substrate with a coating film from below is provided. The said heat processing part contains the convex part which carries out a point contact or a line contact with the base-material part of the said base material with a coating film, The manufacturing apparatus of the ceramic molded body characterized by the above-mentioned.
JP2017011533A 2016-02-05 2017-01-25 Manufacturing method of ceramic molded product and manufacturing equipment used for it Active JP6754305B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP17747538.1A EP3412642B1 (en) 2016-02-05 2017-02-02 Production method of a ceramic compact
EP20176252.3A EP3718987B1 (en) 2016-02-05 2017-02-02 Production method of a ceramic compact
PCT/JP2017/003859 WO2017135387A1 (en) 2016-02-05 2017-02-02 Method for producing ceramic sintered body, and method and device for producing ceramic molded body
KR1020247005130A KR20240025053A (en) 2016-02-05 2017-02-02 Method for producing ceramic sintered body, and method and device for producing ceramic molded body
CN201780009909.5A CN108602726B (en) 2016-02-05 2017-02-02 Method for producing ceramic sintered body, and method and apparatus for producing ceramic molded body
US16/074,683 US11027454B2 (en) 2016-02-05 2017-02-02 Method for producing ceramic sintered body, and method and device for producing ceramic molded body
KR1020187024275A KR20180111860A (en) 2016-02-05 2017-02-02 METHOD FOR PRODUCING SEMICONDUCTOR SEMICONDUCTOR, AND METHOD AND APPARATUS FOR MANUFACTURING CERAMIC PRODUCTS
TW106103721A TWI717462B (en) 2016-02-05 2017-02-03 Manufacturing method of ceramic sintered body, and manufacturing method and manufacturing device of ceramic molded body
US17/206,717 US11724415B2 (en) 2016-02-05 2021-03-19 Method for producing ceramic sintered body, and method and device for producing ceramic molded body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016021264 2016-02-05
JP2016021264 2016-02-05

Publications (2)

Publication Number Publication Date
JP2017141152A true JP2017141152A (en) 2017-08-17
JP6754305B2 JP6754305B2 (en) 2020-09-09

Family

ID=59628256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017011533A Active JP6754305B2 (en) 2016-02-05 2017-01-25 Manufacturing method of ceramic molded product and manufacturing equipment used for it

Country Status (1)

Country Link
JP (1) JP6754305B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02296778A (en) * 1989-05-12 1990-12-07 Ngk Insulators Ltd Production of ceramic superconductor
JP2006104058A (en) * 2005-12-19 2006-04-20 Nippon Shokubai Co Ltd Ceramic sheet
JP2008047445A (en) * 2006-08-17 2008-02-28 Toda Kogyo Corp Method of manufacturing solid electrolytic ceramic membrane, and electrochemical device
JP2008308374A (en) * 2007-06-15 2008-12-25 Kawasaki Heavy Ind Ltd Environment-resistant coating of silicon carbide based fiber reinforced ceramic composite material
JP2010219114A (en) * 2009-03-13 2010-09-30 Tokyo Institute Of Technology Carbon electrode, method for manufacturing the same, organic transistor and method for manufacturing the same
JP2011143361A (en) * 2010-01-15 2011-07-28 Nikki Universal Co Ltd Hydrocarbon reforming catalyst, method for manufacturing the same and reforming method using the same
JP2015105201A (en) * 2013-11-29 2015-06-08 住友電気工業株式会社 Production method of nitride sintered body, production method of laminate including nitride sintered body, and laminate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02296778A (en) * 1989-05-12 1990-12-07 Ngk Insulators Ltd Production of ceramic superconductor
JP2006104058A (en) * 2005-12-19 2006-04-20 Nippon Shokubai Co Ltd Ceramic sheet
JP2008047445A (en) * 2006-08-17 2008-02-28 Toda Kogyo Corp Method of manufacturing solid electrolytic ceramic membrane, and electrochemical device
JP2008308374A (en) * 2007-06-15 2008-12-25 Kawasaki Heavy Ind Ltd Environment-resistant coating of silicon carbide based fiber reinforced ceramic composite material
JP2010219114A (en) * 2009-03-13 2010-09-30 Tokyo Institute Of Technology Carbon electrode, method for manufacturing the same, organic transistor and method for manufacturing the same
JP2011143361A (en) * 2010-01-15 2011-07-28 Nikki Universal Co Ltd Hydrocarbon reforming catalyst, method for manufacturing the same and reforming method using the same
JP2015105201A (en) * 2013-11-29 2015-06-08 住友電気工業株式会社 Production method of nitride sintered body, production method of laminate including nitride sintered body, and laminate

Also Published As

Publication number Publication date
JP6754305B2 (en) 2020-09-09

Similar Documents

Publication Publication Date Title
EP3718987B1 (en) Production method of a ceramic compact
JP4961672B2 (en) Cylindrical sputtering target, ceramic sintered body, and manufacturing method thereof
JP6891991B2 (en) Manufacturing method of silicon nitride sintered substrate
JP7225376B2 (en) Refractories
JP6025586B2 (en) Setter manufacturing method
JP7220527B2 (en) baking tools
JP6754305B2 (en) Manufacturing method of ceramic molded product and manufacturing equipment used for it
JP4596855B2 (en) Metal-ceramic composite structure and electrode member for plasma generation comprising the same
TW201638051A (en) Ceramic plate-shaped body and method for producing same
JP4171916B2 (en) Heat-resistant covering material
CN104058752B (en) Base Setter
JP7272370B2 (en) Silicon nitride substrate manufacturing method and silicon nitride substrate
JP2021167276A (en) Deposited body
JP2018020929A (en) Silicon nitride sintered substrate and production method thereof
JP4993812B2 (en) Heat treatment member made of zirconia sintered body
JP5762815B2 (en) Method for producing aluminum nitride sintered body
JP6875890B2 (en) Manufacturing method of cylindrical oxide sintered body and floor plate
JP2001089270A (en) Method of producing silicon impregnated silicon carbide ceramic member
JP6452969B2 (en) Aluminum-silicon carbide composite and method for producing the same
JP7429575B2 (en) Method for sintering nitride ceramics and method for producing sintered products
JP6959790B2 (en) Sintering method and manufacturing method of sintered product
JP2006228742A (en) Ceramics heater and its manufacturing method
JP2016113334A (en) Silicon carbide sintered compact, method for producing the silicon carbide sintered compact, firing fixture, firing furnace, and molten metal holding furnace
JP2006151777A (en) Ceramic-metal compound material, its forming process, and conductive member using the same
JPH1047867A (en) Thin-wall jig for firing of electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200821

R150 Certificate of patent or registration of utility model

Ref document number: 6754305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250