WO2020116568A1 - Ceramic article production method and ceramic article - Google Patents

Ceramic article production method and ceramic article Download PDF

Info

Publication number
WO2020116568A1
WO2020116568A1 PCT/JP2019/047646 JP2019047646W WO2020116568A1 WO 2020116568 A1 WO2020116568 A1 WO 2020116568A1 JP 2019047646 W JP2019047646 W JP 2019047646W WO 2020116568 A1 WO2020116568 A1 WO 2020116568A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
ceramic article
porous portion
zirconium
powder
Prior art date
Application number
PCT/JP2019/047646
Other languages
French (fr)
Japanese (ja)
Inventor
良太 大橋
安居 伸浩
齋藤 宏
香菜子 大志万
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019219949A external-priority patent/JP2020093973A/en
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to CN201980080468.7A priority Critical patent/CN113165207B/en
Publication of WO2020116568A1 publication Critical patent/WO2020116568A1/en
Priority to US17/331,906 priority patent/US20210309575A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/30Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/04Apparatus or processes for treating or working the shaped or preshaped articles for coating or applying engobing layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • C04B35/119Composites with zirconium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof

Definitions

  • the present invention relates to a method for manufacturing a ceramics shaped article, and more particularly to a method for manufacturing a ceramics three-dimensional shaped article having a porous structure.
  • the modeling accuracy in the present invention refers to the difference (rate of change) between the dimension of the ceramic article that has undergone the firing process after modeling and the design dimension designated using CAD or the like.
  • a powder bed melting method is used to obtain dense and diverse shaped objects. The high density of the metal shaped article is realized by effectively melting and solidifying the metal powder.
  • porous ceramics are one of the important ceramic members used in various applications. Porous ceramics have excellent heat resistance, chemical resistance, strength characteristics, and light weight. Therefore, by utilizing the fluid (liquid, gas) passage function, various types of filters, separation columns, catalyst carriers, and lightweight structures are used. It is used for materials, heat insulating materials, vacuum chuck members, etc.
  • Non-Patent Document 1 discloses a method for producing a three-dimensional structure by a direct modeling method, in which ceramics having an Al 2 O 3 —ZrO 2 eutectic composition is used to lower the melting point and A technique for reducing the energy required for is disclosed.
  • Non-Patent Document 1 while heating ceramic material powder as a raw material with a heater (preliminary heating), laser light is irradiated to alleviate thermal stress and suppress cracking of the obtained modeled object. Is disclosed. According to this manufacturing method, there is an advantage that a dense ceramic structure can be obtained without shrinkage.
  • part of the ceramic material powder in the portion not irradiated with laser light is melted by preheating with a heater, and the accuracy of the surface boundary of the structure cannot be obtained. For example, to form a fine porous structure. Was difficult.
  • the preheating is stopped by giving priority to modeling accuracy, cracks are formed by rapid cooling after the process as described above, and there is a problem that a porous structure having high strength cannot be obtained. Therefore, it is difficult for such a technique to obtain a ceramics shaped article having a porous structure that achieves both shaping accuracy and mechanical strength.
  • the present invention has been made in view of the above problems, and a method for producing a ceramic article for improving the mechanical strength of a ceramic shaped article having a porous portion, which is produced with high shaping accuracy by making use of the features of the direct shaping method. , And a ceramic article.
  • One aspect of the present invention is a method for manufacturing a ceramic article, comprising: (i) a step of leveling a powder of a metal oxide containing aluminum oxide as a main component to form a powder layer, and (ii) the powder layer. Modeling having a porous portion formed by repeating a step of irradiating an energy beam based on molding data to melt and solidify or sinter the powder, and (iii) the steps (i) and (ii). A step of absorbing a liquid containing a zirconium component in the object, and (iv) heating the shaped article in which the liquid containing the zirconium component is absorbed. In the absorbing step, the porous portion is included. It is characterized in that the liquid is absorbed so that the ratio of the zirconium component in the metal component contained in is not less than 0.3 mol% and not more than 2.0 mol%.
  • Another aspect of the present invention is a method for producing a ceramic article, comprising: (i) irradiating a metal oxide powder containing aluminum oxide as a main component with an energy beam based on modeling data to melt the powder. And a step of solidifying or sintering to form a shaped article having a porous portion, (ii) a step of absorbing a liquid containing a zirconium component in the shaped article formed in the step (i), and (iii) A step of heating the shaped article that has absorbed the liquid containing the zirconium component, wherein the zirconium component in the metal component contained in the porous portion has a ratio of 0.3 mol% or more 2 It is characterized in that the liquid is absorbed so as to be 0.0 mol% or less.
  • Another aspect of the present invention is a ceramic article having a porous part made of a metal oxide containing aluminum oxide as a main component, wherein the zirconium component in the metal component is 0.3 mol in the porous part. % Or more and 2.0 mol% or less.
  • another aspect of the present invention is a ceramic article made of a metal oxide containing aluminum oxide as a main component and having a dense part and a porous part, wherein zirconium is a metal component contained in the porous part. It is characterized in that the proportion of the component is higher than the proportion of the zirconium component in the metal component contained in the dense portion.
  • the present invention it is possible to provide a method for manufacturing a ceramic article having a porous portion that achieves high mechanical strength by using a direct molding method, and a ceramic article.
  • a first aspect of the present invention is a method for producing a ceramic article having a porous portion, comprising: (i) leveling a powder of a metal oxide containing aluminum oxide (Al 2 O 3 ) as a main component to form a powder layer. And (ii) irradiating the powder layer with an energy beam based on modeling data to melt and solidify or sinter the powder, and (iii) the steps (i) and (). ii) Absorbing a liquid containing a zirconium (Zr) component in a shaped product having a porous portion formed by repeating step ii), and (iv) heating the shaped product absorbed with the liquid containing the zirconium component. And a step of absorbing the liquid such that the ratio of the zirconium component in the metal component contained in the porous portion is 0.3 mol% or more and 2.0 mol% or less in the absorbing step. And
  • the present invention is suitable for manufacturing an article using a direct molding method.
  • the mechanical strength of the porous ceramic article can be greatly improved by combining with a powder bed fusion bonding method or a directional energy lamination method (a so-called cladding method) in which a molding material is piled up.
  • FIGS. 1A to 1H A basic molding flow of the powder bed fusion bonding method will be described with reference to FIGS. 1A to 1H.
  • the powder 101 is placed on the base 130, and the roller 152 is used to form the powder layer 102 (FIGS. 1A and 1B).
  • the powder 101 is melted and then solidified to form the solidified portion 103. (FIG. 1C).
  • the stage 151 is lowered to newly form a powder layer 102 on the solidified portion 103 and the unsolidified powder (FIG. 1D).
  • the cladding method will be described with reference to FIGS. 2A to 2C.
  • powder is ejected from a plurality of powder supply holes 202 provided in a cladding nozzle 201, an area where the powder is focused is irradiated with an energy beam 203, and a solidification portion 103 is additionally added to a desired place. Is formed (FIG. 2A), and this step is repeated to obtain a molded article 110 having a desired shape (FIGS. 2B and 2C). Finally, unnecessary parts are removed and the molded object 110 and the base 130 are separated as necessary.
  • the modeled object 110 having various porous structures can be formed by inputting appropriate (three-dimensional) modeling data. it can.
  • a porous portion is formed and a ceramic article having the porous portion can be obtained.
  • the porous portion means a portion having a plurality of open pores having a porosity of 5 vol (volume)% or more, a thickness of the bridge portion of 1 mm or less, and a pore diameter of 50 ⁇ m or more and 1000 ⁇ m or less.
  • the dense portion in the present invention means a portion having a porosity of less than 5 vol (volume)% and a bridge portion having a thickness of 1 mm or more.
  • the porosity refers to the ratio of open pores to the volume of the ceramic article, and does not include closed pores.
  • An open pore is a hole in which a part of the pore is connected to the outside (also called an open pore). Closed pores are pores that are not connected to the outside.
  • the communication hole refers to a hole whose both ends are connected to the outside, and is included in the open pores.
  • the porosity can be measured by the mercury injection method.
  • the bridge portion refers to a structural portion that forms a hole in the porous portion, and the thickness of the bridge portion refers to the shortest distance between the hole and the hole adjacent thereto.
  • FIG. 3 shows an enlarged schematic view of a part of the surface of the porous ceramics 301, which is a ceramics article having a porous portion according to the present invention, in which the cross-sectional shape of the holes can be seen.
  • the cross-sectional shape means the shape of a surface perpendicular to the extending direction of the hole.
  • FIG. 3 shows an example, and the present invention is not limited to these.
  • FIG. 3 shows a hole having a circular cross-sectional shape
  • the hole may have a circular cross-sectional shape of any of a circle, a quadrangle, and a triangle, and holes having a plurality of shapes may be provided in combination.
  • the porosity is the open porosity measured by the mercury injection method as described above.
  • the porosity is the ratio of the volume of the openings 302 to the total volume including the pores of the porous ceramics 301.
  • the porous portion has a plurality of openings each having a pore diameter of 50 ⁇ m or more and 1000 ⁇ m or less.
  • the hole diameter 303 refers to an elliptical (including circular) minor axis diameter (2b) that approximates the contour of the hole. The method for approximating the contour of the hole to an elliptical shape is as follows.
  • the maximum distance (2a) between the contours in the contour of the hole and the area S in the contour of the hole are measured.
  • the major axis diameter 2a and the minor axis diameter 2b are introduced.
  • the pore diameter can be measured using an optical microscope, a scanning electron microscope (SEM), or the like in an arbitrary cross section that is substantially perpendicular to the openings of the ceramic article.
  • the opening period 304, shape, pore diameter 303, porosity, etc. of the porous part can be controlled independently by changing the input molding data.
  • the irradiation energy density by the energy beam is reduced, it is possible to form a porous portion having a random shape.
  • the average pore diameter is the average value of the pore diameters 303 of a plurality of pores in the porous part.
  • the open pores and the closed pores may be regarded as having substantially the same diameter, and the open pores and the closed pores may be measured and calculated without distinction.
  • the average pore diameter of the pores of the porous portion is preferably 50 ⁇ m or more and 1000 ⁇ m or less. The open pores and the closed pores cannot be distinguished only by observing an arbitrary cross section of the ceramic article with an optical microscope or SEM.
  • FIB focused ion beam
  • X-ray CT X-ray computed tomography
  • the hole diameter 303, the opening period 304, and the porosity of the openings 302 of the porous ceramics 301 shown in FIG. 3 will be described.
  • the opening period is 1, when the porosity (vol%) is 5, 10, 20, 30, 40, 50, 60, the pore diameters are 0.25, 0.36, 0.51 and 0.62, respectively. , 0.71, 0.80, 0.87, and the bridge portion thicknesses are 0.75, 0.64, 0.50, 0.38, 0.29, 0.20, and 0.13, respectively.
  • the pore size 303 of the porous part of the present invention may be constant in the direction in which the pores are stretched, or may change midway. Further, one hole may be divided into a plurality of holes on the way. A plurality of openings having different cross-sectional shapes may be combined. In any case, in order to complete the porous portion, it is necessary to remove the unsolidified powder remaining in the pores after the shaping is completed. Therefore, both ends of the hole communicate with the outside.
  • the accuracy in modeling is about several tens of ⁇ m, so if the hole diameter of the holes formed in the porous portion is 50 ⁇ m or less, the uniform hole diameter is Since 303 cannot be obtained and the opening 302 is filled up on the contrary, the porosity may decrease. Further, when the average pore diameter is larger than 1000 ⁇ m, the porous portion does not function as fine pores capable of controlling the flow of gas or liquid, so that it is preferably 1000 ⁇ m or less. Therefore, it is preferable that the average diameter of the openings 302 is 50 ⁇ m or more and 1000 ⁇ m or less. When the porous portion is formed for the purpose of reducing the weight, the preferable pore diameter is not limited to this as long as the desired mechanical strength can be obtained.
  • the microcracks can be reduced and the mechanical strength of the molded article can be improved by absorbing and heating the liquid containing the zirconium component in the microcracks of the ceramic shaped article having a porous structure.
  • the zirconium component adhered to the porous surface was solid-phase diffused over a wide area within the crystal forming the shaped article by heating, and the crystal was recrystallized with the composition containing the zirconium component. It is considered that such a structure enhances the bonding force between the crystal structures of the resulting ceramic article and improves the mechanical strength.
  • the present invention is characterized in that the zirconium component is introduced into the shaped article formed by melting and solidifying the powder with the energy beam. Even if the powder contains a zirconium component in advance, it is not possible to suppress the occurrence of cracks during modeling, so the bond strength between crystal structures is not sufficient, and the effect of the present invention (improvement of mechanical strength ) Cannot be obtained.
  • the porous part and the dense part have different porosities, and the porosity of the porous part is 5% by volume or more, and the porosity of the dense part is less than 5% by volume. is there.
  • the porosity of the porous portion is 5% by volume or more, it is possible to obtain the functions required as a porous material such as heat resistance, light weight, and use as a flow channel.
  • the zirconium component spreads inside the porous portion of the shaped article, and sufficient strength can be obtained.
  • the porosity of the porous portion is preferably 5% by volume or more and 60% by volume or less.
  • the closed pores included in the porous portion do not contribute much to the function improvement of the porous portion. Further, it does not have a function of spreading the zirconium component inside the shaped article. Therefore, from the viewpoint of obtaining sufficient strength, the proportion of closed pores contained in the porous portion is preferably 1% by volume or less. More preferably, it is 0.5% by volume or less.
  • the zirconium component-containing liquid permeates into the shaped article through the openings.
  • the surface area is large, a large amount of zirconium component penetrates as compared with the dense portion.
  • the bridge portion forming the holes in the porous portion is fine and thin, the zirconium concentration has a great influence on the forming accuracy and the mechanical strength.
  • the modeling accuracy and the mechanical strength have a correlation with the Zr content rate, and it has been found that setting the Zr content rate to an appropriate value is preferable in terms of achieving both the modeling accuracy and the mechanical strength.
  • the mechanical strength if the Zr content is low, the degree of improvement in mechanical strength is small, and the possibility that the porous part will be damaged during processing or in the operating environment increases.
  • the ratio of the zirconium component in the metal component forming the metal oxide in the porous portion is 0.3 mol% or more, the mechanical strength practically usable as a ceramic article can be obtained.
  • the modeling accuracy If the content of the zirconium component added to the aluminum oxide as the main component becomes excessive, the melting point of the porous part lowers, so that a portion where the crystal melts occurs when the shaped article in which zirconium is absorbed is heated. As a result, in particular, in the porous body, the fine bridge portion is easily deformed and the modeling accuracy is lost, the opening is blocked, and the porous body does not function as a porous body. Therefore, from the viewpoint of modeling accuracy, it is necessary to control the Zr content in the porous portion more finely than in the dense portion. In the present invention, by setting the ratio of the zirconium component in the metal component forming the metal oxide in the porous portion to 2.0 mol% or less, the shape of the bridge portion can be maintained and sufficient modeling accuracy can be obtained.
  • the ratio of the zirconium component in the metal component constituting the metal oxide in the porous portion is 0.3 mol% or more.2. It should be 0 mol% or less. Further, the ratio of the zirconium component in the metal component forming the metal oxide in the porous portion is preferably 0.3 mol% or more and 1.5 mol% or less.
  • the zirconium component becomes a metal oxide compounded with another metal component to form a zirconia region having an average circle equivalent diameter of 5 ⁇ m or more on the surface or inside of the bridge part.
  • the other metal component for example, a gadolinium component is preferable, the gadolinium component is preferably the same mol or more as the zirconium component, and the zirconia region is preferably a composite metal oxide of zirconium and gadolinium.
  • the method for producing a ceramic article according to the present invention is characterized by having the following four steps (i) to (iv).
  • a powder of a metal oxide containing aluminum oxide as a main component is leveled to form a powder layer.
  • the powder layer is irradiated with an energy beam based on modeling data to melt, solidify, or sinter the powder.
  • a liquid containing a zirconium component is absorbed in a shaped article having a porous portion, which is formed by repeating the above step (i) and the above step (ii).
  • the above-mentioned shaped object that has absorbed the liquid containing the above-mentioned zirconium component is heated.
  • the liquid is absorbed in the absorption step so that the ratio of the zirconium component in the metal component contained in the porous part is 0.3 mol% or more and 2.0 mol% or less.
  • the ratio of the zirconium component in the metal component contained in the porous portion is preferably 0.3 mol% or more and 1.5 mol% or less.
  • the method for producing a shaped article according to the present invention includes a step (i) of forming a powder layer by leveling a powder of a metal oxide containing aluminum oxide as a main component.
  • Aluminum oxide is a general-purpose structural ceramic, and by appropriately sintering or melting and solidifying it, a shaped article with high mechanical strength can be obtained.
  • the metal oxide powder according to the present invention preferably has a zirconium oxide content of less than 0.1 mol %. Further, the ratio of the zirconium component in the metal component contained in the powder of the metal oxide is preferably less than 0.15 mol%.
  • a modeled object having a porous structure that absorbs a zirconium-containing liquid there is a large difference in the zirconium concentration between the crystal part of the modeled object and the microcrack part of the modeled object, so only the microcrack vicinity is selected. Can be melted. As a result, it is possible to suppress the deformation of the modeled object due to the heating process.
  • the powder in the present invention more preferably contains at least one selected from gadolinium oxide, terbium oxide and praseodymium oxide as an accessory component. Since the powder contains gadolinium oxide, it has a lower melting point than aluminum oxide alone in the vicinity of the Al 2 O 3 —Gd 2 O 3 eutectic composition. As a result, the powder can be melted with a small amount of heat, and the diffusion of energy in the powder is suppressed, so that the modeling accuracy is improved. Further, by including gadolinium oxide, the shaped article has a phase separation structure composed of two or more phases. This suppresses the extension of cracks and improves the mechanical strength of the modeled object.
  • gadolinium oxide is replaced with an oxide of another rare earth element (except terbium and praseodymium), the same effect as gadolinium oxide can be obtained.
  • the energy beam is a laser beam, because the powder has sufficient energy absorption, the spread of heat in the powder is suppressed and becomes local, and the influence of heat on the non-printing part is reduced, so that the shaping accuracy is reduced. Is improved.
  • terbium oxide (Tb 4 O 7 ) or praseodymium oxide (Pr 6 O 11 ) exhibits good energy absorption, and thus may be contained in the powder as an accessory component. More preferable.
  • the composition ratio of the rare earth oxide material consisting of gadolinium oxide, terbium oxide and praseodymium oxide, which is an accessory component, and aluminum oxide is 46:54 (mol %)
  • the composition ratio of the rare earth oxide material and aluminum oxide is Is preferably within the range of ⁇ 5 mol% from the above eutectic composition ratio, that is, 41:59 to 51:49 (mol %). Within this range, it is possible to obtain the effect of lowering the melting point by using ceramics having a eutectic composition.
  • more preferable powders include Al 2 O 3 —Gd 2 O 3 , Al 2 O 3 —Tb 4 O 7 , Al 2 O 3 —Gd 2 O 3 —Tb 4 O 7 , and Al 2 O.
  • 3- Pr 6 O 11 , Al 2 O 3 -Gd 2 O 3 -Pr 6 O 11 , Al 2 O 3 -Gd 2 O 3 -Tb 4 O 7 -Pr 6 O 11 and the like can be mentioned.
  • the base material used in the present invention may be appropriately selected and used from materials such as ceramics, metal, and glass that are usually used in the production of three-dimensional shaped objects, in consideration of the use and manufacturing conditions of the shaped object. it can.
  • the step (iv) when heating the shaped article integrated with the base, it is preferable to use heat-resistant ceramics for the base.
  • the method of arranging the powder on the base is not particularly limited.
  • the powders are arranged in layers on the base with rollers, blades, or the like.
  • the cladding method as shown in FIG. 2A to FIG. 2C, the powder is jetted and supplied from the nozzle to the irradiation position of the energy beam, and the powder is overlaid on the base or the shaped object arranged on the base.
  • the powder is melted and solidified by irradiation with an energy beam to produce a shaped article.
  • the method for producing a shaped article according to the present invention includes a step (ii) of irradiating the powder layer formed in the step (i) with an energy beam based on shaping data to melt, solidify, or sinter the powder. ..
  • this step will be described based on a preferred embodiment.
  • a predetermined region on the surface of the powder placed on the base in step (i) is irradiated with an energy beam to melt the powder and then solidify.
  • the powder in the case of the cladding method, as shown in FIGS. 2A to 2C, the powder is jet-supplied and the powder is placed on the base so as to be built up, and at the same time, The whole is irradiated with an energy beam to melt and solidify the powder.
  • the powder absorbs energy, the energy is converted into heat, and the powder is melted.
  • the melted powder is cooled and solidified by the atmosphere and the adjacent peripheral portion thereof, and a shaped object is formed. Due to the rapid cooling during the melting and solidifying process, stress is generated in the surface layer and inside of the shaped article, and innumerable microcracks are formed.
  • the shaped object may be formed by irradiating the powder layer with an energy beam and sintering it.
  • a light source having an appropriate wavelength is selected in view of the absorption characteristics of the powder.
  • a laser beam or electron beam having a narrow beam diameter and high directivity examples include a YAG laser in the 1 ⁇ m wavelength band, a fiber laser, and a CO 2 laser in the 10 ⁇ m wavelength band.
  • a YAG laser having a wavelength band of 1 ⁇ m is suitable.
  • the method for producing a molded article according to the present invention comprises a step of absorbing a liquid containing a zirconium component (sometimes referred to as a zirconium component-containing liquid) in a molded article formed by repeating the step (i) and the step (ii). Have.
  • a zirconium component sometimes referred to as a zirconium component-containing liquid
  • step (ii) On the shaped article obtained in step (ii), a new powder is placed in step (i).
  • the powder in the energy beam irradiation portion is melted and solidified to form a new modeled object integrated with the original modeled object.
  • a liquid containing a zirconium component (sometimes referred to as a zirconium component-containing liquid) is absorbed in the obtained shaped product.
  • a zirconium component-containing liquid composed of a zirconium component raw material, an organic solvent, and a stabilizer is a preferable example.
  • Various zirconium compounds can be used as raw materials for the zirconium component.
  • a raw material containing no metal element other than zirconium is preferable.
  • a raw material for the zirconium component a metal alkoxide of zirconium or a salt compound such as chloride or nitrate can be used.
  • the use of metal alkoxide is preferable because the liquid containing the zirconium component can be uniformly absorbed in the microcracks of the shaped article.
  • zirconium alkoxide examples include zirconium tetraethoxide, zirconium tetra n-propoxide, zirconium tetraisopropoxide, zirconium tetra n-butoxide, zirconium tetra t-butoxide and the like.
  • a zirconium alkoxide solution is prepared by dissolving zirconium alkoxide in an organic solvent.
  • the amount of the organic solvent added to the zirconium alkoxide is preferably 5 or more and 30 or less in terms of molar ratio with respect to the compound. More preferably, it is 10 or more and 25 or less.
  • that the addition amount of A is 5 with respect to B in a molar ratio means that the addition amount of A is 5 times that of B. If the concentration of zirconium alkoxide in the solution is too low, a sufficient amount of zirconium component cannot be absorbed by the shaped article. On the other hand, if the concentration of zirconium alkoxide in the solution is too high, the zirconium component in the solution aggregates, and the zirconium component cannot be uniformly arranged in the microcrack portion of the modeled object.
  • alcohol carboxylic acid, aliphatic or alicyclic hydrocarbons, aromatic hydrocarbons, esters, ketones, ethers, or a mixed solvent of two or more thereof is used.
  • alcohols include methanol, ethanol, 2-propanol, butanol, 2-methoxyethanol, 2-ethoxyethanol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-propoxy-2-propanol, 4-Methyl-2-pentanol, 2-ethylbutanol, 3-methoxy-3-methylbutanol, ethylene glycol, diethylene glycol, glycerin and the like are preferable.
  • esters are ethyl formate, ethyl acetate, n-butyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate and the like.
  • ketones acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and the like are preferable.
  • ethers include dimethoxyethane, tetrahydrofuran, dioxane, diisopropyl ether and the like.
  • zirconium alkoxide Since zirconium alkoxide has high reactivity with water, it is rapidly hydrolyzed by the addition of water in the air or water to cause cloudiness or precipitation of the solution. In order to prevent these, it is preferable to add a stabilizer to stabilize the solution.
  • the stabilizer include ⁇ -diketone compounds such as acetylacetone, 3-methyl-2,4-pentanedione, 3-ethyl-2,4-pentanedione and trifluoroacetylacetone; methyl acetoacetate and ethyl acetoacetate.
  • the addition amount of the stabilizer is preferably 0.1 or more and 3 or less in molar ratio with respect to the zirconium alkoxide. More preferably, it is 0.5 or more and 2 or less.
  • Another preferred example is a zirconium component-containing liquid composed of zirconium component particles, a dispersant, and a solvent.
  • zirconium particles or zirconia particles that are oxides can be used.
  • Zirconium particles or zirconia particles may be prepared by crushing each material by the top-down method, or by a bottom-up method from metal salts, hydrates, hydroxides, carbonates, etc., such as hydrothermal reaction. Or a commercially available product may be used.
  • the size of the particles is 300 nm or less, more preferably 50 nm or less in order to penetrate into the microcracks.
  • the shape of the fine particles is not particularly limited, and may be spherical, granular, columnar, elliptic spherical, cubical, rectangular parallelepiped, needle-shaped, columnar, plate-shaped, scale-shaped, or pyramid-shaped.
  • the dispersant preferably contains at least one of an organic acid, a silane coupling agent, and a surfactant.
  • organic acid include acrylic acid, 2-hydroxyethyl acrylate, 2-acryloxyethyl succinic acid, 2-acryloxyethyl hexahydrophthalic acid, 2-acryloxyethyl phthalic acid, 2-methylhexanoic acid, 2- Ethylhexanoic acid, 3-methylhexanoic acid, 3-ethylhexanoic acid and the like are preferable.
  • the silane coupling agent include 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, hexyltrimethoxysilane, octyltriethoxysilane, and decyltrimethoxysilane.
  • the surfactant include ionic surfactants such as sodium oleate, potassium fatty acid, sodium alkyl phosphate, alkylmethyl ammonium chloride, and alkylaminocarboxylate, polyoxyethylene laurin fatty acid ester, polyoxyethylene alkylphenyl.
  • Nonionic surfactants such as ether are preferred.
  • alcohols As the solvent, alcohols, ketones, esters, ethers, ester-modified ethers, hydrocarbons, halogenated hydrocarbons, amides, water, oils, or a mixed solvent of two or more thereof is used.
  • Preferred alcohols are, for example, methanol, ethanol, 2-propanol, isopropanol, 1-butanol, ethylene glycol and the like.
  • ketones for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and the like are preferable.
  • Preferred esters are, for example, ethyl acetate, propyl acetate, butyl acetate, 4-butyrolactone, propylene glycol monomethyl ether acetate, methyl 3-methoxypropionate and the like.
  • Preferred ethers are, for example, ethylene glycol monomethyl ether, diethylene glycol monobutyl ether, butyl carbitol, 2-ethoxyethanol, 1-methoxy-2-propanol, 2-butoxyethanol and the like.
  • the modified ethers for example, propylene glycol monomethyl ether acetate is preferable.
  • hydrocarbons for example, benzene, toluene, xylene, ethylbenzene, trimethylbenzene, hexane, cyclohexane, methylcyclohexane and the like are preferable.
  • Preferred halogenated hydrocarbons are, for example, dichloromethane, dichloroethane and chloroform.
  • Preferred amides are, for example, dimethylformamide, N,N-dimethylacetamide and N-methylpyrrolidone.
  • oils for example, mineral oil, vegetable oil, wax oil and silicone oil are preferable.
  • the zirconium component-containing liquid may be prepared by simultaneously mixing zirconium particles or zirconia particles with a dispersant and a solvent, or may be mixed with zirconium particles or zirconia particles and a dispersant and then mixed with a solvent. .. Alternatively, the zirconium or zirconia fine particles may be mixed with the solvent and then the dispersant may be mixed, or the dispersant and the solvent may be mixed and then the zirconium or zirconia fine particles may be mixed. You may.
  • the solution may be prepared by reacting at room temperature or refluxing.
  • the solid concentration of the zirconia component is determined by the above molar ratio of zirconium alkoxide, organic solvent, and stabilizer.
  • the weight percentage of the zirconia solids is preferably in the range of 3% to 20%, more preferably 8% to 15%. If the concentration is low, it becomes difficult to obtain the effect of filling the microcracks. If the weight% is 3% or more, a certain effect is obtained, and if it is 8% or more, the effect is further enhanced. When the weight% is high, the viscosity becomes too high, and the liquid is difficult to be absorbed even in the microcracks, and it becomes difficult to obtain the effect. When the weight% is 20% or less, a certain effect is obtained. If it is 15% or less, the effect is further enhanced.
  • the powder melted by the energy beam irradiation in the above step (ii) is cooled by the surroundings and solidifies to form an intermediate shaped object.
  • the difference in melting/solidifying temperature is large, many microcracks occur in the intermediate shaped product.
  • the zirconium component-containing liquid penetrates not only on the surface layer of the modeled object but also along the microcracks to be distributed inside the modeled object.
  • the method for absorbing the zirconium component-containing liquid in the shaped product is not particularly limited as long as a sufficient amount of the zirconia component can be present in a sufficient range of the microcracks of the shaped product.
  • the shaped product may be impregnated in the zirconium component-containing liquid, the zirconium component-containing liquid may be atomized and sprayed onto the intermediate shaped product, or may be applied with a brush or the like. Further, a plurality of these methods may be combined, or the same method may be repeated a plurality of times.
  • the zirconium component-containing liquid When the zirconium component-containing liquid is sprayed and when the zirconium component-containing liquid is applied, 5% by volume or more and 20% by volume or less of the zirconium component-containing liquid of the shaped article not absorbing the zirconium component-containing liquid is sprayed or applied. Preferably. If it is less than 5% by volume, the amount of zirconium component arranged in the microcrack portion of the molded article may be insufficient, and the microcrack portion may not melt. When it is more than 20% by volume, when the step (i) is carried out after the present step (iii), it may be difficult to uniformly dispose the powder on the shaped article due to the influence of the zirconium component-containing liquid.
  • the molded article is immersed in a zirconium component-containing liquid and degassed under reduced pressure.
  • the method of impregnating and then impregnating is preferable.
  • the steps (i) and (ii) are repeated to form a shaped article having a porous portion, it is preferable that the zirconium component-containing liquid be sprayed in a mist state to be absorbed by the shaped article at each stage.
  • step (iv) of the method for producing a shaped article according to the present invention the shaped article having the zirconium component-containing liquid absorbed therein is heated.
  • the zirconium component-containing liquid is distributed in the surface layer of the shaped article and the microcracks inside the shaped article.
  • the zirconium component has a relationship of forming a eutectic with aluminum oxide
  • melting starts at the eutectic point in the portion where these components are present.
  • the eutectic point of aluminum oxide and zirconium oxide is about 1900° C., which is lower than the melting point of each component alone (Al 2 O 3 is 2070° C. and ZrO 2 is 2715° C.). That is, melting starts at a temperature lower than the melting temperature of the modeled product containing aluminum oxide as the main component.
  • the melting point at the location where zirconium is present can be greatly reduced locally, and by utilizing this difference in melting point, heating is performed at a temperature equal to or higher than the eutectic point and lower than the melting point of the shaped article, and only the vicinity of the microcracks is heated. It can be selectively locally melted. Specifically, the shaped article that has undergone the step (iv) is heated so that the maximum temperature becomes 1600° C. or higher and 1710° C. or lower.
  • the microcracks containing the zirconium component melt. Therefore, the heating time does not matter. In the molten state, the diffusion of atoms proceeds in the direction in which the surface energy decreases, and eventually microcracks decrease or disappear.
  • the heating temperature By controlling the heating temperature, only the vicinity of the portion where the zirconium component is present can be melted, so that the shape of the modeled object is not destroyed and the advantage of the direct modeling method is secured. Therefore, the shape of the modeled object is maintained even if it is heated for a long time.
  • the mechanical strength of the molded article solidified and recrystallized after melting is greatly improved by the reduction and disappearance of microcracks.
  • the vicinity of the microcracks is melted as described above, and the microcracks are reduced or eliminated.
  • the vicinity of the microcracks approaches the eutectic composition in which zirconium oxide is in the vicinity of 22 mol% with respect to the molded product containing aluminum oxide as the main component in an amount of 78 mol%, the vicinity of the microcracks is more easily melted.
  • the method of heating the shaped object is not particularly limited.
  • the shaped article that has absorbed the zirconium component-containing liquid may be heated again by irradiating it with an energy beam, or may be placed in an electric furnace and heated.
  • the molded product may stick to the setter (firing shelf, shelf board, floor board, etc.) due to melting near the surface layer and microcracks. Therefore, when the shaped object is placed on the setter in the heating step, the setter is preferably inert.
  • the inert setter for example, platinum or the like can be applied in the air atmosphere, and iridium or the like can be applied in the low oxygen atmosphere.
  • the basic flow is basically a flow of executing each step in the order of step (i) ⁇ step (ii) ⁇ step (iii) ⁇ step (iv), but step (iii) and step (iv) are repeated. You may execute.
  • the eutectic composition in which the vicinity of the microcracks of the modeled object is about 22 mol% of zirconium oxide with respect to 78 mol% of the modeled object containing aluminum oxide as the main component It is preferable to bring them closer. This facilitates melting in the vicinity of the microcracks and improves the effect of reducing and eliminating the microcracks.
  • the liquid is absorbed in the absorbing step such that the ratio of the zirconium component to the metal component contained in the porous portion is 0.3 mol% or more and 2.0 mol% or less.
  • FIG. 7 shows a schematic view of an example of a piece of composite ceramic component 403 including a porous portion 401 and a dense portion 402 for holding the porous portion 401.
  • the porous portion 401 is surrounded by the dense portion 402 and integrated.
  • These composite ceramic parts 403 can be used as a suction plate by connecting intake and exhaust members.
  • the example of FIG. 7 is merely an example, and a plurality of porous parts 401 may be independently arranged in the dense part 402, or the dense part 402 is arranged inside the porous part 401. Good.
  • the dense part 402 constituting the composite ceramic part 403 is made of a metal oxide containing aluminum and zirconium, and the ratio of the zirconium component in the metal component constituting the metal oxide is the porous part. It is smaller than 401.
  • Example 1 In this example, a porous portion having a grid pattern was produced. This roughly corresponds to the case where the lattice pattern has a hole period of 175 ⁇ m.
  • the respective weighing powders were mixed by a dry ball mill for 30 minutes to obtain a mixed powder (material powder).
  • the composition of the material powder was analyzed by ICP emission spectroscopy, the content of zirconium oxide was less than 0.1 mol %.
  • Example 1 was formed through steps basically similar to the steps shown in FIGS. 1A to 1H described above.
  • a ProX DMP 100 (trade name) manufactured by 3D SYSTEMS Co., which is equipped with a 50 W Nd:YAG laser (beam diameter: 65 ⁇ m) was used for forming the modeled object.
  • a 20 ⁇ m-thick first powder layer of the above material powder was formed on a pure alumina base using a roller (step (i)). Then, the powder layer was irradiated with a 30 W laser beam to melt and solidify the material powder in a square region of 10 mm ⁇ 10 mm in a mesh shape. The drawing speed was 180 mm/s and the drawing pitch was 175 ⁇ m (step (ii)). The drawing line was inclined at 45 degrees with respect to each side of the square. Next, a 20 ⁇ m-thick powder layer was newly formed with a roller so as to cover the melting/solidifying portion (step (i)). The powder layer directly above the square region was irradiated with a laser in a state of being orthogonal to the drawing line of the first layer, and the powder in the region of 10 mm ⁇ 10 mm was melted and solidified (step (ii)).
  • a modeled object having a bottom surface of 10 mm ⁇ 10 mm and a height of 3 mm was formed.
  • the obtained shaped product contained unsolidified powder, and the unsolidified powder was removed to obtain a shaped product having a porous structure.
  • the above-described shaped product processed for the test was immersed in the zirconium component-containing liquid, degassed under reduced pressure for 1 minute to permeate (impregnate) the liquid into the inside of the shaped product, and then naturally dried for 1 hour.
  • the shaped article impregnated (absorbed) with the zirconium component-containing liquid as described above was provided with a platinum wire on an alumina plate, placed on the platinum wire, and placed in an electric furnace for heating. Specifically, the temperature was raised to 1670° C. in 2.5 hours in the air atmosphere, kept at 1670° C. for 50 minutes, then turned off, and cooled to 200° C. or less in 1.5 hours (step (iv)). ).
  • Example 1 the step of absorbing the zirconium component-containing liquid (step (iii)) and the step of heating (step (iv)) were alternately repeated 5 times to obtain a ceramic article having a porous portion. It was
  • the average pore size was evaluated by the following method.
  • a scanning electron microscope (SEM) is used to acquire an SEM image of the polished surface of the shaped article provided with the porous portion.
  • the average value of the minor axis diameters of the ellipse having the major axis diameter 2a and the minor axis diameter 2b thus obtained is defined as the average pore diameter.
  • the average pore size described in this specification is synonymous with this.
  • the porosity in the present invention refers to the ratio of open pores to the volume of the ceramic article, and does not include closed pores.
  • the Zr content and the average particle size in the Zr region were evaluated by the following methods.
  • SEM-EDX analysis composition analysis of the porous portion was performed in an area of 2 mm ⁇ 2 mm, and the ratio of Zr component in all metal elements was defined as Zr content.
  • the composition distribution of the porous part is mapped in the same area, the continuous area containing the Zr component as the main component is regarded as one zirconia area, and the area is calculated.
  • the diameter (equivalent circle diameter) was calculated.
  • the equivalent circle diameter was calculated for a plurality of zirconia regions, and the average value was used as the average equivalent circle diameter of the zirconia regions.
  • the modeling accuracy refers to the difference between the dimension and the design dimension of the ceramic article that has undergone the firing process after modeling.
  • the maximum change rates on the upper surfaces of the modeled objects in step (iii) and step (iv) are compared, and A, B, and C are in descending order of the rate of change. write. That is, if the rate of change is 3% or less, the modeling accuracy A is 3% and 5% or less is the modeling accuracy B, and if the variation rate is 5% or more, the modeling accuracy C is generated.
  • Those that do not exist are referred to as modeling accuracy D.
  • the molding accuracy A has an upper surface dent of 0.3 mm or less
  • the molding accuracy B has an upper surface dent of more than 0.3 and is 0.5 mm or less.
  • the dent on the upper surface was larger than 0.5 mm.
  • FIG. 4A An optical microscope image of the porous portion of the produced ceramic article is shown in FIG. 4A.
  • An SEM image is shown in FIG. 5A, and a mapping image of the composition distribution of the Zr component by SEM-EDX in the same region is shown in FIG. 5B.
  • the obtained porous portion had pores communicating from one surface to the opposite surface.
  • the average pore diameter in the porous portion was 115 ⁇ m, and the porosity was 31% by volume.
  • the closed pores were 0.4% by volume.
  • the Zr content was 1.56 mol %.
  • the average equivalent circle diameter of the zirconia region was 20 ⁇ m, and the zirconia region was distributed so as to extend from the bridge portion to the outside of the bridge portion.
  • the forming accuracy was B and the mechanical strength was A.
  • Example 2 The present example is an example in which the content of the zirconium component in the porous portion is different.
  • a porous ceramic was produced under the same conditions as in Example 1 except that the step of immersing in the zirconium component-containing liquid (step (iii)) and the step of heating (step (iv)) were alternately repeated twice each.
  • the produced porous ceramics article was evaluated in the same manner as in Example 1.
  • Example 3 The present example is an example in which the arrangement of the openings in the porous portion is random.
  • a porous ceramic article was produced under the same conditions as in Example 1 except that the drawing speed was 220 mm/s and the drawing pitch was 125 ⁇ m in order to obtain a porous portion having randomly arranged openings.
  • An optical microscope image of the porous portion is shown in FIG. 4B. The produced porous ceramics were evaluated in the same manner as in Example 1.
  • Example 4 The present example is an example of producing a composite ceramic component including a porous portion made of ceramics and a dense portion made of ceramics for holding the porous portion.
  • a composite ceramic component including a porous portion made of ceramics and a dense portion made of ceramics for holding the porous portion.
  • FIG. 7 this corresponds to the case where the porous portion has a lattice-like pattern with a period of 175 ⁇ m and the dense portion surrounds and is integrated.
  • the porous part was produced under the same laser irradiation conditions as in Example 1.
  • the dense portion was irradiated with a laser beam of 30 W, the drawing speed was 100 mm/s to 140 mm/s, and the drawing pitch was 100 ⁇ m.
  • the SEM image of the boundary between the porous part and the dense part of the obtained composite ceramic part is shown in FIG. 6A.
  • 6B and 6C show mapping images of the composition distribution of the Zr component by SEM-EDX in the regions corresponding to the part 601 of the porous part and the part 602 of the dense part shown in FIG. 6A, respectively.
  • the porous part and the dense part of the produced ceramic article were evaluated in the same manner as in Example 1.
  • Example 5 The present example is an example in which the content of the zirconium component in the lattice-shaped porous portion is different.
  • the conditions are the same as in Example 1 except that the step of immersing in the zirconium component-containing liquid was repeated 3, 4, 6, and 8 times, respectively.
  • Example 9 to 14 The present example is an example in which the content of the zirconium component in the porous portion having random openings is different.
  • the conditions are the same as in Example 3 except that the step of immersing in the zirconium component-containing liquid is repeated 2, 3, 4, 6, 7, and 8 times, respectively.
  • Example 15 and 16 The present example is an example in which the content of the zirconium component in the composite ceramic component including the porous portion made of ceramics and the dense portion made of ceramics for holding the porous portion is different.
  • the conditions are the same as in Example 4 except that the step of immersing in the zirconium component-containing liquid is repeated 4 and 6 times, respectively.
  • Comparative Example 1 does not include the step of immersing the intermediate shaped article in the zirconium component-containing liquid (step (iii)) and the step of heating the intermediate shaped article absorbed with the zirconium component-containing liquid (step (iv)).
  • a porous ceramic was obtained in the same manner as in Example 1 except for the steps of Comparative Example 2 once and Comparative Example 3 8 times. The produced ceramic article having a porous portion was evaluated in the same manner as in Example 1.
  • Comparative example 4 This comparative example is an example in which the content of the zirconium component in the porous portion having random openings is different. The conditions are the same as in Example 3 except that the step of immersing in the zirconium component-containing liquid was performed once.
  • Example 17 The present example is an example in which the content of the zirconium component in the composite ceramic component including the porous portion and the dense portion for holding the porous portion is different.
  • the conditions are the same as in Example 4 except that the step of immersing in the zirconium component-containing liquid is repeated 2, 3, and 7 times, respectively.
  • Comparative example 5 This comparative example is an example in which the content of the zirconium component in the composite ceramic component including the porous portion and the dense portion for holding the porous portion is different. The conditions are the same as in Example 4 except that the step of immersing in the zirconium component-containing liquid was repeated 9 times.
  • Table 1 collectively shows the above evaluation results of the examples and the comparative examples.
  • the porous part is more dense than the dense part. Became higher. This is because in the porous portion, the zirconium component-containing liquid permeates through the pores to the inside of the shaped article, and since the surface area is large, a large amount of the zirconium component permeates into the dense portion. it is conceivable that.
  • the ceramic articles having modeling accuracy of A, B, and C had no damage and were practically usable as ceramic articles.
  • the ceramic articles having modeling accuracy of A and B have good modeling accuracy and were suitable as an example for obtaining a ceramic article having a complicated shape or a fine shape.
  • the comparative ceramic article having a molding accuracy of D had a poor molding accuracy, a large difference from the design dimension, and damage such as cracks was observed, so that a practical specification could not be obtained.
  • the mechanical strength will improve as the Zr content increases.
  • the mechanical strength is weak and the defect ratio is more than 20% (mechanical strength C).
  • the defect ratio decreased (more than 10% and 20% or less), and sufficient mechanical strength was obtained (mechanical strength B).
  • the defect ratio was 10% or less and the mechanical strength was further improved (mechanical strength A).
  • the ratio of the zirconium component in the metal component forming the metal oxide is 0. It was found that it is necessary to be 3 mol% or more and 2.0 mol% or less. Further, it was found that the zirconium component under this condition forms a crystal grain having an average particle size of 10 ⁇ m or more as a metal oxide compounded with another metal component, and the crystal grains are connected to each other to have a network structure.
  • the crystal grains containing zirconium as a main component form a crystal complexed with Gd and form a network that permeates intricately inside the eutectic structure.
  • the ratio of the zirconium component in the metal component forming the metal oxide is 0.7 mol% or more and 1.5 mol% or less. I found it necessary to be.

Abstract

Provided are: a method for producing a ceramic article having a porous part and realizing improvement in mechanical strength of a molded article while obtaining high molding accuracy; and a ceramic article. This production method comprises: (i) a step for forming a powder layer by evenly spreading a powder of metal oxide that contains aluminum oxide as the main component; (ii) a step for melting and solidifying or for sintering the powder by irradiating the powder layer with an energy beam on the basis of shaping data; (iii) a step for causing a liquid that contains a zirconium component to be absorbed by a molded article having a porous part and being formed by repeating steps (i) and (ii); and (iv) a step for heating the molded article that has absorbed the liquid containing the zirconium component, wherein in the absorption step, the liquid is absorbed such that the proportion of the zirconium component among metal components contained in the porous part becomes 0.3-2.0 mol%.

Description

セラミックス物品の製造方法、及びセラミックス物品Ceramic article manufacturing method and ceramic article
 本発明は、セラミックス造形物の製造方法に関し、特に、多孔質構造を有するセラミックス三次元造形物の製造方法に関する。 The present invention relates to a method for manufacturing a ceramics shaped article, and more particularly to a method for manufacturing a ceramics three-dimensional shaped article having a porous structure.
 近年、短時間で試作品を作製したり、少数部品を製造したりする用途において、材料粉末をエネルギービームで結合させて所望の造形物、特に三次元造形物を得る直接造形方式の三次元造形物の製造方法が普及している。直接造形方式によって得られた三次元造形物は、後の熱処理で大きく収縮することがないため、高い造形精度が得られるという利点がある。ここで、本発明において造形精度とは、造形後の焼成工程を経たセラミックス物品の寸法と、CADなどを用いて指定した設計寸法との差異(変化率)をいう。特に金属分野では、粉末床溶融方式を用いて緻密で多様性のある造形物が得られている。金属造形物の高い緻密性は、金属粉末を効果的に溶融及び凝固させることによって実現される。金属分野での成功を礎にして、セラミックス材料への展開も議論され、多くの取り組みが報告されている。酸化アルミニウム(Al)や酸化ジルコニウム(ZrO、ZrO)などの一般的なセラミックス材料はレーザー光をほとんど吸収しない。このため、金属同様に溶融させるためには、より多くのエネルギーを投入する必要があるが、レーザー光が拡散して溶融が不均一となるため、必要な造形精度を得ることが難しい状況にあった。また、セラミックス材料は融点が高いため、レーザー光によって溶融した後、凝固する際に、雰囲気や隣接する周辺部によって急冷され、その際に生じる熱応力に起因して、得られる造形物に多くのクラックが発生していた。このため、得られる造形物の機械的強度は不十分であった。 In recent years, in the production of prototypes and small number of parts in a short time, three-dimensional modeling of the direct modeling method in which material powders are combined with an energy beam to obtain a desired model, especially a three-dimensional model The method of manufacturing goods is widespread. The three-dimensional model obtained by the direct modeling method has an advantage that high modeling accuracy can be obtained because the three-dimensional model does not significantly shrink in the subsequent heat treatment. Here, the modeling accuracy in the present invention refers to the difference (rate of change) between the dimension of the ceramic article that has undergone the firing process after modeling and the design dimension designated using CAD or the like. Particularly in the metal field, a powder bed melting method is used to obtain dense and diverse shaped objects. The high density of the metal shaped article is realized by effectively melting and solidifying the metal powder. Based on its success in the metal field, the development of ceramic materials has been discussed and many efforts have been reported. General ceramic materials such as aluminum oxide (Al 2 O 3 ) and zirconium oxide (ZrO, ZrO 2 ) hardly absorb laser light. For this reason, it is necessary to input more energy in order to melt like metal, but it is difficult to obtain the required modeling accuracy because the laser light diffuses and the melting becomes uneven. It was In addition, since the ceramic material has a high melting point, when it is solidified after being melted by laser light, it is rapidly cooled by the atmosphere and the adjacent peripheral portion, and due to the thermal stress generated at that time, many molded objects are obtained. There was a crack. Therefore, the mechanical strength of the obtained modeled product was insufficient.
 ここで、様々な応用に用いられている重要なセラミックスの部材の一つとして多孔質セラミックスがある。多孔質セラミックスは、耐熱性、耐薬品性、強度特性、軽量性などに優れているため、流体(液体、気体)の通過機能を利用して、各種フィルター、分離カラム、触媒担体、軽量の構造材、断熱材、真空チャック用部材、などに使用されている。  Here, porous ceramics are one of the important ceramic members used in various applications. Porous ceramics have excellent heat resistance, chemical resistance, strength characteristics, and light weight. Therefore, by utilizing the fluid (liquid, gas) passage function, various types of filters, separation columns, catalyst carriers, and lightweight structures are used. It is used for materials, heat insulating materials, vacuum chuck members, etc.
 このような状況下において、直接造形方式の三次元造形物の製造方法として、非特許文献1には、Al-ZrO共晶系組成のセラミックスを用いて融点を下げることで、溶融に必要なエネルギーを低下させる技術が開示されている。加えて、非特許文献1では、原料となるセラミックス材料粉末をヒーターで温めながら(予備加熱)、レーザー光を照射することで、熱応力を緩和し、得られる造形物のクラック発生を抑制する技術が開示されている。この製法によると、収縮なしで緻密なセラミックス構造体が得られるという利点がある。しかし、ヒーターによる予備加熱によってレーザー光を照射しない部分のセラミックス材料粉末の一部が溶融してしまい、構造体の表面境界部の精度が得られず、例えば、精細な多孔質構造を造形することは困難であった。一方、造形精度を優先して予備加熱を取りやめると、前述のようにプロセス後の急冷によってクラックが形成されてしまい、強度の高い多孔質構造体が得られないという問題があった。このため、かかる技術は造形精度と機械的強度を両立した多孔質構造を有するセラミックス造形物を得ることが困難であった。 Under such circumstances, Non-Patent Document 1 discloses a method for producing a three-dimensional structure by a direct modeling method, in which ceramics having an Al 2 O 3 —ZrO 2 eutectic composition is used to lower the melting point and A technique for reducing the energy required for is disclosed. In addition, in Non-Patent Document 1, while heating ceramic material powder as a raw material with a heater (preliminary heating), laser light is irradiated to alleviate thermal stress and suppress cracking of the obtained modeled object. Is disclosed. According to this manufacturing method, there is an advantage that a dense ceramic structure can be obtained without shrinkage. However, part of the ceramic material powder in the portion not irradiated with laser light is melted by preheating with a heater, and the accuracy of the surface boundary of the structure cannot be obtained. For example, to form a fine porous structure. Was difficult. On the other hand, if the preheating is stopped by giving priority to modeling accuracy, cracks are formed by rapid cooling after the process as described above, and there is a problem that a porous structure having high strength cannot be obtained. Therefore, it is difficult for such a technique to obtain a ceramics shaped article having a porous structure that achieves both shaping accuracy and mechanical strength.
 本発明は、上記課題に鑑みてなされたものであり、直接造形方式の特徴を生かして高い造形精度で作製した、多孔質部を有するセラミックス造形物の機械的強度を向上させるセラミックス物品の製造方法、及びセラミックス物品を提供することを目的とする。 The present invention has been made in view of the above problems, and a method for producing a ceramic article for improving the mechanical strength of a ceramic shaped article having a porous portion, which is produced with high shaping accuracy by making use of the features of the direct shaping method. , And a ceramic article.
 本発明の一態様は、セラミックス物品の製造方法であって、(i)酸化アルミニウムを主成分とする金属酸化物の粉末を均して粉末層を形成する工程と、(ii)前記粉末層に造形データに基づいてエネルギービームを照射し、前記粉末を熔融及び凝固、または焼結させる工程と、(iii)前記(i)、(ii)の工程を繰り返して形成した、多孔質部を有する造形物にジルコニウム成分を含有する液体を吸収させる工程と、(iv)前記ジルコニウム成分を含有する液体を吸収させた前記造形物を加熱する工程と、を有し、前記吸収工程において、前記多孔質部に含まれる金属成分におけるジルコニウム成分の割合が0.3mol%以上2.0mol%以下となるように上記液体を吸収させることを特徴とする。 One aspect of the present invention is a method for manufacturing a ceramic article, comprising: (i) a step of leveling a powder of a metal oxide containing aluminum oxide as a main component to form a powder layer, and (ii) the powder layer. Modeling having a porous portion formed by repeating a step of irradiating an energy beam based on molding data to melt and solidify or sinter the powder, and (iii) the steps (i) and (ii). A step of absorbing a liquid containing a zirconium component in the object, and (iv) heating the shaped article in which the liquid containing the zirconium component is absorbed. In the absorbing step, the porous portion is included. It is characterized in that the liquid is absorbed so that the ratio of the zirconium component in the metal component contained in is not less than 0.3 mol% and not more than 2.0 mol%.
 また、本発明の別の態様は、セラミックス物品の製造方法であって、(i)酸化アルミニウムを主成分とする金属酸化物の粉末に造形データに基づいてエネルギービームを照射し、前記粉末を溶融及び凝固、または焼結させ、多孔質部を有する造形物を形成する工程と、(ii)前記工程(i)で形成した造形物にジルコニウム成分を含有する液体を吸収させる工程と、(iii)前記ジルコニウム成分を含有する液体を吸収させた前記造形物を加熱する工程と、を有し、前記吸収工程において、前記多孔質部に含まれる金属成分におけるジルコニウム成分の割合が0.3mol%以上2.0mol%以下となるように前記液体を吸収させることを特徴とする。 Another aspect of the present invention is a method for producing a ceramic article, comprising: (i) irradiating a metal oxide powder containing aluminum oxide as a main component with an energy beam based on modeling data to melt the powder. And a step of solidifying or sintering to form a shaped article having a porous portion, (ii) a step of absorbing a liquid containing a zirconium component in the shaped article formed in the step (i), and (iii) A step of heating the shaped article that has absorbed the liquid containing the zirconium component, wherein the zirconium component in the metal component contained in the porous portion has a ratio of 0.3 mol% or more 2 It is characterized in that the liquid is absorbed so as to be 0.0 mol% or less.
 また、本発明の別の態様は、酸化アルミニウムを主成分とする金属酸化物からなる多孔質部を有するセラミックス物品であって、前記多孔質部において、金属成分におけるジルコニウム成分の割合が0.3mol%以上2.0mol%以下であることを特徴とする。
 また、本発明の別の態様は、酸化アルミニウムを主成分とする金属酸化物からなり、緻密質部と多孔質部とを有するセラミックス物品であって、前記多孔質部に含まれる金属成分におけるジルコニウム成分の割合が、前記緻密質部に含まれる金属成分におけるジルコニウム成分の割合よりも多いことを特徴とする。
Another aspect of the present invention is a ceramic article having a porous part made of a metal oxide containing aluminum oxide as a main component, wherein the zirconium component in the metal component is 0.3 mol in the porous part. % Or more and 2.0 mol% or less.
Further, another aspect of the present invention is a ceramic article made of a metal oxide containing aluminum oxide as a main component and having a dense part and a porous part, wherein zirconium is a metal component contained in the porous part. It is characterized in that the proportion of the component is higher than the proportion of the zirconium component in the metal component contained in the dense portion.
 本発明によれば、直接造形方式を用い、高い機械的強度を実現した多孔質部を有するセラミックス物品の製造方法、及びセラミックス物品を提供することができる。 According to the present invention, it is possible to provide a method for manufacturing a ceramic article having a porous portion that achieves high mechanical strength by using a direct molding method, and a ceramic article.
本発明のセラミックス物品である造形物の製造方法の一実施形態を模式的に示す概略断面図である。It is an outline sectional view showing typically one embodiment of a manufacturing method of a modeling thing which is a ceramics article of the present invention. 本発明のセラミックス物品である造形物の製造方法の一実施形態を模式的に示す概略断面図である。It is an outline sectional view showing typically one embodiment of a manufacturing method of a modeling thing which is a ceramics article of the present invention. 本発明のセラミックス物品である造形物の製造方法の一実施形態を模式的に示す概略断面図である。It is an outline sectional view showing typically one embodiment of a manufacturing method of a modeling thing which is a ceramics article of the present invention. 本発明のセラミックス物品である造形物の製造方法の一実施形態を模式的に示す概略断面図である。It is an outline sectional view showing typically one embodiment of a manufacturing method of a modeling thing which is a ceramics article of the present invention. 本発明のセラミックス物品である造形物の製造方法の一実施形態を模式的に示す概略断面図である。It is an outline sectional view showing typically one embodiment of a manufacturing method of a modeling thing which is a ceramics article of the present invention. 本発明のセラミックス物品である造形物の製造方法の一実施形態を模式的に示す概略断面図である。It is an outline sectional view showing typically one embodiment of a manufacturing method of a modeling thing which is a ceramics article of the present invention. 本発明のセラミックス物品である造形物の製造方法の一実施形態を模式的に示す概略断面図である。It is an outline sectional view showing typically one embodiment of a manufacturing method of a modeling thing which is a ceramics article of the present invention. 本発明のセラミックス物品である造形物の製造方法の一実施形態を模式的に示す概略断面図である。It is an outline sectional view showing typically one embodiment of a manufacturing method of a modeling thing which is a ceramics article of the present invention. 本発明のセラミックス物品である造形物の製造方法の一実施形態を模式的に示す概略断面図である。It is an outline sectional view showing typically one embodiment of a manufacturing method of a modeling thing which is a ceramics article of the present invention. 本発明のセラミックス物品である造形物の製造方法の一実施形態を模式的に示す概略断面図である。It is an outline sectional view showing typically one embodiment of a manufacturing method of a modeling thing which is a ceramics article of the present invention. 本発明のセラミックス物品である造形物の製造方法の一実施形態を模式的に示す概略断面図である。It is an outline sectional view showing typically one embodiment of a manufacturing method of a modeling thing which is a ceramics article of the present invention. 本発明のセラミックス物品を一方の表面からみた場合の模式図である。It is a schematic diagram at the time of seeing the ceramic article of this invention from one surface. 本発明のセラミックス物品である造形物の光学顕微鏡像である。It is an optical microscope image of the modeled article which is the ceramic article of the present invention. 本発明のセラミックス物品である造形物の光学顕微鏡像である。It is an optical microscope image of the modeled article which is the ceramic article of the present invention. 本発明のセラミックス物品である造形物のSEM像である。It is a SEM image of the modeling thing which is a ceramics article of the present invention. 本発明のセラミックス物品である造形物のZr成分の分布像である。It is a distribution image of the Zr component of the molded article which is the ceramic article of the present invention. 本発明のセラミックス物品である造形物のSEM像である。It is a SEM image of the modeling thing which is a ceramics article of the present invention. 本発明のセラミックス物品である造形物の多孔質部のZr成分の分布像である。It is a distribution image of the Zr component of the porous part of the shaped article which is the ceramic article of the present invention. 本発明のセラミックス物品である造形物の緻密質部のZr成分の分布像である。It is a distribution image of the Zr component of the dense portion of the shaped article which is the ceramic article of the present invention. 本発明に係る多孔質部と緻密質部とからなる一片の複合セラミックス部品を模式的に示す概略図である。It is a schematic diagram showing typically a piece of composite ceramics parts which consists of a porous part and a dense part concerning the present invention.
 以下、本発明の実施形態について図面を参照しながら説明するが、本発明は以下の具体例に何ら限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following specific examples.
 本発明の第一の態様は、多孔質部を有するセラミックス物品の製造方法であって、(i)酸化アルミニウム(Al)を主成分とする金属酸化物の粉末を均し、粉末層を形成する工程と、(ii)前記粉末層に造形データに基づいてエネルギービームを照射し、前記粉末を熔融及び凝固、または焼結させる工程と、(iii)前記工程(i)及び前記工程(ii)を繰り返して形成した多孔質部を有する造形物にジルコニウム(Zr)成分を含有する液体を吸収させる工程と、(iv)前記ジルコニウム成分を含有する液体を吸収させた前記造形物を加熱する工程と、を有し、前記吸収工程において、前記多孔質部に含まれる金属成分のうちジルコニウム成分の割合が0.3mol%以上2.0mol%以下となるように前記液体を吸収させることを特徴とする。  A first aspect of the present invention is a method for producing a ceramic article having a porous portion, comprising: (i) leveling a powder of a metal oxide containing aluminum oxide (Al 2 O 3 ) as a main component to form a powder layer. And (ii) irradiating the powder layer with an energy beam based on modeling data to melt and solidify or sinter the powder, and (iii) the steps (i) and (). ii) Absorbing a liquid containing a zirconium (Zr) component in a shaped product having a porous portion formed by repeating step ii), and (iv) heating the shaped product absorbed with the liquid containing the zirconium component. And a step of absorbing the liquid such that the ratio of the zirconium component in the metal component contained in the porous portion is 0.3 mol% or more and 2.0 mol% or less in the absorbing step. And
[直接造形方式の三次元造形物]
 本発明は、直接造形方式を用いた物品の製造に好適である。中でも粉末床溶融結合方式や、造形材料を肉盛りするような指向性エネルギー積層方式(いわゆるクラッディング方式)と組み合わせることで、多孔質を有するセラミックス物品の機械的強度を大きく向上させることができる。
[Direct modeling 3D object]
The present invention is suitable for manufacturing an article using a direct molding method. Among them, the mechanical strength of the porous ceramic article can be greatly improved by combining with a powder bed fusion bonding method or a directional energy lamination method (a so-called cladding method) in which a molding material is piled up.
 粉末床溶融結合方式の基本的な造形の流れについて図1A~図1Hを用いて説明する。先ず、基台130上に粉末101を載置し、ローラー152を用いて粉末層102を形成する(図1A及び図1B)。粉末層102の表面に、エネルギービーム源180から射出したエネルギービームを、造形データに応じてスキャナ部181で走査しながら照射すると、粉末101が溶融し、次いで凝固して固化部103が形成される(図1C)。次に、ステージ151を降下させ、上記固化部103及び未固化の粉末上に粉末層102を新たに形成する(図1D)。これら一連の工程を繰り返して行い、所望形状の固化部103を形成する(図1E及び図1F)。最後に、未固化の粉末を除去し、必要に応じて不要部分の除去や造形物と基台の分離を行う(図1G及び図1H)。 A basic molding flow of the powder bed fusion bonding method will be described with reference to FIGS. 1A to 1H. First, the powder 101 is placed on the base 130, and the roller 152 is used to form the powder layer 102 (FIGS. 1A and 1B). When the surface of the powder layer 102 is irradiated with the energy beam emitted from the energy beam source 180 while scanning with the scanner unit 181 according to the modeling data, the powder 101 is melted and then solidified to form the solidified portion 103. (FIG. 1C). Next, the stage 151 is lowered to newly form a powder layer 102 on the solidified portion 103 and the unsolidified powder (FIG. 1D). These series of steps are repeated to form the solidified portion 103 having a desired shape (FIGS. 1E and 1F). Finally, the unsolidified powder is removed, and unnecessary parts are removed and the modeled article and the base are separated as necessary (FIGS. 1G and 1H).
 次に、クラッディング方式について図2A~図2Cを用いて説明する。クラッディング方式は、クラッディングノズル201にある複数の粉末供給孔202から粉末を噴出させ、それらの粉末が焦点を結ぶ領域にエネルギービーム203を照射して、所望の場所に付加的に固化部103を形成していき(図2A)、かかる工程を繰り返して行い所望形状の造形物110を得る(図2B及び図2C)手法である。最後に、必要に応じて不要部分の除去や造形物110と基台130の分離を行う。 Next, the cladding method will be described with reference to FIGS. 2A to 2C. In the cladding method, powder is ejected from a plurality of powder supply holes 202 provided in a cladding nozzle 201, an area where the powder is focused is irradiated with an energy beam 203, and a solidification portion 103 is additionally added to a desired place. Is formed (FIG. 2A), and this step is repeated to obtain a molded article 110 having a desired shape (FIGS. 2B and 2C). Finally, unnecessary parts are removed and the molded object 110 and the base 130 are separated as necessary.
[多孔質部について]
 緻密で複雑な形状の3次元造形物が得られる直接造形方式によれば、適切な(3次元)造形データを入力することで、様々な多孔質構造を有する上記造形物110を形成することができる。上記造形物110を本発明の製造方法により焼成することで、多孔質部を形成し、多孔質部を有するセラミックス物品を得ることができる。本発明における、多孔質部とは、気孔率が5vol(体積)%以上、橋梁部の厚みが1mm以下、孔径が50μm以上1000μm以下の開孔を複数有する部分をいう。対して、本発明における緻密質部は、気孔率が5vol(体積)%未満であり、かつ、橋梁部の厚みが1mm以上ある部分をいう。ここで、気孔率とは、セラミックス物品の体積に対する開気孔の割合を指し、閉気孔は含まれない。開気孔とは、孔の一部が外部とつながっている孔のことである(開孔ともよぶ)。閉気孔とは、孔が外部とつながっていない孔のことである。また、連通孔とは、両端が外部とつながっている孔を指し、開気孔に含まれる。気孔率は水銀注入法によって計測することができる。また、橋梁部とは、多孔質部において孔を形成する構造部を指し、橋梁部の厚みとは孔とそれに隣接する孔との最短距離を指す。
[About the porous part]
According to the direct modeling method capable of obtaining a three-dimensional model having a precise and complicated shape, the modeled object 110 having various porous structures can be formed by inputting appropriate (three-dimensional) modeling data. it can. By firing the shaped article 110 according to the manufacturing method of the present invention, a porous portion is formed and a ceramic article having the porous portion can be obtained. In the present invention, the porous portion means a portion having a plurality of open pores having a porosity of 5 vol (volume)% or more, a thickness of the bridge portion of 1 mm or less, and a pore diameter of 50 μm or more and 1000 μm or less. On the other hand, the dense portion in the present invention means a portion having a porosity of less than 5 vol (volume)% and a bridge portion having a thickness of 1 mm or more. Here, the porosity refers to the ratio of open pores to the volume of the ceramic article, and does not include closed pores. An open pore is a hole in which a part of the pore is connected to the outside (also called an open pore). Closed pores are pores that are not connected to the outside. Further, the communication hole refers to a hole whose both ends are connected to the outside, and is included in the open pores. The porosity can be measured by the mercury injection method. Further, the bridge portion refers to a structural portion that forms a hole in the porous portion, and the thickness of the bridge portion refers to the shortest distance between the hole and the hole adjacent thereto.
 図3に本発明の多孔質部を有するセラミックス物品である多孔質セラミックス301を孔の断面形状が見える面の一部領域を拡大した模式図を示す。ここで断面形状とは、孔の延伸方向に対して垂直な面の形状をいう。図3は一例を示すものであり、これらに限定されるものではない。図3は孔の断面形状が円形のものを示しているが、孔の断面形状は円形、四角形、三角形いずれでもよく、複数の形状の孔を組み合わせて設けてもよい。 FIG. 3 shows an enlarged schematic view of a part of the surface of the porous ceramics 301, which is a ceramics article having a porous portion according to the present invention, in which the cross-sectional shape of the holes can be seen. Here, the cross-sectional shape means the shape of a surface perpendicular to the extending direction of the hole. FIG. 3 shows an example, and the present invention is not limited to these. Although FIG. 3 shows a hole having a circular cross-sectional shape, the hole may have a circular cross-sectional shape of any of a circle, a quadrangle, and a triangle, and holes having a plurality of shapes may be provided in combination.
 本発明において気孔率は前述したように、水銀注入法によって計測される開気孔率である。図3のような開孔302を有する多孔質セラミックス301の場合、気孔率は、多孔質セラミックス301の孔の部分を含んだ全体積に対する開孔302の体積の割合となる。多孔質部は孔径が50μm以上1000μm以下の開孔を複数有している。本発明において孔径303は、孔の輪郭を近似した楕円形状の(円形状を含む)短軸径(2b)を指す。孔の輪郭を楕円形状に近似する方法は次の通りである。まず、孔の輪郭内における輪郭間の最大の距離(2a)と、孔の輪郭内の面積Sを計測する。近似楕円の短軸半径bは、b=S/(πa)によって算出できる。以上により、長軸径2aと短軸径2bが導かれる。孔径は、セラミックス物品の開孔にほぼ垂直な任意の断面において、光学顕微鏡や走査電子顕微鏡(SEM)などを用いて計測できる。 In the present invention, the porosity is the open porosity measured by the mercury injection method as described above. In the case of the porous ceramics 301 having the openings 302 as shown in FIG. 3, the porosity is the ratio of the volume of the openings 302 to the total volume including the pores of the porous ceramics 301. The porous portion has a plurality of openings each having a pore diameter of 50 μm or more and 1000 μm or less. In the present invention, the hole diameter 303 refers to an elliptical (including circular) minor axis diameter (2b) that approximates the contour of the hole. The method for approximating the contour of the hole to an elliptical shape is as follows. First, the maximum distance (2a) between the contours in the contour of the hole and the area S in the contour of the hole are measured. The minor axis radius b of the approximate ellipse can be calculated by b=S/(πa). As described above, the major axis diameter 2a and the minor axis diameter 2b are introduced. The pore diameter can be measured using an optical microscope, a scanning electron microscope (SEM), or the like in an arbitrary cross section that is substantially perpendicular to the openings of the ceramic article.
 多孔質部の、開孔の周期304、形状、孔径303、気孔率、等は、入力する造形データを変えることにより、それぞれ独立に制御することができる。また、エネルギービームによる照射エネルギー密度を少なくすると、ランダム形状の多孔質部を形成することができる。 The opening period 304, shape, pore diameter 303, porosity, etc. of the porous part can be controlled independently by changing the input molding data. In addition, when the irradiation energy density by the energy beam is reduced, it is possible to form a porous portion having a random shape.
 平均孔径は、多孔質部における複数の孔の孔径303の平均値である。平均孔径の算出においては、開気孔と閉気孔はほぼ同じ径であるとみなして、開気孔と閉気孔の区別なく計測及び算出してよい。本発明において多孔質部の孔の平均孔径は50μm以上1000μm以下が好ましい。なお、セラミックス物品の任意の一断面を光学顕微鏡やSEMなどで観察するだけでは、開気孔と閉気孔の区別をつけることはできない。収束イオンビーム(FIB)で切削しながらSEMで観察するスライスアンドビューや、X線コンピュータ断層撮影(X線CT)によって、注目する孔が開気孔か閉気孔かを調べることができる。連通孔も同様の手法によって観察することができる。 The average pore diameter is the average value of the pore diameters 303 of a plurality of pores in the porous part. In the calculation of the average pore diameter, the open pores and the closed pores may be regarded as having substantially the same diameter, and the open pores and the closed pores may be measured and calculated without distinction. In the present invention, the average pore diameter of the pores of the porous portion is preferably 50 μm or more and 1000 μm or less. The open pores and the closed pores cannot be distinguished only by observing an arbitrary cross section of the ceramic article with an optical microscope or SEM. Slice and view observation with SEM while cutting with a focused ion beam (FIB) or X-ray computed tomography (X-ray CT) can be used to check whether the target hole is an open pore or a closed pore. The communication hole can also be observed by the same method.
 ここで、図3に示す多孔質セラミックス301の開孔302の、孔径303、開孔の周期304、及び気孔率について述べる。開孔302が円形であり、開孔の周期304が等間隔である場合を考える。開孔の周期を1とすると、気孔率(vol%)が5、10、20、30、40、50、60の時、孔径はそれぞれ0.25、0.36、0.51 、0.62、0.71、0.80、0.87であり、橋梁部厚みはそれぞれ0.75 、0.64、0.50、0.38、0.29、0.20、0.13となる。 Here, the hole diameter 303, the opening period 304, and the porosity of the openings 302 of the porous ceramics 301 shown in FIG. 3 will be described. Consider the case where the openings 302 are circular and the openings 304 have equal intervals. When the opening period is 1, when the porosity (vol%) is 5, 10, 20, 30, 40, 50, 60, the pore diameters are 0.25, 0.36, 0.51 and 0.62, respectively. , 0.71, 0.80, 0.87, and the bridge portion thicknesses are 0.75, 0.64, 0.50, 0.38, 0.29, 0.20, and 0.13, respectively.
 本発明の多孔質部の孔径303は、孔の延伸方向において一定であってもよいし、途中で変化していてもよい。また、1つの孔が途中で複数の孔に分かれていていてもよい。断面形状が異なる複数の開孔が組み合わされていてもよい。いずれの場合においても、多孔質部を完成させるためには、造形が完了した後に孔の中に残存する、未固化の粉末を除去する必要がある。その為、孔の両端が外部と連通している。 The pore size 303 of the porous part of the present invention may be constant in the direction in which the pores are stretched, or may change midway. Further, one hole may be divided into a plurality of holes on the way. A plurality of openings having different cross-sectional shapes may be combined. In any case, in order to complete the porous portion, it is necessary to remove the unsolidified powder remaining in the pores after the shaping is completed. Therefore, both ends of the hole communicate with the outside.
 上述の直接造形方式の三次元造形物の作製方法では、その造形時の精度が数十μm程度であることから、多孔質部に形成される孔の孔径を50μm以下にした場合、均一な孔径303を得ることができず、逆に開孔302を埋めてしまうことになり、孔率が低下してしまうことがある。また、平均孔径が1000μmより大きい場合は、ガスや液体の流れを制御可能な細孔として多孔部が機能しなくなることから、1000μm以下であることが好ましい。よって、上記開孔302の平均孔径は50μm以上1000μm以下であることが好ましい。軽量化などの目的で多孔質部を形成する場合は、目的の機械的強度を得ることができれば、好ましい孔径はこの限りではない。 In the method for producing a three-dimensional object of the above-described direct modeling method, the accuracy in modeling is about several tens of μm, so if the hole diameter of the holes formed in the porous portion is 50 μm or less, the uniform hole diameter is Since 303 cannot be obtained and the opening 302 is filled up on the contrary, the porosity may decrease. Further, when the average pore diameter is larger than 1000 μm, the porous portion does not function as fine pores capable of controlling the flow of gas or liquid, so that it is preferably 1000 μm or less. Therefore, it is preferable that the average diameter of the openings 302 is 50 μm or more and 1000 μm or less. When the porous portion is formed for the purpose of reducing the weight, the preferable pore diameter is not limited to this as long as the desired mechanical strength can be obtained.
[ジルコニウム成分含有液の効果]
 前述の粉末ベッド直接造形方式やクラッディング方式などの直接造形方式の場合、エネルギービーム照射によって溶融したセラミックス粉末は、周囲により冷やされて凝固することにより、造形物が形成される。セラミックスは、溶融温度と凝固温度との差が大きいため熱応力が発生し、造形物にはマイクロクラックが多く発生する。マイクロクラックは造形物の全体(表面及び内部)に分布する。造形物の断面を走査電子顕微鏡等で確認すると、マイクロクラックの多くは幅が数nmから数μmである。また、マイクロクラックの長さは、数μmから数mmまで様々である。
[Effect of liquid containing zirconium component]
In the case of the direct molding method such as the powder bed direct molding method or the cladding method described above, the ceramic powder melted by the energy beam irradiation is cooled by the surroundings and solidified to form a molded object. Since the ceramic has a large difference between the melting temperature and the solidifying temperature, thermal stress is generated, and many microcracks are generated in the molded article. Microcracks are distributed over the entire surface (inside and inside) of the modeled object. When the cross section of the modeled object is confirmed by a scanning electron microscope or the like, most of the microcracks have a width of several nm to several μm. Moreover, the length of the microcracks varies from several μm to several mm.
 本発明によれば、多孔質構造を有するセラミックス造形物のマイクロクラックにジルコニウム成分含有液を吸収させて加熱することで、マイクロクラックを減少させ、造形物の機械的強度を向上させることができる。 According to the present invention, the microcracks can be reduced and the mechanical strength of the molded article can be improved by absorbing and heating the liquid containing the zirconium component in the microcracks of the ceramic shaped article having a porous structure.
 ジルコニウム含有液を吸収させた後に加熱して得られた造形物の断面を観察すると、全体にジルコニウム組成の結晶が形成されていることが確認され、得られるセラミックス物品の機械的強度が向上する。これは、造形物を構成する酸化アルミニウムとジルコニウム成分とが共晶を成す関係であるため、加熱工程でマイクロクラックが減少し易くなるとともに、再結晶化が進んで結晶組織間の結合力が強くなり、セラミックス物品の機械的強度が向上するものと考えられる。造形物の孔から吸収され、多孔質構造や造形物のマイクロクラックなどの表面に付着する。そして、多孔質の表面に付着したジルコニウム成分が、加熱によって造形物を構成する結晶内の広域に亘って固相拡散し、ジルコニウム成分を含む組成で結晶が再結晶化されたためと推測される。これのような構造により、得られるセラミックス物品の結晶組織間の結合力が強くなり、機械的強度が向上すると考えられる。 By observing the cross section of the shaped article obtained by heating after absorbing the zirconium-containing liquid, it was confirmed that crystals of zirconium composition were formed throughout, and the mechanical strength of the resulting ceramic article was improved. This is because the aluminum oxide and the zirconium component that form the shaped article form a eutectic relationship, so that microcracks are easily reduced in the heating step, and recrystallization proceeds and the bonding force between the crystal structures is strong. Therefore, it is considered that the mechanical strength of the ceramic article is improved. It is absorbed from the pores of the model and adheres to the surface of the porous structure and microcracks of the model. It is speculated that the zirconium component adhered to the porous surface was solid-phase diffused over a wide area within the crystal forming the shaped article by heating, and the crystal was recrystallized with the composition containing the zirconium component. It is considered that such a structure enhances the bonding force between the crystal structures of the resulting ceramic article and improves the mechanical strength.
 従って、本発明は、粉末をエネルギービームで溶融及び凝固させて形成された造形物に、ジルコニウム成分を導入することを特徴とするものである。あらかじめ粉末にジルコニウム成分が含有されていても、造形時にクラックが発生することを抑制することはできないため、結晶組織間の結合強度は十分とはならず、本発明の効果(機械的強度の向上)は得られない。 Therefore, the present invention is characterized in that the zirconium component is introduced into the shaped article formed by melting and solidifying the powder with the energy beam. Even if the powder contains a zirconium component in advance, it is not possible to suppress the occurrence of cracks during modeling, so the bond strength between crystal structures is not sufficient, and the effect of the present invention (improvement of mechanical strength ) Cannot be obtained.
[多孔質部のジルコニウム成分含有液吸収効果]
 多孔質部と緻密質部におけるジルコニウム成分含有液の吸収効果の違いについて述べる。ここで、本発明において、多孔質部と緻密質部は、その気孔率が異なり、それぞれ、多孔質部の気孔率は5体積%以上であり、緻密質部の気孔率は5体積%未満である。多孔質部の気孔率が5体積%以上であることで、耐熱性、軽量性、流路としての利用等の多孔質として必要な機能を得ることができる。また、5体積%以上の気孔率を有することで、ジルコニウム成分が造形物の多孔質部の内部に行き渡り、十分な強度を得ることができる。多孔質部の気孔率は、5体積%以上60体積%以下であると好ましい。多孔質部の気孔率は60体積%以下であると、セラミックス物品として十分な強度が得られるため、好ましい。多孔質部に含まれる閉孔は、多孔質部の機能向上にあまり寄与しない。また、ジルコニウム成分を造形物の内部に行き渡らせる機能を有さない。そのため、十分な強度を得るという観点から、多孔質部に含まれる閉孔の割合は、1体積%以下であることが好ましい。より好ましくは、0.5体積%以下である。
[Absorbing effect of liquid containing zirconium component in porous part]
The difference in the absorption effect of the zirconium component-containing liquid between the porous part and the dense part will be described. Here, in the present invention, the porous part and the dense part have different porosities, and the porosity of the porous part is 5% by volume or more, and the porosity of the dense part is less than 5% by volume. is there. When the porosity of the porous portion is 5% by volume or more, it is possible to obtain the functions required as a porous material such as heat resistance, light weight, and use as a flow channel. Further, by having a porosity of 5% by volume or more, the zirconium component spreads inside the porous portion of the shaped article, and sufficient strength can be obtained. The porosity of the porous portion is preferably 5% by volume or more and 60% by volume or less. When the porosity of the porous portion is 60% by volume or less, sufficient strength as a ceramic article can be obtained, which is preferable. The closed pores included in the porous portion do not contribute much to the function improvement of the porous portion. Further, it does not have a function of spreading the zirconium component inside the shaped article. Therefore, from the viewpoint of obtaining sufficient strength, the proportion of closed pores contained in the porous portion is preferably 1% by volume or less. More preferably, it is 0.5% by volume or less.
 造形時に発生したマイクロクラックを補修するため、造形物に十分な量のジルコニウム成分を吸収させる必要がある。多孔質部を有するセラミックス造形物は開孔を介してジルコニウム成分含有液が造形物内部にまで浸透する。加えて、表面積が大きいことから緻密質部に比べて、多量のジルコニウム成分が浸透することになる。また、多孔質部における、孔を形成する橋梁部は微細で厚みが薄いため、ジルコニウムの濃度が造形精度や機械的強度に与える影響が大きい。すなわち、多孔質部に吸収させるジルコニウム成分の量を制御しなければ、後の加熱工程でジルコニウム成分を含んだ組織の肥大化などが発生し、造形精度の悪化を招きかねず、緻密質部に比べて微細な構造を有する多孔質部は、その造形精度と機械的強度を両立することが緻密質部より難しい。そこで、本発明では、造形精度と機械的強度はZrの含有率と相関があり、Zr含有率を適正値にすることが造形精度と機械的強度を両立する上で好ましいことを見出した。  It is necessary to absorb a sufficient amount of zirconium component in the modeled object in order to repair the microcracks generated during modeling. In the ceramic shaped article having the porous portion, the zirconium component-containing liquid permeates into the shaped article through the openings. In addition, since the surface area is large, a large amount of zirconium component penetrates as compared with the dense portion. Further, since the bridge portion forming the holes in the porous portion is fine and thin, the zirconium concentration has a great influence on the forming accuracy and the mechanical strength. That is, if the amount of zirconium component to be absorbed in the porous portion is not controlled, enlargement of the tissue containing the zirconium component may occur in the subsequent heating step, which may lead to deterioration in modeling accuracy, and the dense portion In comparison, it is more difficult for the porous portion having a fine structure to satisfy both the molding accuracy and the mechanical strength than the dense portion. Therefore, in the present invention, the modeling accuracy and the mechanical strength have a correlation with the Zr content rate, and it has been found that setting the Zr content rate to an appropriate value is preferable in terms of achieving both the modeling accuracy and the mechanical strength.
 まず機械的強度については、Zrの含有率が低い場合は、機械的強度の改善度合いが小さく、加工時や使用環境下において、多孔質部が欠損してしまう可能性が大きくなる。本発明では、多孔質部における金属酸化物を構成する金属成分におけるジルコニウム成分の割合を0.3mol%以上にすると、セラミックス物品として実用に足る機械的強度を得られる。 First, regarding the mechanical strength, if the Zr content is low, the degree of improvement in mechanical strength is small, and the possibility that the porous part will be damaged during processing or in the operating environment increases. In the present invention, when the ratio of the zirconium component in the metal component forming the metal oxide in the porous portion is 0.3 mol% or more, the mechanical strength practically usable as a ceramic article can be obtained.
 続いて、造形精度について述べる。主成分である酸化アルミニウムに加えられるジルコニウム成分の含有量が過剰になると、多孔質部の融点が下がる為、ジルコニウムを吸収させた造形物の加熱時に結晶が融解する部分が発生する。これにより、特に多孔質体は微細な橋梁部が容易に変形して造形精度が失われ、開孔を塞いでしまい、多孔質として機能しなくなる。よって、造形精度の観点において、多孔質部は緻密質部よりも細やかなZr含有率の制御が必要とされる。本発明では、多孔質部における金属酸化物を構成する金属成分におけるジルコニウム成分の割合を2.0mol%以下とすることで、橋梁部の形状が保たれ、十分な造形精度が得られる。 Next, describe the modeling accuracy. If the content of the zirconium component added to the aluminum oxide as the main component becomes excessive, the melting point of the porous part lowers, so that a portion where the crystal melts occurs when the shaped article in which zirconium is absorbed is heated. As a result, in particular, in the porous body, the fine bridge portion is easily deformed and the modeling accuracy is lost, the opening is blocked, and the porous body does not function as a porous body. Therefore, from the viewpoint of modeling accuracy, it is necessary to control the Zr content in the porous portion more finely than in the dense portion. In the present invention, by setting the ratio of the zirconium component in the metal component forming the metal oxide in the porous portion to 2.0 mol% or less, the shape of the bridge portion can be maintained and sufficient modeling accuracy can be obtained.
 以上より、本発明では、多孔質部において、造形精度と機械的強度を同時に実現するために、多孔質部における金属酸化物を構成する金属成分におけるジルコニウム成分の割合が0.3mol%以上2.0mol%以下にする。また、多孔質部における金属酸化物を構成する金属成分におけるジルコニウム成分の割合は、0.3mol%以上1.5mol%以下であることが好ましい。 From the above, in the present invention, in the porous portion, in order to simultaneously realize modeling accuracy and mechanical strength, the ratio of the zirconium component in the metal component constituting the metal oxide in the porous portion is 0.3 mol% or more.2. It should be 0 mol% or less. Further, the ratio of the zirconium component in the metal component forming the metal oxide in the porous portion is preferably 0.3 mol% or more and 1.5 mol% or less.
 さらに、この条件下において、ジルコニウム成分は、他の金属成分と複合化した金属酸化物となり、橋梁部の表面、または内部に平均円相当径5μm以上のジルコニア領域を形成していることが好ましい。他の金属成分としては、例えばガドリニウム成分が好ましく、ガドリニウム成分はジルコニウム成分と同mol以上であることが好ましく、ジルコニア領域がジルコニウムとガドリニウムの複合化した金属酸化物であることが好ましい。このような形態をとることで、ジルコニウム成分の高い機械的強度が効果的に橋梁部に付与され、多孔質部全体の機械的強度向上に寄与する。 Furthermore, under this condition, it is preferable that the zirconium component becomes a metal oxide compounded with another metal component to form a zirconia region having an average circle equivalent diameter of 5 μm or more on the surface or inside of the bridge part. As the other metal component, for example, a gadolinium component is preferable, the gadolinium component is preferably the same mol or more as the zirconium component, and the zirconia region is preferably a composite metal oxide of zirconium and gadolinium. By taking such a form, high mechanical strength of the zirconium component is effectively imparted to the bridge portion and contributes to improvement of mechanical strength of the entire porous portion.
 本発明に係るセラミックス物品の製造方法は、以下の4つの工程(i)~(iv)を有することを特徴とする。
 (i)酸化アルミニウムを主成分とする金属酸化物の粉末を均し、粉末層を形成する。
 (ii)上記粉末層に造形データに基づいてエネルギービームを照射し、上記粉末を熔融、凝固、または焼結させる。
 (iii)上記工程(i)及び上記工程(ii)を繰り返して形成した、多孔質部を有する造形物にジルコニウム成分を含有する液体を吸収させる。
 (iv)上記ジルコニウム成分を含有する液体を吸収させた上記造形物を加熱する。
The method for producing a ceramic article according to the present invention is characterized by having the following four steps (i) to (iv).
(I) A powder of a metal oxide containing aluminum oxide as a main component is leveled to form a powder layer.
(Ii) The powder layer is irradiated with an energy beam based on modeling data to melt, solidify, or sinter the powder.
(Iii) A liquid containing a zirconium component is absorbed in a shaped article having a porous portion, which is formed by repeating the above step (i) and the above step (ii).
(Iv) The above-mentioned shaped object that has absorbed the liquid containing the above-mentioned zirconium component is heated.
 上記多孔質部に含まれる金属成分におけるジルコニウム成分の割合が0.3mol%以上2.0mol%以下となるように上記吸収工程で上記液体を吸収させる。このとき、多孔質部に含まれる金属成分におけるジルコニウム成分の割合は、0.3mol%以上1.5mol%以下となることが好ましい。 The liquid is absorbed in the absorption step so that the ratio of the zirconium component in the metal component contained in the porous part is 0.3 mol% or more and 2.0 mol% or less. At this time, the ratio of the zirconium component in the metal component contained in the porous portion is preferably 0.3 mol% or more and 1.5 mol% or less.
<工程(i)>
 本発明に係る造形物の製造方法は、酸化アルミニウムを主成分とする金属酸化物の粉末を均し、粉末層を形成する工程(i)を有する。
<Step (i)>
The method for producing a shaped article according to the present invention includes a step (i) of forming a powder layer by leveling a powder of a metal oxide containing aluminum oxide as a main component.
 酸化アルミニウムは汎用的な構造用セラミックスであり、適切に焼結あるいは溶融及び凝固させることによって、高い機械的強度を有する造形物を得ることができる。 Aluminum oxide is a general-purpose structural ceramic, and by appropriately sintering or melting and solidifying it, a shaped article with high mechanical strength can be obtained.
 本発明における金属酸化物の粉末は、酸化ジルコニウムの含有率が0.1mol%未満であることが好ましい。また、金属酸化物の粉末に含まれる金属成分におけるジルコニウム成分の割合が、0.15mol%未満であることが好ましい。ジルコニウム成分含有液を吸収させた多孔質構造を有する造形物において、造形物の結晶部分と造形物のマイクロクラック部分の間でジルコニウム成分の濃度に大きな差があることで、マイクロクラック近傍のみを選択的に溶融させることができる。これにより、加熱工程による造形物の変形を抑制することができる。 The metal oxide powder according to the present invention preferably has a zirconium oxide content of less than 0.1 mol %. Further, the ratio of the zirconium component in the metal component contained in the powder of the metal oxide is preferably less than 0.15 mol%. In a modeled object having a porous structure that absorbs a zirconium-containing liquid, there is a large difference in the zirconium concentration between the crystal part of the modeled object and the microcrack part of the modeled object, so only the microcrack vicinity is selected. Can be melted. As a result, it is possible to suppress the deformation of the modeled object due to the heating process.
 本発明における粉末は、副成分として、酸化ガドリニウム、酸化テルビウム及び酸化プラセオジムから選択される少なくとも一種を含んでいることがより好ましい。前記粉末は、酸化ガドリニウムを含むことで、Al-Gd共晶系組成近傍では、酸化アルミニウム単体よりも低融点となる。これによって少ない熱量で粉末の溶融が可能となり、粉末内でのエネルギーの拡散が抑制されるため、造形精度が向上する。また、酸化ガドリニウムを含むことで、造形物は2相以上からなる相分離構造となる。これにより、クラックの伸展が抑えられ、造形物の機械的強度が向上する。酸化ガドリニウムの代わりに、他の希土類元素(テルビウム及びプラセオジムを除く)の酸化物を使用した場合も、酸化ガドリニウムと同じような効果が得られる。エネルギービームがレーザービームである場合、粉末に十分なエネルギー吸収があることで、粉末内における熱の広がりが抑制されて局所的になり、非造形部への熱の影響が低減するため、造形精度が向上する。例えば、Nd:YAGレーザーを使用する場合は、酸化テルビウム(Tb)や酸化プラセオジム(Pr11)などが良好なエネルギー吸収を示すため、副成分として粉末に含有されていることがより好ましい。 The powder in the present invention more preferably contains at least one selected from gadolinium oxide, terbium oxide and praseodymium oxide as an accessory component. Since the powder contains gadolinium oxide, it has a lower melting point than aluminum oxide alone in the vicinity of the Al 2 O 3 —Gd 2 O 3 eutectic composition. As a result, the powder can be melted with a small amount of heat, and the diffusion of energy in the powder is suppressed, so that the modeling accuracy is improved. Further, by including gadolinium oxide, the shaped article has a phase separation structure composed of two or more phases. This suppresses the extension of cracks and improves the mechanical strength of the modeled object. Even when gadolinium oxide is replaced with an oxide of another rare earth element (except terbium and praseodymium), the same effect as gadolinium oxide can be obtained. When the energy beam is a laser beam, because the powder has sufficient energy absorption, the spread of heat in the powder is suppressed and becomes local, and the influence of heat on the non-printing part is reduced, so that the shaping accuracy is reduced. Is improved. For example, when an Nd:YAG laser is used, terbium oxide (Tb 4 O 7 ) or praseodymium oxide (Pr 6 O 11 ) exhibits good energy absorption, and thus may be contained in the powder as an accessory component. More preferable.
 副成分である酸化ガドリニウム、酸化テルビウム及び酸化プラセオジムからなる希土類酸化物材料と酸化アルミニウムの共晶組成比は、46:54(mol%)であるため、希土類酸化物材料と酸化アルミニウムとの組成比は、上記共晶組成比から±5mol%の範囲、即ち41:59~51:49(mol%)にあることが好ましい。この範囲であれば共晶系組成のセラミックスを用いて融点を下げる効果が得られる。 Since the eutectic composition ratio of the rare earth oxide material consisting of gadolinium oxide, terbium oxide and praseodymium oxide, which is an accessory component, and aluminum oxide is 46:54 (mol %), the composition ratio of the rare earth oxide material and aluminum oxide is Is preferably within the range of ±5 mol% from the above eutectic composition ratio, that is, 41:59 to 51:49 (mol %). Within this range, it is possible to obtain the effect of lowering the melting point by using ceramics having a eutectic composition.
 以上の観点から、より好適な粉末としては、Al-Gd、Al-Tb、Al-Gd-Tb、Al-Pr11、Al-Gd-Pr11、Al-Gd-Tb-Pr11等が挙げられる。 From the above viewpoints, more preferable powders include Al 2 O 3 —Gd 2 O 3 , Al 2 O 3 —Tb 4 O 7 , Al 2 O 3 —Gd 2 O 3 —Tb 4 O 7 , and Al 2 O. 3- Pr 6 O 11 , Al 2 O 3 -Gd 2 O 3 -Pr 6 O 11 , Al 2 O 3 -Gd 2 O 3 -Tb 4 O 7 -Pr 6 O 11 and the like can be mentioned.
 本発明で用いられる基台の材料としては、三次元造形物の製造において通常用いられるセラミックス、金属、ガラス等の材料から造形物の用途や製造条件等を考慮して適宜選択、使用することができる。工程(iv)において、基台と一体となった造形物を加熱する場合は、耐熱性のあるセラミックスを基台に用いることが好ましい。 The base material used in the present invention may be appropriately selected and used from materials such as ceramics, metal, and glass that are usually used in the production of three-dimensional shaped objects, in consideration of the use and manufacturing conditions of the shaped object. it can. In the step (iv), when heating the shaped article integrated with the base, it is preferable to use heat-resistant ceramics for the base.
 粉末を基台に配置する方法は特に限定されない。粉末床溶融結合方式の場合は、図1A~図1Hに示すように、ローラーやブレード等で基台の上に層状に粉末を配置する。クラッディング方式の場合は、図2A~図2Cのようにエネルギービームの照射位置にノズルから粉末を噴射供給し、基台または基台に配置された造形物の上に粉末を肉盛りするような形で粉末を配置すると同時に、エネルギービーム照射によって粉末を溶融、凝固させて造形物を作製する。 The method of arranging the powder on the base is not particularly limited. In the case of the powder bed fusion bonding method, as shown in FIGS. 1A to 1H, the powders are arranged in layers on the base with rollers, blades, or the like. In the case of the cladding method, as shown in FIG. 2A to FIG. 2C, the powder is jetted and supplied from the nozzle to the irradiation position of the energy beam, and the powder is overlaid on the base or the shaped object arranged on the base. At the same time as arranging the powder in a shape, the powder is melted and solidified by irradiation with an energy beam to produce a shaped article.
<工程(ii)>
 本発明に係る造形物の製造方法は、上記工程(i)で形成した粉末層に造形データに基づいてエネルギービームを照射し、上記粉末を熔融、凝固、または焼結させる工程(ii)を有する。以下、好適な実施形態に基づいて本工程を説明する。
<Step (ii)>
The method for producing a shaped article according to the present invention includes a step (ii) of irradiating the powder layer formed in the step (i) with an energy beam based on shaping data to melt, solidify, or sinter the powder. .. Hereinafter, this step will be described based on a preferred embodiment.
 粉末床溶融結合方式の場合は、図1A~図1Hに示すように、工程(i)で基台に配置した粉末の表面の所定の領域にエネルギービームを照射して粉末を溶融し、次いで凝固させる。クラッディング方式の場合は、図2A~図2Cに示すように、工程(i)で粉末を噴射供給して基台の上に肉盛りするような形で粉末を配置すると同時に、配置した粉末の全部にエネルギービームを照射して粉末を溶融、凝固させる。粉末にエネルギービームを照射すると、粉末がエネルギーを吸収し、該エネルギーが熱に変換されて粉末が溶融する。エネルギービームの照射が終了すると、溶融した粉末は、雰囲気及び隣接するその周辺部によって冷却されて凝固し、造形物が形成される。溶融及び凝固の過程の急冷によって、造形物の表層及び内部に応力が発生し、マイクロクラックが無数に形成される。なお、粉末層にエネルギービームを照射して焼結させることにより造形物を形成してもよい。 In the case of the powder bed fusion bonding method, as shown in FIGS. 1A to 1H, a predetermined region on the surface of the powder placed on the base in step (i) is irradiated with an energy beam to melt the powder and then solidify. Let In the case of the cladding method, as shown in FIGS. 2A to 2C, in the step (i), the powder is jet-supplied and the powder is placed on the base so as to be built up, and at the same time, The whole is irradiated with an energy beam to melt and solidify the powder. When the powder is irradiated with an energy beam, the powder absorbs energy, the energy is converted into heat, and the powder is melted. When the irradiation of the energy beam is completed, the melted powder is cooled and solidified by the atmosphere and the adjacent peripheral portion thereof, and a shaped object is formed. Due to the rapid cooling during the melting and solidifying process, stress is generated in the surface layer and inside of the shaped article, and innumerable microcracks are formed. The shaped object may be formed by irradiating the powder layer with an energy beam and sintering it.
 使用するエネルギービームとしては、粉末の吸収特性に鑑みて適切な波長を有する光源を選定する。高精度な造形を行うためには、ビーム径が絞れて指向性が高いレーザービームまたは電子ビームを採用することが好ましい。汎用的なレーザービームとしては、1μm波長帯のYAGレーザーやファイバーレーザー、10μm波長帯のCOレーザーなどが挙げられる。粉末が副成分として酸化テルビウムや酸化プラセオジムを含む場合は、1μm波長帯のYAGレーザーが好適である。 As the energy beam to be used, a light source having an appropriate wavelength is selected in view of the absorption characteristics of the powder. In order to perform highly accurate modeling, it is preferable to employ a laser beam or electron beam having a narrow beam diameter and high directivity. Examples of general-purpose laser beams include a YAG laser in the 1 μm wavelength band, a fiber laser, and a CO 2 laser in the 10 μm wavelength band. When the powder contains terbium oxide or praseodymium oxide as an accessory component, a YAG laser having a wavelength band of 1 μm is suitable.
<工程(iii)>
 本発明に係る造形物の製造方法は、上記工程(i)及び上記工程(ii)を繰り返して形成した造形物にジルコニウム成分を含有する液体(ジルコニウム成分含有液ということもある)を吸収させる工程を有する。
<Process (iii)>
The method for producing a molded article according to the present invention comprises a step of absorbing a liquid containing a zirconium component (sometimes referred to as a zirconium component-containing liquid) in a molded article formed by repeating the step (i) and the step (ii). Have.
 工程(ii)で得られた造形物の上に、工程(i)によって新たに粉末を配置する。配置された粉末にエネルギービームを照射すると、エネルギービーム照射部の粉末は溶融、凝固し、元の造形物と一体となった新たな造形物が形成される。工程(i)と工程(ii)を交互に繰り返すことで所望の三次元形状を有する造形物が得られる。 On the shaped article obtained in step (ii), a new powder is placed in step (i). When the arranged powder is irradiated with the energy beam, the powder in the energy beam irradiation portion is melted and solidified to form a new modeled object integrated with the original modeled object. By alternately repeating step (i) and step (ii), a molded article having a desired three-dimensional shape can be obtained.
 そして、得られた造形物にジルコニウム成分を含有する液体(ジルコニウム成分含有液ということもある)を吸収させる。 Then, a liquid containing a zirconium component (sometimes referred to as a zirconium component-containing liquid) is absorbed in the obtained shaped product.
 ここでジルコニウム成分含有液について説明すると、ジルコニウム成分の原料、有機溶媒、安定化剤で構成されるジルコニウム成分含有液が、好ましい例である。 Describing the zirconium component-containing liquid here, a zirconium component-containing liquid composed of a zirconium component raw material, an organic solvent, and a stabilizer is a preferable example.
 ジルコニウム成分の原料には、種々のジルコニウム化合物を用いることができる。アルミナを主体とした造形物に吸収させる場合は、ジルコニウム以外の金属元素が含まれない原料が好ましい。ジルコニウム成分の原料としては、ジルコニウムの金属アルコキシドや塩化物や硝酸塩などの塩化合物を用いることができる。中でも金属アルコキシドを用いると、ジルコニウム成分含有液を造形物のマイクロクラックに均一に吸収させることができるため好ましい。ジルコニウムアルコキシドの具体例としては、ジルコニウムテトラエトキシド、ジルコニウムテトラn-プロポキシド、ジルコニウムテトライソプロポキシド、ジルコニウムテトラn-ブトキシド、ジルコニウムテトラt-ブトキシド等が挙げられる。 Various zirconium compounds can be used as raw materials for the zirconium component. In the case of absorbing into a shaped article mainly composed of alumina, a raw material containing no metal element other than zirconium is preferable. As a raw material for the zirconium component, a metal alkoxide of zirconium or a salt compound such as chloride or nitrate can be used. Among them, the use of metal alkoxide is preferable because the liquid containing the zirconium component can be uniformly absorbed in the microcracks of the shaped article. Specific examples of the zirconium alkoxide include zirconium tetraethoxide, zirconium tetra n-propoxide, zirconium tetraisopropoxide, zirconium tetra n-butoxide, zirconium tetra t-butoxide and the like.
 まず、ジルコニウムアルコキシドを有機溶媒に溶解させて、ジルコニウムアルコキシドの溶液を調製する。ジルコニウムアルコキシドに加える有機溶媒の添加量は、化合物に対してモル比で5以上30以下であることが好ましい。より好ましくは、10以上25以下である。なお、本発明において、Aの添加量がBに対してモル比で5であるとは、添加するAのモル量がBのモル量に対して5倍であることを表している。溶液中のジルコニウムアルコキシドの濃度が低過ぎると十分な量のジルコニウム成分を造形物に吸収させることができない。一方で、溶液中のジルコニウムアルコキシドの濃度が高過ぎると溶液中のジルコニウム成分が凝集してしまい、造形物のマイクロクラック部分にジルコニウム成分を均一に配置することができない。 First, a zirconium alkoxide solution is prepared by dissolving zirconium alkoxide in an organic solvent. The amount of the organic solvent added to the zirconium alkoxide is preferably 5 or more and 30 or less in terms of molar ratio with respect to the compound. More preferably, it is 10 or more and 25 or less. In the present invention, that the addition amount of A is 5 with respect to B in a molar ratio means that the addition amount of A is 5 times that of B. If the concentration of zirconium alkoxide in the solution is too low, a sufficient amount of zirconium component cannot be absorbed by the shaped article. On the other hand, if the concentration of zirconium alkoxide in the solution is too high, the zirconium component in the solution aggregates, and the zirconium component cannot be uniformly arranged in the microcrack portion of the modeled object.
 上記有機溶媒としては、アルコール、カルボン酸、脂肪族系または脂環族系の炭化水素類、芳香族系炭化水素類、エステル、ケトン類、エーテル類、またはこれら2種以上の混合溶媒を用いる。アルコール類としては、例えばメタノール、エタノール、2-プロパノール、ブタノール、2-メトキシエタノール、2-エトキシエタノール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-プロポキシ-2-プロパノール、4-メチル-2-ペンタノール、2-エチルブタノール、3-メトキシ-3-メチルブタノール、エチレングリコール、ジエチレングリコール、グリセリンなどが好ましい。脂肪族系ないしは脂環族系の炭化水素類としては、n-ヘキサン、n-オクタン、シクロヘキサン、シクロペンタン、シクロオクタンなどが好ましい。芳香族炭化水素類としては、トルエン、キシレン、エチルベンゼンなどが好ましい。エステル類としては、ギ酸エチル、酢酸エチル、酢酸n-ブチル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテートなどが好ましい。ケトン類としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどが好ましい。エーテル類としては、ジメトキシエタン、テトラヒドロフラン、ジオキサン、ジイソプロピルエーテルなどが挙げられる。本発明で使用されるジルコニウム成分含有液を調製するに当たり、溶液の安定性の点から上述した各種の溶剤類のうちアルコール類を使用することが好ましい。 As the organic solvent, alcohol, carboxylic acid, aliphatic or alicyclic hydrocarbons, aromatic hydrocarbons, esters, ketones, ethers, or a mixed solvent of two or more thereof is used. Examples of alcohols include methanol, ethanol, 2-propanol, butanol, 2-methoxyethanol, 2-ethoxyethanol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-propoxy-2-propanol, 4-Methyl-2-pentanol, 2-ethylbutanol, 3-methoxy-3-methylbutanol, ethylene glycol, diethylene glycol, glycerin and the like are preferable. As the aliphatic or alicyclic hydrocarbons, n-hexane, n-octane, cyclohexane, cyclopentane, cyclooctane and the like are preferable. As the aromatic hydrocarbons, toluene, xylene, ethylbenzene and the like are preferable. Preferred esters are ethyl formate, ethyl acetate, n-butyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate and the like. As the ketones, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and the like are preferable. Examples of ethers include dimethoxyethane, tetrahydrofuran, dioxane, diisopropyl ether and the like. In preparing the zirconium component-containing liquid used in the present invention, it is preferable to use alcohols among the above-mentioned various solvents from the viewpoint of stability of the solution.
 次に、安定化剤について説明する。ジルコニウムアルコキシドは水に対する反応性が高いため、空気中の水分や水の添加により急激に加水分解され溶液の白濁、沈殿を生じる。これらを防止するために安定化剤を添加し、溶液の安定化を図ることが好ましい。安定化剤としては、例えば、アセチルアセトン、3-メチル-2,4-ペンタンジオン、3-エチル-2,4-ペンタンジオン、トリフルオロアセチルアセトンなどのβ-ジケトン化合物類;アセト酢酸メチル、アセト酢酸エチル、アセト酢酸ブチル、アセト酢酸アリル、アセト酢酸ベンジル、アセト酢酸イソプロピル、アセト酢酸tert-ブチル、アセト酢酸イソブチル、3-オキソヘキサン酸エチル、2-メチルアセト酢酸エチル、2-フルオロアセト酢酸エチル、アセト酢酸2-メトキシエチルなどの、β-ケトエステル化合物類;さらには、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどの、アルカノールアミン類等を挙げることができる。安定化剤の添加量は、ジルコニウムアルコキシドに対してモル比で0.1以上3以下が好ましい。より好ましくは、0.5以上2以下である。 Next, the stabilizer will be explained. Since zirconium alkoxide has high reactivity with water, it is rapidly hydrolyzed by the addition of water in the air or water to cause cloudiness or precipitation of the solution. In order to prevent these, it is preferable to add a stabilizer to stabilize the solution. Examples of the stabilizer include β-diketone compounds such as acetylacetone, 3-methyl-2,4-pentanedione, 3-ethyl-2,4-pentanedione and trifluoroacetylacetone; methyl acetoacetate and ethyl acetoacetate. , Butyl acetoacetate, allyl acetoacetate, benzyl acetoacetate, isopropyl acetoacetate, tert-butyl acetoacetate, isobutyl acetoacetate, ethyl 3-oxohexanoate, ethyl 2-methylacetoacetate, ethyl 2-fluoroacetoacetate, acetoacetate 2 Β-ketoester compounds such as methoxyethyl; and alkanolamines such as monoethanolamine, diethanolamine and triethanolamine. The addition amount of the stabilizer is preferably 0.1 or more and 3 or less in molar ratio with respect to the zirconium alkoxide. More preferably, it is 0.5 or more and 2 or less.
 他の好ましい例としては、ジルコニウム成分の粒子と分散剤と溶媒とで構成されるジルコニウム成分含有液が挙げられる。 Another preferred example is a zirconium component-containing liquid composed of zirconium component particles, a dispersant, and a solvent.
 ジルコニウム成分の粒子としては、ジルコニウム粒子や酸化物であるジルコニア粒子を用いることができる。ジルコニウム粒子またはジルコニア粒子は、トップダウン法でそれぞれの材料を破砕して作製してもよいし、ボトムアップ法で金属塩、水和物、水酸化物、炭酸塩などから水熱反応などの手法を用いて合成してもよいし、または市販品を用いてもよい。粒子のサイズは、マイクロクラックに侵入させるため300nm以下、より好ましくは50nm以下である。 As the zirconium component particles, zirconium particles or zirconia particles that are oxides can be used. Zirconium particles or zirconia particles may be prepared by crushing each material by the top-down method, or by a bottom-up method from metal salts, hydrates, hydroxides, carbonates, etc., such as hydrothermal reaction. Or a commercially available product may be used. The size of the particles is 300 nm or less, more preferably 50 nm or less in order to penetrate into the microcracks.
 微粒子の形状はとくに限定されず、球状、粒状、柱状、楕円球状、立方体状、直方体状、針状、柱状、板状、鱗片状、ピラミッド状あってもよい。 The shape of the fine particles is not particularly limited, and may be spherical, granular, columnar, elliptic spherical, cubical, rectangular parallelepiped, needle-shaped, columnar, plate-shaped, scale-shaped, or pyramid-shaped.
 分散剤としては、有機酸、シランカップリング剤、界面活性剤、のうち少なくとも一種を含むことが好ましい。有機酸としては、例えばアクリル酸、アクリル酸2-ヒドロキシエチル、2-アクリロキシエチルコハク酸、2-アクリロキシエチルヘキサヒドロフタル酸、2-アクリロキシエチルフタル酸、2-メチルヘキサン酸、2-エチルヘキサン酸、3-メチルヘキサン酸、3-エチルヘキサン酸などが好ましい。シランカップリング剤としては、例えば3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、ヘキシルトリメトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシランなどが好ましい。界面活性剤としては、例えばオレイン酸ナトリウム、脂肪酸カリウム、アルキルリン酸エステルナトリウム、塩化アルキルメチルアンモニウム、アルキルアミノカルボン酸塩などのイオン性界面活性剤、ポリオキシエチレンラウリン脂肪酸エステル、ポリオキシエチレンアルキルフェニルエーテルなどの非イオン系界面活性剤が好ましい。 The dispersant preferably contains at least one of an organic acid, a silane coupling agent, and a surfactant. Examples of the organic acid include acrylic acid, 2-hydroxyethyl acrylate, 2-acryloxyethyl succinic acid, 2-acryloxyethyl hexahydrophthalic acid, 2-acryloxyethyl phthalic acid, 2-methylhexanoic acid, 2- Ethylhexanoic acid, 3-methylhexanoic acid, 3-ethylhexanoic acid and the like are preferable. Preferred examples of the silane coupling agent include 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, hexyltrimethoxysilane, octyltriethoxysilane, and decyltrimethoxysilane. Examples of the surfactant include ionic surfactants such as sodium oleate, potassium fatty acid, sodium alkyl phosphate, alkylmethyl ammonium chloride, and alkylaminocarboxylate, polyoxyethylene laurin fatty acid ester, polyoxyethylene alkylphenyl. Nonionic surfactants such as ether are preferred.
 溶媒としては、アルコール類、ケトン類、エステル類、エーテル類、エステル変性エーテル類、炭化水素類、ハロゲン化炭化水素類、アミド類、水、油類、あるいはこれら2種以上の混合溶媒を用いる。アルコール類としては、例えばメタノール、エタノール、2-プロパノール、イソプロパノール、1-ブタノール、エチレングリコールなどが好ましい。ケトン類としては、例えばアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどが好ましい。エステル類としては、例えば酢酸エチル、酢酸プロピル、酢酸ブチル、4-ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、3-メトキシプロピオン酸メチルなどが好ましい。エーテル類としては、例えばエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ブチルカルビトール、2-エトキシエタノール、1-メトキシ-2-プロパノール、2-ブトキシエタノールなどが好ましい。変性エーテル類としては、例えばプロピレングリコールモノメチルエーテルアセテートが好ましい。炭化水素類としては、例えばベンゼン、トルエン、キシレン、エチルベンゼン、トリメチルベンゼン、ヘキサン、シクロヘキサン、メチルシクロヘキサンなどが好ましい。ハロゲン化炭化水素類としては、例えばジクロロメタン、ジクロルエタン、クロロホルムが好ましい。アミド類としては、例えばジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドンが好ましい。油類としては、例えば鉱物油、植物油、ワックス油、シリコーン油が好ましい。 As the solvent, alcohols, ketones, esters, ethers, ester-modified ethers, hydrocarbons, halogenated hydrocarbons, amides, water, oils, or a mixed solvent of two or more thereof is used. Preferred alcohols are, for example, methanol, ethanol, 2-propanol, isopropanol, 1-butanol, ethylene glycol and the like. As the ketones, for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and the like are preferable. Preferred esters are, for example, ethyl acetate, propyl acetate, butyl acetate, 4-butyrolactone, propylene glycol monomethyl ether acetate, methyl 3-methoxypropionate and the like. Preferred ethers are, for example, ethylene glycol monomethyl ether, diethylene glycol monobutyl ether, butyl carbitol, 2-ethoxyethanol, 1-methoxy-2-propanol, 2-butoxyethanol and the like. As the modified ethers, for example, propylene glycol monomethyl ether acetate is preferable. As the hydrocarbons, for example, benzene, toluene, xylene, ethylbenzene, trimethylbenzene, hexane, cyclohexane, methylcyclohexane and the like are preferable. Preferred halogenated hydrocarbons are, for example, dichloromethane, dichloroethane and chloroform. Preferred amides are, for example, dimethylformamide, N,N-dimethylacetamide and N-methylpyrrolidone. As the oils, for example, mineral oil, vegetable oil, wax oil and silicone oil are preferable.
 ジルコニウム成分含有液は、ジルコニウム粒子またはジルコニア粒子と分散剤と溶媒とを同時に混合して作製してもよいし、ジルコニウム粒子またはジルコニア粒子と分散剤とを混合してから溶媒を混合してもよい。あるいは、前記ジルコニウムまたはジルコニアの微粒子と前記溶媒を混合してから前記分散剤を混合してもよいし、前記分散剤と前記溶媒とを混合してから前記ジルコニウムまたはジルコニアの微粒子を混合して作製してもよい。溶液の調製は、室温で反応させても、還流させて調製してもよい。 The zirconium component-containing liquid may be prepared by simultaneously mixing zirconium particles or zirconia particles with a dispersant and a solvent, or may be mixed with zirconium particles or zirconia particles and a dispersant and then mixed with a solvent. .. Alternatively, the zirconium or zirconia fine particles may be mixed with the solvent and then the dispersant may be mixed, or the dispersant and the solvent may be mixed and then the zirconium or zirconia fine particles may be mixed. You may. The solution may be prepared by reacting at room temperature or refluxing.
 以上のジルコニウムアルコキシドと有機溶媒、及び安定化剤のモル比によりジルコニア成分の固形分濃度が決定される。ジルコニア固形分の重量%は3%から20%の範囲であることが好ましく、より好ましくは8%から15%である。濃度が低い場合は、マイクロクラックを埋める効果が得られにくくなってしまい、重量%が3%以上であれば、一定の効果が得られ、8%以上であればより効果が高まる。重量%が高い場合は、粘度が高くなりすぎて、マイクロクラックまで液が吸収されにくくなり、効果が得られにくくなってしまい、重量%が20%以下であれば、一定の効果が得られ、15%以下であればより効果が高まる。 The solid concentration of the zirconia component is determined by the above molar ratio of zirconium alkoxide, organic solvent, and stabilizer. The weight percentage of the zirconia solids is preferably in the range of 3% to 20%, more preferably 8% to 15%. If the concentration is low, it becomes difficult to obtain the effect of filling the microcracks. If the weight% is 3% or more, a certain effect is obtained, and if it is 8% or more, the effect is further enhanced. When the weight% is high, the viscosity becomes too high, and the liquid is difficult to be absorbed even in the microcracks, and it becomes difficult to obtain the effect. When the weight% is 20% or less, a certain effect is obtained. If it is 15% or less, the effect is further enhanced.
 上記工程(ii)においてエネルギービーム照射によって溶融した粉末は、周囲により冷やされて凝固し、中間造形物が形成される。セラミックスの場合は、溶融/凝固の温度差が大きいので、中間造形物にはマイクロクラックが多く発生する。 The powder melted by the energy beam irradiation in the above step (ii) is cooled by the surroundings and solidifies to form an intermediate shaped object. In the case of ceramics, since the difference in melting/solidifying temperature is large, many microcracks occur in the intermediate shaped product.
 ジルコニウム成分含有液は、本工程(iii)によって、造形物の表層のみならず、マイクロクラックを伝って造形物の内部にも侵入し、分布する。造形物のマイクロクラックの十分な範囲に、十分な量のジルコニア成分を介在させることができるのであれば、造形物にジルコニウム成分含有液を吸収させる手法は特に限定されない。ジルコニウム成分含有液中に造形物を含浸させてもよいし、ジルコニウム成分含有液を霧状にして中間造形物に吹き付けてもよいし、刷毛などで塗布してもよい。また、これらの手法を複数組み合わせてもよいし、同じ手法を複数回繰り返してもよい。ジルコニウム成分含有液を吹き付ける場合、及び、ジルコニウム成分含有液を塗布する場合は、ジルコニウム成分含有液を吸収していない造形物の5体積%以上20体積%以下のジルコニウム成分含有液を吹き付け、または塗布することが好ましい。5体積%未満であると、造形物のマイクロクラック部分に配置されるジルコニウム成分量が不足し、マイクロクラック部分が溶融しないおそれがある。20体積%より多いと、本工程(iii)の後に工程(i)を実施する場合、ジルコニウム成分含有液の影響で、造形物上に粉末を均一に配置することが困難となるおそれがある。工程(i)及び工程(ii)を繰り返して多孔質部を有する造形物を形成することにより得られるような体積の大きい造形物の場合は、ジルコニウム成分含有液に造形物を浸して減圧脱気して含浸させる手法が好ましい。または、工程(i)及び工程(ii)を繰り返して多孔質部を有する造形物を形成する途中で、ジルコニウム成分含有液を霧状に吹き付けて各段階の造形物に吸収させることが好ましい。 By this step (iii), the zirconium component-containing liquid penetrates not only on the surface layer of the modeled object but also along the microcracks to be distributed inside the modeled object. The method for absorbing the zirconium component-containing liquid in the shaped product is not particularly limited as long as a sufficient amount of the zirconia component can be present in a sufficient range of the microcracks of the shaped product. The shaped product may be impregnated in the zirconium component-containing liquid, the zirconium component-containing liquid may be atomized and sprayed onto the intermediate shaped product, or may be applied with a brush or the like. Further, a plurality of these methods may be combined, or the same method may be repeated a plurality of times. When the zirconium component-containing liquid is sprayed and when the zirconium component-containing liquid is applied, 5% by volume or more and 20% by volume or less of the zirconium component-containing liquid of the shaped article not absorbing the zirconium component-containing liquid is sprayed or applied. Preferably. If it is less than 5% by volume, the amount of zirconium component arranged in the microcrack portion of the molded article may be insufficient, and the microcrack portion may not melt. When it is more than 20% by volume, when the step (i) is carried out after the present step (iii), it may be difficult to uniformly dispose the powder on the shaped article due to the influence of the zirconium component-containing liquid. In the case of a molded article having a large volume that can be obtained by repeating steps (i) and (ii) to form a molded article having a porous portion, the molded article is immersed in a zirconium component-containing liquid and degassed under reduced pressure. The method of impregnating and then impregnating is preferable. Alternatively, while the steps (i) and (ii) are repeated to form a shaped article having a porous portion, it is preferable that the zirconium component-containing liquid be sprayed in a mist state to be absorbed by the shaped article at each stage.
<工程(iv)>
 本発明に係る造形物の製造方法の工程(iv)では、ジルコニウム成分含有液を吸収させた造形物を加熱する。
<Process (iv)>
In step (iv) of the method for producing a shaped article according to the present invention, the shaped article having the zirconium component-containing liquid absorbed therein is heated.
 上記工程(iii)で、ジルコニウム成分含有液は造形物表層及び造形物内部のマイクロクラックに分布している。 In the above step (iii), the zirconium component-containing liquid is distributed in the surface layer of the shaped article and the microcracks inside the shaped article.
 前述したように、ジルコニウム成分が酸化アルミニウムと共晶をなす関係であるため、これらの成分が存在する部分では、共晶点で溶融が始まる。例えば、酸化アルミニウムと酸化ジルコニウムとの共晶点は、約1900℃であり、それぞれの成分単独の融点(Alは2070℃、ZrOは2715℃)よりも低い。つまり、酸化アルミニウムを主成分とする造形物の溶融温度よりも低い温度で、溶融が始まる。つまり、ジルコニウムが存在する箇所の融点を局所的に大きく低下させることができ、この融点の差を利用して、共晶点以上、造形物の融点未満の温度で加熱し、マイクロクラック近傍のみを選択局所的に溶融させることができる。具体的には、工程(iv)を経た造形物を最高温度が1600℃以上1710℃以下となるように加熱する。 As described above, since the zirconium component has a relationship of forming a eutectic with aluminum oxide, melting starts at the eutectic point in the portion where these components are present. For example, the eutectic point of aluminum oxide and zirconium oxide is about 1900° C., which is lower than the melting point of each component alone (Al 2 O 3 is 2070° C. and ZrO 2 is 2715° C.). That is, melting starts at a temperature lower than the melting temperature of the modeled product containing aluminum oxide as the main component. That is, the melting point at the location where zirconium is present can be greatly reduced locally, and by utilizing this difference in melting point, heating is performed at a temperature equal to or higher than the eutectic point and lower than the melting point of the shaped article, and only the vicinity of the microcracks is heated. It can be selectively locally melted. Specifically, the shaped article that has undergone the step (iv) is heated so that the maximum temperature becomes 1600° C. or higher and 1710° C. or lower.
 マイクロクラック部分が、最高温度である1600℃から1710℃の温度に達すれば、ジルコニウム成分が存在しているマイクロクラック部分は溶融する。したがって、加熱時間は問わない。溶融状態では表面エネルギーが減少する方向に原子の拡散が進み、やがてマイクロクラックが減少・消滅する。加熱温度をコントロールすることで、ジルコニウム成分が存在する部分の近傍のみを溶融させることができるため、造形物の形状が崩れることはなく、直接造形方式の利点は担保される。よって、長時間加熱しても造形物形状は維持される。溶融後、凝固して再結晶化した造形物は、マイクロクラックの減少・消滅によって機械強度が大きく向上する。 When the temperature of the microcracks reaches the maximum temperature of 1600°C to 1710°C, the microcracks containing the zirconium component melt. Therefore, the heating time does not matter. In the molten state, the diffusion of atoms proceeds in the direction in which the surface energy decreases, and eventually microcracks decrease or disappear. By controlling the heating temperature, only the vicinity of the portion where the zirconium component is present can be melted, so that the shape of the modeled object is not destroyed and the advantage of the direct modeling method is secured. Therefore, the shape of the modeled object is maintained even if it is heated for a long time. The mechanical strength of the molded article solidified and recrystallized after melting is greatly improved by the reduction and disappearance of microcracks.
 マイクロクラック部分に十分なジルコニア成分が介在すれば、上述のようにマイクロクラックの近傍が溶融し、マイクロクラックが減少・消滅する効果がある。特に、マイクロクラック近傍が、酸化アルミニウムを主成分とした造形物78mol%に対して、酸化ジルコニウムが22mol%近傍となる共晶組成に近づくことで、マイクロクラック近傍がより溶融しやすくなる。マイクロクラック近傍を溶融させることで、マイクロクラックを減少・消滅させるには、1650℃以上1710℃以下の温度で加熱することが好ましい。より好ましくは、1662℃~1670℃である。 If a sufficient amount of zirconia component is present in the microcracks, the vicinity of the microcracks is melted as described above, and the microcracks are reduced or eliminated. In particular, when the vicinity of the microcracks approaches the eutectic composition in which zirconium oxide is in the vicinity of 22 mol% with respect to the molded product containing aluminum oxide as the main component in an amount of 78 mol%, the vicinity of the microcracks is more easily melted. In order to reduce or eliminate the microcracks by melting the vicinity of the microcracks, it is preferable to heat at a temperature of 1650° C. or higher and 1710° C. or lower. More preferably, it is 1662°C to 1670°C.
 造形物の加熱方法は特に限定されない。ジルコニウム成分含有液を吸収させた造形物に再びエネルギービームを照射することで加熱してもよいし、電気炉に入れて加熱してもよい。エネルギービームで加熱する場合は、造形物が上述の好ましい温度に加熱されるように、エネルギービームの投入熱量と造形物の温度の関係を事前に熱電対等で把握する必要がある。 The method of heating the shaped object is not particularly limited. The shaped article that has absorbed the zirconium component-containing liquid may be heated again by irradiating it with an energy beam, or may be placed in an electric furnace and heated. In the case of heating with the energy beam, it is necessary to grasp the relationship between the input heat amount of the energy beam and the temperature of the model with a thermocouple or the like in advance so that the model is heated to the above preferable temperature.
 加熱工程では、造形物の表層やマイクロクラック近傍の溶融により、セッター(焼成棚、棚板、敷板等)に固着することがある。したがって、加熱工程で造形物をセッターに配置する場合は、セッターは不活性であることが好ましい。不活性なセッターとしては、例えば、大気雰囲気下では白金などが適用可能であり、低酸素雰囲気下でイリジウムなどが適用可能である。 During the heating process, the molded product may stick to the setter (firing shelf, shelf board, floor board, etc.) due to melting near the surface layer and microcracks. Therefore, when the shaped object is placed on the setter in the heating step, the setter is preferably inert. As the inert setter, for example, platinum or the like can be applied in the air atmosphere, and iridium or the like can be applied in the low oxygen atmosphere.
<各工程のフロー>
 以下、各工程の順序や繰り返しのパターン例について説明する。
<Flow of each process>
Hereinafter, the order of each process and an example of a repeated pattern will be described.
 基本的なフローは、工程(i)→工程(ii)→工程(iii)→工程(iv)の順に各工程を実行するフローが基本であるが、工程(iii)と工程(iv)を繰り返し実行してもよい。 The basic flow is basically a flow of executing each step in the order of step (i) → step (ii) → step (iii) → step (iv), but step (iii) and step (iv) are repeated. You may execute.
 工程(iii)及び工程(iv)を繰り返し実行することで、造形物のマイクロクラック近傍が、酸化アルミニウムを主成分とした造形物78mol%に対して酸化ジルコニウムが22mol%近傍となる共晶組成に近づけることが好ましい。これにより、マイクロクラック近傍が溶融しやすくなり、マイクロクラックが減少・消滅する効果が向上する。このとき、多孔質部に含まれる金属成分に対するジルコニウム成分の割合が0.3mol%以上2.0mol%以下となるように上記吸収工程で上記液体を吸収させる。 By repeatedly performing the step (iii) and the step (iv), the eutectic composition in which the vicinity of the microcracks of the modeled object is about 22 mol% of zirconium oxide with respect to 78 mol% of the modeled object containing aluminum oxide as the main component It is preferable to bring them closer. This facilitates melting in the vicinity of the microcracks and improves the effect of reducing and eliminating the microcracks. At this time, the liquid is absorbed in the absorbing step such that the ratio of the zirconium component to the metal component contained in the porous portion is 0.3 mol% or more and 2.0 mol% or less.
[多孔質部と緻密質部よりなる複合セラミックス部品]
 図7に、多孔質部401と、多孔質部401を保持するための緻密質部402よりなる一片の複合セラミックス部品403の一例の模式図を示す。図7は多孔質部401が緻密質部402に囲まれ一体となっている。これらの複合セラミックス部品403は、吸気・排気部材を連結させることで吸着プレートとして用いることができる。図7の例は単なる一例であって、緻密質部402の中に多孔質部401が独立して複数配置されてもよいし、多孔質部401の内部に緻密質部402が配置されていてもよい。
[Composite ceramic parts consisting of porous and dense parts]
FIG. 7 shows a schematic view of an example of a piece of composite ceramic component 403 including a porous portion 401 and a dense portion 402 for holding the porous portion 401. In FIG. 7, the porous portion 401 is surrounded by the dense portion 402 and integrated. These composite ceramic parts 403 can be used as a suction plate by connecting intake and exhaust members. The example of FIG. 7 is merely an example, and a plurality of porous parts 401 may be independently arranged in the dense part 402, or the dense part 402 is arranged inside the porous part 401. Good.
 本発明では、複合セラミックス部品403を構成する上記緻密質部402が、アルミニウム及びジルコニウムを含む金属酸化物よりなり、上記金属酸化物を構成する金属成分におけるジルコニウム成分の占める割合が、上記多孔質部401より小さい。 In the present invention, the dense part 402 constituting the composite ceramic part 403 is made of a metal oxide containing aluminum and zirconium, and the ratio of the zirconium component in the metal component constituting the metal oxide is the porous part. It is smaller than 401.
 以下に実施例を挙げて、本発明に係る造形物の製造方法を詳細に説明するが、本発明は、以下の実施例により何ら限定されるものではない。 The following will describe the method for producing a shaped article according to the present invention in detail with reference to Examples, but the present invention is not limited to the following Examples.
(実施例1)
 本実施例では、格子状のパターンを有する多孔質部を作製した。孔の周期が175μmの格子状のパターンとした場合に概ね相当する。
(Example 1)
In this example, a porous portion having a grid pattern was produced. This roughly corresponds to the case where the lattice pattern has a hole period of 175 μm.
<工程(i)、工程(ii)及び工程(iii)>
 α-Al粉末、Gd粉末、Tb3.5粉末(Tb粉末)を用意し、モル比がAl:Gd:Tb3.5=77.4:20.8:1.8となるように各粉末を秤量した。各秤量粉末を乾式ボールミルで30分間混合して混合粉末(材料粉末)を得た。
 ICP発光分光分析により上記材料粉末の組成分析を行ったところ、酸化ジルコニウムの含有量は0.1mol%未満であった。
<Step (i), Step (ii) and Step (iii)>
α-Al 2 O 3 powder, Gd 2 O 3 powder and Tb 2 O 3.5 powder (Tb 4 O 7 powder) were prepared, and the molar ratio was Al 2 O 3 :Gd 2 O 3 :Tb 2 O 3. Each powder was weighed so that 5 =77.4:20.8:1.8. The respective weighing powders were mixed by a dry ball mill for 30 minutes to obtain a mixed powder (material powder).
When the composition of the material powder was analyzed by ICP emission spectroscopy, the content of zirconium oxide was less than 0.1 mol %.
 次に、上述した図1A~図1Hに示す工程と基本的に同様な工程を経て実施例1の造形物を形成した。
 造形物の形成には、50WのNd:YAGレーザー(ビーム径65μm)が搭載されている3D SYSTEMS社のProX DMP 100(商品名)を用いた。
Next, the molded article of Example 1 was formed through steps basically similar to the steps shown in FIGS. 1A to 1H described above.
A ProX DMP 100 (trade name) manufactured by 3D SYSTEMS Co., which is equipped with a 50 W Nd:YAG laser (beam diameter: 65 μm) was used for forming the modeled object.
 最初に、ローラーを用いて純アルミナ製の基台上に上記材料粉末の20μm厚の一層目の粉末層を形成した(工程(i))。次いで、30Wのレーザービームを上記粉末層に照射し、10mm×10mmの正方形の領域にある材料粉末を網目状に溶融、凝固させた。描画速度は180mm/s、描画ピッチは175μmとした(工程(ii))。描画ラインは正方形の各辺に対して斜め45度となるようにした。次に、上記溶融・凝固部を覆うように20μm厚の粉末層をローラーで新たに形成した(工程(i))。一層目の描画ラインと直交するような状態で上記正方形の領域の真上にある粉末層にレーザーを照射し、10mm×10mmの領域内の粉末を溶融、凝固させた(工程(ii))。 First, a 20 μm-thick first powder layer of the above material powder was formed on a pure alumina base using a roller (step (i)). Then, the powder layer was irradiated with a 30 W laser beam to melt and solidify the material powder in a square region of 10 mm×10 mm in a mesh shape. The drawing speed was 180 mm/s and the drawing pitch was 175 μm (step (ii)). The drawing line was inclined at 45 degrees with respect to each side of the square. Next, a 20 μm-thick powder layer was newly formed with a roller so as to cover the melting/solidifying portion (step (i)). The powder layer directly above the square region was irradiated with a laser in a state of being orthogonal to the drawing line of the first layer, and the powder in the region of 10 mm×10 mm was melted and solidified (step (ii)).
 このような繰り返し工程(iii)により、底面10mm×10mmで高さ3mmの造形物を形成した。得られた造形物は未凝固の粉末を内包しており、未凝固の粉末を除去することで、多孔質構造を有する造形物を得た。 By such a repeating step (iii), a modeled object having a bottom surface of 10 mm×10 mm and a height of 3 mm was formed. The obtained shaped product contained unsolidified powder, and the unsolidified powder was removed to obtain a shaped product having a porous structure.
<工程(iv)>
 ジルコニウム成分含有液は、次のように調製した。85重量%のジルコニウム(IV)ブトキシド(以下、Zr(O-n-Bu)と表記する)を1-ブタノール中に溶解させた溶液を用意した。上記Zr(O-n-Bu)の溶液を2-プロパノール(IPA)中に溶解させ、安定化剤としてアセト酢酸エチル(EAcAc)を添加した。各成分モル比は、Zr(O-n-Bu):IPA:EAcAc=1:15:2とした。その後、室温で約3時間攪拌することにより、ジルコニウム成分含有液を調製した。この液のジルコニア固形分の重量濃度は8%である。
<Process (iv)>
The zirconium component-containing liquid was prepared as follows. A solution was prepared by dissolving 85% by weight of zirconium (IV) butoxide (hereinafter referred to as Zr(On-Bu) 4 ) in 1-butanol. The above Zr(On-Bu) 4 solution was dissolved in 2-propanol (IPA), and ethyl acetoacetate (EAcAc) was added as a stabilizer. The molar ratio of each component was Zr(O-n-Bu) 4 :IPA:EAcAc=1:15:2. Then, the zirconium component-containing liquid was prepared by stirring at room temperature for about 3 hours. The weight concentration of the zirconia solid content of this liquid is 8%.
 試験用に加工した上記造形物を該ジルコニウム成分含有液に浸漬し、1分間減圧脱気して、造形物内部まで液を浸透(含浸)させたのち、1時間自然乾燥させた。 The above-described shaped product processed for the test was immersed in the zirconium component-containing liquid, degassed under reduced pressure for 1 minute to permeate (impregnate) the liquid into the inside of the shaped product, and then naturally dried for 1 hour.
 上記のようにしてジルコニウム成分含有液を含浸(吸収)させた造形物を、アルミナ板上に白金線を設け、その上に配置し、電気炉に入れて加熱した。具体的には、大気雰囲気において1670℃まで2.5時間で昇温させ、1670℃で50分間保持した後、通電を終了して1.5時間で200℃以下に冷却した(工程(iv))。 The shaped article impregnated (absorbed) with the zirconium component-containing liquid as described above was provided with a platinum wire on an alumina plate, placed on the platinum wire, and placed in an electric furnace for heating. Specifically, the temperature was raised to 1670° C. in 2.5 hours in the air atmosphere, kept at 1670° C. for 50 minutes, then turned off, and cooled to 200° C. or less in 1.5 hours (step (iv)). ).
 実施例1では、造形物にジルコニウム成分含有液を吸収させる工程(工程(iii))と加熱の工程(工程(iv))を交互に5回ずつ繰り返して、多孔質部を有するセラミックス物品を得た。 In Example 1, the step of absorbing the zirconium component-containing liquid (step (iii)) and the step of heating (step (iv)) were alternately repeated 5 times to obtain a ceramic article having a porous portion. It was
<評価>
[評価方法]
 平均孔径は、次のような手法で評価した。走査電子顕微鏡(SEM)により、多孔質部を設けた造形物を研磨した表面のSEM画像を取得する。平均孔径は、以下の通り算出する。まず、それぞれの孔に対してSEM画像より面積Sと孔の輪郭の最大距離(2a)を求め、b=S/(πa)を算出する。このようにして求めた長軸径2a、短軸径2bの楕円の短軸径の平均値を平均孔径とする。本明細書中に記す平均孔径についてはこれと同義である。
<Evaluation>
[Evaluation methods]
The average pore size was evaluated by the following method. A scanning electron microscope (SEM) is used to acquire an SEM image of the polished surface of the shaped article provided with the porous portion. The average pore size is calculated as follows. First, for each hole, the area S and the maximum distance (2a) between the contours of the holes are obtained from the SEM image, and b=S/(πa) is calculated. The average value of the minor axis diameters of the ellipse having the major axis diameter 2a and the minor axis diameter 2b thus obtained is defined as the average pore diameter. The average pore size described in this specification is synonymous with this.
 また、気孔率は水銀注入法によって計測した。したがって本発明における気孔率とは、セラミックス物品の体積に対する開気孔の割合を指し、閉気孔は含まれない。 Also, the porosity was measured by the mercury injection method. Therefore, the porosity in the present invention refers to the ratio of open pores to the volume of the ceramic article, and does not include closed pores.
 Zr含有率、及びZr領域の平均粒径は、次のような手法で評価した。SEM-EDX分析により、多孔質部の組成分析を2mm×2mmのエリアで実施し、全金属元素におけるZr成分の割合をZr含有率とした。平均粒径については、同エリアにおいて多孔質部の組成分布のマッピングを実施し、Zr成分を主成分として含む連続する領域を一つのジルコニア領域とみなして面積を求め、その面積に相当する円の直径(円相当径)を算出した。複数のジルコニア領域について円相当径を算出し、その平均値をジルコニア領域の平均円相当径とした。 The Zr content and the average particle size in the Zr region were evaluated by the following methods. By SEM-EDX analysis, composition analysis of the porous portion was performed in an area of 2 mm×2 mm, and the ratio of Zr component in all metal elements was defined as Zr content. For the average particle size, the composition distribution of the porous part is mapped in the same area, the continuous area containing the Zr component as the main component is regarded as one zirconia area, and the area is calculated. The diameter (equivalent circle diameter) was calculated. The equivalent circle diameter was calculated for a plurality of zirconia regions, and the average value was used as the average equivalent circle diameter of the zirconia regions.
 造形精度、及び機械的強度は次のような手法で評価した。造形精度とは、造形後の焼成工程を経たセラミックス物品の寸法と設計寸法との差異をいう。10mm×10mmで高さ3mmの造形物において、工程(iii)と工程(iv)の造形物の上面における変化率の最大値を比較し、その変化率が良好な順にA、B、C、と表記する。すなわち、変化率が3%以下であるものを造形精度A、3%より大きく5%以下であるものを造形精度B、5%より大きいものを造形精度C、破損等が発生し、実用に足らないものは造形精度Dと表記する。具体的には、造形精度Aのものは上面のへこみが0.3mm以下に収まっており、造形精度Bのものは上面のへこみが0.3より大きく、0.5mm以下の範囲にあり、造形精度Cのものは上面のへこみが0.5mmより大きくなっていた。 Molding accuracy and mechanical strength were evaluated by the following methods. The modeling accuracy refers to the difference between the dimension and the design dimension of the ceramic article that has undergone the firing process after modeling. In a modeled object having a height of 10 mm×10 mm and a height of 3 mm, the maximum change rates on the upper surfaces of the modeled objects in step (iii) and step (iv) are compared, and A, B, and C are in descending order of the rate of change. write. That is, if the rate of change is 3% or less, the modeling accuracy A is 3% and 5% or less is the modeling accuracy B, and if the variation rate is 5% or more, the modeling accuracy C is generated. Those that do not exist are referred to as modeling accuracy D. Specifically, the molding accuracy A has an upper surface dent of 0.3 mm or less, and the molding accuracy B has an upper surface dent of more than 0.3 and is 0.5 mm or less. In the case of accuracy C, the dent on the upper surface was larger than 0.5 mm.
 機械的強度は、以下のように行った。まず、多孔質部を含浸焼成後(工程(iv))、250番から15000番の研磨紙を用い、最後の研磨は15000番のラッピングフィルム研磨紙を用いて研磨を行った試料表面についてSEM画像1を取得した。続いて、SEM画像1を取得した試料に対して、80rpmで回転する600番のダイヤモンド研磨盤(ムサシノ電子株式会社製)上に載せ、0.5kgの荷重をかけて切削し、そのSEM画像2を取得した。SEM画像1に対するSEM画像2の欠損割合が10%以下であるものを機械的強度A、10%より大きく20%以下であるものを機械的強度B、20%より大きいものを機械的強度C、と表記した。 Mechanical strength was measured as follows. First, a SEM image of a sample surface which was polished by impregnating and burning the porous part (step (iv)), and then using No. 250 to No. 15000 abrasive paper, and finally using No. 15000 lapping film abrasive paper I got 1. Subsequently, the sample from which the SEM image 1 was acquired was placed on a No. 600 diamond polishing machine (manufactured by Musashino Electronics Co., Ltd.) rotating at 80 rpm, cut by applying a load of 0.5 kg, and the SEM image 2 Got Mechanical strength A is that the defect ratio of SEM image 2 to SEM image 1 is 10% or less, mechanical strength B is 10% or more and 20% or less, mechanical strength C is 20% or more, Was written.
[評価結果]
 作製したセラミックス物品の多孔質部の光顕像を図4Aに示す。SEM像を図5Aに、同領域のSEM-EDXによるZr成分の組成分布のマッピング像を図5Bに示す。得られた多孔質部は、一方の表面から反対側の表面まで連通した開孔を有していた。多孔質部における平均孔径は115μmであり、孔率は31体積%であった。閉孔は0.4体積%であった。Zr含有率は1.56mol%であった。ジルコニア領域の平均円相当径は20μmであり、ジルコニア領域が橋梁部から橋梁部外に延在するように分布していた。得られたセラミックス物品の多孔質部において、造形精度B、機械的強度Aであった。
[Evaluation results]
An optical microscope image of the porous portion of the produced ceramic article is shown in FIG. 4A. An SEM image is shown in FIG. 5A, and a mapping image of the composition distribution of the Zr component by SEM-EDX in the same region is shown in FIG. 5B. The obtained porous portion had pores communicating from one surface to the opposite surface. The average pore diameter in the porous portion was 115 μm, and the porosity was 31% by volume. The closed pores were 0.4% by volume. The Zr content was 1.56 mol %. The average equivalent circle diameter of the zirconia region was 20 μm, and the zirconia region was distributed so as to extend from the bridge portion to the outside of the bridge portion. In the porous part of the obtained ceramic article, the forming accuracy was B and the mechanical strength was A.
(実施例2)
 本実施例は、多孔質部のジルコニウム成分の含有量の異なる例である。
 ジルコニウム成分含有液に浸漬させる工程(工程(iii))と加熱の工程(工程(iv))を、交互に2回ずつ繰り返した以外は実施例1と同じ条件で、多孔質セラミックスを作製した。作製した多孔質を有するセラミックス物品を実施例1と同様に評価した。
(Example 2)
The present example is an example in which the content of the zirconium component in the porous portion is different.
A porous ceramic was produced under the same conditions as in Example 1 except that the step of immersing in the zirconium component-containing liquid (step (iii)) and the step of heating (step (iv)) were alternately repeated twice each. The produced porous ceramics article was evaluated in the same manner as in Example 1.
(実施例3)
 本実施例は、多孔質部における開孔の配置がランダムである場合の例である。
 ランダムな配置の開孔を有する多孔質部を得るために、描画速度を220mm/s、描画ピッチを125μmとした以外は実施例1と同じ条件で、多孔質セラミックス物品を作製した。多孔質部の光顕像を図4Bに示す。作製した多孔質セラミックスを実施例1と同様に評価した。
(Example 3)
The present example is an example in which the arrangement of the openings in the porous portion is random.
A porous ceramic article was produced under the same conditions as in Example 1 except that the drawing speed was 220 mm/s and the drawing pitch was 125 μm in order to obtain a porous portion having randomly arranged openings. An optical microscope image of the porous portion is shown in FIG. 4B. The produced porous ceramics were evaluated in the same manner as in Example 1.
(実施例4)
 本実施例は、セラミックスである多孔質部と、多孔質部を保持するためのセラミックスである緻密質部よりなる複合セラミックス部品を作製した例である。図7において、多孔質部の周期を175μmの格子状のパターンとし、その周りを緻密質部が囲んで一体となっている場合に相当する。
(Example 4)
The present example is an example of producing a composite ceramic component including a porous portion made of ceramics and a dense portion made of ceramics for holding the porous portion. In FIG. 7, this corresponds to the case where the porous portion has a lattice-like pattern with a period of 175 μm and the dense portion surrounds and is integrated.
 多孔質部は実施例1と同様のレーザー照射条件で作製した。緻密質部は30Wのレーザービームを照射し、描画速度は100mm/sから140mm/s、描画ピッチは100μmとして作製した。得られた複合セラミックス部品の多孔質部と緻密質部の境界のSEM像を図6Aに示す。また、図6Aに示した多孔質部の一部601、及び緻密質部の一部602に対応する領域のSEM-EDXによるZr成分の組成分布のマッピング像をそれぞれ図6B及び図6Cに示す。作製したセラミックス物品の多孔質部及び緻密質部を実施例1と同様に評価した。 The porous part was produced under the same laser irradiation conditions as in Example 1. The dense portion was irradiated with a laser beam of 30 W, the drawing speed was 100 mm/s to 140 mm/s, and the drawing pitch was 100 μm. The SEM image of the boundary between the porous part and the dense part of the obtained composite ceramic part is shown in FIG. 6A. 6B and 6C show mapping images of the composition distribution of the Zr component by SEM-EDX in the regions corresponding to the part 601 of the porous part and the part 602 of the dense part shown in FIG. 6A, respectively. The porous part and the dense part of the produced ceramic article were evaluated in the same manner as in Example 1.
(実施例5~8)
 本実施例は、格子状の多孔質部のジルコニウム成分の含有量の異なる例である。ジルコニウム成分含有液に浸漬させる工程を、それぞれ3、4、6、8回ずつ繰り返した以外は実施例1と同じ条件である。
(Examples 5 to 8)
The present example is an example in which the content of the zirconium component in the lattice-shaped porous portion is different. The conditions are the same as in Example 1 except that the step of immersing in the zirconium component-containing liquid was repeated 3, 4, 6, and 8 times, respectively.
(実施例9~14)
 本実施例は、ランダムな開孔を有する多孔質部のジルコニウム成分の含有量の異なる例である。ジルコニウム成分含有液に浸漬させる工程を、それぞれ2、3、4、6、7、8回ずつ繰り返した以外は実施例3と同じ条件である。
(Examples 9 to 14)
The present example is an example in which the content of the zirconium component in the porous portion having random openings is different. The conditions are the same as in Example 3 except that the step of immersing in the zirconium component-containing liquid is repeated 2, 3, 4, 6, 7, and 8 times, respectively.
(実施例15、16)
 本実施例は、セラミックスである多孔質部と、多孔質部を保持するためのセラミックスである緻密質部よりなる複合セラミックス部品のジルコニウム成分の含有量の異なる例である。ジルコニウム成分含有液に浸漬させる工程を、それぞれ4、6回ずつ繰り返した以外は実施例4と同じ条件である。
(Examples 15 and 16)
The present example is an example in which the content of the zirconium component in the composite ceramic component including the porous portion made of ceramics and the dense portion made of ceramics for holding the porous portion is different. The conditions are the same as in Example 4 except that the step of immersing in the zirconium component-containing liquid is repeated 4 and 6 times, respectively.
(比較例1~3)
 中間造形物をジルコニウム成分含有液に浸漬させる工程(工程(iii))、及び、ジルコニウム成分含有液を吸収させた中間造形物を加熱する工程(工程(iv))を、比較例1は実施せず、比較例2は1回、比較例3は8回とした工程以外は、実施例1と同様にして、多孔質セラミックスを得た。作製した多孔質部を有するセラミックス物品を実施例1と同様に評価した。
(Comparative Examples 1 to 3)
Comparative Example 1 does not include the step of immersing the intermediate shaped article in the zirconium component-containing liquid (step (iii)) and the step of heating the intermediate shaped article absorbed with the zirconium component-containing liquid (step (iv)). However, a porous ceramic was obtained in the same manner as in Example 1 except for the steps of Comparative Example 2 once and Comparative Example 3 8 times. The produced ceramic article having a porous portion was evaluated in the same manner as in Example 1.
(比較例4)
 本比較例は、ランダムな開孔を有する多孔質部のジルコニウム成分の含有量の異なる例である。ジルコニウム成分含有液に浸漬させる工程を、1回とした以外は実施例3と同じ条件である。
(Comparative example 4)
This comparative example is an example in which the content of the zirconium component in the porous portion having random openings is different. The conditions are the same as in Example 3 except that the step of immersing in the zirconium component-containing liquid was performed once.
(実施例17~19)
 本実施例は、多孔質部と、多孔質部を保持するための緻密質部よりなる複合セラミックス部品のジルコニウム成分の含有量の異なる例である。ジルコニウム成分含有液に浸漬させる工程を、それぞれ2、3、7回ずつ繰り返した以外は実施例4と同じ条件である。
(Examples 17 to 19)
The present example is an example in which the content of the zirconium component in the composite ceramic component including the porous portion and the dense portion for holding the porous portion is different. The conditions are the same as in Example 4 except that the step of immersing in the zirconium component-containing liquid is repeated 2, 3, and 7 times, respectively.
(比較例5)
 本比較例は、多孔質部と、多孔質部を保持するための緻密質部よりなる複合セラミックス部品のジルコニウム成分の含有量の異なる例である。ジルコニウム成分含有液に浸漬させる工程を、9回ずつ繰り返した以外は実施例4と同じ条件である。
(Comparative example 5)
This comparative example is an example in which the content of the zirconium component in the composite ceramic component including the porous portion and the dense portion for holding the porous portion is different. The conditions are the same as in Example 4 except that the step of immersing in the zirconium component-containing liquid was repeated 9 times.
 実施例、及び比較例の以上の評価結果を表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 collectively shows the above evaluation results of the examples and the comparative examples.
Figure JPOXMLDOC01-appb-T000001
(考察)
[Zr含有率、Zr成分について]
 実施例1、実施例2、及び、比較例1~3を比較すると、多孔質セラミックス部におけるZr含浸回数(0回、1回、2回、5回、8回)の増加に伴い、Zr含有率が増加した。Zr含有率の増加に伴い、Zr領域の平均粒径も増大し、平均粒径10μm以上の析出結晶粒は結合して連続した網目状となっていることがわかった。Zr成分の多くは酸化ジルコニウム(ZrO)としてではなく、Gdと複合酸化物を形成していることが、SEM-EDXやXRDによる評価によりわかった。
(Discussion)
[About Zr content and Zr component]
Comparing Example 1, Example 2, and Comparative Examples 1 to 3, the Zr content was increased as the number of Zr impregnations (0 times, 1, 2, 5, 8 times) in the porous ceramics part increased. The rate has increased. It was found that as the Zr content increased, the average grain size in the Zr region also increased, and the precipitated crystal grains having an average grain size of 10 μm or more were combined to form a continuous network. It was found by SEM-EDX and XRD that most of the Zr components did not form zirconium oxide (ZrO 2 ) but formed a complex oxide with Gd.
 また、表1における実施例4の結果及び、図6B及び図6Cからも明らかなように、Zrの含有率は同様の条件でZr含浸を行った場合、多孔質部のほうが緻密質部に比べて高くなった。これは、多孔質部では開孔を介してジルコニウム成分含有液が造形物内部にまで浸透し、かつ表面積が大きいことから緻密質部に対して、ジルコニウム成分が多く浸透することになる為であると考えられる。 Further, as is clear from the results of Example 4 in Table 1 and FIGS. 6B and 6C, when the Zr content is Zr-impregnated under the same conditions, the porous part is more dense than the dense part. Became higher. This is because in the porous portion, the zirconium component-containing liquid permeates through the pores to the inside of the shaped article, and since the surface area is large, a large amount of the zirconium component permeates into the dense portion. it is conceivable that.
[Zr濃度と造形精度、機械的強度の関係について]
 造形精度がA、B、Cのセラミックス物品は破損等がなく、セラミックス物品として実用に足るものであった。特に造形精度がA、Bのセラミックス物品は良好な造形精度を有しており、複雑形状や微細形状のセラミックス物品を得る実施例として適していた。一方で、造形精度がDの比較用セラミックス物品は、造形精度が悪く設計寸法との差が大きかったほか、亀裂などの破損が見られ、実用に足る仕様が得られなかった。
[Relationship between Zr concentration, modeling accuracy, and mechanical strength]
The ceramic articles having modeling accuracy of A, B, and C had no damage and were practically usable as ceramic articles. In particular, the ceramic articles having modeling accuracy of A and B have good modeling accuracy and were suitable as an example for obtaining a ceramic article having a complicated shape or a fine shape. On the other hand, the comparative ceramic article having a molding accuracy of D had a poor molding accuracy, a large difference from the design dimension, and damage such as cracks was observed, so that a practical specification could not be obtained.
 多孔質部のみのセラミックス物品を造形した実施例1~3、実施例5~14及び比較例1~4を比較し、多孔質部のジルコニウム含有率と造形精度の関係について考察する。造形精度については、Zrを含有しない場合やZr含有率が1.5mol%以下の場合(0≦Zr≦1.5mol%)に良好であり、造形後の焼成工程を経たセラミックス物品の寸法と設計寸法との変化率が3%以下となった(造形精度A)。Zr含有率が増加すると造形精度は低下し、Zr含有率が1.5<Zr≦2.0mol%の範囲では、変化率が3%より大きく5%以下になった(造形精度B)。さらにZr含有率が増加し、Zr含有率が2.0mol%より大きくなると、変化率が5%より大きくなった(造形精度C)。Zr含有率の増加に伴って、融点が下がることで結晶が融解する部分が多くなり、多孔質部の橋梁が変形して造形精度が失われてしまう。これにより、孔率と平均孔径も設計値から変動してしまう。 Comparison of Examples 1 to 3, Examples 5 to 14 and Comparative Examples 1 to 4 in which a ceramic article having only a porous portion is formed, and the relationship between the zirconium content in the porous portion and the forming accuracy will be considered. The modeling accuracy is good when Zr is not contained or when the Zr content is 1.5 mol% or less (0≦Zr≦1.5 mol%), and the size and design of the ceramic article that has undergone the firing step after modeling The rate of change from the dimension was 3% or less (modeling accuracy A). When the Zr content increased, the modeling accuracy decreased, and when the Zr content was in the range of 1.5<Zr≦2.0 mol%, the change rate was more than 3% and 5% or less (modeling accuracy B). When the Zr content further increased and the Zr content became larger than 2.0 mol%, the change ratio became larger than 5% (modeling accuracy C). As the Zr content increases, the melting point lowers, so that the crystal melts more and the bridge in the porous portion deforms, resulting in loss of modeling accuracy. As a result, the porosity and the average pore diameter also change from the designed values.
 一方、機械的強度については、Zr含有率の増加に伴い改善する。Zr含有率が0.3mol%未満の場合(0≦Zr<0.3mol%)は、機械的強度は弱く、欠損割合が20%より大きくなる(機械的強度C)。Zr含有率が増加する(0.3≦Zr<0.7mol%)と、欠損割合が低下し(10%より大きく20%以下)十分な機械的強度が得られた(機械的強度B)。さらにZr含有率が増加し、Zr含有率が0.7mol%以上になると、欠損割合が10%以下となりさらに機械的強度が向上した(機械的強度A)。機械的強度の改善度合いが小さい場合は、加工時や使用環境下において、多孔質部が欠損してしまう割合が大きくなった。 On the other hand, the mechanical strength will improve as the Zr content increases. When the Zr content is less than 0.3 mol% (0≦Zr<0.3 mol%), the mechanical strength is weak and the defect ratio is more than 20% (mechanical strength C). When the Zr content increased (0.3≦Zr<0.7 mol %), the defect ratio decreased (more than 10% and 20% or less), and sufficient mechanical strength was obtained (mechanical strength B). When the Zr content further increased and the Zr content was 0.7 mol% or more, the defect ratio was 10% or less and the mechanical strength was further improved (mechanical strength A). When the degree of improvement in mechanical strength was small, the percentage of the porous portion missing during processing or in the environment of use increased.
 以上より、多孔質部において、造形精度と機械的強度を同時に実現する(造形精度と機械的強度が共にAまたはB)には、金属酸化物を構成する金属成分におけるジルコニウム成分の割合が0.3mol%以上2.0mol%以下であることが必要であることがわかった。さらに、この条件におけるジルコニウム成分は、他の金属成分と複合化した金属酸化物として、平均粒径10μm以上の結晶粒を形成し、結晶粒が連結して網目状構造を有することがわかった。このジルコニウムを主成分とする結晶粒は、Gdと複合化した結晶を形成し、共晶組織内部に複雑に浸透したネットワークを形成している。これによりジルコニウムを主成分とする結晶粒が元来有する高い機械的強度が共晶組織に効果的に付与されることで、微細な橋梁部から構成される多孔質部においても十分な機械的強度が得られるようになる。さらに好ましい造形精度と機械的強度を同時に実現する(造形精度と機械的強度が共にA)には、金属酸化物を構成する金属成分におけるジルコニウム成分の割合が0.7mol%以上1.5mol%以下であることが必要であることがわかった。 From the above, in the porous portion, in order to simultaneously realize the modeling accuracy and the mechanical strength (both the modeling accuracy and the mechanical strength are A or B), the ratio of the zirconium component in the metal component forming the metal oxide is 0. It was found that it is necessary to be 3 mol% or more and 2.0 mol% or less. Further, it was found that the zirconium component under this condition forms a crystal grain having an average particle size of 10 μm or more as a metal oxide compounded with another metal component, and the crystal grains are connected to each other to have a network structure. The crystal grains containing zirconium as a main component form a crystal complexed with Gd and form a network that permeates intricately inside the eutectic structure. This effectively imparts to the eutectic structure the high mechanical strength originally possessed by the crystal grains containing zirconium as the main component, so that sufficient mechanical strength can be achieved even in the porous part composed of fine bridge parts. Will be obtained. In order to achieve more preferable modeling accuracy and mechanical strength at the same time (both modeling accuracy and mechanical strength are A), the ratio of the zirconium component in the metal component forming the metal oxide is 0.7 mol% or more and 1.5 mol% or less. I found it necessary to be.
 以上のように、本発明に係る多孔質セラミックス造形物の製造方法によって、高い造形精度を得ながら造形物の機械的強度を大きく向上させることができた。 As described above, by the method for manufacturing a porous ceramics shaped article according to the present invention, it is possible to greatly improve the mechanical strength of the shaped article while obtaining high modeling accuracy.
 本発明によれば、緻密で複雑な形状の造形物が得られる直接造形方式の特徴をそのまま生かしながら、さらに多孔質部を有するセラミックス物品の機械的強度を向上させることができる。 According to the present invention, it is possible to further improve the mechanical strength of a ceramic article having a porous portion while directly utilizing the features of the direct modeling method capable of obtaining a molded article having a precise and complicated shape.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。 The present invention is not limited to the above embodiments, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, the following claims are attached to open the scope of the present invention.
 本願は、2018年12月6日提出の日本国特許出願特願2018-229383、及び2019年12月4日提出の日本国特許出願特願2019-219949を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。 The present application claims priority based on Japanese Patent Application No. 2018-229383 filed on December 6, 2018 and Japanese Patent Application No. 2019-219949 filed on December 4, 2019. , The entire contents of which are incorporated herein.
101…粉末
102…粉末層
103…固化部
110…造形物
130…基台
151…ステージ
152…ローラー
180…エネルギービーム源
181…スキャナ部
190…液体噴射ノズル
201…クラッディングノズル
202…粉末供給孔
203…エネルギービーム
301…多孔質セラミックス
302…開孔
303…孔径
304…開孔の周期
401…多孔質部
402…緻密質部
403…複合セラミックス部品
101... Powder 102... Powder layer 103... Solidification part 110... Model 130... Base 151... Stage 152... Roller 180... Energy beam source 181... Scanner 190... Liquid injection nozzle 201... Cladding nozzle 202... Powder supply hole 203 ... Energy beam 301 ... Porous ceramics 302 ... Opening 303 ... Hole diameter 304 ... Opening period 401 ... Porous portion 402 ... Dense portion 403 ... Composite ceramic part

Claims (22)

  1.  セラミックス物品の製造方法であって、
     (i)酸化アルミニウムを主成分とする金属酸化物の粉末を均し、粉末層を形成する工程と、
     (ii)前記粉末層に造形データに基づいてエネルギービームを照射し、前記粉末を溶融及び凝固、または焼結させる工程と、
     (iii)前記工程(i)及び前記工程(ii)を繰り返して形成した、多孔質部を有する造形物にジルコニウム成分を含有する液体を吸収させる工程と、
     (iv)前記ジルコニウム成分を含有する液体を吸収させた前記造形物を加熱する工程と、を有し、
     前記吸収工程において、前記多孔質部に含まれる金属成分におけるジルコニウム成分の割合が0.3mol%以上2.0mol%以下となるように前記液体を吸収させることを特徴とするセラミックス物品の製造方法。
    A method of manufacturing a ceramic article, comprising:
    (I) a step of leveling a powder of a metal oxide containing aluminum oxide as a main component to form a powder layer,
    (Ii) irradiating the powder layer with an energy beam based on modeling data to melt and solidify or sinter the powder;
    (Iii) a step of absorbing a liquid containing a zirconium component in a shaped article having a porous portion, which is formed by repeating the step (i) and the step (ii),
    (Iv) heating the shaped article that has absorbed a liquid containing the zirconium component,
    In the absorbing step, the liquid is absorbed so that the ratio of the zirconium component in the metal component contained in the porous portion is 0.3 mol% or more and 2.0 mol% or less.
  2.  セラミックス物品の製造方法であって、
     (i)酸化アルミニウムを主成分とする金属酸化物の粉末に造形データに基づいてエネルギービームを照射し、前記粉末を溶融及び凝固、または焼結させ、多孔質部を有する造形物を形成する工程と、
     (ii)前記工程(i)で形成した造形物にジルコニウム成分を含有する液体を吸収させる工程と、
     (iii)前記ジルコニウム成分を含有する液体を吸収させた前記造形物を加熱する工程と、を有し、
     前記吸収工程において、前記多孔質部に含まれる金属成分におけるジルコニウム成分の割合が0.3mol%以上2.0mol%以下となるように前記液体を吸収させることを特徴とするセラミックス物品の製造方法。
    A method of manufacturing a ceramic article, comprising:
    (I) A step of irradiating a powder of a metal oxide containing aluminum oxide as a main component with an energy beam based on molding data to melt and solidify or sinter the powder to form a molded article having a porous portion. When,
    (Ii) a step of absorbing a liquid containing a zirconium component in the shaped article formed in the step (i),
    (Iii) heating the shaped article that has absorbed the liquid containing the zirconium component,
    In the absorbing step, the liquid is absorbed so that the ratio of the zirconium component in the metal component contained in the porous portion is 0.3 mol% or more and 2.0 mol% or less.
  3.  前記金属酸化物の粉末に含まれる金属成分におけるジルコニウム成分の割合が、0.15mol%未満である請求項1または2に記載のセラミックス物品の製造方法。 The method for producing a ceramic article according to claim 1 or 2, wherein the ratio of the zirconium component in the metal components contained in the metal oxide powder is less than 0.15 mol%.
  4.  前記金属酸化物の粉末が、希土類酸化物を含有している請求項1から3のいずれか一項に記載のセラミックス物品の製造方法。 The method for producing a ceramic article according to any one of claims 1 to 3, wherein the powder of the metal oxide contains a rare earth oxide.
  5.  前記希土類酸化物が、酸化ガドリニウム、酸化テルビウム及び酸化プラセオジムから選択される少なくとも一種をさらに含有している請求項4に記載のセラミックス物品の製造方法。 The method for producing a ceramic article according to claim 4, wherein the rare earth oxide further contains at least one selected from gadolinium oxide, terbium oxide and praseodymium oxide.
  6.  酸化アルミニウムを主成分とする金属酸化物からなり、多孔質部を有するセラミックス物品であって、
     前記多孔質部に含まれる金属成分におけるジルコニウム成分の割合が、0.3mol%以上2.0mol%以下であることを特徴とするセラミックス物品。
    A ceramic article comprising a metal oxide containing aluminum oxide as a main component and having a porous portion,
    A ceramic article, wherein the ratio of the zirconium component in the metal component contained in the porous portion is 0.3 mol% or more and 2.0 mol% or less.
  7.  前記多孔質部に含まれる金属成分におけるジルコニウム成分の割合が、0.3mol%以上1.5mol%以下であることを特徴とする請求項6に記載のセラミックス物品。 The ceramic article according to claim 6, wherein the ratio of the zirconium component in the metal component contained in the porous portion is 0.3 mol% or more and 1.5 mol% or less.
  8.  前記多孔質部に含まれるジルコニウム成分の少なくとも一部は、前記多孔質部を構成する他の金属成分と複合化した金属酸化物としてジルコニア領域を形成し、前記ジルコニア領域の平均粒径が10μm以上である請求項6または7に記載のセラミックス物品。 At least a part of the zirconium component contained in the porous portion forms a zirconia region as a metal oxide compounded with another metal component forming the porous portion, and the average particle diameter of the zirconia region is 10 μm or more. The ceramic article according to claim 6 or 7, which is
  9.  前記多孔質部が、前記ジルコニウム成分と同mol以上のガドリニウム成分を含んでおり、前記ジルコニア領域がジルコニウムとガドリニウムの複合化した金属酸化物よりなる請求項8に記載のセラミックス物品。 The ceramic article according to claim 8, wherein the porous portion contains a gadolinium component in the same mol or more as the zirconium component, and the zirconia region is made of a metal oxide in which zirconium and gadolinium are compounded.
  10.  前記多孔質部に含まれる孔の平均孔径が、50μm以上1000μm以下である請求項6から9のいずれか一項に記載のセラミックス物品。 The ceramic article according to any one of claims 6 to 9, wherein the pores contained in the porous portion have an average pore diameter of 50 µm or more and 1000 µm or less.
  11.  前記多孔質部の気孔率が、5体積%以上60体積%以下である請求項6から10のいずれか一項に記載のセラミックス物品。 The ceramic article according to any one of claims 6 to 10, wherein the porosity of the porous portion is 5% by volume or more and 60% by volume or less.
  12.  前記多孔質部に含まれる閉孔の割合が、0.5体積%以下である請求項6から11のいずれか一項に記載のセラミックス物品。 The ceramic article according to any one of claims 6 to 11, wherein a ratio of closed pores contained in the porous portion is 0.5% by volume or less.
  13.  酸化アルミニウムを主成分とする金属酸化物からなり、緻密質部と多孔質部とを有するセラミックス物品であって、
     前記多孔質部に含まれる金属成分におけるジルコニウム成分の割合が、前記緻密質部に含まれる金属成分におけるジルコニウム成分の割合よりも多いことを特徴とするセラミックス物品。
    A ceramic article comprising a metal oxide containing aluminum oxide as a main component, the ceramic article having a dense part and a porous part,
    A ceramic article, wherein the ratio of the zirconium component in the metal component contained in the porous portion is higher than the ratio of the zirconium component in the metal component contained in the dense portion.
  14.  前記多孔質部に含まれる金属成分におけるジルコニウム成分の割合が、0.3mol%以上2.0mol%以下であることを特徴とする請求項13に記載のセラミックス物品。 The ceramic article according to claim 13, wherein the ratio of the zirconium component in the metal component contained in the porous portion is 0.3 mol% or more and 2.0 mol% or less.
  15.  前記多孔質部に含まれるジルコニウム成分の少なくとも一部は、前記多孔質部を構成する他の金属成分と複合化した金属酸化物としてジルコニア領域を形成し、前記ジルコニア領域の平均粒径が10μm以上である請求項13または14に記載のセラミックス物品。 At least a part of the zirconium component contained in the porous portion forms a zirconia region as a metal oxide compounded with another metal component forming the porous portion, and the average particle diameter of the zirconia region is 10 μm or more. 15. The ceramic article according to claim 13 or 14.
  16.  前記多孔質部が、前記ジルコニウム成分と同mol以上のガドリニウム成分を含んでおり、前記ジルコニア領域がジルコニウムとガドリニウムの複合化した金属酸化物よりなる請求項15に記載のセラミックス物品。 The ceramic article according to claim 15, wherein the porous portion contains a gadolinium component in the same mol or more as the zirconium component, and the zirconia region is made of a metal oxide in which zirconium and gadolinium are compounded.
  17.  前記多孔質部は、外部と連通した孔を有する請求項13から16のいずれか一項に記載のセラミックス物品。 The ceramic article according to any one of claims 13 to 16, wherein the porous portion has a hole communicating with the outside.
  18.  前記開孔の平均孔径が、50μm以上1000μm以下である請求項17に記載のセラミックス物品。 The ceramic article according to claim 17, wherein the average pore size of the openings is 50 μm or more and 1000 μm or less.
  19.  前記多孔質部の気孔率が、5体積%以上60体積%以下である請求項15または16に記載のセラミックス物品。 The ceramic article according to claim 15 or 16, wherein the porosity of the porous portion is 5% by volume or more and 60% by volume or less.
  20.  前記多孔質部に含まれる閉孔の割合が、0.5体積%以下である請求項13から19のいずれか一項に記載のセラミックス物品。 The ceramic article according to any one of claims 13 to 19, wherein a ratio of closed pores contained in the porous portion is 0.5% by volume or less.
  21.  前記多孔質部を保持するように前記緻密質部が設けられた請求項13から20のいずれか一項に記載のセラミックス物品。 The ceramic article according to any one of claims 13 to 20, wherein the dense portion is provided so as to hold the porous portion.
  22.  前記多孔質部を吸気・排気部とする吸着プレートである、請求項13から21のいずれか一項に記載のセラミックス物品。 The ceramic article according to any one of claims 13 to 21, which is an adsorption plate having the porous portion as an intake/exhaust portion.
PCT/JP2019/047646 2018-12-06 2019-12-05 Ceramic article production method and ceramic article WO2020116568A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980080468.7A CN113165207B (en) 2018-12-06 2019-12-05 Method for manufacturing ceramic product and ceramic product
US17/331,906 US20210309575A1 (en) 2018-12-06 2021-05-27 Ceramic article production method and ceramic article

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-229383 2018-12-06
JP2018229383 2018-12-06
JP2019219949A JP2020093973A (en) 2018-12-06 2019-12-04 Ceramic article manufacturing method and ceramic article
JP2019-219949 2019-12-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/331,906 Continuation US20210309575A1 (en) 2018-12-06 2021-05-27 Ceramic article production method and ceramic article

Publications (1)

Publication Number Publication Date
WO2020116568A1 true WO2020116568A1 (en) 2020-06-11

Family

ID=70974694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047646 WO2020116568A1 (en) 2018-12-06 2019-12-05 Ceramic article production method and ceramic article

Country Status (1)

Country Link
WO (1) WO2020116568A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079907A1 (en) * 2019-10-23 2021-04-29 キヤノン株式会社 Method for manufacturing ceramic article, metal-component-containing liquid, ceramic-article manufacturing kit, and ceramic article
WO2022080318A1 (en) * 2020-10-16 2022-04-21 キヤノン株式会社 Method for producing ceramic article, metal ion-containing liquid used therein, and kit for producing ceramic article

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316866A (en) * 2001-04-19 2002-10-31 Nitsukatoo:Kk Member for heat treatment consisting of alumina sintered compact having excellent durability
JP2017529297A (en) * 2014-07-22 2017-10-05 セラムテック ゲゼルシャフト ミット ベシュレンクテル ハフツングCeramTec GmbH Member to fuse vertebral bodies
JP3213127U (en) * 2017-08-09 2017-10-19 日立金属株式会社 Vacuum suction pad
JP2018031050A (en) * 2016-08-24 2018-03-01 株式会社ノリタケカンパニーリミテド Laminate-molding sintered body, method for producing laminate-molding sintered body, and kit for producing laminate-molding sintered body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316866A (en) * 2001-04-19 2002-10-31 Nitsukatoo:Kk Member for heat treatment consisting of alumina sintered compact having excellent durability
JP2017529297A (en) * 2014-07-22 2017-10-05 セラムテック ゲゼルシャフト ミット ベシュレンクテル ハフツングCeramTec GmbH Member to fuse vertebral bodies
JP2018031050A (en) * 2016-08-24 2018-03-01 株式会社ノリタケカンパニーリミテド Laminate-molding sintered body, method for producing laminate-molding sintered body, and kit for producing laminate-molding sintered body
JP3213127U (en) * 2017-08-09 2017-10-19 日立金属株式会社 Vacuum suction pad

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SHAHZAD, KHURAM ET AL.: "Additive manufacturing of zirconia parts by indirect selective laser sintering", JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, vol. 34, no. 1, 2013, pages 81 - 89, XP055713969 *
WU, H. ET AL.: "Fabrication of high-performance Al2O3-ZrO2 composite by a novel approach that integrates stereolithography-based 3D printing and liquid precursor infiltration", MATERIALS CHEMISTRY AND PHYSICS, vol. 209, 17 January 2018 (2018-01-17), pages 31 - 37, XP055713972 *
YVES-CHRISTIAN, HAGECLORN ET AL.: "Net Shaped High Performance Oxicle Ceramic Parts by Selective Laser Melting", PHYSICS PROCECLIA, vol. 5, 2010, pages 587 - 594, XP055389896 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079907A1 (en) * 2019-10-23 2021-04-29 キヤノン株式会社 Method for manufacturing ceramic article, metal-component-containing liquid, ceramic-article manufacturing kit, and ceramic article
WO2022080318A1 (en) * 2020-10-16 2022-04-21 キヤノン株式会社 Method for producing ceramic article, metal ion-containing liquid used therein, and kit for producing ceramic article

Similar Documents

Publication Publication Date Title
US20210309575A1 (en) Ceramic article production method and ceramic article
CN108348998B (en) Additive manufacturing method and apparatus
JP7011548B2 (en) Powder for ceramic molding, ceramic molding, and its manufacturing method
JP7383738B2 (en) Powder for ceramic modeling, ceramic modeling, and manufacturing method thereof
JP7443397B2 (en) Formulations containing easily sinterable materials for additive manufacturing of three-dimensional objects
JP7366529B2 (en) Manufacturing method and modeled object
WO2020116568A1 (en) Ceramic article production method and ceramic article
JP2023086845A (en) Method for producing ceramic article, and ceramic article
JP2021066177A (en) Ceramic article manufacturing method and ceramic article
JP2023168446A (en) Ceramic powder, ceramic powder production method and production method of ceramic structure using ceramic powder
JP2020147489A (en) Article including made of inorganic compound, and method of manufacturing article made of inorganic compound
JP7269084B2 (en) Ceramic article manufacturing method and ceramic article
WO2021079909A1 (en) Ceramic article production method and ceramic article
JP2019181930A (en) Ceramic powder, ceramic powder production method and production method of ceramic structure using ceramic powder
US20200282526A1 (en) Article including inorganic compound and method of manufacturing article including inorganic compound
JP2021066653A (en) Ceramic article manufacturing method, metal component-containing liquid, ceramic article manufacturing kit, and ceramic article
CN114585596B (en) Method for manufacturing ceramic article, liquid containing metal component, kit for manufacturing ceramic article and ceramic article
JP2023184558A (en) Method for producing molding, and molding
IL302847A (en) Organic formulations for additive manufacturing of three-dimensional objects containing sinterable materials
TW201201870A (en) Modeling method and forming method of bio-ceramic bone scaffold

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19893075

Country of ref document: EP

Kind code of ref document: A1