JP4993812B2 - Heat treatment member made of zirconia sintered body - Google Patents

Heat treatment member made of zirconia sintered body Download PDF

Info

Publication number
JP4993812B2
JP4993812B2 JP2001121803A JP2001121803A JP4993812B2 JP 4993812 B2 JP4993812 B2 JP 4993812B2 JP 2001121803 A JP2001121803 A JP 2001121803A JP 2001121803 A JP2001121803 A JP 2001121803A JP 4993812 B2 JP4993812 B2 JP 4993812B2
Authority
JP
Japan
Prior art keywords
sintered body
zirconia
heat treatment
pores
pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001121803A
Other languages
Japanese (ja)
Other versions
JP2002316870A (en
Inventor
宏司 大西
博律 中
淳 上田
利夫 河波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkato Corp
Original Assignee
Nikkato Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkato Corp filed Critical Nikkato Corp
Priority to JP2001121803A priority Critical patent/JP4993812B2/en
Publication of JP2002316870A publication Critical patent/JP2002316870A/en
Application granted granted Critical
Publication of JP4993812B2 publication Critical patent/JP4993812B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐久性にすぐれたジルコニア質焼結体からなる熱処理用部材に関する。なお、本発明でいう熱処理用部材とは圧電体、誘電体などの電子部品材料、セラミック材料の熱処理用容器、単結晶育成用ルツボ、金属溶解用ルツボ、各種電気炉用炉心管、サポートチューブ、ラジアントチューブ、ガス吹込管、ガス採取管、測温用熱電対および各種機器用の保護管、サポート用治具材などである。
【0002】
【従来技術とその問題点】
電子セラミックスである誘電体や圧電体の焼成は、被焼成体の蒸発成分を極力少なくして組成の変動を少なくするために急速昇温・降温がなされている。そのため、使用される熱処理用部材は耐熱衝撃抵抗性の高い多孔質のアルミナ質やムライト質の熱処理用部材が広く使用されているが、圧電体や誘電体の焼成の場合、被焼成体からの蒸発成分が熱処理用部材と反応し、被焼成体と部材が引っ付いたり、部材が腐食により短期間で使用できなくなるなどの問題があり、誘電体や圧電体の組成成分に対する耐食性が高いジルコニアをアルミナ質やムライト質の多孔体基材表面にコーティングして使用することがなされている。しかしながら、ジルコニアコーティングした熱処理用部材は焼成の繰り返しにより基材とジルコニアコーティング層との熱膨張差により剥離が発生し、安定して長期間使用できない問題がある。一方で、多孔質のジルコニア質焼結体からなる熱処理用部材も使用されているが、ジルコニア質多孔体の場合、耐食性はアルミナ質やムライト質焼結体に比べてすぐれるものの、強度が低いため薄板化が困難であったり、耐熱衝撃抵抗性に劣るため、最近の電子セラミックスの焼成条件である高速昇温・降温には使用できるものでなかった。
【0003】
【発明が解決しようとする課題】
本発明の目的は耐熱衝撃抵抗性および耐食性にすぐれたジルコニア質焼結体からなる熱処理用部材を提供する点にある。
【0004】
【課題を解決するための手段】
本発明は前記のような現状を鑑みて鋭意研究を重ねてきた結果、ジルコニア質焼結体において、ある特定の結晶相からなり、丸みを帯びた密閉気孔を有し、その気孔径と結晶粒径の制御、焼結体の相対密度の制御をすることによりすぐれた耐熱衝撃抵抗性と耐食性にすぐれたジルコニア質焼結体からなる熱処理用部材を見出した。なお、本発明においては、耐熱衝撃抵抗性とは急熱・急冷によるクラックの発生や割れに対する抵抗性だけでなく、加熱・冷却の繰り返しによる耐久性をも意味する。
【0005】
即ち、本発明は、ZrO−Y系ジルコニア質焼結体からなる焼結体であって、a)単斜晶系ジルコニアが15容積%以下であり、b)その焼結体の気孔は丸味を帯びた形状で独立した密閉気孔であり、c)焼結体の平均気孔径が5〜80μmであり、d)焼結体の平均結晶粒径5〜50μm、e)焼結体の相対密度が50〜95%であることを特徴とするジルコニア質焼結体からなる熱処理用部材に関する。
【0006】
以下に詳細に本発明について説明する。
【0007】
(a)単斜晶系ジルコニアが15容積%以下であるという要件について、
本発明において、単斜晶系ジルコニアが15容積%以下であり、より好ましくは10容積%以下である。単斜晶系ジルコニアが15容積%を越える場合には焼成による加熱・冷却の繰り返しにより単斜晶系ジルコニアが増加したりして、焼結体にクラックが発生し、割れにつながるので好ましくない。
なお、本発明では、ジルコニアの結晶相である単斜晶系ジルコニア(M)の存在の有無及び含有量については以下の方法でX線回折により求める。即ち、焼結体表面を鏡面にまで研磨し、X線回折により、回折角27〜34度の範囲で測定し、単斜晶系ジルコニアの有無及び含有量を下記で示した式から求める。
【数1】

Figure 0004993812
【0008】
(b)焼結体の気孔が丸味を帯びた形状で独立した密閉気孔であるという要件について、
本発明における主として密閉された気孔の形成には、粉砕・分散スラリーに所定の相対密度および気孔径になるように気孔形成剤としてアクリル系樹脂球状粒子や多糖類球状粒子などの有機質球状粒子のような有機質で丸味を帯びた粒子を使用する。この気孔形成剤をセラミック粉体に添加、混合して形成し、これを焼成すると、有機質の気孔形成剤は消失し、跡形としての密閉気孔が残るので、密閉気孔の形状は本質的には気孔形成剤の形状に基因した形状となり、丸味をもつ気孔形成剤の使用により丸味を帯びた密閉したものとなり、また密閉気孔は実質的に独立したものとすることができる。気孔形成剤が丸味を帯びていない場合には、焼結体に応力が負荷されると気孔に応力集中がおこりやすくなって、強度や耐熱衝撃抵抗性の低下および高温での変形がおこりやすくなるので好ましくない。なお、本発明でいう密閉気孔とは外部へ通じていない内部気孔のことを指すものである。
【0009】
(c)焼結体の気孔径が5〜80μmであるという要件について、
本発明においては、平均気孔径は5〜80μm、好ましくは5〜50μmであることが必要である。
平均気孔径が5μm未満の場合は気孔形成による耐熱衝撃抵抗性の向上の効果が少なく、80μmを越える場合には連続する気孔が多くなり、強度および耐熱衝撃抵抗性の低下をきたすため好ましくない。
平均気孔径は焼結体を鏡面仕上げし、走査電子顕微鏡により観察し、無作為に100個の気孔径を測定し、等価円直径に換算し、平均値:Pを求め、
【数2】
平均気孔径=1.5×P
として求める
【0010】
(d)焼結体の平均結晶粒径が5〜50μmであるという要件について、
本発明においては焼結体の平均結晶粒径は5〜50μmであることが必要である。平均結晶粒径が5μm未満の場合は、繰り返しの使用による変形などが起こり、耐久性が低下するので好ましくない。一方、50μmを越える場合には耐熱衝撃性が低下するので好ましくない。好ましくは10〜40μmである。
平均結晶粒径は焼結体を鏡面仕上げし、熱エッチングを施し、走査電子顕微鏡により観察し、無作為に100個の結晶粒の直径を測定し、等価円直径に換算し、平均値:dを求め、
【数3】
平均結晶粒径D=1.5×d(μm)
として求める。
【0011】
(e)相対密度が50〜95%であるという要件について、
本発明においては相対密度が50〜95%であることが必要であり、より好ましくは55〜90%であることが必要である。相対密度が50%未満の場合は気孔量が多くなり、各々の気孔がつながって連結気孔が多くなったり、気孔径が大きくなり、強度および耐熱衝撃抵抗性の低下をきたすので好ましくない。また、相対密度が95%を越える場合は耐熱衝撃抵抗性の低下をきたすので好ましくない。
本発明でいう相対密度とは
【数4】
相対密度=(焼結体かさ密度/理論密度)×100(%)
で算出したものを表す。
【0012】
本発明は、焼成温度を低くして十分に焼結させずに気孔を残存させたり、従来の多孔質材料のように粒度の大きい原料粉末を使用して高温で焼成しても気孔が残存するものでなく、気孔が存在しない部分は結晶が従来の緻密質の焼結体と全く同様に焼結しているものである。このようにすることにより、耐熱衝撃抵抗性、耐クリープ性および強度が高く、耐食性に優れた熱処理用部材とすることができる。
【0013】
本発明のジルコニア質焼結体からなる熱処理用部材は種々の方法で作製できるが、その一例を下記に示す。
【0014】
ジルコニアおよびイットリア原料粉末は、ともに純度が98%以上、平均粒子径が2μm以下であることが好ましく、より好ましくは1.5μm以下である。平均粒子径が2μmを越える場合には、焼結体内部の欠陥が多く存在するため、耐熱衝撃抵抗性をはじめとする機械的特性の低下をきたすので好ましくない。イットリア添加量は得られる焼結体の単斜晶系ジルコニア量が15容積%以下になるように設定すれば良いが、イットリア添加量はジルコニアに対し、4〜10モル%の添加が好ましい。また、イットリア添加量の30モル%までを他の稀土類酸化物の1種または2種以上で置換したものも用いることができる。このような稀土類酸化物としては、CeO、Nd、Yb、Dy等が安価な点で好ましい。
なお、焼結体に含有されるSiO、Al、TiO、Fe、CaO、NaO及びKOの合計量は5重量%以下であることが好ましく、より好ましくは3重量%以下である。特に、SiO量は2重量%以下であることが好ましく、SiO量が2重量%を越えて含有していると単斜晶系ジルコニア量が多くなるだけでなく、被焼成体との反応が促進され、被焼成体と熱処理用部材との引っ付きが起こりやすくなるため好ましくない。不純物量が5重量%を越えると結晶粒界にガラス相や第2相を多く形成し、耐熱衝撃抵抗性および耐食性の低下をきたすので好ましくない。
【0015】
イットリア含有量が所定量となるように各原料粉末に配合し、溶媒として水または有機溶媒を用いて、ポットミル、アトリッションミル等の粉砕機により粉砕・分散・混合する。得られた粉体の平均粒子径は1.5μm以下であることが好ましく、より好ましくは1.0μm以下である。粒度がこれらの範囲外の場合は、成形性が低下し、得られた焼結体に欠陥が多く含有し、強度および耐熱衝撃抵抗性が低下するだけでなく、その他の機械的特性及び耐食性も低下するので好ましくない。
【0016】
気孔の形成は粉砕・分散スラリーに所定の相対密度および気孔径になるように気孔形成剤としてアクリル樹脂球状粒子、多糖類球状粒子等を添加する。気孔形成剤の粒子形状は球状であることが必要で、球状でない場合は形成される気孔形状が球状にならないので好ましくない。
【0017】
成形方法としてプレス成形やラバープレス成形等の方法を採用する場合には、粉砕・分散スラリーに必要により公知の成形助剤(例えばワックスエマルジョン、PVA、アクリル系樹脂等)を加え、スプレードライヤー等の公知の方法で乾燥させて成形粉体を作製し、これを用いて成形する。また、鋳込成形法を採用する場合には、粉砕・分散スラリーに必要により公知のバインダー(例えばワックスエマルジョン、アクリル系樹脂等)を加え、石膏型あるいは樹脂型を用いて排泥鋳込、充填鋳込、加圧鋳込法により成形する。さらに、押出成形法を採用する場合には、粉砕・分散したスラリーを乾燥させ、整粒し、混合機を用いて水、バインダー(例えばメチルセルロース等)、可塑剤(例えばポリエチレングリコール等)、滑剤(例えばステアリン酸等)を混合して坏土を作製し、押出成形する。以上のようにして得た成形体を1400〜1700℃、より好ましくは1500〜1650℃で焼成することによってジルコニア質焼結体からなる熱処理用部材を得る。
【0018】
【実施例】
以下に実施例を示し、本発明を説明するが、本発明はこれにより何ら限定されるものでない。
【0019】
実施例1〜6、比較例1〜6
純度98%、平均粒子径が2μmのジルコニア原料およびイットリア原料を表1に示す所定量配合し、ポットミルで水を用いて粉砕・分散・混合し、スラリーを作製した。このスラリーに気孔形成剤としてアクリル樹脂球状粒子または多糖類球状粒子を所定の気孔率および気孔径になるように添加・混合した(表1参照)。
上記スラリーにPVA2重量%を添加し、スプレードライヤー乾燥を施して成形用粉体とした。得られた成形体粉体を金型中で1tonf/cmの圧力によりプレス成形し、1500〜1750℃で焼成して、150mm角で厚さ5mmの板状熱処理用セッターを作製した。
得られた熱処理用セッターの焼結体特性を表1に示す。
得られた熱処理用セッターを耐火物の上に載せ、500℃に加熱保持している電気炉中に挿入し、30分加熱保持後、耐火物に載せたまま炉外に取り出し、室温下で急冷し、割れの有無により熱衝撃抵抗性を評価した。また、上記と同条件で繰り返しによるクラック発生の有無について評価した。本発明のジルコニア質焼結体からなる熱処理用部材はすぐれた耐熱衝撃抵抗性にすぐれることが明らかである。
【0020】
【表1】
Figure 0004993812
【0021】
【発明の効果】
本発明のジルコニア質焼結体からなる熱処理用部材は、耐熱衝撃抵抗性および耐食性にすぐれるため、誘電体および圧電体等の熱処理用部材として有用である。また、強度が従来のジルコニア質多孔体からなる熱処理用部材に比べて高いため、特に熱処理用セッターとして用いる場合に薄く軽量化できる点で大きなメリットがあり、さらに、ジルコニアコーティングされたセッターのような剥離現象もないため、長期間安定して使用できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat treatment member comprising a zirconia sintered body having excellent durability. The heat treatment member in the present invention is an electronic component material such as a piezoelectric material or a dielectric material, a heat treatment vessel for ceramic material, a crucible for growing a single crystal, a crucible for melting metal, various furnace core tubes for electric furnaces, support tubes, Radiant tubes, gas blowing tubes, gas sampling tubes, thermocouples for temperature measurement, protective tubes for various devices, support jig materials, and the like.
[0002]
[Prior art and its problems]
In the firing of dielectrics and piezoelectric bodies, which are electronic ceramics, rapid heating and cooling are performed in order to minimize the evaporation component of the body to be fired and to reduce composition fluctuations. For this reason, porous alumina and mullite heat-treating members with high thermal shock resistance are widely used as heat-treating members. However, when firing piezoelectric or dielectric materials, Evaporated components react with the heat treatment member, causing the fired body and the member to be stuck, or causing the member to become unusable in a short period of time due to corrosion. Zirconia, which has high corrosion resistance against the composition components of dielectrics and piezoelectrics, is alumina. It has been used by coating on the surface of a porous substrate of quality or mullite. However, the heat-treated member coated with zirconia has a problem that peeling occurs due to a difference in thermal expansion between the base material and the zirconia coating layer due to repeated firing, and it cannot be used stably for a long time. On the other hand, heat-treating members made of porous zirconia sintered bodies are also used, but in the case of zirconia porous bodies, the corrosion resistance is superior to alumina and mullite sintered bodies, but the strength is low. For this reason, it is difficult to reduce the thickness of the plate, and the thermal shock resistance is inferior. Therefore, it cannot be used for high-speed temperature rise / fall, which is a recent firing condition of electronic ceramics.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a heat treatment member comprising a zirconia sintered body having excellent thermal shock resistance and corrosion resistance.
[0004]
[Means for Solving the Problems]
The present invention has been intensively studied in view of the above situation, and as a result, the zirconia sintered body is made of a specific crystal phase and has rounded closed pores. The present inventors have found a heat treatment member comprising a zirconia sintered body having excellent thermal shock resistance and corrosion resistance by controlling the diameter and the relative density of the sintered body. In the present invention, the thermal shock resistance means not only the occurrence of cracks due to rapid heating / cooling and the resistance to cracking, but also the durability due to repeated heating / cooling.
[0005]
That is, the present invention is a sintered body comprising a ZrO 2 —Y 2 O 3 -based zirconia sintered body, wherein a) monoclinic zirconia is 15% by volume or less, and b) The pores are rounded and independent closed pores , c) the average pore diameter of the sintered body is 5 to 80 μm, d) the average crystal grain size of the sintered body is 5 to 50 μm, and e) the sintered body. It is related with the member for heat processing which consists of a zirconia sintered compact characterized by the relative density of being 50 to 95%.
[0006]
The present invention is described in detail below.
[0007]
(A) Regarding the requirement that the monoclinic zirconia is 15% by volume or less,
In the present invention, monoclinic zirconia is 15% by volume or less, more preferably 10% by volume or less. When monoclinic zirconia exceeds 15% by volume, it is not preferable because monoclinic zirconia increases due to repeated heating and cooling by firing, and cracks are generated in the sintered body, leading to cracks.
In the present invention, the presence / absence and content of monoclinic zirconia (M), which is a crystal phase of zirconia, are determined by X-ray diffraction by the following method. That is, the surface of the sintered body is polished to a mirror surface, measured by X-ray diffraction in a diffraction angle range of 27 to 34 degrees, and the presence and content of monoclinic zirconia is obtained from the following formula.
[Expression 1]
Figure 0004993812
[0008]
(B) Regarding the requirement that the pores of the sintered body are independent closed pores in a rounded shape,
For the formation of mainly sealed pores in the present invention, organic spherical particles such as acrylic resin spherical particles and polysaccharide spherical particles are used as pore forming agents so as to have a predetermined relative density and pore diameter in the pulverized / dispersed slurry. Use organic, rounded particles. When this pore-forming agent is added to the ceramic powder, mixed and formed, and when fired, the organic pore-forming agent disappears and the closed pores remain as traces, so the shape of the closed pores is essentially a pore. The shape is based on the shape of the forming agent, and the round pore is formed by using a round pore forming agent, and the closed pores can be substantially independent. When the pore-forming agent is not rounded, stress is easily concentrated on the pores when stress is applied to the sintered body, resulting in a decrease in strength and thermal shock resistance and deformation at high temperatures. Therefore, it is not preferable. In addition, the closed pore as used in the field of this invention refers to the internal pore which is not connected outside.
[0009]
(C) Regarding the requirement that the pore size of the sintered body is 5 to 80 μm,
In the present invention, the average pore diameter is required to be 5 to 80 μm, preferably 5 to 50 μm.
When the average pore diameter is less than 5 μm, the effect of improving the thermal shock resistance due to pore formation is small, and when it exceeds 80 μm, the continuous pores increase and the strength and the thermal shock resistance are deteriorated.
The average pore diameter is obtained by mirror-finishing the sintered body, observing with a scanning electron microscope, measuring 100 pore diameters at random, converting to an equivalent circular diameter, and obtaining an average value: P.
[Expression 2]
Average pore diameter = 1.5 x P
Ask for as [0010]
(D) Regarding the requirement that the average crystal grain size of the sintered body is 5 to 50 μm,
In the present invention, the average crystal grain size of the sintered body needs to be 5 to 50 μm. An average crystal grain size of less than 5 μm is not preferable because deformation due to repeated use occurs and durability is lowered. On the other hand, if it exceeds 50 μm, the thermal shock resistance is lowered, which is not preferable. Preferably it is 10-40 micrometers.
The average crystal grain size is obtained by mirror-finishing the sintered body, performing thermal etching, observing with a scanning electron microscope, measuring the diameter of 100 crystal grains at random, and converting to an equivalent circular diameter. Seeking
[Equation 3]
Average crystal grain size D = 1.5 × d (μm)
Asking.
[0011]
(E) For the requirement that the relative density is 50-95%,
In the present invention, the relative density needs to be 50 to 95%, more preferably 55 to 90%. When the relative density is less than 50%, the amount of pores is increased, and the respective pores are connected to increase the number of connected pores, the pore diameter is increased, and the strength and thermal shock resistance are deteriorated. On the other hand, when the relative density exceeds 95%, the thermal shock resistance is lowered, which is not preferable.
In the present invention, the relative density is:
Relative density = (sintered bulk density / theoretical density) × 100 (%)
It represents what was calculated in.
[0012]
In the present invention, the pores remain even if the firing temperature is lowered and the pores are not sufficiently sintered, or the raw material powder having a large particle size is used as in the case of the conventional porous material, and the pores remain even when fired at a high temperature. The portion where no pores are present is that the crystal is sintered in the same manner as a conventional dense sintered body. By doing in this way, it can be set as the member for heat processing which is high in thermal shock resistance, creep resistance, and intensity | strength, and was excellent in corrosion resistance.
[0013]
Although the member for heat processing which consists of a zirconia sintered compact of this invention can be produced with various methods, the example is shown below.
[0014]
The zirconia and yttria raw material powders both preferably have a purity of 98% or more and an average particle size of 2 μm or less, more preferably 1.5 μm or less. When the average particle diameter exceeds 2 μm, there are many defects inside the sintered body, which is not preferable because mechanical properties such as thermal shock resistance are deteriorated. The added amount of yttria may be set so that the amount of monoclinic zirconia in the obtained sintered body is 15% by volume or less, but the added amount of yttria is preferably 4 to 10 mol% with respect to zirconia. Further, it is also possible to use one obtained by substituting up to 30 mol% of the amount of added yttria with one or more other rare earth oxides. As such rare earth oxides, CeO 2 , Nd 2 O 3 , Yb 2 O 3 , Dy 2 O 3 and the like are preferable from the viewpoint of inexpensiveness.
The total amount of SiO 2 , Al 2 O 3 , TiO 2 , Fe 2 O 3 , CaO, Na 2 O and K 2 O contained in the sintered body is preferably 5% by weight or less, more preferably. Is 3% by weight or less. In particular, the amount of SiO 2 is preferably 2% by weight or less. If the amount of SiO 2 exceeds 2% by weight, not only the amount of monoclinic zirconia increases but also the reaction with the object to be fired. Is promoted, and the object to be fired and the heat treatment member are likely to be caught, which is not preferable. If the amount of impurities exceeds 5% by weight, a large amount of glass phase or second phase is formed at the crystal grain boundary, resulting in a decrease in thermal shock resistance and corrosion resistance.
[0015]
It mix | blends with each raw material powder so that yttria content may become predetermined amount, and it grind | pulverizes, disperses, and mixes with water or an organic solvent as a solvent with grinders, such as a pot mill and an attrition mill. The average particle size of the obtained powder is preferably 1.5 μm or less, more preferably 1.0 μm or less. When the particle size is outside these ranges, the formability is reduced, the resulting sintered body contains many defects, not only the strength and thermal shock resistance are reduced, but also other mechanical properties and corrosion resistance. Since it falls, it is not preferable.
[0016]
For the formation of pores, acrylic resin spherical particles, polysaccharide spherical particles and the like are added as pore forming agents so as to have a predetermined relative density and pore diameter in the pulverized / dispersed slurry. The particle shape of the pore-forming agent needs to be spherical. If the particle shape is not spherical, the formed pore shape does not become spherical.
[0017]
When adopting a method such as press molding or rubber press molding as a molding method, a known molding aid (for example, wax emulsion, PVA, acrylic resin, etc.) is added to the pulverized / dispersed slurry as necessary, and a spray dryer or the like is added. It is dried by a known method to produce a molded powder, which is then molded. In addition, when adopting the casting method, a known binder (for example, wax emulsion, acrylic resin, etc.) is added to the pulverized / dispersed slurry as required, and the waste mud is cast and filled using a gypsum mold or a resin mold. Molded by casting or pressure casting. Furthermore, when adopting an extrusion molding method, the pulverized / dispersed slurry is dried, sized, and mixed with water, a binder (for example, methylcellulose), a plasticizer (for example, polyethylene glycol), a lubricant (for example). For example, stearic acid or the like is mixed to prepare a clay, and extrusion molding is performed. The molded body obtained as described above is fired at 1400 to 1700 ° C., more preferably 1500 to 1650 ° C., to obtain a heat treatment member made of a zirconia sintered body.
[0018]
【Example】
The present invention will be described below with reference to examples, but the present invention is not limited thereby.
[0019]
Examples 1-6, Comparative Examples 1-6
A predetermined amount of zirconia raw material and yttria raw material having a purity of 98% and an average particle size of 2 μm were blended as shown in Table 1, and pulverized, dispersed, and mixed with water in a pot mill to prepare a slurry. To this slurry, acrylic resin spherical particles or polysaccharide spherical particles were added and mixed as a pore forming agent so as to have a predetermined porosity and pore diameter (see Table 1).
2% by weight of PVA was added to the slurry, and spray drying was performed to obtain a molding powder. The obtained compact powder was press-molded in a mold at a pressure of 1 tonf / cm 2 and fired at 1500 to 1750 ° C. to produce a plate-like heat-treating setter having a 150 mm square and a thickness of 5 mm.
Table 1 shows the sintered body characteristics of the setter for heat treatment obtained.
Place the obtained heat-treating setter on the refractory, insert it into an electric furnace heated and held at 500 ° C., hold it for 30 minutes, take it out of the furnace while it is placed on the refractory, and rapidly cool it at room temperature The thermal shock resistance was evaluated based on the presence or absence of cracks. Moreover, the presence or absence of the crack generation by repetition on the same conditions as the above was evaluated. It is apparent that the heat treatment member comprising the zirconia sintered body of the present invention is excellent in thermal shock resistance.
[0020]
[Table 1]
Figure 0004993812
[0021]
【Effect of the invention】
The heat treatment member comprising the zirconia sintered body of the present invention is excellent in thermal shock resistance and corrosion resistance, and thus is useful as a heat treatment member for dielectrics and piezoelectric materials. In addition, since the strength is higher than conventional heat-treating members made of zirconia porous bodies, there is a great merit in that it can be made thin and light, especially when used as a heat-treating setter, and further, like a zirconia-coated setter. Since there is no peeling phenomenon, it can be used stably for a long time.

Claims (1)

ZrO−Y系ジルコニア質焼結体からなる焼結体であって、(a)単斜晶系ジルコニアが15容積%以下であり、(b)その焼結体の気孔は丸味を帯びた形状で独立した密閉気孔であり、(c)焼結体の平均気孔径が5〜80μmであり、(d)焼結体の平均結晶粒径5〜50μm、(e)焼結体の相対密度が50〜95%であることを特徴とするジルコニア質焼結体からなる熱処理用部材。A sintered body comprising a ZrO 2 —Y 2 O 3 -based zirconia sintered body, wherein (a) monoclinic zirconia is 15% by volume or less, and (b) pores of the sintered body are rounded. a sealed independent pores at tinged shape, (c) an average pore size of the sintered body is 5 to 80 m, (d) an average grain size 5~50μm of the sintered body, the (e) sintered body A heat-treating member comprising a zirconia sintered body having a relative density of 50 to 95%.
JP2001121803A 2001-04-19 2001-04-19 Heat treatment member made of zirconia sintered body Expired - Lifetime JP4993812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001121803A JP4993812B2 (en) 2001-04-19 2001-04-19 Heat treatment member made of zirconia sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001121803A JP4993812B2 (en) 2001-04-19 2001-04-19 Heat treatment member made of zirconia sintered body

Publications (2)

Publication Number Publication Date
JP2002316870A JP2002316870A (en) 2002-10-31
JP4993812B2 true JP4993812B2 (en) 2012-08-08

Family

ID=18971605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001121803A Expired - Lifetime JP4993812B2 (en) 2001-04-19 2001-04-19 Heat treatment member made of zirconia sintered body

Country Status (1)

Country Link
JP (1) JP4993812B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5005012B2 (en) * 2008-10-07 2012-08-22 日本碍子株式会社 Ceramic capacitor firing method and firing setter
JP6916593B2 (en) * 2016-01-19 2021-08-11 クラレノリタケデンタル株式会社 Zirconia sintered body and dental products
KR101996888B1 (en) * 2017-12-28 2019-07-05 한국세라믹기술원 Ceramic with excellent thermal shock resistance
CN109369181B (en) * 2018-12-10 2020-10-02 中钢集团洛阳耐火材料研究院有限公司 Volume-stable high-purity zirconia refractory product
JP7117447B1 (en) 2021-12-28 2022-08-12 株式会社トーキン Method for producing zirconia setter and MnZn ferrite

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60112667A (en) * 1983-11-22 1985-06-19 ティーディーケイ株式会社 Oil-containing sliding member
JPH01239071A (en) * 1988-03-17 1989-09-25 Kanebo Ltd Production of ceramic porous material
JPH0820186B2 (en) * 1988-12-05 1996-03-04 東芝セラミックス株式会社 Heat treatment tool and manufacturing method thereof
JPH04160078A (en) * 1990-10-19 1992-06-03 Kanebo Ltd Production of ceramic porous body
JPH04367578A (en) * 1991-06-12 1992-12-18 Mitsubishi Materials Corp Porous sintered compact and its production
JPH0597537A (en) * 1991-10-02 1993-04-20 Kanebo Ltd Production of ceramic porous material
JP3108493B2 (en) * 1992-01-07 2000-11-13 株式会社ニッカトー Heat exchanger components
JP3260988B2 (en) * 1994-10-28 2002-02-25 京セラ株式会社 Method for producing solid electrolyte
JP3441647B2 (en) * 1998-05-25 2003-09-02 東京窯業株式会社 Firing setter
JP2002154873A (en) * 2000-11-10 2002-05-28 Nitsukatoo:Kk Zirconia sintered compact excellent in durability

Also Published As

Publication number Publication date
JP2002316870A (en) 2002-10-31

Similar Documents

Publication Publication Date Title
KR101729650B1 (en) Mullite ceramic and method for producing same
JP6636307B2 (en) Alumina sintered body with excellent high temperature properties and corrosion resistance
JP4357584B1 (en) Alumina sintered body with excellent corrosion resistance, thermal shock resistance and durability
JP4836348B2 (en) Heat-treating member made of an alumina sintered body with excellent durability
JP5931542B2 (en) Firing member made of zirconia sintered body
JP4667520B2 (en) Silicon nitride based composite ceramics and method for producing the same
JP4993812B2 (en) Heat treatment member made of zirconia sintered body
JP4560199B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP4721947B2 (en) Corrosion-resistant magnesia sintered body, heat treatment member comprising the same, and method for producing the sintered body
KR101514180B1 (en) Method for manufacturing ceramic body having uniform density
JP5036110B2 (en) Lightweight ceramic sintered body
JP4507148B2 (en) Heat treatment member made of mullite sintered body
JP4546609B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP4043425B2 (en) Zirconia heat treatment material
JP4249830B2 (en) Sintering jig and manufacturing method thereof
JP4822605B2 (en) Roller hearth roller made of heat-resistant mullite sintered body
JP2010095393A (en) Ceramic member for heat treatment excellent in corrosion resistance and method for producing the same
JP3737917B2 (en) Thermal shock-resistant alumina sintered body and heat treatment member comprising the same
JPH07315915A (en) Orientated alumina sintered compact
JP4485615B2 (en) Corrosion-resistant spinel sintered body and heat treatment member comprising the same
JP4906228B2 (en) Alumina sintered body excellent in thermal shock resistance and corrosion resistance and heat treatment member using the same
JP4906240B2 (en) Alumina sintered body excellent in thermal shock resistance and corrosion resistance, heat treatment member comprising the same, and method for producing the same
JP2014024740A (en) Ceramic sintered body, and member for heat treatment
JP5108311B2 (en) Oxide-bonded silicon carbide sintered body and manufacturing method thereof
JPH08198664A (en) Alumina-base sintered body and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4993812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term