JP4836348B2 - Heat-treating member made of an alumina sintered body with excellent durability - Google Patents

Heat-treating member made of an alumina sintered body with excellent durability Download PDF

Info

Publication number
JP4836348B2
JP4836348B2 JP2001121805A JP2001121805A JP4836348B2 JP 4836348 B2 JP4836348 B2 JP 4836348B2 JP 2001121805 A JP2001121805 A JP 2001121805A JP 2001121805 A JP2001121805 A JP 2001121805A JP 4836348 B2 JP4836348 B2 JP 4836348B2
Authority
JP
Japan
Prior art keywords
sintered body
less
weight
pores
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001121805A
Other languages
Japanese (ja)
Other versions
JP2002316866A (en
Inventor
宏司 大西
博律 中
和哉 谷
利夫 河波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkato Corp
Original Assignee
Nikkato Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkato Corp filed Critical Nikkato Corp
Priority to JP2001121805A priority Critical patent/JP4836348B2/en
Publication of JP2002316866A publication Critical patent/JP2002316866A/en
Application granted granted Critical
Publication of JP4836348B2 publication Critical patent/JP4836348B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、耐久性にすぐれたアルミナ質焼結体からなる熱処理用部材に関する。なお、本発明でいう熱処理用部材とは圧電体、誘電体などの電子部品材料、リチウムイオン2次電池正極材料、蛍光体材料およびセラミック材料の熱処理用容器、単結晶育成用ルツボ、金属溶解用ルツボ、各種電気炉用炉心管、サポートチューブ、ラジアントチューブ、ガス吹込管、ガス採取管、測温用熱電対および各種機器用の保護管、サポート用治具材などである。
【0002】
【従来技術とその問題点】
アルミナ質焼結体は耐食性、耐熱性等にすぐれ、他のセラミックスに比べて安価で取り扱いが容易であることから、古くから高温部材、熱処理用容器、セッター、炉心管、測温用保護管等の広い分野で使用されている。
【0003】
最近の電子セラミックスの焼成は被焼成体の蒸発成分を極力少なくして組成の変動を少なくするために急速昇温・降温がなされている。一方で焼成コスト低減のため、焼成炉の断熱性を高め、焼成用部材を軽量化して熱エネルギーの損失を低減したりすることが望まれている。そのため、例えば焼成用セッターには、肉薄軽量で、耐熱衝撃性にすぐれ、耐荷重の高いものが求められている。
【0004】
緻密質の焼結体からなる熱処理用部材は耐食性にはすぐれているものの急速昇温・降温では熱衝撃による割れが発生する危険性を有しており、また重量が重いという欠点を有している。
【0005】
このようなことから、特許第2788061号に軽量で耐熱衝撃抵抗性に優れた焼成用治具が提案されている。しかしながら、該特許発明は気孔率、気孔形状および気孔径について規定した軽量・耐熱衝撃抵抗性の優れた焼成用治具が開示されているが、最近の高機能材料の焼成用治具としては反応がしやすく、強度が低く、使用により治具が変形する等の寿命の点で十分に満足できるものでない。
【0006】
また、電子部品などの焼成は一般的に熱処理用セッターの上に積み重ねて載せた状態で焼成するが、セッターと直接接する被焼成体はそうでない被焼成体に比べて焼成時の雰囲気が異なるため、目的とする特性が得られないなどの問題がある。そのため、電子部品などの焼成に用いられる熱処理用セッターには焼成雰囲気を制御できる適度な通気性を有するものが求められている。
【0007】
【発明が解決しようとする課題】
本発明の目的は、耐久性にすぐれたアルミナ質焼結体からなる熱処理用部材を提供する点にある。
【0008】
【課題を解決するための手段】
本発明は前記のような現状を鑑みて鋭意研究を重ねてきた結果、アルミナ質焼結体において、ある特定の相対密度を有し、丸みを帯びた密閉気孔と連結した開気孔を有し、その気孔径と結晶粒径の制御、焼結体の相対密度の制御をすることによりすぐれた耐久性にすぐれたアルミナ質焼結体からなる熱処理用部材を見出した。なお、本発明においては、耐久性とは急熱・急冷によるクラックの発生や割れに対する抵抗性だけでなく、耐食性および耐クリープ性にすぐれることを意味する。
【0009】
本発明の第1は、(a)Al含有量が95重量%以上、(g)MgO含有量が0.3重量%以下、(h)結晶粒径が0.5μm以下のジルコニア含有量が5.0重量%以下、のアルミナ質焼結体であって、(b)その気孔は丸味を帯びた形状で、密閉および連結した開気孔とからなり、(c)焼結体の平均気孔径が2〜100μmであり、(d)焼結体の平均結晶粒径5〜50μm、(e)焼結体の相対密度が50〜70%であり、(f)1400℃、2MPaの応力下でのたわみ量が2mm以下であり、SiO 、TiO 、Fe 、CaO、Na O及びK Oの合計が1.0重量%以下であることを特徴とするアルミナ質焼結体よりなる耐久性に優れた熱処理用部材に関する。
【0010】
以下に詳細に本発明について説明する。
【0011】
(a)アルミナ含有量が95重量%以上であるという点について、
本発明においては、焼結体のアルミナ含有量が95重量%以上であることが必要である。アルミナ含有量が95重量%未満の場合は、焼結体中に含有する不純物量が多くなり、結晶粒界に不純物で形成される第2相及びガラス相が多くなり、耐食性の低下だけでなく、機械的特性、特に高温下での強度の低下をきたし、その結果、耐クリープ性および耐熱衝撃抵抗性が低下するので好ましくない。アルミナ含有量は、好ましくは、97重量%以上である。
【0012】
(b)その気孔は丸味を帯びた形状で、密閉および連結した開気孔からなる点について、
本発明における密閉気孔および連結した開気孔の形成には、粉砕・分散スラリーに所定の相対密度および気孔径になるように気孔形成剤としてのアクリル系樹脂球状粒子や多糖類球状粒子などの有機質球状粒子のような有機質で丸味を帯びた粒子を使用することが必要である。この気孔形成剤をセラミック粉体に添加、混合して成形し、これを焼成すると、有機質の気孔形成剤は消失し、跡形としての密閉気孔および連結した開気孔が残るので、密閉気孔および連結した開気孔の形状は本質的には気孔形成剤の形状に基因した形状となり、密閉気孔は丸味をもつ気孔形成剤の使用により丸味を帯びた密閉したものとなり、また密閉気孔は実質的に独立したものとすることができる。連結した開気孔はこの丸味を帯びた気孔が連結した形状となる。気孔形状が丸味を帯びていない場合には、焼結体に応力が負荷されると気孔に応力集中がおこりやすくなって、強度や耐熱衝撃抵抗性の低下および高温での変形がおこりやすくなるので好ましくない。なお、本発明でいう密閉気孔とは外部へ通じていない内部気孔のことを指すものである。
【0013】
(c)平均気孔径が2〜100μmであるという点について、
本発明においては、焼結体の平均気孔径は2〜100μm、好ましくは5〜80μm、より好ましくは5〜50μm以下であることが必要である。平均気孔径が2μm未満の場合は気孔形成による耐久性の向上の効果が少なく、100μmを越える場合には連続する気孔が多くなり、耐久性の低下をきたすため好ましくない。
平均気孔径は焼結体を鏡面仕上げし、走査電子顕微鏡により観察し、無作為に100個の気孔径を測定し、等価円直径に換算し、平均値:Pを求め、
【数1】
平均気孔径=1.5×P
として求める。
【0014】
(d)焼結体の平均結晶粒径が5〜50μmであるという点について、
本発明においては、焼結体の平均結晶粒径は5〜50μmであることが必要である。平均結晶粒径が5μm未満の場合は、繰り返しの使用による変形などが起こり、耐久性が低下するので好ましくない。一方、50μmを越える場合には耐熱衝撃性が低下するので好ましくない。好ましくは10〜40μmである。平均結晶粒径は焼結体を鏡面仕上げし、熱エッチングを施し、走査電子顕微鏡にて観察し、無作為に100個の結晶粒の直径を測定し、等価円直径に換算し、平均値:dを求め、
【数2】
平均結晶粒径D=1.5×d(μm)
として求める。
【0015】
(e)相対密度が50〜70%であるという点について、
本発明においては、焼結体の相対密度が50〜70%であることが必要であり、より好ましくは53〜68%であることが必要である。相対密度が50%未満の場合は気孔量が多くなり、各々の気孔が連結して気孔径が大きくなり、耐久性の低下をきたすので好ましくない。また、相対密度が70%を越える場合は耐熱衝撃抵抗性の低下をきたすだけでなく、連結した開気孔が少なくなるので好ましくない。
なお、本発明は、焼成温度を低くして十分に焼結させずに気孔を残存させたり、従来の多孔質材料のように粒度の大きい原料粉末を使用して高温で焼成しても気孔が残存するものでなく、気孔が存在しない部分は結晶が従来の緻密質の焼結体と全く同様に焼結しているものである。このようにすることにより、耐熱衝撃抵抗性、耐クリープ性および強度が高く、耐食性に優れた熱処理用部材とすることができる。
【0016】
本発明でいう前記相対密度とは、
【数3】
(焼結体かさ密度/理論密度)×100(%)
で算出したものを表す。
【0017】
(f)1400℃、2MPaの応力下でのたわみ量が2mm以下であるという点について、
本発明において、焼結体のたわみ量は下記の条件で測定したものである。
焼結体を5×2×150mmに加工し、上スパン:31.3mm、下スパン:100mmの4点曲げで、2MPaの応力で1400℃、5時間加熱保持後のサンプルの下スパン50mmの位置のたわみ量を測定する。本発明では上記条件で測定した場合のたわみ量は2mm以下であることが必要である。2mmを越える場合には被焼成体を多量に焼成できず、また、繰り返しの使用による変形が大きくなるので熱処理用部材としての寿命低下をきたすため、焼成コストが高くなり好ましくない。より好ましくは1.8mm以下である。
上記たわみ量測定用サンプル形状以外でたわみ量を測定する場合には上スパンと下スパンの長さの比率および負荷荷重を同じにして測定したたわみ量:δとで、下記式により補正した値:δ′が2mm以下であることが必要である。
【数4】
δ′=δ×{下スパンの長さ(mm)/100}
要はサンプルサイズが短くなった場合に下スパン100mmで測定できない場合に形状から補正するものである。
【0018】
(g)アルミナ質焼結体に対してMgO含有量が0.3重量%以下である点について、
本発明ではアルミナ質焼結体に対しMgO含有量が0.3重量%以下であることにより、焼結性の向上及び結晶粒径の均一性を高くする効果がある。さらに、ジルコニアとMgOを同時に含有していると還元雰囲気下での強度劣化を抑制することができる。MgOの含有量は好ましくは0.25重量%以下である。
MgO含有量が0.3重量%を超える場合には、アルミナ結晶粒界に第2相を析出しやすくなり、耐久性が劣るので好ましくない。
【0019】
(h)結晶粒径が0.5μm以下のジルコニア含有量が5.0重量%以下である点について、
本発明においては、焼結体中のジルコニア含有量は5.0重量%以下とする好ましく3.0重量%以下である。また、ジルコニア結晶粒径は0.5μm以下である。
ジルコニアはアルミナ焼結体の強度及び靭性の向上に寄与するだけでなく、焼結性を向上させ、結晶粒径分布の少ない微構造にするために重要である。ジルコニア含有量が5.0重量%を越える場合、あるいは結晶粒径が0.5μmを越える場合には加熱・冷却の繰り返しにより、ジルコニアとアルミナとの熱膨張差による残存膨張により焼結体にクラックが発生し、耐久性に欠けるので好ましくない。
【0020】
本発明の耐熱衝撃性にすぐれた熱処理用部材は種々の方法で作製できるが、その一例を下記に示す。
【0021】
アルミナ原料粉末は純度が99%以上、平均粒子径が2μm以下であることが好ましく、より好ましくは1.5μm以下である。平均粒子径が2μmを越える場合には、焼結体内部の欠陥が多く存在するため、耐熱衝撃抵抗性をはじめとする機械的特性の低下をきたすので好ましくない。
【0022】
また、ジルコニア原料粉末としては、液相法により作製された粉末を用いるのが好ましく、比表面積が5m/g以上である必要があり、より好ましくは8m/g以上である。さらには、ジルコニアゾルや焼成によりジルコニアとなるジルコニウム化合物を用いることもできる。ジルコニア原料粉末の比表面積が5m/g未満の場合は、ジルコニア結晶粒子の分散性が低下するだけでなく、焼結体に存在するジルコニア結晶粒子が大きくなるため耐久性が低下するので好ましくない。また、ジルコニアにイットリアが1〜5モル%含有していることがより好ましい。
【0023】
なお、焼結体が含有するSiO、TiO、Fe、CaO、NaO及びKOの合計量は1.0重量%以下とする。不純物量が多くなると結晶粒界にガラス相を多く形成し、高温特性の低下をきたすので好ましくない。
【0024】
各成分が所定量となるように各原料粉末に配合し、溶媒として水または有機溶媒を用いて、ポットミル、アトリッションミル等の粉砕機により粉砕・分散・混合する。MgOを添加する場合は、粉砕・分散・混合時に水酸化物、炭酸化物等のマグネシア化合物の形態で添加しても良いし、予めアルミナ原料粉末に添加した粉末を用いても良い。得られた粉体の平均粒子径は1.5μm以下であることが好ましく、より好ましくは1.0μm以下である。粒度がこれらの範囲外の場合は、成形性が低下し、得られた焼結体に欠陥が多く含有するだけでなく、本発明の微構造を有した焼結体が得られず、耐熱衝撃性が低下するだけでなく、その他の機械的特性及び耐食性も低下するので好ましくない。
【0025】
気孔の形成は粉砕・分散スラリーに所定の相対密度および気孔径になるように気孔形成剤としてアクリル樹脂球状粒子、多糖類球状粒子等を添加する。気孔形成剤の粒子形状は球状であることが必要で、球状でない場合は形成される気孔形状が球状にならないので好ましくない。
【0026】
成形方法としてプレス成形、ラバープレス成形等の方法を採用する場合には、粉砕・分散スラリーに必要により公知の成形助剤(例えばワックスエマルジョン、PVA、アクリル系樹脂等)を加え、スプレードライヤー等の公知の方法で乾燥させて成形粉体を作製し、これを用いて成形する。また、鋳込成形法を採用する場合には、粉砕・分散スラリーに必要により公知のバインダー(例えばワックスエマルジョン、アクリル系樹脂等)を加え、石膏型あるいは樹脂型を用いて排泥鋳込、充填鋳込、加圧鋳込法により成形する。さらに、押出成形法を採用する場合には、粉砕・分散したスラリーを乾燥させ、整粒し、混合機を用いて水、バインダー(例えばメチルセルロース等)、可塑剤(例えばポリエチレングリコール等)、滑剤(例えばステアリン酸等)を混合して坏土を作製し、押出成形する。以上のようにして得た成形体を1500〜1800℃、より好ましくは1600〜1750℃で焼成することによって焼結体を得る。
【0027】
【実施例】
以下に実施例を示し、本発明を説明するが、本発明はこれにより何ら限定されるものでない。
【0028】
実施例1〜8、比較例1〜8
純度99.8%、平均粒子径2μmからなるアルミナ粉末を用い表1に示す配合量にしたがって原料を配合したアルミナ粉末にジルコニアを添加する場合は所定量のジルコニア粉末を、マグネシアを添加する場合は炭酸マグネシウムを、それぞれ所定量になるように配合し、ポットミルにより溶媒として水あるいはエタノールを用いて粉砕・分散・混合し、スラリーを作製した。比較例5は純度99.8%、平均粒子径15μmからなるアルミナ粉末を用いた。気孔形成剤としては多糖類球状粒子を所定の気孔率および気孔径になるように添加、混合した。
また、ジルコニア粉末はY無添加、もしくは1〜3.5モル%含有しており、比表面積が15m/gである粉末を用いた。なお、比較例4および5は気孔形成剤を添加せず、焼成温度により本発明の範囲内の相対密度にした焼結体である。
得られたスラリーにPVA等のバインダーを添加し、スプレードライヤー乾燥を施して成形用粉体とした。得られた成形用粉体を金型に入れを用いて1tonf/cmの圧力でプレス成形し、1450〜1800℃で焼成して、150mm角で厚さ5mmの板状熱処理用セッターを作製した。得られた実施例1〜8、比較例1〜8の熱処理用セッターの焼結体特性を表2に示す。
実施例1〜8は本発明の範囲内の熱処理用セッターであり、比較例1〜8は本発明の要件を少なくとも一つ以上満足していない熱処理用セッターである。
本発明の熱処理用部材はすぐれた耐熱衝撃抵抗性および耐久性にすぐれることが明らかである。
たわみ量は5×2×150mmに加工した棒状のテストピースを上スパン:31.3mm、下スパン:100mm、2MPaの応力で1400℃、5時間の条件でクリープテストを行い、テスト後のテストピースのたわみ量をダイヤルゲージで測定した。
熱衝撃抵抗性は得られた熱処理用セッターを耐火物の上に載せて800℃に加熱保持している電気炉中に挿入し、30分加熱保持後、耐火物に載せたまま即座に炉外に取り出し、室温下で急冷し、割れの有無により評価した。また、上記と同条件の繰り返しによるクラック発生の有無についても評価した。
本発明の熱処理用部材は耐久性にすぐれることが明らかである。
【0029】
【表1】

Figure 0004836348
【0030】
【表2】
Figure 0004836348
【0031】
【発明の効果】
本発明の熱処理用部材は、急速昇温、急速降温によってもクラックを発生しないなど耐熱衝撃性及び耐食性にすぐれるため、圧電体、誘電体などの電子部品材料、リチウムイオン2次電池正極材料、蛍光体材料およびセラミック材料の熱処理用容器、単結晶育成用ルツボ、金属溶解用ルツボ、各種電気炉用炉心管、サポートチューブ、ラジアントチューブ、ガス吹込管、ガス採取管、測温用熱電対および各種機器用の保護管、サポート用治具材などに有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat treatment member comprising an alumina sintered body having excellent durability. The heat treatment member referred to in the present invention is an electronic component material such as a piezoelectric material or a dielectric material, a lithium ion secondary battery positive electrode material, a phosphor material and a ceramic material heat treatment vessel, a single crystal growth crucible, and a metal melting material. These include crucibles, furnace tubes for various electric furnaces, support tubes, radiant tubes, gas injection tubes, gas sampling tubes, thermocouples for temperature measurement and protective tubes for various devices, and support jig materials.
[0002]
[Prior art and its problems]
Alumina sintered body has excellent corrosion resistance, heat resistance, etc., and is cheaper and easier to handle than other ceramics, so it has long been used for high temperature components, heat treatment containers, setters, furnace tubes, temperature measurement protection tubes, etc. Is used in a wide range of fields.
[0003]
In recent firing of electronic ceramics, rapid heating and cooling are performed in order to minimize the evaporation component of the body to be burned and to reduce the variation in composition. On the other hand, in order to reduce the firing cost, it is desired to increase the heat insulation of the firing furnace, reduce the weight of the firing member, and reduce the loss of thermal energy. Therefore, for example, a setter for firing is required to be thin and light, have excellent thermal shock resistance, and have high load resistance.
[0004]
A heat-treating member made of a dense sintered body is excellent in corrosion resistance, but has the risk of cracking due to thermal shock at rapid temperature rise / fall, and has the disadvantage of being heavy. Yes.
[0005]
For this reason, Japanese Patent No. 2788061 proposes a firing jig that is lightweight and excellent in thermal shock resistance. However, although the patented invention discloses a firing jig with excellent light weight and thermal shock resistance, which is defined in terms of porosity, pore shape, and pore diameter, it is a reactive firing jig for recent highly functional materials. It is easy to remove, has low strength, and is not fully satisfactory in terms of life such as deformation of the jig by use.
[0006]
In addition, firing of electronic parts is generally performed in a state where they are stacked on a setter for heat treatment, but since the fired body in direct contact with the setter has a different atmosphere during firing compared to the fired body that is not so. There is a problem that the desired characteristics cannot be obtained. Therefore, a setter for heat treatment used for firing electronic parts or the like is required to have an appropriate air permeability capable of controlling the firing atmosphere.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a heat treatment member comprising an alumina sintered body having excellent durability.
[0008]
[Means for Solving the Problems]
As a result of intensive studies in view of the present situation as described above, the alumina sintered body has a certain relative density, and has open pores connected to rounded closed pores, By controlling the pore diameter and crystal grain size and controlling the relative density of the sintered body, the present inventors have found a heat treatment member comprising an alumina sintered body having excellent durability. In the present invention, durability means not only the occurrence of cracks due to rapid heating / cooling and resistance to cracking, but also excellent corrosion resistance and creep resistance.
[0009]
The first of the present invention includes (a) Al 2 O 3 content of 95% by weight or more, (g) MgO content of 0.3% by weight or less, and (h) zirconia having a crystal grain size of 0.5 μm or less. An alumina sintered body having an amount of 5.0% by weight or less, and (b) the pores are rounded, and are composed of closed and connected open pores, and (c) the average of the sintered bodies The pore diameter is 2 to 100 μm, (d) the average crystal grain size of the sintered body is 5 to 50 μm, (e) the relative density of the sintered body is 50 to 70%, and (f) a stress of 1400 ° C. and 2 MPa. Aluminous firing characterized in that the amount of deflection below is 2 mm or less and the total of SiO 2 , TiO 2 , Fe 2 O 3 , CaO, Na 2 O and K 2 O is 1.0 wt% or less. The present invention relates to a heat-treating member comprising a bonded body and having excellent durability.
[0010]
The present invention is described in detail below.
[0011]
(A) Regarding the point that the alumina content is 95% by weight or more,
In the present invention, the alumina content of the sintered body needs to be 95% by weight or more. When the alumina content is less than 95% by weight, the amount of impurities contained in the sintered body increases, the second phase and glass phase formed by impurities at the crystal grain boundaries increase, and not only the corrosion resistance decreases. Further, the mechanical properties, particularly the strength at high temperatures, are lowered, and as a result, the creep resistance and the thermal shock resistance are lowered. The alumina content is preferably 97% by weight or more.
[0012]
(B) The pores have a rounded shape and consist of closed and connected open pores.
In the present invention, closed pores and connected open pores are formed by organic spherical particles such as acrylic resin spherical particles and polysaccharide spherical particles as pore forming agents so as to have a predetermined relative density and pore diameter in the pulverized / dispersed slurry. It is necessary to use organic rounded particles such as particles. When this pore-forming agent is added to the ceramic powder, mixed and molded, and then fired, the organic pore-forming agent disappears, and the closed pores and the connected open pores remain as traces. The shape of the open pores is essentially based on the shape of the pore-forming agent, the closed pores are rounded and sealed by using a round pore-forming agent, and the closed pores are substantially independent. Can be. The connected open pores have a shape in which the round pores are connected. When the pore shape is not rounded, stress is easily concentrated on the pores when stress is applied to the sintered body, and the strength and thermal shock resistance decrease, and deformation at high temperatures is likely to occur. It is not preferable. In addition, the closed pore as used in the field of this invention refers to the internal pore which is not connected outside.
[0013]
(C) Regarding the average pore diameter being 2 to 100 μm,
In the present invention, the average pore diameter of the sintered body is 2 to 100 μm, preferably 5 to 80 μm, more preferably 5 to 50 μm or less. When the average pore diameter is less than 2 μm, the effect of improving the durability due to pore formation is small, and when it exceeds 100 μm, the number of continuous pores increases, resulting in a decrease in durability.
The average pore diameter is obtained by mirror-finishing the sintered body, observing with a scanning electron microscope, measuring 100 pore diameters at random, converting to an equivalent circular diameter, and obtaining an average value: P.
[Expression 1]
Average pore diameter = 1.5 x P
Asking.
[0014]
(D) About the point that the average crystal grain size of the sintered body is 5 to 50 μm,
In the present invention, the average crystal grain size of the sintered body needs to be 5 to 50 μm. An average crystal grain size of less than 5 μm is not preferable because deformation due to repeated use occurs and durability is lowered. On the other hand, if it exceeds 50 μm, the thermal shock resistance is lowered, which is not preferable. Preferably it is 10-40 micrometers. The average crystal grain size is obtained by mirror-finishing the sintered body, performing thermal etching, observing with a scanning electron microscope, measuring the diameter of 100 crystal grains at random, and converting to an equivalent circular diameter. d
[Expression 2]
Average crystal grain size D = 1.5 × d (μm)
Asking.
[0015]
(E) Regarding the relative density being 50-70%,
In the present invention, the relative density of the sintered body needs to be 50 to 70%, and more preferably 53 to 68%. When the relative density is less than 50%, the amount of pores increases, and the pores are connected to increase the pore diameter, resulting in a decrease in durability. On the other hand, if the relative density exceeds 70%, not only the thermal shock resistance is lowered, but also the open pores connected are reduced, which is not preferable.
In the present invention, the pores remain even if the firing temperature is lowered to leave the pores without being sufficiently sintered, or even when firing at a high temperature using a raw material powder having a large particle size as in the case of a conventional porous material. The portion that does not remain and does not have pores is one in which the crystals are sintered in exactly the same manner as a conventional dense sintered body. By doing in this way, it can be set as the member for heat processing which is high in thermal shock resistance, creep resistance, and intensity | strength, and was excellent in corrosion resistance.
[0016]
In the present invention, the relative density is
[Equation 3]
(Sintered body bulk density / theoretical density) x 100 (%)
It represents what was calculated in.
[0017]
(F) About the point that the amount of deflection under a stress of 1400 ° C. and 2 MPa is 2 mm or less,
In the present invention, the amount of deflection of the sintered body is measured under the following conditions.
The sintered body was processed to 5 × 2 × 150 mm, and the upper span: 31.3 mm, lower span: 100 mm, 4-point bending, 2 MPa stress, 1400 ° C., 5 hours heated holding position of sample lower span 50 mm Measure the amount of deflection. In the present invention, the amount of deflection when measured under the above conditions needs to be 2 mm or less. When the thickness exceeds 2 mm, the body to be fired cannot be fired in a large amount, and deformation due to repeated use increases, resulting in a decrease in the life of the heat treatment member. More preferably, it is 1.8 mm or less.
When measuring the amount of deflection in a shape other than the above sample for measuring the amount of deflection, the amount of deflection measured with the same ratio of the length of the upper span and the lower span and the load load: δ, corrected by the following formula: It is necessary that δ ′ is 2 mm or less.
[Expression 4]
δ ′ = δ × {the length of the lower span (mm) / 100}
In short, when the sample size is shortened, the shape is corrected when measurement cannot be performed with a lower span of 100 mm.
[0018]
(G) Regarding the point that the MgO content is 0.3% by weight or less with respect to the alumina sintered body,
In the present invention, when the content of MgO is 0.3% by weight or less with respect to the alumina sintered body, there is an effect of improving the sinterability and increasing the uniformity of the crystal grain size. Furthermore, when zirconia and MgO are contained at the same time, strength deterioration under a reducing atmosphere can be suppressed. The content of MgO is preferably 0.25% by weight or less.
When the MgO content exceeds 0.3% by weight, the second phase is likely to precipitate at the alumina crystal grain boundary, and the durability is inferior.
[0019]
(H) for the points grain size zirconia content of 0.5μm or less than 5.0 wt%,
In the present invention, the zirconia content in the sintered body is 5.0 wt% or less. Preferably 3.0 wt% or less. Further, the zirconia crystal grain size Ru der below 0.5 [mu] m.
Zirconia is important not only for improving the strength and toughness of the alumina sintered body, but also for improving the sinterability and forming a microstructure with a small crystal grain size distribution. When the zirconia content exceeds 5.0 % by weight, or when the crystal grain size exceeds 0.5 μm, the sintered body cracks due to residual expansion due to thermal expansion difference between zirconia and alumina due to repeated heating and cooling. Occurs, and is not preferable because it lacks durability.
[0020]
The heat-treating member excellent in thermal shock resistance of the present invention can be produced by various methods, and an example is shown below.
[0021]
The alumina raw material powder preferably has a purity of 99% or more and an average particle size of 2 μm or less, more preferably 1.5 μm or less. When the average particle diameter exceeds 2 μm, there are many defects inside the sintered body, which is not preferable because mechanical properties such as thermal shock resistance are deteriorated.
[0022]
Moreover, it is preferable to use the powder produced by the liquid phase method as a zirconia raw material powder, and a specific surface area needs to be 5 m < 2 > / g or more, More preferably, it is 8 m < 2 > / g or more. Furthermore, a zirconium compound that becomes zirconia by firing can be used. When the specific surface area of the zirconia raw material powder is less than 5 m 2 / g, not only the dispersibility of the zirconia crystal particles is lowered, but also the zirconia crystal particles present in the sintered body are increased, resulting in a decrease in durability. . Moreover, it is more preferable that 1-5 mol% of yttria is contained in zirconia.
[0023]
The total amount of SiO 2 , TiO 2 , Fe 2 O 3 , CaO, Na 2 O and K 2 O contained in the sintered body is 1.0% by weight or less. An increase in the amount of impurities is not preferable because a large amount of glass phase is formed at the crystal grain boundary and the high temperature characteristics are deteriorated.
[0024]
It mix | blends with each raw material powder so that each component may become predetermined amount, and grind | pulverize, disperse | distribute and mix with a grinder, such as a pot mill and an attrition mill, using water or an organic solvent as a solvent. When adding MgO, it may be added in the form of a magnesia compound such as hydroxide or carbonate during pulverization, dispersion, or mixing, or a powder previously added to the alumina raw material powder may be used. The average particle size of the obtained powder is preferably 1.5 μm or less, more preferably 1.0 μm or less. If the particle size is outside these ranges, the moldability is reduced, the resulting sintered body not only contains many defects, but the sintered body having the microstructure of the present invention cannot be obtained, and the thermal shock This is not preferable because the mechanical properties and corrosion resistance are also lowered.
[0025]
For the formation of pores, acrylic resin spherical particles, polysaccharide spherical particles and the like are added as pore forming agents so as to have a predetermined relative density and pore diameter in the pulverized / dispersed slurry. The particle shape of the pore-forming agent needs to be spherical. If the particle shape is not spherical, the formed pore shape does not become spherical.
[0026]
When adopting a method such as press molding or rubber press molding as a molding method, a known molding aid (for example, wax emulsion, PVA, acrylic resin, etc.) is added to the pulverized / dispersed slurry as necessary, and a spray dryer or the like is added. It is dried by a known method to produce a molded powder, which is then molded. In addition, when adopting the casting method, a known binder (for example, wax emulsion, acrylic resin, etc.) is added to the pulverized / dispersed slurry as required, and the waste mud is cast and filled using a gypsum mold or a resin mold. Molded by casting or pressure casting. Furthermore, when adopting an extrusion molding method, the pulverized / dispersed slurry is dried, sized, and mixed with water, a binder (for example, methylcellulose), a plasticizer (for example, polyethylene glycol), a lubricant (for example). For example, stearic acid or the like is mixed to prepare a clay, and extrusion molding is performed. The molded body obtained as described above is fired at 1500 to 1800 ° C., more preferably 1600 to 1750 ° C., to obtain a sintered body.
[0027]
【Example】
The present invention will be described below with reference to examples, but the present invention is not limited thereby.
[0028]
Examples 1-8, Comparative Examples 1-8
When adding zirconia to alumina powder blended with raw materials according to the blending amounts shown in Table 1 using alumina powder having a purity of 99.8% and an average particle diameter of 2 μm, when adding a predetermined amount of zirconia powder and magnesia Magnesium carbonate was blended in a predetermined amount, and pulverized, dispersed, and mixed with water or ethanol as a solvent by a pot mill to prepare a slurry. In Comparative Example 5, an alumina powder having a purity of 99.8% and an average particle diameter of 15 μm was used. As the pore-forming agent, polysaccharide spherical particles were added and mixed so as to have a predetermined porosity and pore diameter.
The zirconia powder was Y 2 O 3 not added or contained in an amount of 1 to 3.5 mol%, and a specific surface area of 15 m 2 / g was used. Comparative Examples 4 and 5 are sintered bodies in which the pore forming agent is not added and the relative density is within the range of the present invention by the firing temperature.
A binder such as PVA was added to the obtained slurry, followed by spray dryer drying to obtain a molding powder. The obtained powder for molding was press-molded in a mold at a pressure of 1 tonf / cm 2 and fired at 1450 to 1800 ° C. to produce a plate heat treatment setter having a 150 mm square and a thickness of 5 mm. . Table 2 shows the sintered body characteristics of the setters for heat treatment of Examples 1 to 8 and Comparative Examples 1 to 8 obtained.
Examples 1 to 8 are heat setters within the scope of the present invention, and Comparative Examples 1 to 8 are heat setters that do not satisfy at least one of the requirements of the present invention.
It is apparent that the heat-treating member of the present invention has excellent thermal shock resistance and durability.
Deflection amount is 5 × 2 × 150mm processed rod-shaped test piece. Upper span: 31.3mm, lower span: 100mm, creep test at 1400 ° C for 5 hours under 2MPa stress, test piece after test The amount of deflection was measured with a dial gauge.
Thermal shock resistance is obtained by placing the setter for heat treatment on the refractory and inserting it into an electric furnace heated to 800 ° C and holding it for 30 minutes. The sample was taken out and quenched at room temperature and evaluated by the presence or absence of cracks. Moreover, the presence or absence of the crack generation by repetition of the same conditions as the above was also evaluated.
It is apparent that the heat treatment member of the present invention is excellent in durability.
[0029]
[Table 1]
Figure 0004836348
[0030]
[Table 2]
Figure 0004836348
[0031]
【The invention's effect】
The heat-treating member of the present invention has excellent thermal shock resistance and corrosion resistance, such as no cracks caused by rapid temperature rise and fall, and therefore, electronic component materials such as piezoelectrics and dielectrics, lithium ion secondary battery positive electrode materials, Heat treatment containers for phosphor materials and ceramic materials, crucibles for growing single crystals, crucibles for melting metals, core tubes for various electric furnaces, support tubes, radiant tubes, gas blowing tubes, gas sampling tubes, thermocouples for temperature measurement, and various types It is useful as a protection tube for equipment and jig materials for support.

Claims (1)

(a)Al含有量が95重量%以上、(g)MgO含有量が0.3重量%以下、(h)結晶粒径が0.5μm以下のジルコニア含有量が5.0重量%以下、のアルミナ質焼結体であって、(b)その気孔は丸味を帯びた形状で、密閉および連結した開気孔とからなり、(c)焼結体の平均気孔径が2〜100μmであり、(d)焼結体の平均結晶粒径5〜50μm、(e)焼結体の相対密度が50〜70%であり、(f)1400℃、2MPaの応力下でのたわみ量が2mm以下であり、SiO 、TiO 、Fe 、CaO、Na O及びK Oの合計が1.0重量%以下であることを特徴とするアルミナ質焼結体よりなる耐久性に優れた熱処理用部材(A) Al 2 O 3 content is 95% by weight or more, (g) MgO content is 0.3% by weight or less, and (h) the zirconia content is 0.5% by weight with a crystal grain size of 0.5 μm or less. The following alumina sintered body, wherein (b) the pores are rounded and consist of sealed and connected open pores, (c) the average pore diameter of the sintered body is 2 to 100 μm (D) The average crystal grain size of the sintered body is 5 to 50 μm, (e) the relative density of the sintered body is 50 to 70%, and (f) the deflection amount under the stress of 1400 ° C. and 2 MPa is 2 mm. The durability is made of an alumina sintered body characterized in that the total of SiO 2 , TiO 2 , Fe 2 O 3 , CaO, Na 2 O and K 2 O is 1.0% by weight or less. Excellent heat treatment member .
JP2001121805A 2001-04-19 2001-04-19 Heat-treating member made of an alumina sintered body with excellent durability Expired - Lifetime JP4836348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001121805A JP4836348B2 (en) 2001-04-19 2001-04-19 Heat-treating member made of an alumina sintered body with excellent durability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001121805A JP4836348B2 (en) 2001-04-19 2001-04-19 Heat-treating member made of an alumina sintered body with excellent durability

Publications (2)

Publication Number Publication Date
JP2002316866A JP2002316866A (en) 2002-10-31
JP4836348B2 true JP4836348B2 (en) 2011-12-14

Family

ID=18971607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001121805A Expired - Lifetime JP4836348B2 (en) 2001-04-19 2001-04-19 Heat-treating member made of an alumina sintered body with excellent durability

Country Status (1)

Country Link
JP (1) JP4836348B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7558524B2 (en) 2002-03-01 2009-07-07 Seiko Epson Corporation Image reading system
JP4610314B2 (en) * 2004-11-29 2011-01-12 京セラ株式会社 Filter member and liquid bottle using the same
FR2958288B1 (en) * 2010-04-01 2012-10-05 Saint Gobain Ct Recherches MATERIAL WITH TUBULAR PORES
KR101722914B1 (en) * 2011-03-11 2017-04-05 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 Refractory object, glass overflow forming block, and process for glass object manufacture
KR20140112539A (en) 2012-01-11 2014-09-23 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 Refractory object and process of forming a glass sheet using the refractory object
DE102013100821B4 (en) * 2013-01-28 2017-05-04 Schott Ag Polycrystalline ceramics, their preparation and uses
JP2016132577A (en) * 2015-01-16 2016-07-25 三井金属鉱業株式会社 Alumina-zirconia sintered body
EP3262011A4 (en) 2015-02-24 2018-08-01 Saint-Gobain Ceramics&Plastics, Inc. Refractory article and method of making
WO2020116568A1 (en) * 2018-12-06 2020-06-11 キヤノン株式会社 Ceramic article production method and ceramic article
JP2020093973A (en) * 2018-12-06 2020-06-18 キヤノン株式会社 Ceramic article manufacturing method and ceramic article
WO2023085313A1 (en) * 2021-11-12 2023-05-19 京セラ株式会社 Sliding member and false twister disc using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820186B2 (en) * 1988-12-05 1996-03-04 東芝セラミックス株式会社 Heat treatment tool and manufacturing method thereof

Also Published As

Publication number Publication date
JP2002316866A (en) 2002-10-31

Similar Documents

Publication Publication Date Title
KR101729650B1 (en) Mullite ceramic and method for producing same
JP6636307B2 (en) Alumina sintered body with excellent high temperature properties and corrosion resistance
KR101719284B1 (en) Sialon bonded silicon carbide material
JP4836348B2 (en) Heat-treating member made of an alumina sintered body with excellent durability
JP4357584B1 (en) Alumina sintered body with excellent corrosion resistance, thermal shock resistance and durability
JP2021134092A (en) Light-weight kiln tool and manufacturing method thereof
JP4667520B2 (en) Silicon nitride based composite ceramics and method for producing the same
JP4560199B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP2011088759A (en) Alumina refractory and method of producing the same
JP4721947B2 (en) Corrosion-resistant magnesia sintered body, heat treatment member comprising the same, and method for producing the sintered body
JP4546609B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP5036110B2 (en) Lightweight ceramic sintered body
JP4507148B2 (en) Heat treatment member made of mullite sintered body
CN108503342B (en) Carbon-free refractory material and preparation method and application thereof
JP4993812B2 (en) Heat treatment member made of zirconia sintered body
JP3737917B2 (en) Thermal shock-resistant alumina sintered body and heat treatment member comprising the same
JP4043425B2 (en) Zirconia heat treatment material
JP4822605B2 (en) Roller hearth roller made of heat-resistant mullite sintered body
JP2010095393A (en) Ceramic member for heat treatment excellent in corrosion resistance and method for producing the same
JP4485615B2 (en) Corrosion-resistant spinel sintered body and heat treatment member comprising the same
JP4906228B2 (en) Alumina sintered body excellent in thermal shock resistance and corrosion resistance and heat treatment member using the same
JP4906240B2 (en) Alumina sintered body excellent in thermal shock resistance and corrosion resistance, heat treatment member comprising the same, and method for producing the same
JP2014024740A (en) Ceramic sintered body, and member for heat treatment
JP2015189625A (en) Porous ceramic-made member for heat treatment
JP2022156925A (en) Mullite sintered body with excellent thermal resistance and durability and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4836348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term