WO2022080318A1 - Method for producing ceramic article, metal ion-containing liquid used therein, and kit for producing ceramic article - Google Patents

Method for producing ceramic article, metal ion-containing liquid used therein, and kit for producing ceramic article Download PDF

Info

Publication number
WO2022080318A1
WO2022080318A1 PCT/JP2021/037578 JP2021037578W WO2022080318A1 WO 2022080318 A1 WO2022080318 A1 WO 2022080318A1 JP 2021037578 W JP2021037578 W JP 2021037578W WO 2022080318 A1 WO2022080318 A1 WO 2022080318A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal ion
containing liquid
metal
ceramic
oxide
Prior art date
Application number
PCT/JP2021/037578
Other languages
French (fr)
Japanese (ja)
Inventor
俊介 村上
伸浩 安居
康弘 関根
香菜子 大志万
康志 清水
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021163593A external-priority patent/JP2022066155A/en
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2022080318A1 publication Critical patent/WO2022080318A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/30Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials

Definitions

  • the present invention relates to an additional manufacturing technique, particularly a technique for manufacturing a ceramic article by using a powder bed melt-bonding method or a directed energy lamination method.
  • the raw material powder is irradiated with an energy beam based on the three-dimensional data of the object to be modeled, and the raw material powder is combined to form a desired model.
  • the additional manufacturing technology to obtain the above is widespread.
  • metal modeling the powder bed melt-bonding method is widely adopted, and a dense and diverse metal model is obtained.
  • the high density of the metal model is achieved by effectively melting and solidifying the metal powder. Based on the success of such metal modeling, in recent years, efforts to manufacture ceramic articles using additional manufacturing technology have been reported.
  • the mechanical strength of the modeled object can be improved by performing a post-treatment step of absorbing and heating a liquid containing a metal component (metal component-containing liquid) in the modeled object.
  • a post-treatment step of absorbing and heating a liquid containing a metal component (metal component-containing liquid) in the modeled object.
  • the present invention solves such a problem, and the first aspect is a method for manufacturing a ceramic article using an additional manufacturing technique, in which a powder containing ceramic as a main component is irradiated with an energy beam to solidify the powder.
  • a step of producing a modeled product, a step of causing the modeled object to absorb a metal ion-containing liquid containing water and metal ions, and a step of heating the modeled object having absorbed the metal ion-containing liquid is characterized by including.
  • the second aspect of the present invention is a kit for manufacturing a ceramic article for manufacturing a ceramic article by an additional manufacturing technique using an energy beam, which includes a powder containing ceramic as a main component and a metal ion-containing liquid.
  • the metal ion-containing liquid contains water and metal ions, and the metal ions can form a co-crystal with a compound contained in a ceramic model made from a powder containing the ceramic as a main component. It is characterized by producing things.
  • the third aspect of the present invention is a metal ion-containing liquid used for repairing cracks contained in a ceramic model formed by an additive manufacturing technique, and the metal ion-containing liquid is water and metal ions.
  • the metal ion is characterized by producing a metal oxide capable of forming a co-crystal with the compound contained in the ceramic model.
  • FIG. 4A is a schematic perspective view showing a process of irradiating a layer to be formed following FIG. 4A while scanning a laser. It is an optical microscope image of the ceramic article obtained in Example 1.
  • FIG. 4A is a schematic perspective view showing a process of irradiating a layer to be formed following FIG. 4A while scanning a laser. It is an optical microscope image of the ceramic article obtained in Example 1.
  • Patent Document 1 in order to obtain high mechanical strength, it was necessary to repeat the process of absorbing the metal component-containing liquid in the modeled object and heating it a plurality of times depending on the shape of the modeled object. It is considered that this is because the metal component-containing liquid contains a large amount of an organic solvent having good wettability to the modeled object, so that the metal component-containing liquid once absorbed by the modeled object tends to leak out. Therefore, the inventors have studied the components of the metal component-containing liquid and have completed the present invention.
  • the ceramic model formed by the addition manufacturing method is subjected to heat treatment after absorbing a metal ion-containing liquid containing water and metal ions. As a result, only the vicinity of the cracks contained in the modeled object is locally melted, and the cracks are reduced or eliminated.
  • the additional manufacturing technique is a technique for forming an object by joining materials based on three-dimensional shape data of a modeling model, and a method of joining materials in layers is widely used.
  • the additional manufacturing technique can realize a ceramic article having a complicated shape or a fine shape, which is difficult to manufacture by a conventional molding method or a removal processing method such as shaving.
  • the additional manufacturing technique for ceramic articles according to the present invention includes an additional manufacturing technique of a powder bed melt coupling method or a directed energy lamination method (so-called cladding method).
  • the metal ion-containing liquid according to the present invention can be suitably used for a model formed by an addition manufacturing method of a powder bed melt-bonding method or a directed energy lamination method.
  • the method for producing a ceramic article of the present invention includes the following three steps.
  • (I) A step of irradiating a powder containing ceramics as a main component with an energy beam to solidify the powder to produce a model
  • (ii) The model absorbs a metal ion-containing liquid containing water and metal ions.
  • Step (iii) Step of heating the modeled object that has absorbed the metal ion-containing liquid.
  • each process will be specifically described by taking as an example a case where modeling is performed using a powder containing aluminum oxide, which is a general-purpose ceramic, as a main component.
  • the technical idea of the present invention is not limited to the powder containing aluminum oxide as a main component, and can be applied to the molding using a powder containing silicon oxide as a main component and other powders.
  • it can also be applied to modeling using powder in which a plurality of types of ceramics are mixed.
  • it can also be applied to modeling using a powder mixed with aluminum oxide, silicon oxide, magnesium oxide, etc. in order to produce a model made of mullite, cordylite, or the like.
  • the raw material powder for forming the ceramic model may be composed of the powder of the inorganic compound.
  • ceramics is used in the sense that it includes not only a polycrystal in which an inorganic compound is sintered but also an inorganic compound composed of an amorphous or a single crystal.
  • main component the component contained most in the molar ratio
  • Main component the component contained most in the molar ratio
  • Step (i)> This is a step of irradiating a powder (raw material powder) containing ceramics as a main component with an energy beam to sintered, melt, and solidify the powder to form a solidified portion and obtain a modeled product.
  • the powder containing ceramics as a main component means a powder in which 90 mol% or more is ceramics when an arbitrary amount of powder of 1 cm 3 or more is analyzed. Preferably, 99 mol% or more is ceramics. When a plurality of types of ceramics are contained, if the total amount is 90 mol% or more, it corresponds to a powder containing ceramics as a main component.
  • a powder 101 containing ceramics as a main component is placed on a base 130 installed on the stage 151 and spread evenly with a roller 152 to form a powder layer 102 (FIGS. 1A and 1B).
  • the powder layer 102 refers to a powder laid with a predetermined thickness on the stage 151 with a predetermined thickness.
  • the energy beam emitted from the energy beam source 180 is scanned on the surface of the powder layer 102 by the scanner unit 181 based on the three-dimensional shape data of the article to be manufactured, and the energy beam is irradiated to the powder to irradiate the powder in the irradiation range 182.
  • Solidify In the irradiation range 182, the powder is sintered, melted and solidified by irradiation with an energy beam to form a solidified portion 100 (FIG. 1C).
  • the stage 151 is lowered to newly form the powder layer 102 on the model 100 (FIG. 1D).
  • the newly formed powder layer 102 is irradiated with an energy beam in the same manner as in FIG. 1C to form the solidified portion 100.
  • the basic flow of the modeling procedure using the cladding method will be described with reference to FIGS. 2A to 2C.
  • powder is ejected from a plurality of powder supply holes 202 provided in the nozzle 201, and the energy beam 203 is irradiated to the region where the powder is focused.
  • the nozzle 201 is moved to a desired position and the powder melt is placed on the substrate, the melt is solidified after passing through the nozzle 201, and the solidified portion 100 can be additionally formed (FIG. 2A).
  • the powder when the powder is irradiated with an energy beam, the powder absorbs energy, and the energy is converted into heat to melt the powder.
  • the molten portion When the irradiation to the molten portion is completed by the passage of the energy beam, the molten portion is cooled by the surrounding atmosphere and the adjacent portion, and is sintered or solidified to form a solidified portion.
  • the cooling rate in the process of forming the solidified portion is high, stress generated in the surface layer and the inside of the solidified portion (including the integrated solidified portion) and generated between the non-solidified portion and the solidified portion. Cracks are formed by the thermal stress caused by the temperature difference.
  • a light source having an appropriate wavelength may be selected according to the absorption characteristics of the powder.
  • a laser beam or an electron beam having a narrow beam diameter and high directivity it is preferable to use a laser beam or an electron beam having a narrow beam diameter and high directivity.
  • a YAG laser having a wavelength band of 1 ⁇ m, a fiber laser, a CO 2 laser having a wavelength band of 10 ⁇ m, and the like can be mentioned as suitable energy beams.
  • the powder containing aluminum oxide as a main component preferably contains an oxide of a rare earth element having a eutectic composition with aluminum oxide as a sub-component.
  • a rare earth element having a eutectic composition with aluminum oxide as a sub-component.
  • those comprising at least one selected from the group consisting of gadolinium oxide (Gd 2 O 3 ), yttrium oxide (Y 2 O 3 ), terbium oxide (Tb 2 O 3 ) and praseodymium oxide (Pr 2 O 3 ).
  • the raw material powder contains gadrinium oxide that produces a eutectic composition with aluminum oxide
  • the melting point (eutectic point) in the vicinity of the eutectic composition of the Al2O3 - Gd2O3 system is set to the melting point of aluminum oxide alone.
  • the powder can be melted with a small amount of heat, and energy diffusion to the periphery of the melted portion is suppressed, so that the molding accuracy is improved.
  • the raw material powder contains aluminum oxide and gadolinium oxide
  • the modeled product has a phase-separated structure in which two or more kinds of phases are intricate. As a result, the expansion of cracks is suppressed and the mechanical strength of the modeled object is improved.
  • the raw material powder contains an oxide of another rare earth element such as yttrium oxide in addition to aluminum oxide, the same effect as that of gadolinium oxide can be obtained.
  • the energy beam is a laser beam
  • the powder has sufficient absorption capacity for the laser beam
  • the temperature of the laser beam irradiation part is locally raised, and the influence of heat on the non-modeled part is reduced. Therefore, the modeling accuracy is improved.
  • terbium oxide (Tb 4 O 7 ), placeodim oxide (Pr 6 O 11 ), Ti 2 O 3 , TiO, SiO are used as subcomponents of powder.
  • ZnO antimonated tin oxide (ATO), indium-doped tin oxide (ITO), MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , FeO, Fe 2 O 3 , Fe 3 O 4 , Cu 2 O, CuO, Cr 2 O 3 , CrO 3 , NiO, V 2 O 3 , VO 2 , V 2 O 5 , V 2 O 4 , Co 3 O 4 , CoO, Transition Metal Carbide, Transition Metal Nitride, Si 3 N 4 , AlN, borates, silicates and the like, more preferably containing components exhibiting good energy absorption.
  • ATO antimonated tin oxide
  • ITO indium-doped tin oxide
  • MnO MnO 2 , Mn 2 O 3 , Mn 3 O 4 , FeO, Fe 2 O 3 , Fe 3 O 4 , Cu 2 O, CuO, Cr 2 O 3 , CrO 3 , NiO, V 2 O
  • the raw material powder may contain both rare earth elements that exhibit good energy absorption for laser beams, such as terbium oxide (Tb 4 O 7 ) and praseodymium oxide (Pr 6 O 11 ), as well as other rare earth elements.
  • the absorber is a component (element or compound) that exhibits a higher absorption capacity than the main component for light having a wavelength contained in the laser used for modeling.
  • the absorption capacity of the absorber is preferably 10% or more, more preferably 40% or more, and 60% or more with respect to the light of the wavelength contained in the laser beam of the wavelength used. Is even more preferable.
  • the powder containing ceramics as a main component contains a composition that can be eutectic in a ratio of forming a eutectic composition.
  • the eutectic composition is the composition at the eutectic point shown in the phase diagram, but in the modeling process using the energy beam, the heating state and the cooling state occur at a very high speed, so that the composition is slightly deviated from the eutectic point. Even if there is, a eutectic structure is formed.
  • the eutectic composition in the present invention should be defined as a composition range in which a eutectic structure is formed, and includes a range in which the deviation from the eutectic composition as shown in the phase diagram is ⁇ 10 mol%.
  • the powder having a eutectic composition is contained in a ratio of forming a eutectic composition, similarly to the powder containing aluminum oxide as a main component.
  • the fact that the component X and the component Y can form a eutectic may be expressed as "the component X and the component Y have a eutectic relationship".
  • Eutectic is a mixture of two or more types of crystals that crystallize simultaneously from a liquid containing two or more components.
  • a eutectic point also referred to as a eutectic melting point
  • the eutectic point is the temperature at which eutectic occurs, and corresponds to the minimum value of the liquid phase curve in the state diagram represented by the temperature on the vertical axis and the component composition ratio on the horizontal axis.
  • the composition corresponding to the eutectic point is called the eutectic composition (or eutectic composition). Therefore, the eutectic point of the component X and the component Y is lower than the melting point of each of the component X and the component Y.
  • a material may be expressed using a chemical formula such as Al 2 O 3 and Tb 4 O 7 described above, but if the gist of the present invention is satisfied, the element of the actual material may be expressed.
  • the composition ratio does not have to be exactly the same as the ratio in the chemical formula. That is, the valences of the metal elements constituting a certain material may be slightly different from the valences assumed from the chemical formula.
  • the deviation from the stoichiometric ratio is within ⁇ 20%.
  • the ceramic model obtained in the step (i) is made to absorb the metal ion-containing liquid containing water and metal ions.
  • the metal ion-containing liquid When the metal ion-containing liquid is absorbed by the model having such cracks, the metal ions are distributed in the cracks of the model. Then, by heating the modeled object that has absorbed the metal ion-containing liquid in the step (iii) described later, only the vicinity of the crack can be selectively melted. As a result, it is possible to repair cracks existing in the modeled object and improve the mechanical strength of the modeled object while suppressing the change in the shape of the modeled object.
  • Metal ion-containing liquid As the metal ion-containing liquid used in the step (ii), a solution containing at least water and metal ions, preferably a solution containing water, metal ions and a stabilizer is used. For example, a sol solution using water as a solvent can be used. As will be described in detail later, the metal ion contained in the metal ion-containing liquid is preferably one in which the oxide can form a eutectic with at least one compound contained in the model, that is, a compound contained in the raw material powder.
  • metal ions contained in the metal ion-containing liquid are Li, Be, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn. , Ga, Ge, Rb, Sr, Y, Zr, Nb, Mo, Cs, Ba, rare earth elements, Hf, Ta, W. It is also preferable to contain a plurality of these metal ions.
  • the metal ion-containing liquid according to the present invention is characterized in that it contains water as a solvent. This was done based on the consideration made with respect to Patent Document 1.
  • water By including water in the metal ion-containing liquid, the wettability of the metal ion-containing liquid with respect to the modeled object is reduced, and the metal ion-containing solution is once absorbed by the modeled object. Then, a metal ion-containing liquid that does not easily leak is realized.
  • the amount of water contained in the metal ion-containing liquid is preferably 10% by mass or more with respect to the liquid excluding metal ions.
  • one of the features of the metal ion-containing liquid according to the present invention is that it contains metal ions.
  • metal ions By containing a component that contributes to the repair of cracks in the modeled object as metal ions, it becomes possible to invade and repair fine cracks. Therefore, it is possible to repair minute cracks that greatly affect the mechanical strength, especially in a minute modeled object or a microstructure of the modeled object.
  • Metal ions can be generated by dissolving a raw material containing metal ions such as a metal salt or a metal alkoxide in a solvent.
  • the metal salt is not particularly limited as long as it is water-soluble, and can be selected from the group consisting of nitrates, sulfates, acetates, lactates, and chlorides.
  • the raw materials for generating metal ions include zirconium acetate, zirconium nitrate, zirconium oxynitrite, zirconium nitrate, zirconium sulfate, zirconium sulfate ammonium.
  • Zirconium oxysulfate, zirconium chloride Zirconium chloride
  • zirconium chloride zirconium salts such as zirconium lactate, zirconium tetraethoxydo, zirconium tetra n-propoxide, zirconium tetraisopropoxide, zirconium tetra n-butoxide, zirconium tetra t-butoxide, etc.
  • Alkoxides can be used.
  • the raw materials for generating metal ions include aluminum salts such as aluminum sulfate, aluminum nitrate, aluminum acetate, aluminum phosphate, and aluminum lactate, and aluminum sec.
  • aluminum salts such as aluminum sulfate, aluminum nitrate, aluminum acetate, aluminum phosphate, and aluminum lactate, and aluminum sec.
  • -Aluminum alkoxides such as butoxide, aluminum ethoxydo, aluminum n-butoxide, aluminum tert-butoxide, aluminum isopropoxide and the like can be used.
  • silicates such as sodium silicate and lithium silicate, tetraethoxysilane, and tetraethoxytitanium are used as raw materials for generating metal ions.
  • Silicon alkoxides such as triethoxyaluminum can be used.
  • lithium ion-containing liquid containing lithium ions lithium ion-containing liquid
  • Lithium alkoxides such as lithium ethoxydo, lithium isopropoxide, and lithium methoxyd can be used.
  • magnesium ion-containing liquid containing magnesium ions magnesium ion-containing liquid
  • magnesium alkoxides such as magnesium di-tert butoxide can be used.
  • a metal ion-containing liquid containing zirconium ion, silicate ion, lithium ion or magnesium ion as metal ion is suitable for repairing cracks in a model whose main component is aluminum oxide. Further, a metal ion-containing liquid containing zirconium ions, aluminum ions, lithium ions or magnesium ions as metal ions is suitable for repairing cracks in a model whose main component is silicon oxide.
  • the metal ion-containing liquid When the metal ion-containing liquid is absorbed by the modeled object, the metal ions are distributed throughout the modeled object, so it is preferable to add a stabilizer to the metal ion-containing liquid to adjust the characteristics of the liquid.
  • a stabilizer to be added to the metal ion-containing liquid at least one selected from the group consisting of organic acids, surfactants and chelating agents is preferable.
  • organic acid examples include acrylic acid, 2-hydroxyethyl acrylate, 2-acryloxyethyl succinic acid, 2-acryloxyethyl hexahydrophthalic acid, 2-acryloxyethyl phthalic acid, 2-methylhexane acid and 2-.
  • Ethyl hexane acid, 3-methyl hexane acid, 3-ethyl hexane acid and the like are preferable.
  • surfactant examples include ionic surfactants such as sodium oleate, potassium fatty acid, sodium alkyl phosphate, alkylmethylammonium chloride, and alkylaminocarboxylate, polyoxyethylene laurin fatty acid ester, and polyoxyethylene alkylphenyl.
  • ionic surfactants such as sodium oleate, potassium fatty acid, sodium alkyl phosphate, alkylmethylammonium chloride, and alkylaminocarboxylate, polyoxyethylene laurin fatty acid ester, and polyoxyethylene alkylphenyl.
  • Nonionic surfactants such as ether are preferred.
  • Chelating agents include glycolic acid, ascorbic acid, citric acid, malonic acid, gluconic acid, oxalic acid, succinic acid, malic acid, tartaric acid, hydroxy acids such as lactic acid, glycine, alanine, glycine, glutamic acid, aspartic acid, histidine, Amino acids such as phenylalanine, asparagine, arginine, glutamine, cystine, leucine, lysine, proline, serine, tryptophan, valine, tyrosine, diethylenetriamine 5 acetic acid (DTPA), hydroxyethylethylenediamine 3 acetic acid (HEDTA), triethylenetetraamine 6 acetic acid ( TTHA), 1,3-propanediamine 4-acetic acid (PDTA), 1,3-diamino-6-hydroxypropane 4-acetic acid (DPTA-OH), hydroxyethylimino diacetic acid (HIDA), dihydroxyethy
  • PBTC 2-phosphobutanone-1,2,4-tricarboxylic acid
  • ethylenediaminetetra methylenephosphonic acid
  • diethylenetriaminepenta methylenephosphonic acid
  • phosphonic acid such as nitrilotris
  • aromatics such as salicylic acid.
  • Group acids are preferred.
  • the combination of the raw material that generates metal ions and the stabilizer may be any combination. However, depending on the amount of the stabilizer added, the wettability of the metal ion-containing liquid to the modeled object may decrease.
  • the content of the stabilizer contained in the metal ion-containing liquid is preferably 10 mol% or more and 300 mol% or less, and more preferably 50 mol% or more and 200 mol% or less with respect to the metal ion.
  • the content of components contained in the metal ion-containing liquid is measured by ICP-MS for metal ions and by nuclear magnetic resonance (NMR) or liquid chromatography-mass spectrometry (LC-MS) for organic components such as stabilizers. can do.
  • the method for producing a metal ion-containing liquid obtained by mixing a metal salt with water or a metal salt with water and a stabilizer is not limited.
  • the raw materials may be mixed all at once, the metal salt and the stabilizer may be mixed and then water may be added and mixed, or the metal salt and water may be mixed and then the stabilizer may be added. It may be mixed, or the stabilizer and water may be mixed and then the metal salt may be mixed. Depending on the combination of the metal salt and the stabilizer, it is also preferable to heat at an appropriate temperature at the time of mixing.
  • the method for allowing the modeled object to absorb the metal ion-containing liquid is not particularly limited as long as the metal ions can be uniformly interposed on the surface constituting the crack of the modeled object.
  • the modeled object may be impregnated by immersing it in the metal ion-containing liquid, or the metal ion-containing solution may be atomized and sprayed on the modeled object, or may be applied to the surface with a brush or the like to be absorbed. Further, a plurality of these methods may be combined, or the same method may be repeated a plurality of times.
  • a method of immersing the modeled object in a metal ion-containing liquid and degassing under reduced pressure in order to sufficiently distribute the metal ions to the inside of the modeled object.
  • a method in which the modeled object is placed in a closed container, degassed under reduced pressure, and then immersed in a metal ion-containing liquid is also preferable. Since a metal ion-containing liquid containing water as a solvent has a smaller wettability with respect to ceramics than an organic solvent, these methods using vacuum degassing are particularly preferable.
  • the metal ion-containing liquid of the present invention has low wettability with respect to ceramics, so that the metal ion-containing liquid once incorporated into the cracks of the modeled object does not easily flow out of the modeled object. That is, many metal ions that function to repair cracks can be retained in the cracks of the modeled object.
  • the metal ions incorporated into the cracks of the modeled object become metal oxides in the process of heat treatment in the step (iii) described later, and the generated metal oxides eutectic with at least one of the compounds contained in the modeled object. Form.
  • the melting point in the vicinity of the crack of the modeled object in which the metal ion is present can be locally lowered.
  • component X One type of compound contained in the model that absorbs the metal ion-containing liquid is component X, and the metal oxide produced by heating the metal ion contained in the metal ion-containing liquid is component Y, and component X and component Y are used. And are in a eutectic relationship. At this time, the local melting caused by the crack is presumed to be due to the following phenomenon.
  • the amount of metal ions contained in the metal ion-containing liquid is present not only on the surface of the modeled object but also on the surface constituting the crack of the modeled object.
  • the heat treatment is performed in this state, the metal ions existing on the surface constituting the crack of the modeled object are oxidized in the process of the heat treatment to become the component Y.
  • the temperature near the region where the component Y exists approaches the eutectic point of the component X and the component Y, the amount of the component Y and the eutectic composition or the composition ratio close to the eutectic composition of the component X are formed.
  • the portion where the crack is repaired by impregnation with the metal ion-containing liquid and heat treatment has higher mechanical strength because the bond between the tissues is stronger than the method of filling the crack with glass or the like to repair it. It is thought that a model can be obtained. Further, since the bias of the extreme composition is smaller than that of the method of filling the cracks with glass or the like, it is possible to realize a relatively homogeneous model in terms of physical properties other than the mechanical strength.
  • FIG. 3 shows an example of a phase diagram showing the composition ratio of the component X and the component Y when the component X and the component Y have a eutectic relationship, and the relationship between the temperature and the state at each composition ratio.
  • the horizontal axis represents the composition ratio, and the component X is 100% at the left end, and the proportion of the component X decreases and the proportion of the component Y increases as it approaches the right end.
  • the melting point of the component X is T m
  • the melting point of the component Y is Ti
  • the eutectic point between the component X and the component Y is TE
  • the respective temperatures are in the relationship of T E ⁇ T m and T E ⁇ T i .
  • Both TE and TS are set to be lower than the melting point TA of the modeled object.
  • T m ⁇ Ti a high effect can be obtained even if the number of times of absorbing the metal ion-containing liquid and the number of times of heating are small.
  • T m ⁇ Ti the ratio of the component X in the eutectic composition of the component X and the component Y is high, and the ratio of the component Y is small in the vicinity of the crack. This is because can be melted at the eutectic point.
  • T m ⁇ Ti is a preferable condition, not an essential condition.
  • the main component of the metal ions contained in the metal ion-containing liquid is zirconium oxide (ZrO 2 ; melting point) by heating.
  • ZrO 2 zirconium oxide
  • a component having Ti 2715 ° C.
  • metal salts that generate metal ions that become zirconium oxide by heating include zirconium acetate, zirconium oxyacetate, zirconium oxychloride, and zirconium oxynitrite.
  • Al 2 O 3 and Zr O 2 are in a relationship capable of forming a eutectic, and the eutectic point TE is about 1840 ° C.
  • Al 2 O 3 and Zr O 2 are a combination that satisfies the above-mentioned preferable relationship, T m ⁇ Ti. Therefore, ZrO 2 is generated in the vicinity of the crack from the metal ion of the metal ion-containing liquid to be absorbed by the crack, so that the maximum temperature TS at the time of heat treatment can be set in the range of 1840 ° C ⁇ TS ⁇ 2070 ° C. can. Then, the vicinity of the crack can be selectively melted at a temperature sufficiently lower than the melting point of Al 2 O 3 , and the crack can be reduced or eliminated.
  • the melting point of the model is determined according to the composition ratio of these two components. For example, assuming that the model contains two components in a eutectic composition, the melting point TA is about 1720 ° C. (eutectic point).
  • the metal ion-containing liquid used is preferably one containing metal ions mainly composed of a component that becomes zirconium oxide by heating.
  • the melting point Ti of ZrO 2 is 2715 ° C., but since the eutectic point TE of the three components of Al 2 O 3 and Gd AlO 3 and ZrO 2 is about 1662 ° C., the melting point TA of the modeled product is about 1720 ° C. By heating at a sufficiently low temperature TS , cracks can be reduced or eliminated.
  • a combination of at least one kind of compound (component X) constituting a modeled object and a metal oxide (component Y) formed by heating a metal ion can be considered. ..
  • component X and component Y satisfy the relationship of T m ⁇ Ti are [SiO 2 ] and ZrO 2 , [SiO 2 ] and BeO, [SiO 2 ] and MgO, [SiO 2 ] and Al.
  • the component Y which is a metal oxide, is preferably a component having a content of less than 3 mol% of a ceramic model that absorbs a metal ion-containing liquid. As a result, it becomes easy to locally melt only the vicinity of the crack portion by heating, and deformation of the modeled object can be suppressed.
  • the content of the component Y of the ceramic model that absorbs the metal ion-containing liquid is more preferably less than 2 mol%, still more preferably less than 1 mol%.
  • the amount of the component Y present on the surface constituting the crack of the modeled object depends on the number of times the metal ion-containing liquid is absorbed by the modeled object and the concentration of the metal ions in the metal ion-containing liquid depending on the size and shape of the modeled object to be absorbed. You should adjust it.
  • the metal ions do not need to be densely filled in the cracks of the modeled object, and the metal ions of the metal ion-containing liquid may be present almost uniformly on the surface of the modeled object facing the cracks of the modeled object.
  • the concentration of metal ions in the metal ion-containing liquid is not particularly limited, but there is a preferable concentration depending on the purpose.
  • the metal ion content in the metal ion-containing liquid is high, a large amount of component Y can be imparted to the surface of the modeled object constituting the crack by performing the step (ii) once. Therefore, cracks can be sufficiently reduced or eliminated even if the number of steps (ii) and steps (iii) is small.
  • the metal ion-containing liquid contains a large amount of metal ions, the amount of the component Y applied to the surface of the modeled object facing the crack in each step (ii) becomes too large, and the modeled object melts. , It may be easy to cover a wide area around the crack.
  • the metal ion content of the metal ion-containing liquid is preferably 10% by mass or more and 80% by mass or less, and more preferably 30% by mass or more and 60% by mass or less in terms of metal oxide. Further, in the metal ion-containing liquid applied to a model having a fine shape, the metal ion content of the metal ion-containing liquid is preferably 10% by mass or more and less than 50% by mass in terms of metal oxide. It is preferably 15% by mass or more and less than 30% by mass.
  • a metal ion-containing liquid having a high metal ion content is used to efficiently reduce the cracks to some extent, and then a metal having a low metal ion content is used. It is also preferable to repair cracks using an ion-containing liquid. As described above, by using a combination of a plurality of types of metal ion-containing liquids having different metal ion contents, it is possible to more efficiently reduce or eliminate cracks while ensuring shape accuracy.
  • the metal ion-containing liquid contains water as a solvent and has low wettability to the modeled object, the metal ion-containing liquid once absorbed inside the modeled object is difficult to leak and invades the crack in one step (iii).
  • the resulting metal ions can be used for repairing cracks as they are. Therefore, by adjusting the amount of metal ions contained in the metal ion-containing liquid, it is possible to control the number of repetitions of the steps (ii) and (iii) required for repairing the cracks.
  • the number of steps (ii) and (iii) required to repair cracks is larger than that in the case of using a metal ion-containing liquid containing no water as a solvent. Can be reduced.
  • the fluctuation correction may be performed after the heat treatment at less than 1000 ° C.
  • the metal ions are widely distributed in the surface layer of the modeled object and the cracks inside the modeled object.
  • the vicinity of cracks locally approaches the eutectic composition of Al 2 O 3 and Zr O 2 . Therefore, the composition in the vicinity of the crack has a lower melting point than the portion away from the crack. Utilizing this difference in composition distribution and melting point, the temperature is equal to or higher than the eutectic point of the metal ion oxide contained in the metal ion-containing liquid and the compound component constituting the model, and lower than the melting point of the material constituting the model.
  • the eutectic points of these three components are two components.
  • the temperature is lower than the eutectic point.
  • the step (iii) can be carried out at a lower temperature than when the modeled object is composed of one component, and even if the modeled object is relatively large in size, the temperature unevenness of heating in the modeled object can be reduced.
  • the step (iii) can be easily carried out in an electric furnace or the like in an atmospheric atmosphere if the temperature is relatively low.
  • Al 2 O 3 -Gd 2 O 3 is a material capable of forming a three-phase eutectic with zirconium oxide.
  • the step (ii) of absorbing a metal ion-containing liquid containing zirconium ions into a model formed from a powder containing Al 2 O 3 -Gd 2 O 3 as a component the surface constituting the crack of the model is subjected to the step (ii).
  • Zirconium ions will be present.
  • the zirconium ions existing on the surface constituting the crack of the modeled object become zirconium oxide in the process of the heat treatment, and zirconium oxide is generated on the surface of the modeled object facing the crack.
  • the amount of zirconium oxide present on the surface and the composition ratio at which a three-phase eutectic can be formed or the composition ratio in the vicinity thereof are Al 2 O. 3 -Gd 2 O 3 melts at a temperature lower than the melting point of the model. After that, it recrystallizes and contributes to the repair of cracks.
  • the melting point can be significantly lowered locally.
  • the maximum temperature near the crack of the model in which the zirconium ion-containing liquid was absorbed in step (ii) is 1600 ° C or higher and 1710 ° C. It is good to heat it so that it becomes as follows. More preferably, it may be heated to 1662 ° C or higher and lower than 1710 ° C.
  • the maximum temperature TS that the vicinity of the crack of the modeled object reaches by the heat treatment in the step (iii) is TE ⁇ TS ⁇ . It is preferable to set it to T m .
  • the modeled object may be heated at a temperature at which the vicinity of the crack is desired to be reached. It is considered that by heating at such a temperature, the cracks and their vicinity are melted and moved in a direction in which the surface energy is reduced, so that the cracks are reduced or disappear. Then, as the heating further progresses, it is considered that the metal oxide diffuses into the crystalline / non-crystalline inside of the modeled product, and the crystal is recrystallized in a state containing the metal oxide component. It is presumed that such an action has the effect of increasing the mechanical strength of the modeled object, rather than simply filling the cracks with glass.
  • the vicinity of the crack melts as described above, which has the effect of reducing or extinguishing the crack.
  • concentration of the metal ion in the vicinity of the crack can be adjusted by adjusting the concentration of the metal ion in the metal ion-containing liquid, the method for causing the crack to absorb the metal ion-containing liquid, the number of times, and the like. The greater the amount of metal ions present in the crack, the easier it is to repair a wide range of cracks.
  • a phase containing Al 2 O 3 as a main component and a phase containing Gd AlO 3 as a main component are included. ..
  • the eutectic point of about 1662 ° C. is used in this model after absorbing the zirconium metal ion-containing liquid in the step (iii), the temperature of 1662 ° C. or higher and 1710 ° C. or lower in the step (iii). It is good to heat with.
  • the zirconium ion that has penetrated from the crack into the entire model becomes a metal oxide, and the metal oxide melts together with the compound component of the model, and the vicinity of the crack is selectively melted to repair the crack. do. Then, the metal oxide diffuses into the crystalline and amorphous interior and recrystallizes. As a result, the resulting ceramic article contains a three-phase eutectic of a phase containing ZrO 2 as a main component, a phase containing Al 2 O 3 as a main component, and a phase containing GdAlO 3 as a main component. At least formed.
  • the modeled product contains Al 2 O 3 as a main component.
  • a phase and a phase containing (GdTb) AlO 3 as a main component are included.
  • cracks can be reduced or eliminated by heating at a temperature of 1662 ° C. or higher and 1710 ° C. or lower (step (iii)).
  • the model formed in step (i) contains a large amount of amorphous components because it is irradiated with an energy beam, melted, and then solidified by quenching. However, most of the amorphous components contained in the modeled product change to crystalline in the process of heat treatment in the step (iii). Further, as heating progresses, the metal ion oxide of the metal ion-containing liquid diffuses into the crystal of the model and recrystallizes, and two or more kinds of phases are formed in the model, so that the mechanical strength is high. Is obtained. From these viewpoints, in the step (iii), it is preferable to heat the modeled object for a certain period of time or longer.
  • the holding time of the maximum temperature Ts in the step (iii) is preferably 1 minute or more, and more preferably 5 minutes or more in total.
  • the holding time of the maximum temperature Ts in the step (iii) is preferably 2 hours or less in total, and more preferably 1 hour or less. More preferably, it is 30 minutes or less.
  • the heating method is not particularly limited.
  • a ceramic model that has absorbed a metal ion-containing liquid may be heated by irradiating it with an energy beam, or it may be heated by placing it in an electric furnace.
  • thermoelectric pair or the like When heating with an energy beam, it is necessary to grasp in advance the relationship between the input heat amount of the energy beam and the temperature of the modeled object by thermoelectric pair or the like so that the modeled object is heated to the above-mentioned preferable temperature.
  • an electric furnace or the like capable of adjusting the temperature lowering rate after heating is suitable because it can suppress the formation of new cracks.
  • the difference in the concentration of the main component of the crystal grain becomes small between the vicinity of the crack of the modeled object and the portion other than the vicinity of the crack.
  • the difference between the melting point (eutectic point) in the vicinity of the crack portion of the modeled object and the melting point in the portion other than the vicinity of the crack becomes small, and it becomes difficult to selectively melt the vicinity of the crack.
  • the difference in melting points is preferably 20 ° C. or higher, more preferably 30 ° C.
  • the zirconium oxide component in the model is less than 3 mol%, the shape change of the model is suppressed and only the vicinity of the crack is formed. It is preferable because it can be melted. More preferably, it is less than 2 mol%. More preferably, it is less than 1 mol%.
  • the heat treatment time refers to the time maintained at the maximum temperature Ts in one step (iii) unless otherwise specified.
  • the integrated heating time refers to the time during which the step (iii) is maintained at the maximum temperature Ts in one heat treatment when the step (iii) is carried out only once, and the step (iii) is repeatedly carried out a predetermined number of times. In the case, it is assumed that the time held at the maximum temperature Ts is added up each time.
  • a powder composed of a plurality of kinds of materials such as a powder containing a main component and an auxiliary component such as an absorber
  • the integrated heating time in the step (iii) is short.
  • a ceramic article having a phase-separated structure containing three or more kinds of phases including a phase of a main component and a phase of two kinds of composite compounds containing at least one kind of a metal element constituting the main component can be obtained.
  • a ceramic article having such a layer-separated structure has superior mechanical strength to a ceramic article composed of one type of phase or two types of phases.
  • the ceramic article of the present invention is an article containing ceramics as a main component, which is manufactured by using the additive manufacturing technique, and can achieve both the free shape characteristic of the additive manufacturing technique and excellent mechanical strength.
  • the additional manufacturing techniques it is preferably manufactured by using a powder bed melt-bonding method or a directed energy lamination method.
  • Ceramic articles having particularly excellent mechanical strength are shaped by using a powder composed of a plurality of compounds of a main component and a sub component, and after absorbing a metal ion-containing liquid having an appropriate metal ion concentration, step (iii). It can be produced by shortening the integrated heating time according to the above.
  • the obtained ceramic article having particularly excellent mechanical strength is a phase containing at least three types of a phase of a main component, a phase of two types of a composite compound containing at least one type of a metal element constituting the main component, and a phase of two types of a composite compound. It has a separated structure.
  • the main components of the ceramic article are preferably aluminum oxide, silicon oxide, mullite, cordylite and the like.
  • aluminum oxide is widely used as a general-purpose ceramic article and has a relatively high thermal conductivity, so that it is suitable for an additional manufacturing technique of a direct molding method.
  • a ceramic article containing aluminum oxide as a main component will be described as an example, but the technical idea of the present invention is not limited to the ceramic article containing aluminum oxide as a main component.
  • the modeled object to be formed is formed.
  • a ceramic article containing a phase and a phase derived from the metal ion of the metal ion-containing liquid can be formed.
  • the Al 2 O 3 phase corresponds to the main component phase
  • the GdAlO 3 phase and the Gd 4 Al 2 O 9 phase are two types of complex compound phases containing at least one metal element constituting the main component. Applicable.
  • the integrated heating time becomes long, the equilibration of the components and the expansion of the particle size progress, and the types of phases contained in the ceramic article are reduced from the initial stage of the heat treatment.
  • the ceramic article obtained by absorbing a metal ion-containing liquid containing zirconium ion in a model containing aluminum oxide as a main component is a ZrO2 phase having a fluorite structure as a metal ion - derived phase of the metal ion-containing liquid. May include.
  • the ceramic article in which the crack is sufficiently repaired with a short integrated heating time contains three types of phases, it has better mechanical strength than the one with a long integrated heating time. It is considered that the reason why the ceramic article has excellent mechanical strength is the particle size of the crystal grains contained in the ceramic article and the existence of the phase composed of the composite compound.
  • the ceramic article is composed of a small particle size, and the particle size and the machine of the article are formed. There is a correlation with the target strength.
  • the particle size preferable for obtaining a ceramic article having excellent mechanical strength is 20 ⁇ m or less, more preferably 15 ⁇ m or less, and further preferably 10 ⁇ m or less.
  • the ceramic article having a short integrated heating time contains three or more kinds of composite compounds, it is composed of a complicated phase separation structure composed of these multiple kinds of phases.
  • a compound compound containing a plurality of metal components often has higher toughness than a compound containing one type of metal component, and it is considered that such a complicated phase-separated structure also contributes to the improvement of mechanical strength. Be done.
  • the complex compound is produced from the main component and subcomponents during the melting and solidification of step (i) and / or the heat treatment of step (iii).
  • a powder containing gadolinium oxide powder as an auxiliary component is used as the main component of aluminum oxide powder
  • the above-mentioned GdAlO 3 phase and Gd 4 Al 2O 9 phase correspond to the composite compound.
  • GdAlO 3 is mainly produced by eutectic with Al 2 O 3 in the step (i).
  • the Gd 4 Al 2 O 9 phase is mainly composed of atoms between the Gd 2 O 3 phase, which is the undissolved raw material, and the Al 2 O 3 phase and the Gd AlO 3 phase during the heat treatment of the step (iii). It is thought to be produced in the solid phase diffusion process. Therefore, when the integrated heating time in the step (iii) is long, the Gd 4 Al 2 O 9 phase disappears and the phase composition of the ceramic article becomes an equilibrium state, but the mechanical strength decreases.
  • the mechanical strength obtained differs depending on the type of the main component, but the machine can be repaired by repairing cracks in a short integrated heating time.
  • the target strength can be further enhanced.
  • Preferred combinations of main component and sub-component are Al 2 O 3 -Gd 2 O 3 , Al 2 O 3 -Tb 4 O 7 , Al 2 O 3 -Gd 2 O 3 -Tb 4 O 7 , Al 2 O 3- GdAlO 3 -Tb 4 O 7 , Al 2 O 3 -Pr 6 O 11 , Al 2 O 3-Gd 2 O 3-Pr 6 O 11, Al 2 O 3 -GdAlO 3 -Pr 6 O 11 , Al 2 O 3 -Y 2 O 3 , Al 2 O 3 -YAlO 3 , Al 2 O 3 -Y 2 O 3 -Tb 4 O 7 , Al 2 O 3 -YAlO 3 -Tb 4 O 7 , Al 2 O 3 -Y 3 Al 5 O 12 -Tb 4 O 7 , Al 2 O 3 -Y 2 O 3 -Pr 6 O 11 , Al 2 O 3 -YAlO 3 -Pr 6 O 11 , Al 2 O 3 -Y 3
  • a composite oxide is produced as a composite compound.
  • at least one of the complex compounds and the main component have a relationship capable of forming an eutectic.
  • the notation Al 2 O 3 -Gd 2 O 3 indicates the main component on the left side of the hyphen and the sub component on the right side.
  • the component enclosed in () indicates the main component, and the sub-component is indicated on the right side of the hyphen outside ().
  • the number of types of phases contained in the ceramic article is large. Therefore, in addition to the three phases of the main component phase and the two complex compound phases containing at least one of the metal elements constituting the main component and at least one of the metal elements constituting the subcomponent, further. It is preferable to include another phase.
  • the other phase may be a compound derived from the metal ion of the metal ion-containing liquid used in the step (ii).
  • the compound derived from the metal ion preferably has a relationship capable of forming an eutectic with at least one of the main component and the two types of complex compounds, and more preferably has a relationship capable of forming an eutectic with the main component. preferable.
  • the inclusion of another phase further complicates the phase separation structure of the ceramic article and improves the mechanical strength.
  • the presence of a certain amount or more of the metal oxide generated from the metal ions of the metal ion-containing liquid means that the cracks have been sufficiently repaired.
  • the amount of metal ion-derived components contained in the ceramic article is too large, the shape accuracy of the article tends to decrease.
  • the metal oxide generated from the metal ions of the metal ion-containing liquid in the ceramic article is preferably contained in an amount of 0.3 mol% or more and 5 mol% or less, more preferably 0.5 mol% or more and 3 mol% or less. Is.
  • the ceramic article according to the present invention can be easily produced by using a ceramic article manufacturing kit containing a powder containing ceramic as a main component and the above-mentioned metal ion-containing liquid containing water and metal ions. ..
  • ⁇ Relative density> The relative density [%] of the article was calculated by dividing the bulk density of the article (weight divided by volume) by the theoretical density. The theoretical density was calculated from the crystal structure. The crystal structure was identified by performing X-ray diffraction measurements and performing Rietveld analysis.
  • ⁇ Crystal structure> The ceramic article was mirror-polished, and the crystal structure and composition of the phases constituting the ceramic article were investigated by X-ray diffraction, electron beam diffraction, SEM-EDX and TEM-EDX, and the phase separation structure was analyzed by SEM-EBSD.
  • the grain size of the crystal grains constituting the phase 300 or more crystal grains in the same phase observed on the measurement surface are observed using EBSD, and the median value of the equivalent circle diameter of each crystal grain is calculated. be able to.
  • Example 1 ⁇ -Al 2 O 3 powder with an average particle size of about 20 ⁇ m, Gd 2 O 3 powder with an average particle size of about 35 ⁇ m, and Tb 2 O 3.5 powder (Tb 4 O 7 powder) with an average particle size of about 5 ⁇ m.
  • Each weighing powder was mixed with a dry ball mill for 30 minutes to obtain a mixed powder (raw material powder).
  • the average particle diameter in the present invention is the median diameter, which is the particle diameter (D50) at which the cumulative frequency is 50%.
  • the content of zirconium oxide was less than 1 mol%.
  • a first layer of 20 ⁇ m thick powder layer made of the raw material powder was formed on an alumina base 130 using a roller (FIGS. 1A and 1B).
  • a 30 W laser beam was scanned at a drawing speed of 140 mm / s and a drawing pitch of 100 ⁇ m.
  • the powder is irradiated while scanning the laser beam so that the drawing line is at an angle of 45 degrees to each side of the rectangle, and the powder in the rectangular region of 5 mm ⁇ 42 mm is melted and solidified.
  • the solidified portion 100 was formed (FIG. 1C).
  • a powder layer having a thickness of 20 ⁇ m is newly formed by a roller so as to cover the solidified portion 100, and the powder layer is irradiated while scanning the laser beam to obtain the material powder in a rectangular region of 5 mm ⁇ 42 mm. It was melted and solidified to form a solidified portion 100 (FIGS. 1D and 1E).
  • the laser was scanned in a direction orthogonal to the drawing line of the first layer to melt and solidify the powder. Such a process was repeated until the height of the solidified portion became 6 mm, and a modeled product having a size of 42 mm ⁇ 5 mm ⁇ 6 mm was produced.
  • the Ra of the unevenness on the surface of the shaped objects was 20 ⁇ m or less.
  • the image of the optical microscope is shown in FIG. As can be seen from FIG. 5, cracks depending on the drawing direction of the laser beam were formed. That is, there were cracks extending in a direction at an angle of approximately 45 degrees to each side of the rectangle.
  • Each of the above-mentioned shaped objects was separated from the alumina base and processed into W40 mm ⁇ D4 mm ⁇ H3 mm for a three-point bending strength test by polishing.
  • the polished surface was observed by SEM, cracks having a width of several nm to several ⁇ m were formed depending on the drawing direction of the laser beam. That is, similar to the observation result with the optical microscope, grid-like cracks were formed in the direction of approximately 45 degrees to each side of the rectangle.
  • a metal ion-containing liquid containing zirconium ions was prepared as a metal ion-containing liquid as follows.
  • Zirconium oxide has a eutectic relationship with aluminum oxide, which is the main component of the model.
  • the environment After immersing the above-mentioned model processed for testing in the metal ion-containing liquid containing zirconium ions in an atmosphere reduced to 400 Pa, the environment is returned to atmospheric pressure and left for 30 minutes to form the metal ion-containing solution. I let something absorb it.
  • Example 1 a cycle in which a heat treatment step (step (iii)) is performed once for each step (step ii) of absorbing a metal ion-containing liquid containing zirconium ions in each model. was repeated twice to prepare five ceramic articles for a three-point bending strength test.
  • the dimensional accuracy of the manufactured ceramic article was evaluated. Specifically, the rate of change in the length of each side of the article obtained after the step (ii) and the length of each side of the modeled object before the step (iii) is dimensional accuracy (referred to as shape accuracy). In some cases).
  • the dimensional accuracy of Example 1 was within 1% with respect to the dimensions (W40 mm ⁇ D4 mm ⁇ H3 mm) of the shaped object after polishing before performing the step (ii) and the step (iii).
  • the ratio of the length of each side of the modeled object and the ceramic article is almost the same and has a similar shape, and bending of the modeled object and unevenness of the surface due to the steps (ii) and the process (iii) can be seen. There wasn't.
  • the average value of the relative density of ceramic articles was 95.6%.
  • phase consisted of Al 2 O 3 , the phase composed of Gd AlO 3 , the phase composed of Gd 4 Al 2 O 9 , the Gd 2 O 3 phase, and the oxidation of the fluorite structure.
  • At least five types of phases containing zirconium as a main component were included.
  • the main metal elements contained in the zirconium oxide-based phase of the fluorite structure were Zr, Gd, and Tb, and the metal elements other than Zr, Gd, and Tb were less than 1 mol%.
  • the ratio of rare earth elements among the metal elements contained in the phase containing zirconium oxide as a main component of the fluorite structure was 30 mol% on average.
  • Example 1 For the obtained ceramic article, the three-point bending strength, dimensional accuracy, relative density, and the crystal structure and composition of the phases constituting the ceramic article were analyzed in the same manner as in Example 1.
  • the evaluation results of the relative density and the three-point bending strength are shown in Table 1 together with the results of Example 1.
  • the average value of the relative density was 95.8%, and the average value of the three-point bending strength was 172 MPa.
  • the dimensional accuracy of the ceramic article of Example 2 was also excellent at 1% or less. Further, as in the case of the ceramic article of Example 1, the ratio of the lengths of the respective sides of the modeled object and the ceramic article is almost the same and has a similar shape, and the modeling by the step (ii) and the step (iii) is performed. No bending or surface irregularities were observed.
  • the ceramic article of Example 2 also had the same phase separation structure as that of Example 1. Specifically, 5 of a phase consisting of Al 2 O 3 , a phase consisting of Gd AlO 3 , a phase consisting of Gd 4 Al 2 O 9 , a Gd 2 O 3 phase, and a phase containing zirconium oxide having a fluorite structure as a main component. Included a variety of phases.
  • the main metal elements constituting the phase containing zirconium oxide as a main component of the fluorite structure were Zr, Gd, and Tb.
  • Example 3 A metal ion-containing liquid having a zirconium ion concentration of 20% by mass, 29% by mass of water for a liquid obtained by removing metal ions from a metal ion-containing liquid, and 200 mol% of 2-hydroxylethyl acrylate with respect to zirconium ions was used.
  • Five ceramic articles were produced in the same manner as in Example 2, except that the cycle in which the step (iii) was carried out once and then the step (iii) was carried out once was repeated three times.
  • Example 1 For the obtained ceramic article, the three-point bending strength, dimensional accuracy, relative density, and the crystal structure and composition of the phases constituting the ceramic article were analyzed in the same manner as in Example 1.
  • the evaluation results of the relative density and the three-point bending strength are shown in Table 1 together with the results of Example 1.
  • the average value of the relative density was 96.0%, and the average value of the three-point bending strength was 164 MPa.
  • the dimensional accuracy of the ceramic article of Example 3 was also excellent at 1% or less. Further, as in the case of the ceramic article of Example 1, the ratio of the lengths of the respective sides of the modeled object and the ceramic article is almost the same and has a similar shape, and the modeling by the step (ii) and the step (iii) is performed. No bending or surface irregularities were observed.
  • the ceramic article of Example 3 also had the same phase separation structure as that of Example 1. Specifically, 5 of a phase consisting of Al 2 O 3 , a phase consisting of Gd AlO 3 , a phase consisting of Gd 4 Al 2 O 9 , a Gd 2 O 3 phase, and a phase containing zirconium oxide having a fluorite structure as a main component. Included a variety of phases.
  • the main metal elements constituting the phase containing zirconium oxide as a main component of the fluorite structure were Zr, Gd, and Tb.
  • Example 4 A metal ion-containing liquid having a zirconium ion concentration of 20% by mass, 13% by mass of water for a liquid obtained by removing metal ions from a metal ion-containing liquid, and 288 mol% of 2-hydroxylethyl acrylate for zirconium ions was used. , Five ceramic articles were produced in the same manner as in Example 2, except that the cycle in which the step (iii) was carried out once and then the step (iii) was carried out once was repeated three times.
  • Example 1 For the obtained ceramic article, the three-point bending strength, dimensional accuracy, relative density, and the crystal structure and composition of the phases constituting the ceramic article were analyzed in the same manner as in Example 1.
  • the evaluation results of the relative density and the three-point bending strength are shown in Table 1 together with the results of Example 1.
  • the average value of the relative density was 95.9%, and the average value of the three-point bending strength was 160 MPa.
  • the dimensional accuracy of the ceramic article of Example 4 was also excellent at 1% or less. Further, as in the case of the ceramic article of Example 1, the ratio of the lengths of the respective sides of the modeled object and the ceramic article is almost the same and has a similar shape, and the modeling by the step (ii) and the step (iii) is performed. No bending or surface irregularities were observed.
  • the ceramic article of Example 4 also had the same phase separation structure as that of Example 1. Specifically, 5 of a phase consisting of Al 2 O 3 , a phase consisting of Gd AlO 3 , a phase consisting of Gd 4 Al 2 O 9 , a Gd 2 O 3 phase, and a phase containing zirconium oxide having a fluorite structure as a main component. Included a variety of phases.
  • the main metal elements constituting the phase containing zirconium oxide as a main component of the fluorite structure were Zr, Gd, and Tb.
  • Example 5 A metal ion-containing liquid having a zirconium ion concentration of 44% by mass, 10% by mass of water for a liquid obtained by removing metal ions from a metal ion-containing liquid, and 30 mol% of 2-hydroxylethyl acrylate for zirconium ions was used. , Five ceramic articles were produced in the same manner as in Example 2, except that the cycle in which the step (iii) was carried out once and then the step (iii) was carried out once was repeated three times.
  • Example 1 For the obtained ceramic article, the three-point bending strength, dimensional accuracy, relative density, and the crystal structure and composition of the phases constituting the ceramic article were analyzed in the same manner as in Example 1.
  • the evaluation results of the relative density and the three-point bending strength are shown in Table 1 together with the results of Example 1.
  • the average value of the relative density was 96.2%, and the average value of the three-point bending strength was 163 MPa.
  • the dimensional accuracy of the ceramic article of Example 5 was also excellent at 1% or less. Further, as in the case of the ceramic article of Example 1, the ratio of the lengths of the respective sides of the modeled object and the ceramic article is almost the same and has a similar shape, and the modeling by the step (ii) and the step (iii) is performed. No bending or surface irregularities were observed.
  • the ceramic article of Example 5 also had the same phase separation structure as that of Example 1. Specifically, 5 of a phase consisting of Al 2 O 3 , a phase consisting of Gd AlO 3 , a phase consisting of Gd 4 Al 2 O 9 , a Gd 2 O 3 phase, and a phase containing zirconium oxide having a fluorite structure as a main component. Included a variety of phases.
  • the main metal elements constituting the phase containing zirconium oxide as a main component of the fluorite structure were Zr, Gd, and Tb.
  • Example 6 A metal ion-containing liquid having a zirconium ion concentration of 15% by mass and water of 29% by mass with respect to the liquid obtained by removing the metal ions from the metal ion-containing liquid was used. Further, 5 ceramic articles were produced in the same manner as in Example 1 except that the cycle in which the step (iii) was carried out once and then the step (iii) was carried out once was repeated four times.
  • the three-point bending strength, dimensional accuracy, relative density, and the crystal structure and composition of the phases constituting the ceramic article were analyzed in the same manner as in Example 1.
  • the average value of the relative density was 96.3%, and the average value of the three-point bending strength was 153 MPa.
  • the evaluation results are shown in Table 1.
  • the ceramic article of Example 6 was also excellent in dimensional accuracy of 1% or less. Further, as in the case of the ceramic article of Example 1, the ratio of the lengths of the respective sides of the modeled object and the ceramic article is almost the same and has a similar shape, and the modeling by the step (ii) and the step (iii) is performed. No bending or surface irregularities were observed.
  • the ceramic article according to this embodiment also had a phase-separated structure. Specifically, it contained three types of phases: a phase composed of Al 2 O 3 , a phase composed of Gd AlO 3 , and a phase having a fluorite structure containing zirconium oxide as a main component.
  • the main metal elements constituting the phase containing zirconium oxide as a main component of the fluorite structure were Zr, Gd, and Tb. Furthermore, it was confirmed that there was no bias in the distribution of the phase containing zirconium oxide as the main component in the article, and that the zirconium oxide component diffused from the cracks into the model and recrystallized as a phase-separated structure while incorporating rare earth elements. Was done.
  • the phase consisting of Gd 4 Al 2 O 9 was not included.
  • Example 7 Five ceramic articles were produced in the same manner as in Example 1 except that the holding time at 1680 ° C. in the step (iii) was set to 80 minutes.
  • Example 1 For the obtained ceramic article, the three-point bending strength, dimensional accuracy, relative density, and the crystal structure and composition of the phases constituting the ceramic article were analyzed in the same manner as in Example 1.
  • the evaluation results of the relative density and the three-point bending strength are shown in Table 1 together with the results of Example 1.
  • the average value of the relative density was 97.5%, and the average value of the three-point bending strength was 151 MPa.
  • the dimensional accuracy of the ceramic article of Example 7 was also excellent at 1% or less. Further, as in the case of the ceramic article of Example 1, the ratio of the lengths of the respective sides of the modeled object and the ceramic article is almost the same and has a similar shape, and the modeling by the step (ii) and the step (iii) is performed. No bending or surface irregularities were observed.
  • the ceramic article according to this embodiment also had a phase-separated structure. Specifically, it contained three types of phases: a phase composed of Al 2 O 3 , a phase composed of Gd AlO 3 , and a phase having a fluorite structure containing zirconium oxide as a main component.
  • the main metal elements constituting the phase containing zirconium oxide as a main component of the fluorite structure were Zr, Gd, and Tb. Furthermore, it was confirmed that there was no bias in the distribution of the phase containing zirconium oxide as the main component in the article, and that the zirconium oxide component diffused from the cracks into the model and recrystallized as a phase-separated structure while incorporating rare earth elements. Was done.
  • the phase consisting of Gd 4 Al 2 O 9 was not included. Moreover, the average particle size of the crystal grains was as large as 80 ⁇ m.
  • Example 8 In this example, an article containing silicon dioxide as a main component was prepared.
  • Example 2 Similar to Example 1, five 5 mm ⁇ 42 mm ⁇ 6 mm rectangular parallelepiped shaped objects were produced by the powder bed fusion bonding method.
  • the modeling process is the same as in Example 1, except that the laser beam is scanned at an output of 47.5 W, a drawing speed of 60 mm / s, and a drawing pitch of 80 ⁇ m.
  • the Ra of the unevenness on the surface of the modeled object was 30 ⁇ m or less. Similar to FIG. 5, cracks extending in a direction at an angle of approximately 45 degrees with respect to each side of the rectangle existed on the surface of the modeled object.
  • the modeled object was separated from the alumina base and processed into W40 mm x D4 mm x H3 mm by polishing for a three-point bending strength test.
  • the polished surface was observed by SEM, cracks having a width of several nm to several ⁇ m were formed depending on the drawing direction of the laser beam. Similar to the observation result with the optical microscope, the cracks extended in a direction at an angle of about 45 degrees with respect to each side of the rectangle and formed a grid pattern.
  • a metal ion-containing liquid containing zirconium ions similar to that in Example 1 was absorbed by the modeled object (step (ii)), placed in an electric furnace, and heated (step (iii)).
  • step (iii) the temperature was raised to 1670 ° C. in 2 hours in the air atmosphere, the temperature was maintained at 1670 ° C. for 50 minutes, the energization was terminated, and the mixture was cooled by natural cooling.
  • the cycle of performing the step (iii) once and then performing the step (iii) once was repeated twice.
  • the dimensional accuracy of the obtained ceramic article was evaluated, it was within 1% with respect to the dimensions (W40 mm ⁇ D4 mm ⁇ H3 mm) of the shaped object after polishing before performing the step (ii) and the step (iii). rice field.
  • the ratios of the lengths of the sides of the modeled object and the ceramic article were almost the same and had similar shapes, and no bending or surface irregularities due to the steps (ii) and the steps (iii) were observed. ..
  • the average value of the relative density was 82.4%, and the average value of the 3-point bending strength was 13 MPa.
  • phases contained in the ceramic article revealed that they contained three types of phases: a phase consisting of SiO 2 , a phase consisting of Si 2 Tb 2 O 7 , and a phase containing zirconium oxide having a fluorite structure as a main component. rice field. Further, SiO 2 was cristobalite, and its proportion was 98% by mass.
  • Example 9 In this example as well, an article containing silicon dioxide as a main component was produced.
  • SiO 2 powder, Al 2 O 3 powder, and SiO powder having an average particle diameter of 5 ⁇ m as an absorber, and the molar ratio is SiO 2 : Al 2 O 3 : SiO 66.5: 30.0: 3.5.
  • Each powder was weighed so as to be.
  • the main component of SiO 2 powder is cristobalite.
  • Each weighing powder was mixed with a dry ball mill for 30 minutes to obtain a mixed powder.
  • the content of zirconium oxide was less than 1% by mass.
  • a rectangular parallelepiped object of 5 mm ⁇ 42 mm ⁇ 6 mm was produced in the same manner as in Example 4, except that the laser beam was scanned at an output of 40 W, a drawing speed of 140 mm / s, and a drawing pitch of 110 ⁇ m.
  • the Ra of the unevenness on the surface of the model was 30 ⁇ m or less. Similar to FIG. 5, cracks extending in a direction at an angle of approximately 45 degrees to each side of the rectangle existed on the surface of the modeled object.
  • Each of the above-mentioned shaped objects was separated from the alumina base and polished to W40 mm ⁇ D4 mm ⁇ H3 mm for a three-point bending strength test.
  • the polished surface was observed by SEM, cracks having a width of several nm to several ⁇ m were formed depending on the drawing direction of the laser beam. Similar to the observation result with the optical microscope, the cracks extended in a direction at an angle of about 45 degrees with respect to each side of the rectangle and formed a grid pattern.
  • the modeled object was made to absorb the same metal ion-containing liquid containing zirconium ions as in Example 1 (step (ii)), and was placed in an electric furnace and heated (step (iii)).
  • step (iii) the temperature was raised to 1680 ° C. in 2 hours in the air atmosphere, the temperature was maintained at 1680 ° C. for 20 minutes, the energization was terminated, and the mixture was cooled by natural cooling.
  • the step (iii) and the step (iii) were carried out once each.
  • the average value of the relative density was 85.0%, and the average value of the three-point bending strength was 58 MPa.
  • step (ii) in producing a ceramic article, a step of absorbing a metal ion-containing liquid (step (ii)) and a step of heating a model impregnated with a metal ion-containing liquid containing zirconium ions (step (iii)). )) was not carried out.
  • Example 1 As for the model of Comparative Example 1, the crystal structure and composition of the phases constituting the three-point bending strength and the relative density model were evaluated in the same manner as in Example 1. The average value of the relative density was 94.4%, and the average value of the three-point bending strength was 18 MPa. Table 1 shows the evaluation results of the three-point bending strength and the relative density.
  • the ceramic article of Comparative Example 1 was composed of a phase composed of Al 2 O 3 , a phase composed of Gd AlO 3 , and an amorphous phase having a fluctuating composition. Further, the article had cracks extending in a direction at an angle of approximately 45 degrees with respect to each side of the rectangle, depending on the drawing direction of the laser beam. The width of the crack was several nm to several ⁇ m.
  • the modeled object was treated in the same manner as in Example 1 except that the step (step (ii)) of absorbing the metal ion-containing liquid into the obtained modeled object was not performed, and the product was subjected to a three-point bending strength test. Five ceramic articles of W40 mm ⁇ D4 mm ⁇ H3 mm were produced.
  • a step (iii) the temperature was raised to 1670 ° C. in 2.5 hours in an air atmosphere, the temperature was maintained at 1680 ° C. for 2 hours, the energization was terminated, and the step of cooling by natural cooling was repeated twice.
  • Example 2 Similar to Example 1, for the ceramic article of Comparative Example 2, the three-point bending strength, the relative density, and the crystal structure and composition of the phases constituting the ceramic article were analyzed.
  • the average value of the relative density was 93.8%, and the average value of the three-point bending strength was 30 MPa.
  • the ceramic article of Comparative Example 2 was composed of two phases, a phase composed of Al 2 O 3 and a phase composed of Gd Al O 3 . Further, in the ceramic article of Comparative Example 2, cracks extending in a direction at an angle of approximately 45 degrees with respect to each side of the rectangle remained depending on the drawing direction of the laser beam. The width of the crack was several nm to several ⁇ m.
  • the metal ion-containing liquid was prepared as follows by using an organic solvent instead of water.
  • a solution prepared by dissolving 85% by mass of zirconium butoxide (zirconium (IV) butoxide (hereinafter referred to as Zr (On-Bu) 4)) in 1-butanol was prepared.
  • the solution of Zr (On-Bu) 4 was dissolved in 2-propanol (IPA), and ethyl acetoacetate (EAcAc) was added as a stabilizer.
  • IPA 2-propanol
  • EAcAc ethyl acetoacetate
  • Example 2 Five ceramic articles were produced in the same manner as in Example 1, except that a metal ion-containing liquid containing an organic solvent was used and the cycle of performing the step (ii) and the step (iii) was carried out three times. Unlike the first embodiment, the cycle of performing the steps (ii) and the step (iii) was carried out three times because cracks remained in the modeled object in the second time.
  • the obtained ceramic articles were evaluated for three-point bending strength, dimensional accuracy, and relative density in the same manner as in Example 1.
  • the average value of the relative density was 95.2%, and the average value of the three-point bending strength was 164 MPa.
  • the results are shown in Table 1.
  • the dimensional accuracy of the ceramic article of Comparative Example 3 was also excellent at 1% or less. Further, similarly to the ceramic article of Example 1, the modeled object and the ceramic article had similar shapes.
  • the ceramic article of Comparative Example 3 had the same phase-separated structure as that of Example 1. That is, it was composed of three phases: a phase composed of Al 2 O 3 , a phase composed of Gd AlO 3 , and a phase having a fluorite structure containing zirconium oxide as a main component.
  • the main metal elements constituting the phase containing zirconium oxide as a main component of the fluorite structure were Zr, Gd, and Tb.
  • Comparative Example 4 The point that the concentration of zirconium ion in the metal ion-containing liquid used in Comparative Example 3 was adjusted to 15% by mass in terms of zirconium oxide and used, and the point that the cycle of performing the step (ii) and the step (iii) was carried out five times. 5 ceramic articles were produced in the same manner as in Example 3. Unlike the third embodiment, the cycle of performing the step (ii) and the step (iii) was carried out five times because cracks remained in the modeled object after four times.
  • Example 1 The obtained ceramic articles were evaluated for three-point bending strength, dimensional accuracy, and relative density in the same manner as in Example 1.
  • the average value of the relative density was 96.5%, and the average value of the three-point bending strength was 145 MPa.
  • the results of Example 1 are shown in Table 1.
  • the dimensional accuracy of the ceramic article of Comparative Example 4 was excellent at 1% or less, and the modeled object and the ceramic article had similar shapes.
  • Example 1 when the crystal structure and composition of the phases constituting the ceramic article were analyzed, they had the same phase separation structure as in Example 1. That is, it contained three types of phases: a phase composed of Al 2 O 3 , a phase composed of Gd AlO 3 , and a phase having a fluorite structure containing zirconium oxide as a main component.
  • the main metal elements constituting the phase containing zirconium oxide as a main component of the fluorite structure were Zr, Gd, and Tb.
  • a step of absorbing the metal ion-containing liquid into the produced modeled object (step (iii)) and a step of heating the modeled object impregnated with the metal ion-containing liquid (step (iii)) are performed. Neither was carried out.
  • Example 5 For the ceramic article of Comparative Example 5, the three-point bending strength, the relative density, and the crystal structure and composition of the phases constituting the model were evaluated in the same manner as in Example 1. The average value of the relative density was 80.3%, and the average value of the three-point bending strength was 4 MPa. Table 1 shows the evaluation results of the three-point bending strength and the relative density.
  • the ceramic article of Comparative Example 5 was composed of a phase made of SiO 3 , a phase made of Si 2 Tb 2 O 7 , and an amorphous phase having a fluctuating composition.
  • step (iii) Neither the step of absorbing the metal ion-containing liquid into the produced model (step (iii)) nor the step of heating the model impregnated with the metal ion-containing liquid (step (iii)) was performed. ..
  • the average value of the relative density was 83.2%, and the average value of the 3-point bending strength was 8 MPa.
  • Table 1 shows the evaluation results of the three-point bending strength and the relative density.
  • the ceramic article of Comparative Example 6 was composed of a phase made of SiO 3 , a phase made of Si 2 Tb 2 O 7 , and an amorphous phase having a fluctuating composition.
  • Example 1 when the concentration of zirconium ion in the metal ion-containing liquid is high, high mechanical strength can be obtained even if the number of steps (iii) and step (iv) is small. You can see that. Further, it can be seen that when the number of times the step (iii) is performed is large and the integrated heating time is long, the number of constituent phases decreases and the mechanical strength decreases. Further, from the comparison between Example 1 and Example 2, even if the concentration of zirconium ion in the metal ion-containing liquid is the same, the addition of the stabilizer increases both the relative density and the mechanical strength of the obtained article. You can see that.
  • Example 1 and Comparative Example 1 and Comparative Example 2 it can be seen that high mechanical strength cannot be obtained unless the step (ii) and the step (iii) are performed on the modeled object. Further, from the comparison between Example 1 and Example 7, if the firing temperature holding time in the step (iii) is long, the integrated heating time becomes long, the crystal grain size of the obtained article becomes large, and the mechanical strength may decrease. I understand.
  • the ceramic articles of Examples 8 and 9 containing silicon oxide as a main component had relative densities of 82.4% and 85.0%, respectively, which were porous. It is presumed that this is due to the high viscosity of the silicon oxide component when melted by laser irradiation, resulting in a porous state. Despite the fact that the produced model was porous, mechanical strength of 13 MPa and 58 MPa was obtained by using the metal ion-containing liquid of the present invention. On the other hand, in Comparative Examples 5 and 6 in which the step (iii) and the step (iv) were not carried out, the three-point bending strength was as low as 4 MPa and 8 Mpa.
  • the metal ion-containing liquid of the present invention it is possible to improve the mechanical strength of the modeled product produced by the additive manufacturing technique while achieving high shape accuracy with a small number of post-treatment steps. can do. Then, it becomes possible to obtain a ceramic article having a high mechanical strength while having a complicated shape or a fine shape.

Abstract

This method for producing a ceramic article using an addition production technique is characterized by comprising: a step for irradiating powder mainly composed of ceramic with an energy beam to solidify the powder, thereby producing a molded object; a step for causing the molded object to absorb a metal ion-containing liquid including water and metal ions; and a step for heating the molded object which has absorbed the metal ion-containing liquid.

Description

セラミックス物品の製造方法、それに用いられる金属イオン含有液およびセラミックス物品製造用キットManufacturing method of ceramic articles, metal ion-containing liquid used for it, and kit for manufacturing ceramic articles
 本発明は、付加製造技術、中でも粉末床溶融結合方式や指向性エネルギー積層方式を用いてセラミックス物品を製造する技術に関する。 The present invention relates to an additional manufacturing technique, particularly a technique for manufacturing a ceramic article by using a powder bed melt-bonding method or a directed energy lamination method.
 短時間で試作品を作製したり、少数部品を製造したりする用途において、原料粉末に、造形対象物の三次元データに基づいてエネルギービームを照射し、原料粉末を結合させて所望の造形物を得る付加製造技術が普及している。金属粉末を原料とする造形(金属造形)では、粉末床溶融結合方式が広く採用されており、緻密で多様性のある金属造形物が得られている。金属造形物の高い緻密性は、金属粉末を効果的に溶融および凝固させることによって実現される。このような金属造形での成功を基礎にして、近年は付加製造技術を用いてセラミックス物品を製造する取り組みが報告されている。 In applications such as manufacturing prototypes in a short time or manufacturing a small number of parts, the raw material powder is irradiated with an energy beam based on the three-dimensional data of the object to be modeled, and the raw material powder is combined to form a desired model. The additional manufacturing technology to obtain the above is widespread. In modeling using metal powder as a raw material (metal modeling), the powder bed melt-bonding method is widely adopted, and a dense and diverse metal model is obtained. The high density of the metal model is achieved by effectively melting and solidifying the metal powder. Based on the success of such metal modeling, in recent years, efforts to manufacture ceramic articles using additional manufacturing technology have been reported.
 酸化アルミニウムや酸化ジルコニウムなどの汎用セラミックスは、金属とは異なり、レーザー光に対する吸収能が低い。そこで、セラミックスよりもレーザー光に対する吸収能が高い吸収体を原料粉末に添加し、吸収体にレーザー光を吸収させて原料粉末を溶融させる技術が知られている。 Unlike metals, general-purpose ceramics such as aluminum oxide and zirconium oxide have low absorption capacity for laser light. Therefore, a technique is known in which an absorber having a higher absorption capacity for laser light than ceramics is added to the raw material powder, and the absorber absorbs the laser light to melt the raw material powder.
 しかし、溶融部が固化する過程の冷却速度が速いために造形物の表層および内部に発生する応力や、非固化部と固化部との間に生じる温度差に起因する熱応力によって、造形物にはクラックが形成され、造形物の機械的強度が低下してしまうという課題がある。特許文献1には、造形物と共晶を形成しうる相が加熱によって生じるような金属成分と有機溶媒とを含む液体を造形物に吸収させた後、加熱することでクラック近傍のみを溶融させてクラックを減少あるいは消滅させる方法が開示されている。 However, due to the high cooling rate in the process of solidifying the molten part, the stress generated in the surface layer and inside of the modeled object and the thermal stress caused by the temperature difference between the non-solidified area and the solidified area cause the modeled object to become Has a problem that cracks are formed and the mechanical strength of the modeled object is lowered. In Patent Document 1, after absorbing a liquid containing a metal component and an organic solvent such that a phase capable of forming a eutectic with the modeled object is generated by heating, the modeled object is heated to melt only the vicinity of the crack. A method for reducing or eliminating cracks is disclosed.
特開2019-188810号公報Japanese Unexamined Patent Publication No. 2019-188810
 特許文献1によれば、造形物に金属成分を含有した液(金属成分含有液)を吸収させて加熱する後処理工程を施すことで造形物の機械的強度を向上させることができる。しかし、造形物のクラックを十分に低減あるいは消滅させるためには、後処理工程を何度も繰り返す必要がある。後処理工程は1回当たり少なくとも数時間を要するため、何度も繰り返すと生産性が低下してしまう。 According to Patent Document 1, the mechanical strength of the modeled object can be improved by performing a post-treatment step of absorbing and heating a liquid containing a metal component (metal component-containing liquid) in the modeled object. However, in order to sufficiently reduce or eliminate cracks in the modeled object, it is necessary to repeat the post-treatment process many times. Since the post-treatment step requires at least several hours each time, if it is repeated many times, the productivity will decrease.
 本発明はかかる課題を解決するもので、第一の観点は、付加製造技術を用いたセラミックス物品の製造方法であって、セラミックスを主成分とする粉末にエネルギービームを照射して前記粉末を固化させて造形物を作製する工程と、前記造形物に、水と金属イオンとを含む金属イオン含有液を吸収させる工程と、前記金属イオン含有液を吸収させた造形物を加熱する工程と、を含むことを特徴とする。 The present invention solves such a problem, and the first aspect is a method for manufacturing a ceramic article using an additional manufacturing technique, in which a powder containing ceramic as a main component is irradiated with an energy beam to solidify the powder. A step of producing a modeled product, a step of causing the modeled object to absorb a metal ion-containing liquid containing water and metal ions, and a step of heating the modeled object having absorbed the metal ion-containing liquid. It is characterized by including.
 本発明の第二の観点は、エネルギービームを用いる付加製造技術によってセラミックス物品を製造するためのセラミックス物品製造用キットであって、セラミックスを主成分とする粉末と、金属イオン含有液と、を含んでおり、前記金属イオン含有液は水と金属イオンとを含み、前記金属イオンが、前記セラミックスを主成分とする粉末から作製されるセラミックス造形物に含まれる化合物と共晶を形成しうる金属酸化物を生成することを特徴とする。 The second aspect of the present invention is a kit for manufacturing a ceramic article for manufacturing a ceramic article by an additional manufacturing technique using an energy beam, which includes a powder containing ceramic as a main component and a metal ion-containing liquid. The metal ion-containing liquid contains water and metal ions, and the metal ions can form a co-crystal with a compound contained in a ceramic model made from a powder containing the ceramic as a main component. It is characterized by producing things.
 本発明の第三の観点は、付加製造技術によって形成されたセラミックス造形物に含まれるクラックを補修するために用いられる金属イオン含有液であって、記金属イオン含有液は、水と金属イオンとを含み、前記金属イオンが、前記セラミックス造形物に含まれる化合物と共晶を形成しうる金属酸化物を生成することを特徴とする。 The third aspect of the present invention is a metal ion-containing liquid used for repairing cracks contained in a ceramic model formed by an additive manufacturing technique, and the metal ion-containing liquid is water and metal ions. The metal ion is characterized by producing a metal oxide capable of forming a co-crystal with the compound contained in the ceramic model.
 本発明によれば、高精度かつ機械的強度に優れたセラミックス物品を、付加製造方法を用いて効率よく製造することが可能となる。 According to the present invention, it is possible to efficiently manufacture a ceramic article having high accuracy and excellent mechanical strength by using an additional manufacturing method.
粉末床溶融結合方式を用いたセラミックス物品の製造工程を模式的に示す図である。It is a figure which shows typically the manufacturing process of the ceramic article using the powder bed melt-bonding method. 粉末床溶融結合方式を用いたセラミックス物品の製造工程を模式的に示す図である。It is a figure which shows typically the manufacturing process of the ceramic article using the powder bed melt-bonding method. 粉末床溶融結合方式を用いたセラミックス物品の製造工程を模式的に示す図である。It is a figure which shows typically the manufacturing process of the ceramic article using the powder bed melt-bonding method. 粉末床溶融結合方式を用いたセラミックス物品の製造工程を模式的に示す図である。It is a figure which shows typically the manufacturing process of the ceramic article using the powder bed melt-bonding method. 粉末床溶融結合方式を用いたセラミックス物品の製造工程を模式的に示す図である。It is a figure which shows typically the manufacturing process of the ceramic article using the powder bed melt-bonding method. 粉末床溶融結合方式を用いたセラミックス物品の製造工程を模式的に示す図である。It is a figure which shows typically the manufacturing process of the ceramic article using the powder bed melt-bonding method. 粉末床溶融結合方式を用いたセラミックス物品の製造工程を模式的に示す図である。It is a figure which shows typically the manufacturing process of the ceramic article using the powder bed melt-bonding method. 粉末床溶融結合方式を用いたセラミックス物品の製造工程を模式的に示す図である。It is a figure which shows typically the manufacturing process of the ceramic article using the powder bed melt-bonding method. 指向性エネルギー積層方式を用いたセラミックス物品の製造工程を模式的に示す図である。It is a figure which shows typically the manufacturing process of the ceramic article using the directed energy stacking method. 指向性エネルギー積層方式を用いたセラミックス物品の製造工程を模式的に示す図である。It is a figure which shows typically the manufacturing process of the ceramic article using the directed energy stacking method. 指向性エネルギー積層方式を用いたセラミックス物品の製造工程を模式的に示す図である。It is a figure which shows typically the manufacturing process of the ceramic article using the directed energy stacking method. 共晶関係にある場合の成分Xと成分Yの組成比と、それぞれの組成比における溶融温度と状態を表す相図の例である。It is an example of the phase diagram showing the composition ratio of the component X and the component Y in the case of the eutectic relationship, and the melting temperature and the state at each composition ratio. 本発明の実施例において、ある層にレーザーを走査しながら照射する過程を示す模式的斜視図である。In the embodiment of the present invention, it is a schematic perspective view which shows the process of irradiating a certain layer while scanning a laser. 図4Aに続いて造形する層にレーザーを走査しながら照射する過程を示す模式的斜視図である。FIG. 4A is a schematic perspective view showing a process of irradiating a layer to be formed following FIG. 4A while scanning a laser. 実施例1で得られたセラミックス物品の光学顕微鏡像である。It is an optical microscope image of the ceramic article obtained in Example 1. FIG.
 以下、本発明の実施形態について、図面を参照して説明するが、本発明はこれらの実施形態や具体例に限定されるものではなく、本発明の技術思想の範囲内で変更が可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to these embodiments and specific examples, and can be modified within the scope of the technical idea of the present invention. ..
 特許文献1では、高い機械的強度を得るために、造形物の形状によっては、金属成分含有液を造形物に吸収させて加熱する工程を複数回繰り返す必要があった。これは、金属成分含有液が造形物に対する濡れ性のよい有機溶媒を多く含んでいるため、造形物に一旦吸収された金属成分含有液が漏出しやすくなっているためと考えられる。そこで、発明者らは、金属成分含有液の成分について検討を行い、本発明を完成するに至った。 In Patent Document 1, in order to obtain high mechanical strength, it was necessary to repeat the process of absorbing the metal component-containing liquid in the modeled object and heating it a plurality of times depending on the shape of the modeled object. It is considered that this is because the metal component-containing liquid contains a large amount of an organic solvent having good wettability to the modeled object, so that the metal component-containing liquid once absorbed by the modeled object tends to leak out. Therefore, the inventors have studied the components of the metal component-containing liquid and have completed the present invention.
 具体的には、付加製造法によって形成されたセラミックス造形物に、水と金属イオンとを含む金属イオン含有液を吸収させた後に加熱処理を行う。これにより、造形物に含まれるクラックの近傍だけを局所的に溶融させ、クラックを低減ないし消滅せしめるものである。 Specifically, the ceramic model formed by the addition manufacturing method is subjected to heat treatment after absorbing a metal ion-containing liquid containing water and metal ions. As a result, only the vicinity of the cracks contained in the modeled object is locally melted, and the cracks are reduced or eliminated.
 付加製造技術は、造形モデルの三次元形状データに基づいて材料を結合させて物体を作製する技術であり、層状に材料を結合させる手法が広く用いられている。付加製造技術は、従来の型成形法や削り出しなどの除去加工法では作製が困難であった、複雑形状や微細形状を有するセラミックス物品を実現することができる。本発明に係るセラミックス物品の付加製造技術には、粉末床溶融結合方式または指向性エネルギー積層方式(いわゆるクラッディング方式)の付加製造技術が含まれる。本発明に係る金属イオン含有液は、粉末床溶融結合方式または指向性エネルギー積層方式の付加製造法によって形成された造形物に対して、好適に用いることができる。 The additional manufacturing technique is a technique for forming an object by joining materials based on three-dimensional shape data of a modeling model, and a method of joining materials in layers is widely used. The additional manufacturing technique can realize a ceramic article having a complicated shape or a fine shape, which is difficult to manufacture by a conventional molding method or a removal processing method such as shaving. The additional manufacturing technique for ceramic articles according to the present invention includes an additional manufacturing technique of a powder bed melt coupling method or a directed energy lamination method (so-called cladding method). The metal ion-containing liquid according to the present invention can be suitably used for a model formed by an addition manufacturing method of a powder bed melt-bonding method or a directed energy lamination method.
 以下、金属イオン含有液を用いた処理工程を含むセラミックス物品の製造方法、セラミックス物品の造形に用いられる粉末および金属イオン含有液、および本発明にかかる製造方法によって製造されるセラミックス物品について説明する。 Hereinafter, a method for manufacturing a ceramic article including a treatment step using a metal ion-containing liquid, a powder and a metal ion-containing liquid used for modeling the ceramic article, and a ceramic article manufactured by the manufacturing method according to the present invention will be described.
 (セラミックス物品の製造方法)
 本発明のセラミックス物品の製造方法は、以下の3つの工程を含んでいる。
 (i)セラミックスを主成分とする粉末にエネルギービームを照射し、前記粉末を固化させて造形物を作製する工程
 (ii)前記造形物に、水と金属イオンとを含む金属イオン含有液を吸収させる工程
 (iii)前記金属イオン含有液を吸収させた造形物を加熱する工程
(Manufacturing method of ceramic articles)
The method for producing a ceramic article of the present invention includes the following three steps.
(I) A step of irradiating a powder containing ceramics as a main component with an energy beam to solidify the powder to produce a model (ii) The model absorbs a metal ion-containing liquid containing water and metal ions. Step (iii) Step of heating the modeled object that has absorbed the metal ion-containing liquid.
 以下では、汎用的なセラミックスである酸化アルミニウムを主成分とする粉末を用いて造形を行う場合を例にとり、各工程を具体的に説明する。ただし、本発明の技術思想は、酸化アルミニウムを主成分とする粉末に限定されるものではなく、酸化ケイ素を主成分とする粉末やその他の粉末を用いた造形にも適用することができる。目的に応じて、複数種類のセラミックスが混合された粉末を用いた造形にも適用可能である。例えば、ムライトやコージライトなどからなる造形物を製造するために、酸化アルミニウムや酸化ケイ素、酸化マグネシウムなどを混合した粉末を用いた造形にも、適用することができる。 In the following, each process will be specifically described by taking as an example a case where modeling is performed using a powder containing aluminum oxide, which is a general-purpose ceramic, as a main component. However, the technical idea of the present invention is not limited to the powder containing aluminum oxide as a main component, and can be applied to the molding using a powder containing silicon oxide as a main component and other powders. Depending on the purpose, it can also be applied to modeling using powder in which a plurality of types of ceramics are mixed. For example, it can also be applied to modeling using a powder mixed with aluminum oxide, silicon oxide, magnesium oxide, etc. in order to produce a model made of mullite, cordylite, or the like.
 本発明において、セラミックス造形物を形成するための原料粉末は、無機化合物の粉末で構成されていればよい。本発明では、「セラミックス」を、無機化合物が焼結された多結晶体だけでなく、非晶質や単結晶からなる無機化合物を含む意味で用いる。 In the present invention, the raw material powder for forming the ceramic model may be composed of the powder of the inorganic compound. In the present invention, "ceramics" is used in the sense that it includes not only a polycrystal in which an inorganic compound is sintered but also an inorganic compound composed of an amorphous or a single crystal.
 また、本発明では、成分について論じる対象(粉末、造形物または物品)の中で、モル比で一番多く含まれる成分を主成分とよぶ。「主とする成分」も主成分と同義である。 Further, in the present invention, among the objects (powder, modeled object or article) for which the components are discussed, the component contained most in the molar ratio is referred to as the main component. "Main component" is also synonymous with the main component.
 <工程(i)>
 セラミックスを主成分とする粉末(原料粉末)にエネルギービームを照射して前記粉末を焼結または溶融および凝固させて固化部を形成して造形物を得る工程である。セラミックスを主成分とする粉末とは、1cm以上の任意量の粉末を分析した際に、90モル%以上がセラミックスである粉末をいう。好ましくは、99モル%以上がセラミックスである。複数種類のセラミックスを含む場合、その合計量が90モル%以上であればセラミックスを主成分とする粉末に該当する。
<Step (i)>
This is a step of irradiating a powder (raw material powder) containing ceramics as a main component with an energy beam to sintered, melt, and solidify the powder to form a solidified portion and obtain a modeled product. The powder containing ceramics as a main component means a powder in which 90 mol% or more is ceramics when an arbitrary amount of powder of 1 cm 3 or more is analyzed. Preferably, 99 mol% or more is ceramics. When a plurality of types of ceramics are contained, if the total amount is 90 mol% or more, it corresponds to a powder containing ceramics as a main component.
 粉末床溶融結合方式を用いた造形手順の基本的なフローを、図1A~1Hを用いて説明する。まず、ステージ151に設置した基台130上にセラミックスを主成分とする粉末101を載置し、ローラー152で敷き均して粉末層102を形成する(図1Aおよび1B)。粉末層102は、所定の厚さでステージ151の上に所定の厚さで敷設された粉末を指す。粉末層102の表面に、エネルギービーム源180から射出したエネルギービームを、製造する物品の三次元形状データに基づいてスキャナ部181で走査しながらエネルギービームを粉末に照射し、照射範囲182の粉末を固化させる。照射範囲182では、エネルギービームの照射によって粉末が焼結、あるいは溶融および凝固して、固化部100が形成される(図1C)。次に、ステージ151を降下させ、前記造形物100上に粉末層102を新たに形成する(図1D)。新たに形成した粉末層102に、図1Cと同様にしてエネルギービームを照射し、固化部100を形成する。このとき、エネルギービームの出力を、先に形成された固化部の、新たに形成した粉末層102側の表層が溶融する程度に調整しておくと、先に形成された固化部と後から形成される固化部とを接合させて一体化することができる。これら一連の工程を繰り返して行うことで、複数の固化部100が一体となった造形物110が形成される(図1Eおよび1F)。最後に、未固化の粉末103を除去し、必要に応じて造形物の不要部分の除去や造形物110と基台と130との分離を行う(図1Gおよび1H)。 The basic flow of the modeling procedure using the powder bed melt-bonding method will be described with reference to FIGS. 1A to 1H. First, a powder 101 containing ceramics as a main component is placed on a base 130 installed on the stage 151 and spread evenly with a roller 152 to form a powder layer 102 (FIGS. 1A and 1B). The powder layer 102 refers to a powder laid with a predetermined thickness on the stage 151 with a predetermined thickness. The energy beam emitted from the energy beam source 180 is scanned on the surface of the powder layer 102 by the scanner unit 181 based on the three-dimensional shape data of the article to be manufactured, and the energy beam is irradiated to the powder to irradiate the powder in the irradiation range 182. Solidify. In the irradiation range 182, the powder is sintered, melted and solidified by irradiation with an energy beam to form a solidified portion 100 (FIG. 1C). Next, the stage 151 is lowered to newly form the powder layer 102 on the model 100 (FIG. 1D). The newly formed powder layer 102 is irradiated with an energy beam in the same manner as in FIG. 1C to form the solidified portion 100. At this time, if the output of the energy beam is adjusted to such an extent that the surface layer on the side of the newly formed powder layer 102 of the previously formed solidified portion melts, the previously formed solidified portion and the later formed solidified portion are formed. It is possible to join and integrate with the solidified portion to be formed. By repeating these series of steps, a model 110 in which a plurality of solidified portions 100 are integrated is formed (FIGS. 1E and 1F). Finally, the unsolidified powder 103 is removed, and if necessary, unnecessary portions of the modeled object are removed and the modeled object 110, the base, and 130 are separated (FIGS. 1G and 1H).
 次に、クラッディング方式を用いた造形手順の基本的なフローを、図2A~2Cを用いて説明する。クラッディング方式は、ノズル201が備える複数の粉末供給孔202から粉末を噴出させ、それらの粉末が焦点を結ぶ領域にエネルギービーム203を照射する。ノズル201を所望の位置に移動させて下地の上に粉末の溶融物を配置すると、ノズル201の通過後に溶融物が固化し、付加的に固化部100を形成することができる(図2A)。この時、粉末床溶融結合方式と同様に、下地の表層が溶融する程度にエネルギービーム203の出力を調整しておくことで、かかる工程を繰り返して、固化部100が一体となった造形物110を得ることができる(図2Bおよび2C)。最後に、必要に応じて造形物の不要部分の除去や造形物と基台の分離を行う。 Next, the basic flow of the modeling procedure using the cladding method will be described with reference to FIGS. 2A to 2C. In the cladding method, powder is ejected from a plurality of powder supply holes 202 provided in the nozzle 201, and the energy beam 203 is irradiated to the region where the powder is focused. When the nozzle 201 is moved to a desired position and the powder melt is placed on the substrate, the melt is solidified after passing through the nozzle 201, and the solidified portion 100 can be additionally formed (FIG. 2A). At this time, by adjusting the output of the energy beam 203 to the extent that the surface layer of the base is melted, as in the powder bed melt-bonding method, the process is repeated and the solidified portion 100 is integrated into the model 110. Can be obtained (FIGS. 2B and 2C). Finally, if necessary, unnecessary parts of the modeled object are removed and the modeled object and the base are separated.
 いずれの方式においても、粉末にエネルギービームを照射すると、粉末がエネルギーを吸収し、該エネルギーが熱に変換されて粉末が溶融する。そして、エネルギービームの通過により溶融部への照射が終了すると、溶融部が周りの雰囲気および隣接部によって冷却され、焼結あるいは凝固して固化部が形成される。この時、固化部が形成される過程における冷却速度が速いために、固化部(一体化した固化部を含む)の表層および内部に発生する応力や、非固化部と固化部との間に生じる温度差に起因する熱応力により、クラックが形成される。 In either method, when the powder is irradiated with an energy beam, the powder absorbs energy, and the energy is converted into heat to melt the powder. When the irradiation to the molten portion is completed by the passage of the energy beam, the molten portion is cooled by the surrounding atmosphere and the adjacent portion, and is sintered or solidified to form a solidified portion. At this time, since the cooling rate in the process of forming the solidified portion is high, stress generated in the surface layer and the inside of the solidified portion (including the integrated solidified portion) and generated between the non-solidified portion and the solidified portion. Cracks are formed by the thermal stress caused by the temperature difference.
 使用するエネルギービームは、粉末の吸収特性に応じて適切な波長を有する光源を選定するとよい。高精度な造形を行うためには、ビーム径が絞れて指向性が高いレーザービームもしくは電子ビームを採用することが好ましい。汎用性の観点から、1μm波長帯のYAGレーザーやファイバーレーザーや10μm波長帯のCOレーザーなどが、好適なエネルギービームとして挙げられる。 For the energy beam to be used, a light source having an appropriate wavelength may be selected according to the absorption characteristics of the powder. In order to perform high-precision modeling, it is preferable to use a laser beam or an electron beam having a narrow beam diameter and high directivity. From the viewpoint of versatility, a YAG laser having a wavelength band of 1 μm, a fiber laser, a CO 2 laser having a wavelength band of 10 μm, and the like can be mentioned as suitable energy beams.
 酸化アルミニウムを主成分とする粉末は、副成分として、酸化アルミニウムと共晶組成を生じる、希土類元素の酸化物を含むことが好ましい。特に、酸化ガドリニウム(Gd)、酸化イットリウム(Y)、酸化テルビウム(Tb)および酸化プラセオジム(Pr)からなる群より選択される少なくとも一種を含むのが好ましい。例えば、原料粉末が、酸化アルミニウムと共晶組成を生じる酸化ガドリニウムを含むことで、Al-Gd系の共晶組成近傍における融点(共晶点)を、酸化アルミニウム単体の融点よりも300℃以上低くすることができる。従って、少ない熱量で粉末の溶融が可能となり、溶融部の周辺へのエネルギー拡散が抑制されるため、造形精度が向上する。また、原料粉末が酸化アルミニウムと酸化ガドリニウムを含むことで、造形物は2種類以上の相が入り組んだ相分離構造となる。これにより、クラックの伸展が抑えられ、造形物の機械的強度が向上する。原料粉末が、酸化アルミニウムに加えて酸化イットリウムなど他の希土類元素の酸化物を含む場合も、酸化ガドリニウムの場合と同じような効果が得られる。 The powder containing aluminum oxide as a main component preferably contains an oxide of a rare earth element having a eutectic composition with aluminum oxide as a sub-component. In particular, those comprising at least one selected from the group consisting of gadolinium oxide (Gd 2 O 3 ), yttrium oxide (Y 2 O 3 ), terbium oxide (Tb 2 O 3 ) and praseodymium oxide (Pr 2 O 3 ). preferable. For example, when the raw material powder contains gadrinium oxide that produces a eutectic composition with aluminum oxide, the melting point (eutectic point) in the vicinity of the eutectic composition of the Al2O3 - Gd2O3 system is set to the melting point of aluminum oxide alone. It can be lowered by 300 ° C. or more. Therefore, the powder can be melted with a small amount of heat, and energy diffusion to the periphery of the melted portion is suppressed, so that the molding accuracy is improved. Further, since the raw material powder contains aluminum oxide and gadolinium oxide, the modeled product has a phase-separated structure in which two or more kinds of phases are intricate. As a result, the expansion of cracks is suppressed and the mechanical strength of the modeled object is improved. When the raw material powder contains an oxide of another rare earth element such as yttrium oxide in addition to aluminum oxide, the same effect as that of gadolinium oxide can be obtained.
 エネルギービームがレーザービームである場合、粉末がレーザービームに対して十分な吸収能を有していれば、レーザービーム照射部が局所的に昇温し、非造形部への熱の影響が低減するため、造形精度が向上する。たとえば、1μm波長帯のNd:YAGレーザーやファイバーレーザーを用いる場合は、粉末が副成分として、酸化テルビウム(Tb)、酸化プラセオジム(Pr11)、Ti、TiO、SiO、ZnO、アンチモンドープ酸化スズ(ATO)、インジウムドープ酸化スズ(ITO)、MnO、MnO、Mn、Mn、FeO、Fe、Fe、CuO、CuO、Cr、CrO、NiO、V、VO、V、V、Co、CoO、遷移金属炭化物、遷移金属窒化物、Si、AlN、ホウ化物、ケイ化物など、良好なエネルギー吸収を示す成分を含有していることがより好ましい。原料粉末が、酸化テルビウム(Tb)や酸化プラセオジム(Pr11)など、レーザービームに対して良好なエネルギー吸収を示す希土類元素と、他の希土類元素の両方を含んでいることも好ましい。吸収体とは、造形に使用するレーザーに含まれる波長の光に対し、主成分よりも高い吸収能を示す成分(元素或いは化合物)をいう。吸収体の吸収能は、使用される波長のレーザービームに含まれる波長の光に対して、10%以上の吸収率を有することが好ましく、40%以上であればより好ましく、60%以上であればさらに好ましい。 When the energy beam is a laser beam, if the powder has sufficient absorption capacity for the laser beam, the temperature of the laser beam irradiation part is locally raised, and the influence of heat on the non-modeled part is reduced. Therefore, the modeling accuracy is improved. For example, when using an Nd: YAG laser or fiber laser in the 1 μm wavelength band, terbium oxide (Tb 4 O 7 ), placeodim oxide (Pr 6 O 11 ), Ti 2 O 3 , TiO, SiO are used as subcomponents of powder. , ZnO, antimonated tin oxide (ATO), indium-doped tin oxide (ITO), MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , FeO, Fe 2 O 3 , Fe 3 O 4 , Cu 2 O, CuO, Cr 2 O 3 , CrO 3 , NiO, V 2 O 3 , VO 2 , V 2 O 5 , V 2 O 4 , Co 3 O 4 , CoO, Transition Metal Carbide, Transition Metal Nitride, Si 3 N 4 , AlN, borates, silicates and the like, more preferably containing components exhibiting good energy absorption. The raw material powder may contain both rare earth elements that exhibit good energy absorption for laser beams, such as terbium oxide (Tb 4 O 7 ) and praseodymium oxide (Pr 6 O 11 ), as well as other rare earth elements. preferable. The absorber is a component (element or compound) that exhibits a higher absorption capacity than the main component for light having a wavelength contained in the laser used for modeling. The absorption capacity of the absorber is preferably 10% or more, more preferably 40% or more, and 60% or more with respect to the light of the wavelength contained in the laser beam of the wavelength used. Is even more preferable.
 以上の観点から、特に好適な原料粉末として、Al-Gd、Al-GdAlO、Al-Tb、Al-Gd-Tb、Al-GdAlO-Tb、Al-Pr11、Al-Gd-Pr11、Al-GdAlO-Pr11、Al-Y、Al-YAlO、Al-YAl12、Al-Y-Tb、Al-YAlO-Tb、Al-YAl12-Tb、Al-Y-Pr11、Al-YAlO-Pr11、Al-YAl12-Pr11、Al-ZrO、Al-ZrO-Tb、Al-ZrO-Pr11、Al-SiO、Al-Gd-SiO、Al-GdAlO-SiO、Al-Y-SiO、Al-YAlO-SiO、Al-YAl12-SiO、Al-ZrO-SiO、SiO-Tb、SiO-Pr11、(MgO-Al-SiO)-Tb、(MgO-Al-SiO)-Pr11、(Al-SiO)-Tb、(Al-SiO)-Pr11等が挙げられる。 From the above viewpoints, as particularly suitable raw material powders, Al 2 O 3 -Gd 2 O 3 , Al 2 O 3 -Gd AlO 3 , Al 2 O 3 -Tb 4 O 7 , Al 2 O 3 -Gd 2 O 3- Tb 4 O 7 , Al 2 O 3 -GdAlO 3 -Tb 4 O 7 , Al 2 O 3 -Pr 6 O 11 , Al 2 O 3 -Gd 2 O 3 -Pr 6 O 11 , Al 2 O 3 -GdAlO 3 -Pr 6 O 11 , Al 2 O 3 -Y 2 O 3 , Al 2 O 3 -YAlO 3 , Al 2 O 3 -Y 3 Al 5 O 12 , Al 2 O 3 -Y 2 O 3 -Tb 4 O 7 , Al 2 O 3 -YAlO 3 -Tb 4 O 7 , Al 2 O 3 -Y 3 Al 5 O 12 -Tb 4 O 7 , Al 2 O 3 -Y 2 O 3 -Pr 6 O 11 , Al 2 O 3 -YALo 3 -Pr 6 O 11 , Al 2 O 3 -Y 3 Al 5 O 12 -Pr 6 O 11 , Al 2 O 3 -ZrO 2 , Al 2 O 3 -ZrO 2 -Tb 4 O 7 , Al 2 O 3 -ZrO 2 -Pr 6 O 11 , Al 2 O 3 -SiO, Al 2 O 3-Gd 2 O 3-SiO, Al 2 O 3 - GdAlO 3 - SiO , Al 2 O 3 -Y 2 O 3 -SiO , Al 2 O 3 -YAlO 3 -SiO, Al 2 O 3 -Y 3 Al 5 O 12 -SiO, Al 2 O 3 -ZrO 2 -SiO, SiO 2 -Tb 4 O 7 , SiO 2 -Pr 6 O 11 , (MgO-Al 2 O 3 -SiO 2 ) -Tb 4 O 7 , (MgO-Al 2 O 3 -SiO 2 ) -Pr 6 O 11 , (Al 2 O 3 -SiO 2 ) -Tb 4 O 7 , (Al 2 O 3 -SiO 2 ) -Pr 6 O 11 and the like can be mentioned.
 セラミックスを主成分とする粉末は、共晶になりうる組成物を、共晶組成を成す比率で含有していることが好ましい。共晶組成とは、相図で示される共晶点における組成であるが、エネルギービームを用いる造形プロセスは、非常に高速に加熱状態と冷却状態が生じるため、共晶点から多少ずれた組成であっても、共晶組織が形成される。そのため、本発明における共晶組成は、共晶組織が形成される組成範囲と定義したほうが相応しく、相図で言うところの共晶組成からのずれが±10mol%の範囲が含まれる。 It is preferable that the powder containing ceramics as a main component contains a composition that can be eutectic in a ratio of forming a eutectic composition. The eutectic composition is the composition at the eutectic point shown in the phase diagram, but in the modeling process using the energy beam, the heating state and the cooling state occur at a very high speed, so that the composition is slightly deviated from the eutectic point. Even if there is, a eutectic structure is formed. Therefore, the eutectic composition in the present invention should be defined as a composition range in which a eutectic structure is formed, and includes a range in which the deviation from the eutectic composition as shown in the phase diagram is ± 10 mol%.
 酸化アルミニウム以外のセラミックスを主成分とする粉末の場合も、酸化アルミニウムを主成分とする粉末と同様に、共晶をなす組成物を、共晶組成を成す比率で含有していることが好ましい。 In the case of a powder containing ceramics as a main component other than aluminum oxide, it is preferable that the powder having a eutectic composition is contained in a ratio of forming a eutectic composition, similarly to the powder containing aluminum oxide as a main component.
 成分Xと成分Yが共晶を形成しうることを、「成分Xと成分Yが共晶関係にある」と表現することがある。共晶とは、2成分以上を含む液体から、同時に晶出する2種以上の結晶の混合物である。成分Xと成分Yが共晶関係にある場合、共晶点(共融点ともいう)が存在する。共晶点は共晶が生じる温度であり、温度を縦軸、成分組成比を横軸にして表される状態図において、液相曲線の極小値に相当する。共晶点に相当する組成を共晶組成(または共融組成)と呼ぶ。したがって、成分Xと成分Yの共晶点は、成分Xと成分Yそれぞれの融点よりも低い。 The fact that the component X and the component Y can form a eutectic may be expressed as "the component X and the component Y have a eutectic relationship". Eutectic is a mixture of two or more types of crystals that crystallize simultaneously from a liquid containing two or more components. When the component X and the component Y have a eutectic relationship, a eutectic point (also referred to as a eutectic melting point) exists. The eutectic point is the temperature at which eutectic occurs, and corresponds to the minimum value of the liquid phase curve in the state diagram represented by the temperature on the vertical axis and the component composition ratio on the horizontal axis. The composition corresponding to the eutectic point is called the eutectic composition (or eutectic composition). Therefore, the eutectic point of the component X and the component Y is lower than the melting point of each of the component X and the component Y.
 なお、本明細書では、上述のAlやTbなどのように、化学式を用いて材料を表現する場合があるが、本発明の趣旨を満たせば、実際の材料の元素の構成比が化学式の比と厳密に一致している必要はない。即ち、ある材料を構成する金属元素の価数は、化学式から想定される価数と多少異なっていてもよく、例えば、SiOの場合、吸収体の構成元素比がSi:O=1:1.30であっても本発明に含まれる。好ましくは、化学量論比からのずれが±20%以内である。 In this specification, a material may be expressed using a chemical formula such as Al 2 O 3 and Tb 4 O 7 described above, but if the gist of the present invention is satisfied, the element of the actual material may be expressed. The composition ratio does not have to be exactly the same as the ratio in the chemical formula. That is, the valences of the metal elements constituting a certain material may be slightly different from the valences assumed from the chemical formula. For example, in the case of SiO, the constituent element ratio of the absorber is Si: O = 1: 1. Even if it is 30, it is included in the present invention. Preferably, the deviation from the stoichiometric ratio is within ± 20%.
 <工程(ii)>
 工程(ii)では、工程(i)で得られたセラミックス造形物に、水と金属イオンとを含む金属イオン含有液を吸収させる。
<Process (ii)>
In the step (ii), the ceramic model obtained in the step (i) is made to absorb the metal ion-containing liquid containing water and metal ions.
 前述したように、セラミックスを主成分とする粉末を用いて、粉末床溶融結合方式やクラッディング方式などの直接造形方式で製造された造形物にはクラックが多く含まれている。これは、溶融部が固化する際の冷却速度が速いために造形物の表層および内部に発生する応力や、材料自体の熱伝導率が小さいために非固化部と固化部との間に生じる温度差に起因する熱応力によるものと考えられる。造形物は、このような固化部の接合によって形成されるため、クラックは造形物全体に、エネルギービームの走査方向に略依存した形で碁盤の目のように存在する。造形物の断面を走査電子顕微鏡等で確認すると、幅が数nmから数μmのクラックが多い。クラックの長さは、数μmから数mmまで様々である。 As mentioned above, many cracks are contained in the modeled object manufactured by the direct modeling method such as the powder bed melt bonding method or the cladding method using the powder containing ceramics as the main component. This is due to the stress generated in the surface layer and inside of the modeled object due to the high cooling rate when the molten part solidifies, and the temperature generated between the non-solidified part and the solidified part due to the low thermal conductivity of the material itself. It is considered to be due to the thermal stress caused by the difference. Since the modeled object is formed by joining such solidified portions, cracks exist in the entire modeled object like a grid in a form substantially dependent on the scanning direction of the energy beam. When the cross section of the modeled object is confirmed with a scanning electron microscope or the like, there are many cracks having a width of several nm to several μm. The length of the crack varies from a few μm to a few mm.
 このようなクラックを有する造形物に金属イオン含有液を吸収させると、造形物のクラック内に金属イオンが行き渡る。そして、金属イオン含有液を吸収させた造形物を、後述の工程(iii)において加熱することで、クラックの近傍だけを選択的に溶融させることができる。その結果、造形物の形状変化を抑えながら、造形物中に存在するクラックを補修して、造形物の機械的強度を向上させることが可能となる。 When the metal ion-containing liquid is absorbed by the model having such cracks, the metal ions are distributed in the cracks of the model. Then, by heating the modeled object that has absorbed the metal ion-containing liquid in the step (iii) described later, only the vicinity of the crack can be selectively melted. As a result, it is possible to repair cracks existing in the modeled object and improve the mechanical strength of the modeled object while suppressing the change in the shape of the modeled object.
 [金属イオン含有液]
 工程(ii)で使用する金属イオン含有液には、少なくとも水と金属イオンとを含む溶液、好ましくは水と金属イオンと安定化剤とを含む溶液を用いる。例えば水を溶媒とするゾル液を用いることができる。後に詳述するが、金属イオン含有液に含まれる金属イオンは、その酸化物が造形物に含まれる化合物、すなわち原料粉末に含まれる化合物の少なくとも一種類と共晶を形成しうるものが好ましい。特に金属イオン含有液に含まれる金属イオンとして好ましい元素は、Li、Be、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Rb、Sr、Y、Zr、Nb、Mo、Cs、Ba、希土類元素、Hf、Ta、Wである。また、これら金属イオンを複数種含むことも好ましい。
[Metal ion-containing liquid]
As the metal ion-containing liquid used in the step (ii), a solution containing at least water and metal ions, preferably a solution containing water, metal ions and a stabilizer is used. For example, a sol solution using water as a solvent can be used. As will be described in detail later, the metal ion contained in the metal ion-containing liquid is preferably one in which the oxide can form a eutectic with at least one compound contained in the model, that is, a compound contained in the raw material powder. Particularly preferable elements as metal ions contained in the metal ion-containing liquid are Li, Be, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn. , Ga, Ge, Rb, Sr, Y, Zr, Nb, Mo, Cs, Ba, rare earth elements, Hf, Ta, W. It is also preferable to contain a plurality of these metal ions.
 本発明にかかる金属イオン含有液は、水を溶媒として含んでいる点を特徴としている。これは、特許文献1について行った考察に基づいてなされたもので、金属イオン含有液に水を含有させることにより、造形物に対する金属イオン含有液の濡れ性を低減し、造形物に一旦吸収されると漏出しにくい金属イオン含有液を実現している。金属イオン含有液に含まれる水の量は、金属イオンを除く液に対して10質量%以上が好ましい。 The metal ion-containing liquid according to the present invention is characterized in that it contains water as a solvent. This was done based on the consideration made with respect to Patent Document 1. By including water in the metal ion-containing liquid, the wettability of the metal ion-containing liquid with respect to the modeled object is reduced, and the metal ion-containing solution is once absorbed by the modeled object. Then, a metal ion-containing liquid that does not easily leak is realized. The amount of water contained in the metal ion-containing liquid is preferably 10% by mass or more with respect to the liquid excluding metal ions.
 さらに、本発明にかかる金属イオン含有液は、金属イオンを含む点も特徴の1つである。造形物のクラックの補修に寄与する成分が金属イオンとして含まれることによって、微細なクラックに侵入し、補修することが可能となる。従って、特に微小な造形物や造形物の微細構造において、機械的強度に大きく影響する微細なクラックを補修することが可能となる。 Further, one of the features of the metal ion-containing liquid according to the present invention is that it contains metal ions. By containing a component that contributes to the repair of cracks in the modeled object as metal ions, it becomes possible to invade and repair fine cracks. Therefore, it is possible to repair minute cracks that greatly affect the mechanical strength, especially in a minute modeled object or a microstructure of the modeled object.
 金属イオンは、金属塩や金属アルコキシドなどの金属イオンを含む原料を溶媒に溶解させることで生成することができる。前記金属塩としては、水溶性のものであれば特に限定されず、硝酸塩、硫酸塩、酢酸塩、乳酸塩、塩化物からなる群より選択することができる。 Metal ions can be generated by dissolving a raw material containing metal ions such as a metal salt or a metal alkoxide in a solvent. The metal salt is not particularly limited as long as it is water-soluble, and can be selected from the group consisting of nitrates, sulfates, acetates, lactates, and chlorides.
 例えば、ジルコニウムイオンを含む金属イオン含有液(ジルコニウムイオン含有液)を調製する場合、金属イオン生成する原料には、酢酸ジルコニウム、硝酸ジルコニウム、オキシ硝酸ジルコニウム、硝酸ジルコニウムアンモニウム、硫酸ジルコニウム、硫酸ジルコニウムアンモニウム、オキシ硫酸ジルコニウム、塩化ジルコニムオキシ塩化ジルコニウム、乳酸ジルコニウムなどのジルコニウム塩、ジルコニウムテトラエトキシド、ジルコニウムテトラn-プロポキシド、ジルコニウムテトライソプロポキシド、ジルコニウムテトラn-ブトキシド、ジルコニウムテトラt-ブトキシドなどのジルコニウムアルコキシドを用いることができる。 For example, when preparing a metal ion-containing liquid containing zirconium ions (zirconium ion-containing liquid), the raw materials for generating metal ions include zirconium acetate, zirconium nitrate, zirconium oxynitrite, zirconium nitrate, zirconium sulfate, zirconium sulfate ammonium. Zirconium oxysulfate, zirconium chloride Zirconium chloride, zirconium salts such as zirconium lactate, zirconium tetraethoxydo, zirconium tetra n-propoxide, zirconium tetraisopropoxide, zirconium tetra n-butoxide, zirconium tetra t-butoxide, etc. Alkoxides can be used.
 アルミニウムイオンを含む金属イオン含有液(アルミニウムイオン含有液)を調製する場合、金属イオン生成する原料には、硫酸アルミニウム、硝酸アルミニウム、酢酸アルミニウム、リン酸アルミニウム、乳酸アルミニウムなどのアルミニウム塩や、アルミニウムsec-ブトキシド、アルミニウムエトキシド、アルミニウムn-ブトキシド、アルミニウムtert-ブトキシド、アルミニウムイソプロポキシド等などのアルミニウムアルコキシドを用いることができる。 When preparing a metal ion-containing liquid containing aluminum ions (aluminum ion-containing liquid), the raw materials for generating metal ions include aluminum salts such as aluminum sulfate, aluminum nitrate, aluminum acetate, aluminum phosphate, and aluminum lactate, and aluminum sec. -Aluminum alkoxides such as butoxide, aluminum ethoxydo, aluminum n-butoxide, aluminum tert-butoxide, aluminum isopropoxide and the like can be used.
 ケイ酸イオンを含む金属イオン含有液(ケイ素イオン含有液)を調製する場合には、金属イオン生成する原料として、ケイ酸ナトリウム、ケイ酸リチウムなどのケイ酸塩やテトラエトキシシラン、テトラエトキシチタン、トリエトキシアルミニウムなどのケイ素アルコキシドを用いることができる。 When preparing a metal ion-containing liquid containing silicate ions (silicon ion-containing liquid), silicates such as sodium silicate and lithium silicate, tetraethoxysilane, and tetraethoxytitanium are used as raw materials for generating metal ions. Silicon alkoxides such as triethoxyaluminum can be used.
 リチウムイオンを含む金属イオン含有液(リチウムイオン含有液)を調製する場合は、金属イオン生成する原料として、酢酸リチウム、硝酸リチウム、硝酸リチウム、硫酸リチウム、乳酸リチウムなどのリチウム塩、リチウム tert ブトキシド、リチウムエトキシド、リチウムイソプロポキシド、リチウムメトキシドなどのリチウムアルコキシドを用いることができる。 When preparing a metal ion-containing liquid containing lithium ions (lithium ion-containing liquid), as raw materials for generating metal ions, lithium acetate, lithium nitrate, lithium nitrate, lithium sulfate, lithium salts such as lithium lactate, lithium tert butoxide, etc. Lithium alkoxides such as lithium ethoxydo, lithium isopropoxide, and lithium methoxyd can be used.
 マグネシウムイオンを含む金属イオン含有液(マグネシウムイオン含有液)を調製する場合は、金属イオン生成する原料として、酢酸マグネシウム、硝酸マグネシウム、硝酸マグネシウム、硫酸マグネシウム、乳酸マグネシウムなどのマグネシウム塩、マグネシウムエトキシド、マグネシウム di-tertブトキシドなどのマグネシウムアルコキシドを用いることができる。 When preparing a metal ion-containing liquid containing magnesium ions (magnesium ion-containing liquid), as raw materials for generating metal ions, magnesium acetate, magnesium nitrate, magnesium nitrate, magnesium sulfate, magnesium salts such as magnesium lactate, magnesium ethoxydo, etc. Magnesium alkoxides such as magnesium di-tert butoxide can be used.
 金属イオンとしてジルコニウムイオン、ケイ酸イオン、リチウムイオンあるいはマグネシウムイオンを含む金属イオン含有液は、主成分が酸化アルミニウムの造形物のクラック補修に好適である。また、金属イオンとしてジルコニウムイオン、アルミニウムイオン、リチウムイオンあるいはマグネシウムイオンを含む金属イオン含有液は、主成分が酸化ケイ素の造形物のクラック補修に好適である。 A metal ion-containing liquid containing zirconium ion, silicate ion, lithium ion or magnesium ion as metal ion is suitable for repairing cracks in a model whose main component is aluminum oxide. Further, a metal ion-containing liquid containing zirconium ions, aluminum ions, lithium ions or magnesium ions as metal ions is suitable for repairing cracks in a model whose main component is silicon oxide.
 造形物に金属イオン含有液を吸収させる際に、金属イオンが造形物全体に行きわたらせるため、金属イオン含有液に安定化剤を加えて液の特性を調整するのが好ましい。金属イオン含有液に添加する安定化剤としては、有機酸、界面活性剤、キレート剤からなる群より選択される少なくとも一種が好ましい。 When the metal ion-containing liquid is absorbed by the modeled object, the metal ions are distributed throughout the modeled object, so it is preferable to add a stabilizer to the metal ion-containing liquid to adjust the characteristics of the liquid. As the stabilizer to be added to the metal ion-containing liquid, at least one selected from the group consisting of organic acids, surfactants and chelating agents is preferable.
 有機酸としては、例えばアクリル酸、アクリル酸2-ヒドロキシエチル、2-アクリロキシエチルコハク酸、2-アクリロキシエチルヘキサヒドロフタル酸、2-アクリロキシエチルフタル酸、2-メチルヘキサン酸、2-エチルヘキサン酸、3-メチルヘキサン酸、3-エチルヘキサン酸などが好ましい。 Examples of the organic acid include acrylic acid, 2-hydroxyethyl acrylate, 2-acryloxyethyl succinic acid, 2-acryloxyethyl hexahydrophthalic acid, 2-acryloxyethyl phthalic acid, 2-methylhexane acid and 2-. Ethyl hexane acid, 3-methyl hexane acid, 3-ethyl hexane acid and the like are preferable.
 界面活性剤としては、例えばオレイン酸ナトリウム、脂肪酸カリウム、アルキルリン酸エステルナトリウム、塩化アルキルメチルアンモニウム、アルキルアミノカルボン酸塩などのイオン性界面活性剤、ポリオキシエチレンラウリン脂肪酸エステル、ポリオキシエチレンアルキルフェニルエーテルなどの非イオン系界面活性剤が好ましい。 Examples of the surfactant include ionic surfactants such as sodium oleate, potassium fatty acid, sodium alkyl phosphate, alkylmethylammonium chloride, and alkylaminocarboxylate, polyoxyethylene laurin fatty acid ester, and polyoxyethylene alkylphenyl. Nonionic surfactants such as ether are preferred.
 キレート剤としては、グリコール酸、アスコルビン酸、クエン酸、マロン酸、グルコン酸、シュウ酸、コハク酸、リンゴ酸、酒石酸、乳酸などのヒドロキシ酸、グリシン、アラニン、グリシン、グルタミン酸、アスパラギン酸、ヒスチジン、フェニルアラニン、アスパラギン、アルギニン、グルタミン、システィン、ロイシン、リジン、プロリン、セリン、トリプトファン、バリン、チロシンなどのアミノ酸、ジエチレントリアミン5酢酸(DTPA)、ヒドロキシエチルエチレンジアミン3酢酸(HEDTA)、トリエチレンテトラアミン6酢酸(TTHA)、1,3-プロパンジアミン4酢酸(PDTA)、1,3-ジアミノ-6-ヒドロキシプロパン4酢酸(DPTA-OH)、ヒドロキシエチルイミノ2酢酸(HIDA)、ジヒドロキシエチルグリシン(DHEG)、グリコールエーテルジアミン4酢酸(GEDTA)、ジカルボキシメチルグルタミン酸(CMGA)、及び(S,S)-エチレンジアミンジコハク酸(EDDS)などのアミノカルボン酸、1-ヒドロキシエチリデン-1,1-ジホスホン酸(HEDP)、2-ホスホブタノン-1,2,4-トリカルボン酸(PBTC)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、及びニトリロトリス(メチレンホスホン酸)などのホスホン酸、サリチル酸などの芳香族酸が好ましい。 Chelating agents include glycolic acid, ascorbic acid, citric acid, malonic acid, gluconic acid, oxalic acid, succinic acid, malic acid, tartaric acid, hydroxy acids such as lactic acid, glycine, alanine, glycine, glutamic acid, aspartic acid, histidine, Amino acids such as phenylalanine, asparagine, arginine, glutamine, cystine, leucine, lysine, proline, serine, tryptophan, valine, tyrosine, diethylenetriamine 5 acetic acid (DTPA), hydroxyethylethylenediamine 3 acetic acid (HEDTA), triethylenetetraamine 6 acetic acid ( TTHA), 1,3-propanediamine 4-acetic acid (PDTA), 1,3-diamino-6-hydroxypropane 4-acetic acid (DPTA-OH), hydroxyethylimino diacetic acid (HIDA), dihydroxyethylglycine (DHEG), glycol Aminocarboxylic acids such as etherdiamine tetraacetic acid (GEDTA), dicarboxymethyl glutamic acid (CMGA), and (S, S) -ethylenediamine disuccinic acid (EDDS), 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP). , 2-phosphobutanone-1,2,4-tricarboxylic acid (PBTC), ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid), and phosphonic acid such as nitrilotris (methylenephosphonic acid), aromatics such as salicylic acid. Group acids are preferred.
 金属イオンを生成する原料と安定化剤との組み合わせは、どのような組み合わせであっても構わない。ただし、安定化剤の添加量によっては、造形物に対する金属イオン含有液の濡れ性が低下してしまう場合がある。金属イオン含有液に含まれる安定化剤の含有量は、金属イオンに対して10モル%以上300モル%以下が好ましく、50モル%以上200モル%以下がより好ましい。金属イオン含有液に含まれる成分の含有量は、金属イオンについてはICP-MSで、安定化剤などの有機成分は、核磁気共鳴(NMR)や液体クロマトグラフィー質量分析(LC-MS)により測定することができる。 The combination of the raw material that generates metal ions and the stabilizer may be any combination. However, depending on the amount of the stabilizer added, the wettability of the metal ion-containing liquid to the modeled object may decrease. The content of the stabilizer contained in the metal ion-containing liquid is preferably 10 mol% or more and 300 mol% or less, and more preferably 50 mol% or more and 200 mol% or less with respect to the metal ion. The content of components contained in the metal ion-containing liquid is measured by ICP-MS for metal ions and by nuclear magnetic resonance (NMR) or liquid chromatography-mass spectrometry (LC-MS) for organic components such as stabilizers. can do.
 金属塩と水、あるいは金属塩と水と安定化剤とを混合して得られる金属イオン含有液の製造方法は問わない。原料を、すべて一度に混合してもよいし、金属塩と安定化剤を混合してから水を加えて混合してもよいし、金属塩と水を混合してから安定化剤を加えて混合してもよいし、安定化剤と水を混合してから金属塩を混合してもよい。金属塩と安定化剤の組み合わせによっては、混合時に適切な温度で加熱するのも好ましい。 The method for producing a metal ion-containing liquid obtained by mixing a metal salt with water or a metal salt with water and a stabilizer is not limited. The raw materials may be mixed all at once, the metal salt and the stabilizer may be mixed and then water may be added and mixed, or the metal salt and water may be mixed and then the stabilizer may be added. It may be mixed, or the stabilizer and water may be mixed and then the metal salt may be mixed. Depending on the combination of the metal salt and the stabilizer, it is also preferable to heat at an appropriate temperature at the time of mixing.
 金属イオン含有液をセラミックス造形物に吸収させると、金属イオンがクラック内に行き渡る。造形物に金属イオン含有液を吸収させる方法は、造形物のクラックを構成する面に一様に金属イオンを介在させることができれば、特に限定されない。金属イオン含有液中に造形物を浸して含浸させてもよいし、金属イオン含有液を霧状にして造形物に吹き付けたり、刷毛などで表面に塗布したりして、吸収させてもよい。また、これらの手法を複数組み合わせてもよいし、同じ手法を複数回繰り返してもよい。 When the metal ion-containing liquid is absorbed by the ceramic model, the metal ions spread in the cracks. The method for allowing the modeled object to absorb the metal ion-containing liquid is not particularly limited as long as the metal ions can be uniformly interposed on the surface constituting the crack of the modeled object. The modeled object may be impregnated by immersing it in the metal ion-containing liquid, or the metal ion-containing solution may be atomized and sprayed on the modeled object, or may be applied to the surface with a brush or the like to be absorbed. Further, a plurality of these methods may be combined, or the same method may be repeated a plurality of times.
 造形物のサイズが大きくなると、造形物の内部まで金属イオンを十分に行き渡らせるため、金属イオン含有液に造形物を浸して減圧脱気する方法を用いるのが好ましい。あるいは、造形物を密閉容器に入れて減圧脱気した後に、金属イオン含有液に浸す方法も好ましい。溶媒として水を含む金属イオン含有液は、有機溶媒と比較してセラミックスに対する濡れ性が小さいため、減圧脱気を用いるこれらの方法は特に好ましい。 When the size of the modeled object becomes large, it is preferable to use a method of immersing the modeled object in a metal ion-containing liquid and degassing under reduced pressure in order to sufficiently distribute the metal ions to the inside of the modeled object. Alternatively, a method in which the modeled object is placed in a closed container, degassed under reduced pressure, and then immersed in a metal ion-containing liquid is also preferable. Since a metal ion-containing liquid containing water as a solvent has a smaller wettability with respect to ceramics than an organic solvent, these methods using vacuum degassing are particularly preferable.
 本発明の金属イオン含有液は、前述のようにセラミックスに対する濡れ性が小さいため、一度造形物のクラックに取り込まれた金属イオン含有液が造形物の外に流出しにくい。すなわち、クラックを補修するために機能する金属イオンを造形物のクラックに多く留めることができる。 As described above, the metal ion-containing liquid of the present invention has low wettability with respect to ceramics, so that the metal ion-containing liquid once incorporated into the cracks of the modeled object does not easily flow out of the modeled object. That is, many metal ions that function to repair cracks can be retained in the cracks of the modeled object.
 造形物のクラックに取り込まれた金属イオンは、後述する工程(iii)の加熱処理の過程で金属酸化物となり、生成される金属酸化物が造形物に含まれる化合物の少なくとも一種類と共晶を形成する。これにより、金属イオンが存在する造形物のクラック近傍の融点を局所的に低下させることができる。 The metal ions incorporated into the cracks of the modeled object become metal oxides in the process of heat treatment in the step (iii) described later, and the generated metal oxides eutectic with at least one of the compounds contained in the modeled object. Form. As a result, the melting point in the vicinity of the crack of the modeled object in which the metal ion is present can be locally lowered.
 金属イオン含有液を吸収させる造形物に含まれる化合物の一種類を成分X、金属イオン含有液に含まれる金属イオンを加熱することによって生成される金属酸化物を成分Yとし、成分Xと成分Yとが共晶関係にあるとする。この時、クラックで生じる局所的な溶融は、以下の現象によるものと推測される。 One type of compound contained in the model that absorbs the metal ion-containing liquid is component X, and the metal oxide produced by heating the metal ion contained in the metal ion-containing liquid is component Y, and component X and component Y are used. And are in a eutectic relationship. At this time, the local melting caused by the crack is presumed to be due to the following phenomenon.
 造形物に金属イオン含有液を吸収させると、造形物の表面のみならず、造形物のクラックを構成する面に、金属イオン含有液に含まれる金属イオンがある量存在することになる。この状態で加熱処理を行うと、造形物のクラックを構成する面に存在する金属イオンが加熱処理の過程で酸化し、成分Yとなる。成分Yが存在する領域の近傍の温度が成分Xと成分Yとの共晶点に近づくと、成分Yの量と共晶組成もしくは共晶組成に近い組成比となる量の成分Xが、造形物の融点よりも低い共晶点で溶融し始め、成分Xと成分Yの融合物が形成される。さらに周囲の成分Xとの融合が進むと、融合物中の成分Xの割合が増加するために融合物の融点が共焦点よりも高くなり、融合物から結晶が析出してクラックの低減あるいは消失に寄与すると考えられる。その結果、造形物の形状を維持したまま、クラックの近傍領域だけを溶融して再結晶化させ、クラックを補修することができていると考えられる。この過程は、加熱処理を一定の状態に維持するだけで進行して完了するため、制御が容易であるという利点もある。 When the metal ion-containing liquid is absorbed by the modeled object, the amount of metal ions contained in the metal ion-containing liquid is present not only on the surface of the modeled object but also on the surface constituting the crack of the modeled object. When the heat treatment is performed in this state, the metal ions existing on the surface constituting the crack of the modeled object are oxidized in the process of the heat treatment to become the component Y. When the temperature near the region where the component Y exists approaches the eutectic point of the component X and the component Y, the amount of the component Y and the eutectic composition or the composition ratio close to the eutectic composition of the component X are formed. It begins to melt at a eutectic point lower than the melting point of the object, forming a fusion of component X and component Y. Further, as the fusion with the surrounding component X progresses, the melting point of the fusion becomes higher than the confocal because the ratio of the component X in the fusion increases, and crystals are precipitated from the fusion to reduce or eliminate cracks. It is thought that it will contribute to. As a result, it is considered that the crack can be repaired by melting and recrystallizing only the region near the crack while maintaining the shape of the modeled object. This process has the advantage of being easy to control because it proceeds and is completed simply by maintaining the heat treatment in a constant state.
 このように、金属イオン含有液の含浸と熱処理によってクラックが補修された部分は、クラックにガラス等を充填して補修する方法に比べて組織間の結合が強くなるため、高い機械的強度を有する造形物が得られると考えられる。また、クラックにガラス等を充填する方法に比べて、極端な組成の偏りが小さくなるため、機械的強度以外の物性に関しても比較的均質な造形物を実現することが可能となる。 In this way, the portion where the crack is repaired by impregnation with the metal ion-containing liquid and heat treatment has higher mechanical strength because the bond between the tissues is stronger than the method of filling the crack with glass or the like to repair it. It is thought that a model can be obtained. Further, since the bias of the extreme composition is smaller than that of the method of filling the cracks with glass or the like, it is possible to realize a relatively homogeneous model in terms of physical properties other than the mechanical strength.
 成分Xと成分Yの組み合わせはいくつも考え得るが、中でも、金属イオンから形成される金属酸化物である成分Yの融点Tが、成分Yと共晶を形成しうる成分Xの融点Tよりも高い関係にあることが好ましい。図3に、成分Xと成分Yとが共晶関係にある場合の成分Xと成分Yの組成比と、それぞれの組成比における温度と状態との関係を表した相図の例を示す。横軸が組成比を表しており、左端において成分Xが100%であり、右端に近づくほど成分Xの割合が減り、成分Yの割合が増える。 There are many possible combinations of component X and component Y, but among them, the melting point Ti of component Y, which is a metal oxide formed from metal ions, is the melting point Tm of component X that can form a eutectic with component Y. It is preferable that the relationship is higher than that. FIG. 3 shows an example of a phase diagram showing the composition ratio of the component X and the component Y when the component X and the component Y have a eutectic relationship, and the relationship between the temperature and the state at each composition ratio. The horizontal axis represents the composition ratio, and the component X is 100% at the left end, and the proportion of the component X decreases and the proportion of the component Y increases as it approaches the right end.
 成分Xの融点をT、成分Yの融点をT、成分Xと成分Yとの共晶点をTとすると、それぞれの温度は、T<T、T<Tの関係を満たす。この場合、金属成分含有液を吸収させた後に行う加熱処理によって到達させる最高温度Tを、T≦T<Tの関係を満たすように設定するとよい。T、Tは、いずれも造形物の融点Tよりも低くなるように設定する。 Assuming that the melting point of the component X is T m , the melting point of the component Y is Ti , and the eutectic point between the component X and the component Y is TE, the respective temperatures are in the relationship of T E <T m and T E < T i . Meet. In this case, it is preferable to set the maximum temperature TS reached by the heat treatment performed after absorbing the metal component-containing liquid so as to satisfy the relationship of TETS < T m . Both TE and TS are set to be lower than the melting point TA of the modeled object.
 さらにT<Tであれば、金属イオン含有液を吸収させる回数や加熱の回数が少なくても高い効果を得ることができる。これは、図3に示すように、T<Tであることにより、成分Xと成分Yとの共晶組成における成分Xの比率が高い状態となり、成分Yの割合が少ない状態でクラック近傍を共晶点で溶融させることができるからである。なお、T<Tは好ましい条件であって、必須条件ではない。 Further, if T m < Ti , a high effect can be obtained even if the number of times of absorbing the metal ion-containing liquid and the number of times of heating are small. As shown in FIG. 3, since T m <Ti, the ratio of the component X in the eutectic composition of the component X and the component Y is high, and the ratio of the component Y is small in the vicinity of the crack. This is because can be melted at the eutectic point. It should be noted that T m < Ti is a preferable condition, not an essential condition.
 例えば、造形物の主成分が酸化アルミニウム(Al;融点T=2070℃)である場合、金属イオン含有液に含まれる金属イオンの主成分は、加熱によって酸化ジルコニウム(ZrO;融点T=2715℃)となる成分が好適である。加熱によって酸化ジルコニウムになる金属イオンを生成する金属塩の候補としては、酢酸ジルコニウム、オキシ酢酸ジルコニウム、オキシ塩化ジルコニウム、オキシ硝酸ジルコニウムなどが挙げられる。AlとZrOは共晶を形成しうる関係にあり、共晶点Tは約1840℃である。つまり、AlとZrOとは、前述した好ましい関係、T<Tを満たす組み合わせである。従って、クラックに吸収させる金属イオン含有液の金属イオンからクラック近傍にZrOが生成されることにより、加熱処理時の最高温度Tを1840℃≦T<2070℃の範囲で設定することができる。そして、Alの融点よりも十分低い温度でクラック近傍を選択的に溶融させ、クラックを低減ないし消失させることができる。 For example, when the main component of the modeled product is aluminum oxide (Al 2 O 3 ; melting point T m = 2070 ° C.), the main component of the metal ions contained in the metal ion-containing liquid is zirconium oxide (ZrO 2 ; melting point) by heating. A component having Ti = 2715 ° C.) is suitable. Examples of metal salts that generate metal ions that become zirconium oxide by heating include zirconium acetate, zirconium oxyacetate, zirconium oxychloride, and zirconium oxynitrite. Al 2 O 3 and Zr O 2 are in a relationship capable of forming a eutectic, and the eutectic point TE is about 1840 ° C. That is, Al 2 O 3 and Zr O 2 are a combination that satisfies the above-mentioned preferable relationship, T m <Ti. Therefore, ZrO 2 is generated in the vicinity of the crack from the metal ion of the metal ion-containing liquid to be absorbed by the crack, so that the maximum temperature TS at the time of heat treatment can be set in the range of 1840 ° C ≤ TS <2070 ° C. can. Then, the vicinity of the crack can be selectively melted at a temperature sufficiently lower than the melting point of Al 2 O 3 , and the crack can be reduced or eliminated.
 造形物がAlとGdAlOの2成分を含んでいる場合は、造形物の融点はこれら2成分の組成比に応じて決まる。例えば、造形物が2成分を共晶組成で含有しているとすると、融点Tは約1720℃(共晶点)になる。このような造形物のクラックを補修する場合、用いる金属イオン含有液は、加熱によって酸化ジルコニウムとなる成分を主とする金属イオンを含んでいるものが好ましい。ZrOの融点Tは2715℃であるが、AlとGdAlOとZrOの3成分の共晶点Tが約1662℃であるため、造形物の融点T約1720℃より十分低い温度Tで加熱することで、クラックを低減ないし消失させることが可能となる。 When the model contains two components, Al 2 O 3 and Gd Al O 3 , the melting point of the model is determined according to the composition ratio of these two components. For example, assuming that the model contains two components in a eutectic composition, the melting point TA is about 1720 ° C. (eutectic point). When repairing cracks in such a model, the metal ion-containing liquid used is preferably one containing metal ions mainly composed of a component that becomes zirconium oxide by heating. The melting point Ti of ZrO 2 is 2715 ° C., but since the eutectic point TE of the three components of Al 2 O 3 and Gd AlO 3 and ZrO 2 is about 1662 ° C., the melting point TA of the modeled product is about 1720 ° C. By heating at a sufficiently low temperature TS , cracks can be reduced or eliminated.
 上述の例に限らず、造形物を構成する化合物の少なくとも一種類(成分X)と、金属イオンを加熱することで形成される金属酸化物(成分Y)との組み合わせは、他にも考え得る。成分Xと成分YがT<Tの関係を満たす好ましい組合せの例としては、[SiO]とZrO、[SiO]とBeO、[SiO]とMgO、[SiO]とAl、[SiO]とCaO、[SiO]とSrO、[SiO]とBaO、[SiO]とSc、[SiO]とY、[SiO]とTi、[SiO]とZrO、[SiO]とHfO、[SiO]とTa、[SiO]とCr、[SiO]とMnO、[SiO]とCoO、[SiO]とNiO、[SiO]とZnO、[Al]とBeO、[Al]とMgO、[Al]とCaO、[Al]とSrO、[Al]とSc、[Al]とY、[Al]とTi、[Al]とZrO、[Al]とHfO、[Al]とCr、[AlとReAlO(Reは希土類)]とZrO、[AlとReAl12(Reは希土類)]とZrO、[AlとReAlO(Reは希土類)]とHfO、[AlとReAl12(Reは希土類)]とHfO、[MgAlSi18]とMgSiO、[MgAlSi18]とMgSiOなどが挙げられるが、これらに限定されるものでもない。なお、上記説明において、[ ]内には造形物を構成する化合物であって成分Xに該当し得る組成を示し、[ ]に続けて金属酸化物の組成を示している。 Not limited to the above example, a combination of at least one kind of compound (component X) constituting a modeled object and a metal oxide (component Y) formed by heating a metal ion can be considered. .. Examples of preferable combinations in which component X and component Y satisfy the relationship of T m <Ti are [SiO 2 ] and ZrO 2 , [SiO 2 ] and BeO, [SiO 2 ] and MgO, [SiO 2 ] and Al. 2 O 3 , [SiO 2 ] and CaO, [SiO 2 ] and SrO, [SiO 2 ] and BaO, [SiO 2 ] and Sc 2 O 3 , [SiO 2 ] and Y 2 O 3 , [SiO 2 ] Ti 2 O 3 , [SiO 2 ] and ZrO 2 , [SiO 2 ] and HfO 2 , [SiO 2 ] and Ta 2 O 5 , [SiO 2 ] and Cr 2 O 3 , [SiO 2 ] and MnO, [SiO 2] 2 ] and CoO, [SiO 2 ] and NiO, [SiO 2 ] and ZnO, [Al 2 O 3 ] and BeO, [Al 2 O 3 ] and MgO, [Al 2 O 3 ] and CaO, [Al 2 O] 3 ] and SrO, [Al 2 O 3 ] and Sc 2 O 3 , [Al 2 O 3 ] and Y 2 O 3 , [Al 2 O 3 ] and Ti 2 O 3 , [Al 2 O 3 ] and ZrO 2 . , [Al 2 O 3 ] and HfO 2 , [Al 2 O 3 ] and Cr 2 O 3 , [Al 2 O 3 and Re AlO 3 (Re is a rare earth)] and ZrO 2 , [Al 2 O 3 and Re 3 Al. 5 O 12 (Re is rare earth)] and ZrO 2 , [Al 2 O 3 and Re AlO 3 (Re is rare earth)] and HfO 2 , [Al 2 O 3 and Re 3 Al 5 O 12 (Re is rare earth)] Examples thereof include, but are not limited to, HfO 2 , [Mg 2 Al 4 Si 5 O 18 ] and Mg 2 SiO 4 , [Mg 2 Al 4 Si 5 O 18 ] and MgSiO 3 . In the above description, the composition of the compound constituting the modeled product and which can correspond to the component X is shown in [], and the composition of the metal oxide is shown following [].
 なお、金属酸化物である成分Yは、金属イオン含有液を吸収させるセラミックス造形物の含有率が3モル%未満の成分であることが好ましい。これにより、加熱でクラック部近傍のみを局所的に溶融させ易くなり、造形物の変形を抑制することができる。金属イオン含有液を吸収させるセラミックス造形物の成分Yの含有率は、より好ましくは2モル%未満であり、さらに好ましくは1モル%未満である。 The component Y, which is a metal oxide, is preferably a component having a content of less than 3 mol% of a ceramic model that absorbs a metal ion-containing liquid. As a result, it becomes easy to locally melt only the vicinity of the crack portion by heating, and deformation of the modeled object can be suppressed. The content of the component Y of the ceramic model that absorbs the metal ion-containing liquid is more preferably less than 2 mol%, still more preferably less than 1 mol%.
 前述したように、クラックを消滅させるためには、それに適した量の成分Yを、クラックに面する造形物表面に存在させることが必要となる。造形物のクラックを構成する面に存在する成分Yの量は、金属イオン含有液を造形物に吸収させる回数、金属イオン含有液中の金属イオンの濃度を、吸収させる造形物の大きさや形状によって調整するとよい。 As described above, in order to eliminate the crack, it is necessary to have an appropriate amount of the component Y on the surface of the modeled object facing the crack. The amount of the component Y present on the surface constituting the crack of the modeled object depends on the number of times the metal ion-containing liquid is absorbed by the modeled object and the concentration of the metal ions in the metal ion-containing liquid depending on the size and shape of the modeled object to be absorbed. You should adjust it.
 金属イオンは、造形物のクラックに密に充填させる必要はなく、造形物のクラックに面する造形物の表面に、ほぼ一様に金属イオン含有液の金属イオンを存在させられればよい。 The metal ions do not need to be densely filled in the cracks of the modeled object, and the metal ions of the metal ion-containing liquid may be present almost uniformly on the surface of the modeled object facing the cracks of the modeled object.
 金属イオン含有液中の金属イオンの濃度は特に限定されないが、目的によっては好ましい濃度がある。 The concentration of metal ions in the metal ion-containing liquid is not particularly limited, but there is a preferable concentration depending on the purpose.
 金属イオン含有液中の金属イオンの含有量が多いと、工程(ii)を1回施すことで、クラックを構成する造形物表面に多くの成分Yを付与することできる。そのため、工程(ii)および工程(iii)を施す回数が少なくてもクラックを十分に低減ないし消滅せしめることができる。一方、金属イオン含有液の金属イオンの含有量が多いと、工程(ii)を1回あたりにクラックに面する造形物表面に付与される成分Yの量が多くなりすぎ、造形物の溶融が、クラック周辺の広い範囲にまで及びやすくなる場合がある。 If the metal ion content in the metal ion-containing liquid is high, a large amount of component Y can be imparted to the surface of the modeled object constituting the crack by performing the step (ii) once. Therefore, cracks can be sufficiently reduced or eliminated even if the number of steps (ii) and steps (iii) is small. On the other hand, if the metal ion-containing liquid contains a large amount of metal ions, the amount of the component Y applied to the surface of the modeled object facing the crack in each step (ii) becomes too large, and the modeled object melts. , It may be easy to cover a wide area around the crack.
 このような観点においては、金属イオン含有液の金属イオンの含有量は金属酸化物に換算して10質量%以上80質量%以下が好ましく、30質量%以上60質量%以下がより好ましい。さらに、微細な形状を有する造形物などに適用する金属イオン含有液では、金属イオン含有液の金属イオンの含有量は、金属酸化物に換算して10質量%以上50質量%未満が好ましく、より好ましくは15質量%以上30質量%未満である。 From this point of view, the metal ion content of the metal ion-containing liquid is preferably 10% by mass or more and 80% by mass or less, and more preferably 30% by mass or more and 60% by mass or less in terms of metal oxide. Further, in the metal ion-containing liquid applied to a model having a fine shape, the metal ion content of the metal ion-containing liquid is preferably 10% by mass or more and less than 50% by mass in terms of metal oxide. It is preferably 15% by mass or more and less than 30% by mass.
 上述の特徴を活かし、クラックを補修する処理の初期段階で、金属イオンの含有量が多い金属イオン含有液を使用してクラックをある程度効率的に低減させた後、金属イオンの含有量が少ない金属イオン含有液を用いてクラックを補修することも好ましい。このように、金属イオンの含有量が互いに異なる複数種類の金属イオン含有液を組み合わせて用いることで、形状精度を担保しながらより効率的にクラックを低減ないし消滅させることができる。 Taking advantage of the above-mentioned characteristics, in the initial stage of the process of repairing cracks, a metal ion-containing liquid having a high metal ion content is used to efficiently reduce the cracks to some extent, and then a metal having a low metal ion content is used. It is also preferable to repair cracks using an ion-containing liquid. As described above, by using a combination of a plurality of types of metal ion-containing liquids having different metal ion contents, it is possible to more efficiently reduce or eliminate cracks while ensuring shape accuracy.
 金属イオン含有液は、溶媒として水を含んでおり造形物に対する濡れ性が低いため、一旦造形物内部に吸収された金属イオン含有液が漏出しづらく、1回の工程(iii)でクラックに侵入した金属イオンを、そのままのクラックを補修に利用することができる。そのため、金属イオン含有液に含まれる金属イオンの量を調整することによって、クラックを補修するのに必要な工程(ii)および(iii)の繰り返し回数を制御することも可能である。金属イオンの含有量の多い金属イオン含有液を用いれば、溶媒として水を含まない金属イオン含有液を用いる場合に比べて、クラックを補修するのに必要な工程(ii)および(iii)の回数を低減することができる。 Since the metal ion-containing liquid contains water as a solvent and has low wettability to the modeled object, the metal ion-containing liquid once absorbed inside the modeled object is difficult to leak and invades the crack in one step (iii). The resulting metal ions can be used for repairing cracks as they are. Therefore, by adjusting the amount of metal ions contained in the metal ion-containing liquid, it is possible to control the number of repetitions of the steps (ii) and (iii) required for repairing the cracks. When a metal ion-containing liquid having a high metal ion content is used, the number of steps (ii) and (iii) required to repair cracks is larger than that in the case of using a metal ion-containing liquid containing no water as a solvent. Can be reduced.
 また工程(i)で得られたセラミックス造形物に金属イオン含有液を吸収させた後のセラミックス造形物表面の金属イオン含有液の乾燥物の付着量ゆらぎを補正する工程があってもよい。さらに当該ゆらぎ補正は1000℃未満の加熱処理後に実施してもよい。 Further, there may be a step of correcting the fluctuation of the adhesion amount of the metal ion-containing liquid on the surface of the ceramic model after the metal ion-containing liquid is absorbed by the ceramic model obtained in the step (i). Further, the fluctuation correction may be performed after the heat treatment at less than 1000 ° C.
 <工程(iii)>
 工程(iii)では、金属イオン含有液を吸収させたセラミックス造形物を加熱処理する。
<Process (iii)>
In the step (iii), the ceramic model that has absorbed the metal ion-containing liquid is heat-treated.
 工程(ii)により、金属イオンは造形物の表層および造形物内部のクラックに広く分布している。例えば、酸化アルミニウムを主成分とする造形物に酸化ジルコニウム金属イオン含有液を吸収させた状態の造形物は、クラック近傍が局所的にAlとZrOの共晶組成に近づく。そのため、クラック近傍の組成が、クラックから離れた部分に比べて、融点が低い状態となる。この組成の分布および融点の差を利用して、造形物を構成する化合物成分と金属イオン含有液に含まれる金属イオンの酸化物の共晶点以上、造形物を構成する材料の融点未満の温度で、造形物を加熱する。酸化アルミニウムを主成分とする造形物に酸化ジルコニウム金属イオン含有液を吸収させた状態の造形物の場合、AlとZrOの共晶点(約1720℃)以上、Alの融点(約2070℃)未満の温度で加熱するとよい。これによって、造形物の形状は維持された状態で、造形物中の金属イオン含有液が存在している部分、即ち、造形物のクラック近傍だけが一部溶融する。 By the step (ii), the metal ions are widely distributed in the surface layer of the modeled object and the cracks inside the modeled object. For example, in a model in which a zirconium oxide metal ion-containing liquid is absorbed in a model containing aluminum oxide as a main component, the vicinity of cracks locally approaches the eutectic composition of Al 2 O 3 and Zr O 2 . Therefore, the composition in the vicinity of the crack has a lower melting point than the portion away from the crack. Utilizing this difference in composition distribution and melting point, the temperature is equal to or higher than the eutectic point of the metal ion oxide contained in the metal ion-containing liquid and the compound component constituting the model, and lower than the melting point of the material constituting the model. Then, heat the modeled object. In the case of a model in which a zirconium oxide metal ion-containing liquid is absorbed in a model containing aluminum oxide as a main component, the eutectic point (about 1720 ° C.) or higher of Al 2 O 3 and Zr O 2 of Al 2 O 3 It is advisable to heat at a temperature below the melting point (about 2070 ° C.). As a result, while the shape of the modeled object is maintained, only the portion where the metal ion-containing liquid exists in the modeled object, that is, the vicinity of the crack of the modeled object is partially melted.
 造形物が2種類の成分で構成されており、これら2成分と酸化ジルコニウムとが3成分で共晶(3相共晶)をなす関係であると、これら3成分の共晶点は2成分の共晶点よりも低い温度となる。この場合、造形物が1成分からなる場合よりさらに低い温度で工程(iii)を実施でき、比較的サイズの大きな造形物であっても造形物内での加熱の温度ムラを低減できるため、より好ましい。また、製造する物品が酸化物である場合、比較的低い温度であれば、大気雰囲気の電気炉等で工程(iii)を簡便に実施することができる。 If the model is composed of two types of components, and these two components and zirconium oxide form a eutectic (three-phase eutectic) with three components, the eutectic points of these three components are two components. The temperature is lower than the eutectic point. In this case, the step (iii) can be carried out at a lower temperature than when the modeled object is composed of one component, and even if the modeled object is relatively large in size, the temperature unevenness of heating in the modeled object can be reduced. preferable. Further, when the article to be manufactured is an oxide, the step (iii) can be easily carried out in an electric furnace or the like in an atmospheric atmosphere if the temperature is relatively low.
 例えば、Al-Gdは、酸化ジルコニウムと3相共晶を形成しうる材料である。Al-Gdを成分とする粉末から形成された造形物にジルコニウムイオンを含む金属イオン含有液を吸収させる工程(ii)を実施すると、造形物のクラックを構成する面にはジルコニウムイオンが存在することになる。この状態で加熱処理を行うと、造形物のクラックを構成する面に存在するジルコニウムイオンは加熱処理の過程で酸化ジルコニウムとなり、酸化ジルコニウムがクラックに面する造形物の表面に生成される。クラックを構成する造形物の表面に存在する酸化ジルコニウムの近傍では、表面に存在する酸化ジルコニウムの量と、3相共晶が形成されうる組成比あるいはその近傍の組成比となる量のAl-Gdが、造形物の融点よりも低い温度で溶融する。その後再結晶化してクラックの補修に寄与する。 For example, Al 2 O 3 -Gd 2 O 3 is a material capable of forming a three-phase eutectic with zirconium oxide. When the step (ii) of absorbing a metal ion-containing liquid containing zirconium ions into a model formed from a powder containing Al 2 O 3 -Gd 2 O 3 as a component, the surface constituting the crack of the model is subjected to the step (ii). Zirconium ions will be present. When the heat treatment is performed in this state, the zirconium ions existing on the surface constituting the crack of the modeled object become zirconium oxide in the process of the heat treatment, and zirconium oxide is generated on the surface of the modeled object facing the crack. In the vicinity of zirconium oxide present on the surface of the model that constitutes the crack, the amount of zirconium oxide present on the surface and the composition ratio at which a three-phase eutectic can be formed or the composition ratio in the vicinity thereof are Al 2 O. 3 -Gd 2 O 3 melts at a temperature lower than the melting point of the model. After that, it recrystallizes and contributes to the repair of cracks.
 このように、クラック近傍を3相共晶が形成されうる組成比に近づければ、融点を局所的に大きく低下させることができる。Al-Gdを成分とする粉末から形成された造形物の場合、工程(ii)でジルコニウムイオン含有液を吸収させた造形物のクラック近傍の最高温度が1600℃以上1710℃以下となるように加熱すると良い。より好ましくは1662℃以上1710℃未満となるように加熱するとよい。 In this way, if the vicinity of the crack is brought close to the composition ratio at which a three-phase eutectic can be formed, the melting point can be significantly lowered locally. In the case of a model formed from a powder containing Al 2 O 3 -Gd 2 O 3 , the maximum temperature near the crack of the model in which the zirconium ion-containing liquid was absorbed in step (ii) is 1600 ° C or higher and 1710 ° C. It is good to heat it so that it becomes as follows. More preferably, it may be heated to 1662 ° C or higher and lower than 1710 ° C.
 前述したように、クラック近傍のみを溶融させるには、金属イオン含有液を造形物のクラックに吸収させた後に行う加熱処理の温度を適切に設定する必要がある。ここで、造形物に含まれるある化合物を成分X、金属イオン含有液から生成される無機酸化物を成分Yとする。成分Xと成分Yとが図3の相図に示す共晶関係にある場合、工程(iii)での加熱処理によって造形物のクラック近傍が到達する最高温度Tが、T≦T<Tとなるように設定することが好ましい。より好ましくは、T≦T<T-(T-T)/2である。これにより、造形物の融点Tよりも十分低い温度でクラックの近傍を選択的に溶融させ、クラックを補修することができるため、造形物の形状を維持し易くなる。 As described above, in order to melt only the vicinity of the crack, it is necessary to appropriately set the temperature of the heat treatment performed after the metal ion-containing liquid is absorbed by the crack of the modeled object. Here, a certain compound contained in the modeled object is referred to as a component X, and an inorganic oxide produced from a metal ion-containing liquid is referred to as a component Y. When the component X and the component Y are in the eutectic relationship shown in the phase diagram of FIG . 3, the maximum temperature TS that the vicinity of the crack of the modeled object reaches by the heat treatment in the step (iii) is TE ≤ TS <. It is preferable to set it to T m . More preferably, TE TS <T m- (T m - TE ) / 2. As a result, the vicinity of the crack can be selectively melted at a temperature sufficiently lower than the melting point TA of the modeled object to repair the crack, so that the shape of the modeled object can be easily maintained.
 クラック近傍が上記最高温度に達しさえすれば、加熱時間は問わない。例えば、造形物を、工程(iii)において、クラック近傍を到達させたい温度で加熱するとよい。このような温度で加熱することにより、クラックとその近傍が溶融して表面エネルギーが減少する方向に移動するため、クラックが減少または消滅するものと考えられる。そして、さらに加熱が進むと金属酸化物が造形物の結晶質・非結晶質内部へと拡散し、金属酸化物成分を含んだ状態で結晶が再結晶化すると考えられる。このような作用により、単にクラックをガラスで埋める手法よりも、造形物の機械的強度をより高める効果を奏するものと推測される。 The heating time does not matter as long as the vicinity of the crack reaches the above maximum temperature. For example, in the step (iii), the modeled object may be heated at a temperature at which the vicinity of the crack is desired to be reached. It is considered that by heating at such a temperature, the cracks and their vicinity are melted and moved in a direction in which the surface energy is reduced, so that the cracks are reduced or disappear. Then, as the heating further progresses, it is considered that the metal oxide diffuses into the crystalline / non-crystalline inside of the modeled product, and the crystal is recrystallized in a state containing the metal oxide component. It is presumed that such an action has the effect of increasing the mechanical strength of the modeled object, rather than simply filling the cracks with glass.
 造形物のクラックを構成する面に金属イオンが存在する状態で適切な温度で熱処理すれば、前述のようにクラックの近傍が溶融し、クラックを減少または消滅させる効果がある。クラック近傍における金属イオンの濃度は、金属イオン含有液中の金属イオンの濃度や、クラックに金属イオン含有液を吸収させる方法や、その回数などによって調整することができる。クラックに存在する金属イオンの量が多いほど、広い範囲のクラックを修復しやすくなる。 If heat treatment is performed at an appropriate temperature in the presence of metal ions on the surface constituting the crack of the modeled object, the vicinity of the crack melts as described above, which has the effect of reducing or extinguishing the crack. The concentration of the metal ion in the vicinity of the crack can be adjusted by adjusting the concentration of the metal ion in the metal ion-containing liquid, the method for causing the crack to absorb the metal ion-containing liquid, the number of times, and the like. The greater the amount of metal ions present in the crack, the easier it is to repair a wide range of cracks.
 例えば、酸化アルミニウム(Al)を主成分とする造形物の場合、クラック近傍に存在する酸化ジルコニウムの量を増やすことで、クラック近傍をより広範囲に溶融しやすくなる。クラック近傍を選択的に溶融させてクラックを補修するためには、共晶点の温度が約1840℃であると考えると、1840℃以上2070℃以下の温度で加熱することが好ましく、より好ましくは1850℃以上2060℃以下である。 For example, in the case of a modeled product containing aluminum oxide (Al 2 O 3 ) as a main component, increasing the amount of zirconium oxide present in the vicinity of the crack makes it easier to melt the vicinity of the crack in a wider area. In order to selectively melt the vicinity of cracks and repair cracks, considering that the temperature of the eutectic point is about 1840 ° C, it is preferable to heat at a temperature of 1840 ° C or higher and 2070 ° C or lower, more preferably. It is 1850 ° C. or higher and 2060 ° C. or lower.
 また、Al-Gdが主成分である粉末から形成された造形物の場合は、Alを主成分とする相と、GdAlOを主成分とする相とを含む。この造形物には、工程(ii)でジルコニウム金属イオン含有液を吸収させた後、約1662℃の共晶点を利用することを考えると、工程(iii)で1662℃以上1710℃以下の温度で加熱するとよい。工程(iii)の中で、クラックから造形物全体に侵入したジルコニウムイオンが金属酸化物となり、金属酸化物が造形物の化合物成分と共に溶融して、クラック近傍を選択的に溶融させてクラックを補修する。そして、金属酸化物は結晶質および非晶質の内部に拡散して再結晶化する。その結果、得られるセラミックス物品には、蛍石構造のZrOを主成分とする相と、Alを主成分とする相と、GdAlOを主成分とする相の3相共晶が少なくとも形成される。また、Al-Gdを成分とする粉末に、副成分として酸化テルビウム(Tb)の粉末を添加した場合、造形物には、Alを主成分とする相と、(GdTb)AlOを主成分とする相とが含まれる。この場合も、同様に1662℃以上1710℃以下の温度で加熱する(工程(iii))と、クラックを減少または消滅させることができる。 Further, in the case of a model formed from a powder containing Al 2 O 3 -Gd 2 O 3 as a main component, a phase containing Al 2 O 3 as a main component and a phase containing Gd AlO 3 as a main component are included. .. Considering that the eutectic point of about 1662 ° C. is used in this model after absorbing the zirconium metal ion-containing liquid in the step (iii), the temperature of 1662 ° C. or higher and 1710 ° C. or lower in the step (iii). It is good to heat with. In the step (iii), the zirconium ion that has penetrated from the crack into the entire model becomes a metal oxide, and the metal oxide melts together with the compound component of the model, and the vicinity of the crack is selectively melted to repair the crack. do. Then, the metal oxide diffuses into the crystalline and amorphous interior and recrystallizes. As a result, the resulting ceramic article contains a three-phase eutectic of a phase containing ZrO 2 as a main component, a phase containing Al 2 O 3 as a main component, and a phase containing GdAlO 3 as a main component. At least formed. Further, when a powder of terbium oxide (Tb 4 O 7 ) is added as a sub-component to a powder containing Al 2 O 3 -Gd 2 O 3 as a component, the modeled product contains Al 2 O 3 as a main component. A phase and a phase containing (GdTb) AlO 3 as a main component are included. In this case as well, cracks can be reduced or eliminated by heating at a temperature of 1662 ° C. or higher and 1710 ° C. or lower (step (iii)).
 工程(i)によって形成された造形物は、エネルギービームが照射されて溶融した後に急冷によって固化しているため、非晶質成分を多く含む。しかし、造形物に含まれる非晶質成分の大部分は、工程(iii)における加熱処理の過程で結晶質へと変化する。さらに、加熱が進むと、金属イオン含有液の金属イオンの酸化物が造形物の結晶内部にまで拡散して再結晶化し、造形物内に2種類以上の相が形成されるため高い機械的強度が得られる。これらの観点から、工程(iii)では、造形物をある時間以上加熱することが好ましい。工程(iii)における最高温度Tsの保持時間は、積算で1分以上が好ましく、5分以上がより好ましい。一方で、加熱処理時間が長すぎると、セラミックス造形物を構成する結晶粒の粒径が大きくなりすぎて、機械的強度の低下を招く場合がある。したがって、工程(iii)における最高温度Tsの保持時間は、積算で2時間以下が好ましく、1時間以下がより好ましい。さらに好ましくは30分以下である。 The model formed in step (i) contains a large amount of amorphous components because it is irradiated with an energy beam, melted, and then solidified by quenching. However, most of the amorphous components contained in the modeled product change to crystalline in the process of heat treatment in the step (iii). Further, as heating progresses, the metal ion oxide of the metal ion-containing liquid diffuses into the crystal of the model and recrystallizes, and two or more kinds of phases are formed in the model, so that the mechanical strength is high. Is obtained. From these viewpoints, in the step (iii), it is preferable to heat the modeled object for a certain period of time or longer. The holding time of the maximum temperature Ts in the step (iii) is preferably 1 minute or more, and more preferably 5 minutes or more in total. On the other hand, if the heat treatment time is too long, the grain size of the crystal grains constituting the ceramic model may become too large, resulting in a decrease in mechanical strength. Therefore, the holding time of the maximum temperature Ts in the step (iii) is preferably 2 hours or less in total, and more preferably 1 hour or less. More preferably, it is 30 minutes or less.
 加熱の方法は特に限定されない。金属イオン含有液を吸収させたセラミックス造形物にエネルギービームを照射して加熱してもよいし、電気炉に入れて加熱してもよい。エネルギービームで加熱する場合は、造形物が上述の好ましい温度に加熱されるように、エネルギービームの投入熱量と造形物の温度の関係を事前に熱電対等で把握する必要がある。中でも、加熱後の降温レートを調整できる電気炉などは、新たなクラックの形成を抑制できるため、好適である。 The heating method is not particularly limited. A ceramic model that has absorbed a metal ion-containing liquid may be heated by irradiating it with an energy beam, or it may be heated by placing it in an electric furnace. When heating with an energy beam, it is necessary to grasp in advance the relationship between the input heat amount of the energy beam and the temperature of the modeled object by thermoelectric pair or the like so that the modeled object is heated to the above-mentioned preferable temperature. Above all, an electric furnace or the like capable of adjusting the temperature lowering rate after heating is suitable because it can suppress the formation of new cracks.
 工程(ii)と工程(iii)を繰り返して実施すると、造形物からクラックが消滅していない限り、繰り返すたびに造形物中に金属イオン含有液に含まれる金属イオンから生成される金属酸化物が拡散する。すると、造形物のクラック近傍とクラック近傍以外の部分とで、結晶粒の主成分の濃度差が小さくなる。その結果、造形物のクラック部近傍の融点(共晶点)とクラック近傍以外の部分の融点との差も小さくなり、クラック近傍を選択的に溶融するのが難しくなる。クラック近傍のみを溶融させるという観点において、前記融点の差は20℃以上あることが好ましく、より好ましくは30℃以上である。例えば、酸化アルミニウムを主成分とする粉末から形成された造形物に対しては、造形物中の酸化ジルコニウム成分が3モル%未満であれば、造形物の形状変化を抑えつつ、クラック近傍のみを溶融させることができるため好ましい。より好ましくは2モル%未満である。さらに好ましくは1モル%未満である。 When the step (ii) and the step (iii) are repeated, metal oxides generated from the metal ions contained in the metal ion-containing liquid are contained in the model each time unless cracks disappear from the model. Spread. Then, the difference in the concentration of the main component of the crystal grain becomes small between the vicinity of the crack of the modeled object and the portion other than the vicinity of the crack. As a result, the difference between the melting point (eutectic point) in the vicinity of the crack portion of the modeled object and the melting point in the portion other than the vicinity of the crack becomes small, and it becomes difficult to selectively melt the vicinity of the crack. From the viewpoint of melting only the vicinity of cracks, the difference in melting points is preferably 20 ° C. or higher, more preferably 30 ° C. or higher. For example, for a model formed from a powder containing aluminum oxide as a main component, if the zirconium oxide component in the model is less than 3 mol%, the shape change of the model is suppressed and only the vicinity of the crack is formed. It is preferable because it can be melted. More preferably, it is less than 2 mol%. More preferably, it is less than 1 mol%.
 結晶粒の粒径が小さく、かつ、機械的強度に寄与するクラックが十分に低減されたセラミックス物品は、特に優れた機械的強度を有する。このようなセラミックス物品は、クラックの低減に要する加熱処理の積算時間(以下、積算加熱時間と称する)をできるだけ短くし、粒成長を抑制することによって実現することができる。本発明において加熱処理時間とは、特別な記載がない限り、1回の工程(iii)において最高温度Tsに保持される時間を指すものとする。また、積算加熱時間とは、工程(iii)を一回だけ実施する場合は、1回の加熱処理にて最高温度Tsに保持される時間を指し、工程(iii)を所定の回数繰り返し実施した場合は各回において最高温度Tsに保持される時間を合算したものとする。 Ceramic articles having a small grain size and sufficiently reduced cracks that contribute to mechanical strength have particularly excellent mechanical strength. Such a ceramic article can be realized by shortening the integrated heating time required for reducing cracks (hereinafter referred to as integrated heating time) as much as possible and suppressing grain growth. In the present invention, the heat treatment time refers to the time maintained at the maximum temperature Ts in one step (iii) unless otherwise specified. Further, the integrated heating time refers to the time during which the step (iii) is maintained at the maximum temperature Ts in one heat treatment when the step (iii) is carried out only once, and the step (iii) is repeatedly carried out a predetermined number of times. In the case, it is assumed that the time held at the maximum temperature Ts is added up each time.
 さらに、主成分と吸収体などの副成分とを含む粉末のように、複数種の材料からなる粉末を用いる場合は、工程(iii)における積算加熱時間は短い方が好ましい。主成分の相と、主成分を構成する金属元素を少なくとも1種類を含む2種類の複合化合物の相と、を含む、3種類以上の相を含む相分離構造を有するセラミックス物品が得られる。後に詳述するが、このような層分離構造を有するセラミックス物品は1種類の相あるいは2種類の相からなるセラミックス物品よりも優れた機械的強度を有する。 Further, when a powder composed of a plurality of kinds of materials such as a powder containing a main component and an auxiliary component such as an absorber is used, it is preferable that the integrated heating time in the step (iii) is short. A ceramic article having a phase-separated structure containing three or more kinds of phases including a phase of a main component and a phase of two kinds of composite compounds containing at least one kind of a metal element constituting the main component can be obtained. As will be described in detail later, a ceramic article having such a layer-separated structure has superior mechanical strength to a ceramic article composed of one type of phase or two types of phases.
 (セラミックス物品)
 本発明のセラミックス物品は、付加製造技術を用いて製造されるセラミックスを主成分とする物品であり、付加製造技術の特徴である自由形状と、優れた機械的強度とを両立することができる。付加製造技術の中でも、好ましくは粉末床溶融結合方式や指向性エネルギー積層方式を用いて製造される。
(Ceramics article)
The ceramic article of the present invention is an article containing ceramics as a main component, which is manufactured by using the additive manufacturing technique, and can achieve both the free shape characteristic of the additive manufacturing technique and excellent mechanical strength. Among the additional manufacturing techniques, it is preferably manufactured by using a powder bed melt-bonding method or a directed energy lamination method.
 機械的強度が特に優れるセラミックス物品は、主成分と副成分の複数種の化合物からなる粉末を用いて造形を行い、適切な金属イオン濃度の金属イオン含有液を吸収させた後、工程(iii)による積算加熱時間を短くすることにより、作製することができる。得られる機械的強度が特に優れたセラミックス物品は、主成分の相と、主成分を構成する金属元素を少なくとも1種類を含む2種類の複合化合物の相と、の少なくとも3種類の相を含む相分離構造を有する。 Ceramic articles having particularly excellent mechanical strength are shaped by using a powder composed of a plurality of compounds of a main component and a sub component, and after absorbing a metal ion-containing liquid having an appropriate metal ion concentration, step (iii). It can be produced by shortening the integrated heating time according to the above. The obtained ceramic article having particularly excellent mechanical strength is a phase containing at least three types of a phase of a main component, a phase of two types of a composite compound containing at least one type of a metal element constituting the main component, and a phase of two types of a composite compound. It has a separated structure.
 セラミックス物品の主成分として、好ましくは酸化アルミニウム、酸化シリコン、ムライト、コージライトなどである。中でも酸化アルミニウムは汎用的なセラミックス物品として広く利用されていることに加えて、熱伝導率が比較的高いため、直接造形方式の付加製造技術に好適である。 The main components of the ceramic article are preferably aluminum oxide, silicon oxide, mullite, cordylite and the like. Among them, aluminum oxide is widely used as a general-purpose ceramic article and has a relatively high thermal conductivity, so that it is suitable for an additional manufacturing technique of a direct molding method.
 以下では、酸化アルミニウムを主成分とするセラミックス物品を例に説明するが、本発明の技術思想は、酸化アルミニウムを主成分とするセラミックス物品に限定されるものではない。 Hereinafter, a ceramic article containing aluminum oxide as a main component will be described as an example, but the technical idea of the present invention is not limited to the ceramic article containing aluminum oxide as a main component.
 例えば、酸化アルミニウム粉末と、酸化アルミニウムと共晶を形成しうる酸化ガドリニウム粉末を副成分として含む粉末を用いて造形すると、主にAl相、GdAlO相、Gd相で構成される造形物が形成される。 For example, when molded using aluminum oxide powder and powder containing gadolinium oxide powder that can form a eutectic with aluminum oxide as an auxiliary component, it is mainly composed of Al2O 3 phase , GdAlO3 phase , and Gd2O3 phase. The modeled object to be formed is formed.
 この造形物に金属イオン含有液を吸収させて加熱処理すると、積算加熱時間が短い場合には、Al相、GdAlO相、Gd相に加えて、GdAl相と、金属イオン含有液の金属イオン由来の相とを含むセラミックス物品が形成され得る。Al相が主成分の相に該当し、GdAlO相とGdAl相とが、主成分を構成する金属元素を少なくとも1種類を含む、2種類の複合化合物の相に該当する。一方、積算加熱時間が長くなると、成分の平衡化と粒径の拡大とが進み、セラミックス物品に含まれる相の種類が熱処理の初期よりも減少する。 When the metal ion-containing liquid is absorbed into this model and heat-treated, if the cumulative heating time is short, in addition to the Al 2 O 3 phase, Gd AlO 3 phase, and Gd 2 O 3 phase, Gd 4 Al 2 O 9 A ceramic article containing a phase and a phase derived from the metal ion of the metal ion-containing liquid can be formed. The Al 2 O 3 phase corresponds to the main component phase, and the GdAlO 3 phase and the Gd 4 Al 2 O 9 phase are two types of complex compound phases containing at least one metal element constituting the main component. Applicable. On the other hand, when the integrated heating time becomes long, the equilibration of the components and the expansion of the particle size progress, and the types of phases contained in the ceramic article are reduced from the initial stage of the heat treatment.
 酸化アルミニウムを主成分とする造形物にジルコニウムイオンを含有する金属イオン含有液を吸収させた場合に得られるセラミックス物品は、金属イオン含有液の金属イオン由来の相として、蛍石構造のZrO相を含み得る。 The ceramic article obtained by absorbing a metal ion-containing liquid containing zirconium ion in a model containing aluminum oxide as a main component is a ZrO2 phase having a fluorite structure as a metal ion - derived phase of the metal ion-containing liquid. May include.
 短い積算加熱時間でクラックが十分に補修されたセラミックス物品は、3種類の相を含んでいるため、積算加熱時間が長いものに比べて、より優れた機械的強度を有する。セラミックス物品が優れた機械的強度を有する要因は、セラミックス物品に含まれる結晶粒の粒径と、複合化合物からなる相の存在とにあると考えられる。 Since the ceramic article in which the crack is sufficiently repaired with a short integrated heating time contains three types of phases, it has better mechanical strength than the one with a long integrated heating time. It is considered that the reason why the ceramic article has excellent mechanical strength is the particle size of the crystal grains contained in the ceramic article and the existence of the phase composed of the composite compound.
 上述したように、工程(iii)における積算加熱時間が短いと、粗大粒が形成される前に加熱処理が終了するため、セラミックス物品は小粒径で構成され、この粒径サイズと物品の機械的強度との間には相関がみられる。機械的強度に優れるセラミックス物品を得るために好ましい粒径は、20μm以下であり、より好ましくは15μm以下であり、さらに好ましくは10μm以下である。 As described above, if the cumulative heating time in the step (iii) is short, the heat treatment is completed before the coarse particles are formed. Therefore, the ceramic article is composed of a small particle size, and the particle size and the machine of the article are formed. There is a correlation with the target strength. The particle size preferable for obtaining a ceramic article having excellent mechanical strength is 20 μm or less, more preferably 15 μm or less, and further preferably 10 μm or less.
 さらに、積算加熱時間の短いセラミックス物品は、3種類以上複合化合物を含んでいるため、これら複数種類の相からなる複雑な相分離構造で構成される。一般に、金属成分を複数含む複合化合物は金属成分を1種類含む化合物よりも高い靭性を有する場合が多いことから、このような複雑な相分離構造も機械的強度の向上に寄与していると考えられる。 Furthermore, since the ceramic article having a short integrated heating time contains three or more kinds of composite compounds, it is composed of a complicated phase separation structure composed of these multiple kinds of phases. In general, a compound compound containing a plurality of metal components often has higher toughness than a compound containing one type of metal component, and it is considered that such a complicated phase-separated structure also contributes to the improvement of mechanical strength. Be done.
 複合化合物は、工程(i)の溶融および凝固時および/または、工程(iii)の加熱処理時に、主成分と副成分とから生成されると考えられる。例えば、主成分である酸化アルミニウム粉末に副成分として酸化ガドリニウム粉末を含む粉末を用いた場合は、上述のGdAlO相とGdAl相が複合化合物に当たる。GdAlOは主に工程(i)においてAlと共晶することで生成されると考えられる。一方で、GdAl相は主に工程(iii)の加熱処理時に、原料の溶け残りであるGd相と、Al相やGdAlO相との間における原子の固相拡散過程で生成されると考えられる。したがって、工程(iii)の積算加熱時間が長いと、GdAl相は消滅し、セラミックス物品の相構成は平衡状態となるが、機械的強度は減少する。 It is believed that the complex compound is produced from the main component and subcomponents during the melting and solidification of step (i) and / or the heat treatment of step (iii). For example, when a powder containing gadolinium oxide powder as an auxiliary component is used as the main component of aluminum oxide powder, the above-mentioned GdAlO 3 phase and Gd 4 Al 2O 9 phase correspond to the composite compound. It is considered that GdAlO 3 is mainly produced by eutectic with Al 2 O 3 in the step (i). On the other hand, the Gd 4 Al 2 O 9 phase is mainly composed of atoms between the Gd 2 O 3 phase, which is the undissolved raw material, and the Al 2 O 3 phase and the Gd AlO 3 phase during the heat treatment of the step (iii). It is thought to be produced in the solid phase diffusion process. Therefore, when the integrated heating time in the step (iii) is long, the Gd 4 Al 2 O 9 phase disappears and the phase composition of the ceramic article becomes an equilibrium state, but the mechanical strength decreases.
 従って、主成分と副成分とを含む粉末から付加製造技術によって形成したセラミックス物品であれば、主成分の種類によって得られる機械的強度は異なるが、短い積算加熱時間でクラック補修することによって、機械的強度をより増強させることができる。 Therefore, in the case of a ceramic article formed from a powder containing a main component and an auxiliary component by an additional manufacturing technique, the mechanical strength obtained differs depending on the type of the main component, but the machine can be repaired by repairing cracks in a short integrated heating time. The target strength can be further enhanced.
 主成分と副成分の好ましい組み合わせは、Al-Gd、Al-Tb、Al-Gd-Tb、Al-GdAlO-Tb、Al-Pr11、Al-Gd-Pr11、Al-GdAlO-Pr11、Al-Y、Al-YAlO、Al-Y-Tb、Al-YAlO-Tb、Al-YAl12-Tb、Al-Y-Pr11、Al-YAlO-Pr11、Al-YAl12-Pr11、Al-ZrO-Tb、Al-ZrO-Pr11、Al-SiO、Al-Gd-SiO、Al-GdAlO-SiO、Al-Y-SiO、Al-YAlO-SiO、Al-YAl12-SiO、Al-ZrO-SiO、SiO-Tb、SiO-Pr11、(MgO-Al-SiO)-Tb、(MgO-Al-SiO)-Pr11、(Al-SiO)-Tb、(Al-SiO)-Pr11などが挙げられる。これらの組み合わせの場合、複合化合物として、複合酸化物が生成される。相分離構造がより複雑になるという観点では、複合化合物の少なくとも一つと主成分とが共晶を形成しうる関係であることが好ましい。なお、Al-Gdという表記は、ハイフンの左側に主成分、右側に副成分を示している。(Al-SiO)-Tbという表記は、( )で括られた成分が主成分を示し、( )外のハイフンの右側に副成分を示している。 Preferred combinations of main component and sub-component are Al 2 O 3 -Gd 2 O 3 , Al 2 O 3 -Tb 4 O 7 , Al 2 O 3 -Gd 2 O 3 -Tb 4 O 7 , Al 2 O 3- GdAlO 3 -Tb 4 O 7 , Al 2 O 3 -Pr 6 O 11 , Al 2 O 3-Gd 2 O 3-Pr 6 O 11, Al 2 O 3 -GdAlO 3 -Pr 6 O 11 , Al 2 O 3 -Y 2 O 3 , Al 2 O 3 -YAlO 3 , Al 2 O 3 -Y 2 O 3 -Tb 4 O 7 , Al 2 O 3 -YAlO 3 -Tb 4 O 7 , Al 2 O 3 -Y 3 Al 5 O 12 -Tb 4 O 7 , Al 2 O 3 -Y 2 O 3 -Pr 6 O 11 , Al 2 O 3 -YAlO 3 -Pr 6 O 11 , Al 2 O 3 -Y 3 Al 5 O 12 -Pr 6 O 11 , Al 2 O 3 -ZrO 2 -Tb 4 O 7 , Al 2 O 3 -ZrO 2 -Pr 6 O 11 , Al 2 O 3 -SiO, Al 2 O 3 -Gd 2 O 3 -SiO, Al 2 O 3 -GdAlO 3 -SiO, Al 2 O 3 -Y 2 O 3 -SiO, Al 2 O 3 -YAlO 3 -SiO, Al 2 O 3 -Y 3 Al 5 O 12 -SiO, Al 2 O 3- ZrO 2 -SiO, SiO 2 -Tb 4 O 7 , SiO 2 -Pr 6 O 11 , (MgO-Al 2 O 3 -SiO 2 ) -Tb 4 O 7 , (MgO-Al 2 O 3 - SiO 2 )- Examples thereof include Pr 6 O 11 , (Al 2 O 3 -SiO 2 ) -Tb 4 O 7 , and (Al 2 O 3 -SiO 2 ) -Pr 6 O 11 . In the case of these combinations, a composite oxide is produced as a composite compound. From the viewpoint of making the phase separation structure more complicated, it is preferable that at least one of the complex compounds and the main component have a relationship capable of forming an eutectic. The notation Al 2 O 3 -Gd 2 O 3 indicates the main component on the left side of the hyphen and the sub component on the right side. In the notation (Al 2 O 3 -SiO 2 ) -Tb 4 O 7 , the component enclosed in () indicates the main component, and the sub-component is indicated on the right side of the hyphen outside ().
 複雑な相分離構造で機械的強度を向上させるという点では、セラミックス物品に含まれる相の種類が多いほど好ましい。従って、主成分の相と、主成分を構成する金属元素の少なくとも1種類と副成分を構成する金属元素の少なくとも1種類を含む2種類の複合化合物の相の3種類の相に加えて、さらに別の相を含むことが好ましい。別の相は工程(ii)で用いる金属イオン含有液の金属イオン由来の化合物であってもよい。この場合、金属イオン由来の化合物は、主成分および2種類の複合化合物の少なくとも一つと共晶を形成しうる関係であることが好ましく、主成分と共晶を形成しうる関係であることがより好ましい。別の相をさらに含むことで、セラミックス物品の相分離構造がより複雑になり、機械的強度が向上する。また、金属イオン含有液の金属イオンから生成される金属酸化物が一定量以上存在することは、クラックが十分に補修されたことを意味する。一方で、セラミックス物品に含まれる金属イオン由来の成分が多すぎると、物品の形状精度低下する傾向にある。そのため、セラミックス物品における金属イオン含有液の金属イオンから生成される金属酸化物は、0.3モル%以上5モル%以下含まれることが好ましく、より好ましくは0.5モル%以上3モル%以下である。 In terms of improving the mechanical strength with a complicated phase separation structure, it is preferable that the number of types of phases contained in the ceramic article is large. Therefore, in addition to the three phases of the main component phase and the two complex compound phases containing at least one of the metal elements constituting the main component and at least one of the metal elements constituting the subcomponent, further. It is preferable to include another phase. The other phase may be a compound derived from the metal ion of the metal ion-containing liquid used in the step (ii). In this case, the compound derived from the metal ion preferably has a relationship capable of forming an eutectic with at least one of the main component and the two types of complex compounds, and more preferably has a relationship capable of forming an eutectic with the main component. preferable. The inclusion of another phase further complicates the phase separation structure of the ceramic article and improves the mechanical strength. Further, the presence of a certain amount or more of the metal oxide generated from the metal ions of the metal ion-containing liquid means that the cracks have been sufficiently repaired. On the other hand, if the amount of metal ion-derived components contained in the ceramic article is too large, the shape accuracy of the article tends to decrease. Therefore, the metal oxide generated from the metal ions of the metal ion-containing liquid in the ceramic article is preferably contained in an amount of 0.3 mol% or more and 5 mol% or less, more preferably 0.5 mol% or more and 3 mol% or less. Is.
 本発明に係るセラミックス物品は、セラミックスを主成分とする粉末と、前述の水と金属イオンとを含む金属イオン含有液とを含むセラミックス物品製造用キットを用いることで、容易に製造することができる。 The ceramic article according to the present invention can be easily produced by using a ceramic article manufacturing kit containing a powder containing ceramic as a main component and the above-mentioned metal ion-containing liquid containing water and metal ions. ..
 まず、本発明における評価方法について説明する。 First, the evaluation method in the present invention will be described.
 <金属イオン含有液の成分分析>
 金属イオン含有液に含まれる金属イオンの含有量は、ICP-MSにより測定した。
<Analysis of components of metal ion-containing liquid>
The content of metal ions contained in the metal ion-containing liquid was measured by ICP-MS.
 <機械的強度>
 物品の機械的強度は、ファインセラミックスの室温曲げ強度試験のJIS規格であるR1601に基づいた3点曲げ試験によって評価した。3点曲げ強度は、3点曲げ強度は、5個の試験片それぞれについて、破壊されたときの最大荷重をP[N]、外部支点間距離をL[mm]、試験片の幅をw[mm]、試験片の厚さをt[mm]としたとき、
3×P×L/(2×w×t2)   (式1)
を用いて算出し、それらを平均した値とした。
<Mechanical strength>
The mechanical strength of the article was evaluated by a three-point bending test based on R1601, which is a JIS standard for a room temperature bending strength test of fine ceramics. For 3-point bending strength, for each of the 5 test pieces, the maximum load when broken is P [N], the distance between external fulcrums is L [mm], and the width of the test piece is w [. mm], when the thickness of the test piece is t [mm]
3 × P × L / (2 × w × t2) (Equation 1)
Was calculated using the above, and the average value was used.
 <相対密度>
 物品の相対密度[%]は、物品のかさ密度(重量を体積で割ったもの)を理論密度で割って算出した。理論密度は、結晶構造から算出した。結晶構造は、X線回折測定を実施してリートベルト解析を行うことにより特定した。
<Relative density>
The relative density [%] of the article was calculated by dividing the bulk density of the article (weight divided by volume) by the theoretical density. The theoretical density was calculated from the crystal structure. The crystal structure was identified by performing X-ray diffraction measurements and performing Rietveld analysis.
 <結晶構造>
 セラミックス物品を鏡面に研磨し、X線回折、電子線回折、SEM-EDXおよびTEM-EDXにより、セラミックス物品を構成する相の結晶構造と組成を調べ、相分離構造をSEM-EBSDにより分析した。
<Crystal structure>
The ceramic article was mirror-polished, and the crystal structure and composition of the phases constituting the ceramic article were investigated by X-ray diffraction, electron beam diffraction, SEM-EDX and TEM-EDX, and the phase separation structure was analyzed by SEM-EBSD.
 さらに、前記計測面の100μm×100μmの視野サイズで異なる場所10か所について、SEM-EDXおよびEBSDの同時分析を行い、組成と結晶相についてマッピングを行った。小さい相が含まれる場合は、透過電子顕微鏡(TEM)を用いることで、同様に組成ならびに結晶構造を解析することができる。 Furthermore, SEM-EDX and EBSD were simultaneously analyzed at 10 different locations with a field size of 100 μm × 100 μm on the measurement surface, and mapping was performed for the composition and crystal phase. If a small phase is included, the composition and crystal structure can be analyzed in the same manner by using a transmission electron microscope (TEM).
 相を構成する結晶粒の粒径は、EBSDを用いて、計測面にて観察される同一相内の300個以上の結晶粒を観察し、各結晶粒の円相当径の中央値を算出することができる。 For the grain size of the crystal grains constituting the phase, 300 or more crystal grains in the same phase observed on the measurement surface are observed using EBSD, and the median value of the equivalent circle diameter of each crystal grain is calculated. be able to.
 <組成分析>
 粉末、造形物あるいはセラミックス物品に含まれるSi、Tb、Pr、AlおよびZrの含有量は、誘導結合プラズマ発光分析(ICP-AES)で計測し、その他の元素の含有量は、GDMSもしくはICP-MSにより測定した。
<Composition analysis>
The content of Si, Tb, Pr, Al and Zr contained in powders, shaped objects or ceramic articles is measured by inductively coupled plasma emission spectrometry (ICP-AES), and the content of other elements is GDMS or ICP-. Measured by MS.
 (実施例1)
 平均粒子径が約20μmのα-Al粉末、平均粒子径が約35μmのGd粉末、平均粒子径が約5μmのTb3.5粉末(Tb粉末)を用意し、モル比がAl:Gd:Tb3.5=77.4:20.8:1.8となるように各粉末を秤量した。各秤量粉末を乾式ボールミルで30分間混合して混合粉末(原料粉末)を得た。なお、本発明における平均粒子径は、メジアン径であり、頻度の累積が50%になる粒子径(D50)である。
(Example 1)
Α-Al 2 O 3 powder with an average particle size of about 20 μm, Gd 2 O 3 powder with an average particle size of about 35 μm, and Tb 2 O 3.5 powder (Tb 4 O 7 powder) with an average particle size of about 5 μm. The powders were prepared and weighed each powder so that the molar ratio was Al 2 O 3 : Gd 2 O 3 : Tb 2 O 3.5 = 77.4: 20.8: 1.8. Each weighing powder was mixed with a dry ball mill for 30 minutes to obtain a mixed powder (raw material powder). The average particle diameter in the present invention is the median diameter, which is the particle diameter (D50) at which the cumulative frequency is 50%.
 ICP発光分光分析により前記原料粉末の組成分析を行ったところ、酸化ジルコニウムの含有量は1モル%未満であった。 When the composition of the raw material powder was analyzed by ICP emission spectroscopic analysis, the content of zirconium oxide was less than 1 mol%.
 粉末床溶融結合方式を用い図1に示す工程と同様にして、5mm×42mm×6mmの直方体を、造形物として5個作製した。造形物の形成には、50Wのファイバーレーザー(ビーム径:65μm)が搭載されている3D SYSTEMS社製のProX DMP 100(商品名)を用いた。 Using the powder bed melt bonding method, 5 rectangular parallelepipeds of 5 mm × 42 mm × 6 mm were produced as shaped objects in the same manner as in the process shown in FIG. ProX DMP 100 (trade name) manufactured by 3D SYSTEMS, which is equipped with a 50 W fiber laser (beam diameter: 65 μm), was used to form the model.
 具体的には、最初に、ローラーを用いて、アルミナ製の基台130上に、前記原料粉末からなる20μm厚の一層目の粉末層を形成した(図1A、1B)。次いで、30Wのレーザービームを、描画速度140mm/s、描画ピッチ100μmで走査した。図4Aに示すように、描画ラインが長方形の各辺に対して斜め45度となるようレーザービームを走査しながら粉末に照射し、5mm×42mmの長方形の領域内の粉末を溶融および凝固させ、固化部100を形成した(図1C)。 Specifically, first, a first layer of 20 μm thick powder layer made of the raw material powder was formed on an alumina base 130 using a roller (FIGS. 1A and 1B). Next, a 30 W laser beam was scanned at a drawing speed of 140 mm / s and a drawing pitch of 100 μm. As shown in FIG. 4A, the powder is irradiated while scanning the laser beam so that the drawing line is at an angle of 45 degrees to each side of the rectangle, and the powder in the rectangular region of 5 mm × 42 mm is melted and solidified. The solidified portion 100 was formed (FIG. 1C).
 次に、固化部100を覆うように、ローラーにて20μm厚の粉末層を新たに形成し、レーザービームを走査しながら前記粉末層に照射し、5mm×42mmの長方形の領域にある材料粉末を溶融および凝固させ、固化部100を形成した(図1D、1E)。このとき、図4Bに示すように、一層目の描画ラインと直交する方向にレーザーを走査させ、粉末を溶融および凝固させた。このような工程を、凝固部の高さが6mmになるまで繰り返し、42mm×5mm×6mmの造形物を作製した。 Next, a powder layer having a thickness of 20 μm is newly formed by a roller so as to cover the solidified portion 100, and the powder layer is irradiated while scanning the laser beam to obtain the material powder in a rectangular region of 5 mm × 42 mm. It was melted and solidified to form a solidified portion 100 (FIGS. 1D and 1E). At this time, as shown in FIG. 4B, the laser was scanned in a direction orthogonal to the drawing line of the first layer to melt and solidify the powder. Such a process was repeated until the height of the solidified portion became 6 mm, and a modeled product having a size of 42 mm × 5 mm × 6 mm was produced.
 光学顕微鏡でこれら造形物の表面を観察したところ、いずれも造形物表面の凹凸のRaは20μm以下であった。光学顕微鏡の画像を図5に示す。図5からわかるように、レーザービームの描画方向に依存したクラックが形成されていた。すなわち、長方形の各辺に対してほぼ斜め45度となるような方向に延びたクラックが存在していた。 When the surface of these shaped objects was observed with an optical microscope, the Ra of the unevenness on the surface of the shaped objects was 20 μm or less. The image of the optical microscope is shown in FIG. As can be seen from FIG. 5, cracks depending on the drawing direction of the laser beam were formed. That is, there were cracks extending in a direction at an angle of approximately 45 degrees to each side of the rectangle.
 それぞれの前記造形物をアルミナ製の基台から切り離し、研磨によって、3点曲げ強度試験用にW40mm×D4mm×H3mmに加工した。研磨面をSEMで観察すると、レーザービームの描画方向に依存した数nmから数μm幅のクラックが形成されていた。すなわち、光学顕微鏡での観察結果と同様に、長方形の各辺に対してほぼ斜め45度となるような方向に格子状のクラックが形成されていた。 Each of the above-mentioned shaped objects was separated from the alumina base and processed into W40 mm × D4 mm × H3 mm for a three-point bending strength test by polishing. When the polished surface was observed by SEM, cracks having a width of several nm to several μm were formed depending on the drawing direction of the laser beam. That is, similar to the observation result with the optical microscope, grid-like cracks were formed in the direction of approximately 45 degrees to each side of the rectangle.
 金属イオン含有液としてジルコニウムイオンを含む金属イオン含有液を次のように調整した。酸化ジルコニウムは、造形物の主成分である酸化アルミニウムと共晶関係にある。 A metal ion-containing liquid containing zirconium ions was prepared as a metal ion-containing liquid as follows. Zirconium oxide has a eutectic relationship with aluminum oxide, which is the main component of the model.
 酢酸ジルコニウムと水とを用いてジルコニウムの濃度が金属酸化物換算で30質量%、金属イオン含有液から金属イオンを除いた液に対する水が58質量%となるように混合し、均一撹拌をしてジルコニウムイオンを含む金属イオン含有液を得た。 Using zirconium acetate and water, mix the zirconium so that the concentration of zirconium is 30% by mass in terms of metal oxide and 58% by mass of water with respect to the liquid obtained by removing metal ions from the metal ion-containing liquid, and stir uniformly. A metal ion-containing liquid containing zirconium ions was obtained.
 試験用に加工した上記造形物を400Paまで減圧した雰囲気の下にて前記ジルコニウムイオンを含む金属イオン含有液に浸漬した後、その環境を大気圧に戻し、30分間放置し金属イオン含有液を造形物に吸収させた。 After immersing the above-mentioned model processed for testing in the metal ion-containing liquid containing zirconium ions in an atmosphere reduced to 400 Pa, the environment is returned to atmospheric pressure and left for 30 minutes to form the metal ion-containing solution. I let something absorb it.
 続いてジルコニウムイオンを含む金属イオン含有液を吸収させた造形物を電気炉に入れて加熱した。大気雰囲気において1680℃まで2時間で昇温させ、1680℃で20分間保持した後、通電を終了して自然放冷により冷却し、実施例1のセラミックス物品を得た。実施例1では、それぞれの造形物にジルコニウムイオンを含んだ金属イオン含有液を吸収させる工程(工程ii))を一回施す毎に、加熱処理の工程(工程(iii))を一回施すサイクルを2回繰り返して、3点曲げ強度試験用のセラミックス物品を5個作製した。 Subsequently, the modeled object that had absorbed the metal ion-containing liquid containing zirconium ions was placed in an electric furnace and heated. The temperature was raised to 1680 ° C. in the air atmosphere for 2 hours, and the temperature was maintained at 1680 ° C. for 20 minutes, and then the energization was terminated and the mixture was cooled by natural cooling to obtain the ceramic article of Example 1. In Example 1, a cycle in which a heat treatment step (step (iii)) is performed once for each step (step ii) of absorbing a metal ion-containing liquid containing zirconium ions in each model. Was repeated twice to prepare five ceramic articles for a three-point bending strength test.
 作製したセラミックス物品について、寸法精度を評価した。具体的には、工程(ii)および工程(iii)を実施する前の造形物の各辺の長さに対する実施後に得られる物品の各辺の長さの変化率を、寸法精度(形状精度という場合もある)とする。実施例1の寸法精度は、工程(ii)および工程(iii)を実施する前の研磨後の造形物の寸法(W40mm×D4mm×H3mm)に対して、1%以内であった。また、造形物とセラミックス物品との各辺の長さの比はほぼ一致して相似形状になっており、工程(ii)および工程(iii)による、造形物撓みや表面の凹凸なども見られなかった。 The dimensional accuracy of the manufactured ceramic article was evaluated. Specifically, the rate of change in the length of each side of the article obtained after the step (ii) and the length of each side of the modeled object before the step (iii) is dimensional accuracy (referred to as shape accuracy). In some cases). The dimensional accuracy of Example 1 was within 1% with respect to the dimensions (W40 mm × D4 mm × H3 mm) of the shaped object after polishing before performing the step (ii) and the step (iii). In addition, the ratio of the length of each side of the modeled object and the ceramic article is almost the same and has a similar shape, and bending of the modeled object and unevenness of the surface due to the steps (ii) and the process (iii) can be seen. There wasn't.
 セラミックス物品の相対密度の平均値は95.6%であった。 The average value of the relative density of ceramic articles was 95.6%.
 インストロン社製の圧縮試験機を用いて、5個のセラミックス物品5について3点曲げ試験を行ったところ、3点曲げ強度の平均値は170MPaであった。 When a 3-point bending test was performed on 5 ceramic articles 5 using a compression tester manufactured by Instron, the average value of the 3-point bending strength was 170 MPa.
 3点曲げ試験に用いたセラミックス物品について分析したところ、Alよりなる相、GdAlOよりなる相、GdAlよりなる相、Gd相および、蛍石構造の酸化ジルコニウムを主成分とする相の少なくとも5種類の相が含まれていた。蛍石構造の酸化ジルコニウムを主成分とする相に含まれる主な金属元素は、Zr、Gd、Tbであり、Zr、Gd、Tb以外の金属元素は、1モル%未満であった。また、蛍石構造の酸化ジルコニウムを主成分とする相に含まれる金属元素のうち、希土類元素の割合は平均して30モル%であった。物品中の酸化ジルコニウムを主成分とする相の分布に偏りは見られず、酸化ジルコニウムがクラックから造形物中に拡散し、希土類元素を取り込みながら相分離構造として再結晶化したことがわかる。これにより、高い機械的強度のセラミックス物品が得られたと考えられる。セラミックス物品に含まれるZrの量を調べると、本実施例のセラミックス物品を構成する金属元素のうち、Zrの量は、ZrO換算で、0.8モル%であった。なお、セラミックス物品は、Gdを構成元素とする相において、GdサイトにTbが固溶された状態も含んでいると考えられる。他の実施例についても同様である。 Analysis of the ceramic articles used in the three-point bending test revealed that the phase consisted of Al 2 O 3 , the phase composed of Gd AlO 3 , the phase composed of Gd 4 Al 2 O 9 , the Gd 2 O 3 phase, and the oxidation of the fluorite structure. At least five types of phases containing zirconium as a main component were included. The main metal elements contained in the zirconium oxide-based phase of the fluorite structure were Zr, Gd, and Tb, and the metal elements other than Zr, Gd, and Tb were less than 1 mol%. In addition, the ratio of rare earth elements among the metal elements contained in the phase containing zirconium oxide as a main component of the fluorite structure was 30 mol% on average. There is no bias in the distribution of the phase containing zirconium oxide as the main component in the article, and it can be seen that zirconium oxide diffused from the cracks into the model and recrystallized as a phase-separated structure while incorporating rare earth elements. As a result, it is considered that a ceramic article having high mechanical strength was obtained. When the amount of Zr contained in the ceramic article was examined, the amount of Zr among the metal elements constituting the ceramic article of this example was 0.8 mol% in terms of ZrO2 . It is considered that the ceramic article also contains a state in which Tb is solid-solved in the Gd site in the phase containing Gd as a constituent element. The same applies to the other examples.
 (実施例2) (Example 2)
 酢酸ジルコニウムと水と、安定化剤としてアクリル酸2-ヒドロキシエチルと、を含み、ジルコニウムの濃度が酸化ジルコニウム換算で30質量%、金属イオン含有液から金属イオンを除いた液に対する水が47質量%、ジルコニウムイオンに対するアクリル酸2-ヒドロキシルエチルが30モル%となるように混合し、均一撹拌をしてジルコニウムイオンを含む金属イオン含有液を作製した。用いる金属イオン含有液が異なる点を除き、実施例1と同様にして、セラミックス物品5個を作製した。 It contains zirconium acetate, water, and 2-hydroxyethyl acrylate as a stabilizer, the concentration of zirconium is 30% by mass in terms of zirconium oxide, and 47% by mass of water with respect to the liquid containing metal ions from which metal ions are removed. , 2-hydroxylethyl acrylate with respect to zirconium ion was mixed so as to be 30 mol%, and uniformly stirred to prepare a metal ion-containing liquid containing zirconium ion. Five ceramic articles were produced in the same manner as in Example 1 except that the metal ion-containing liquids used were different.
 得られたセラミックス物品について、実施例1と同様に、3点曲げ強度、寸法精度、相対密度、および、セラミックス物品を構成する相の結晶構造と組成の分析を行った。 For the obtained ceramic article, the three-point bending strength, dimensional accuracy, relative density, and the crystal structure and composition of the phases constituting the ceramic article were analyzed in the same manner as in Example 1.
 相対密度および3点曲げ強度の評価結果を、実施例1の結果と共に表1に示す。相対密度の平均値は95.8%、3点曲げ強度の平均値は172MPaであった。 The evaluation results of the relative density and the three-point bending strength are shown in Table 1 together with the results of Example 1. The average value of the relative density was 95.8%, and the average value of the three-point bending strength was 172 MPa.
 実施例2のセラミックス物品の寸法精度も、1%以下と優れていた。また、実施例1のセラミックス物品と同様に、造形物とセラミックス物品との各辺の長さの比はほぼ一致して相似形状になっており、工程(ii)および工程(iii)による、造形物撓みや表面の凹凸なども見られなかった。 The dimensional accuracy of the ceramic article of Example 2 was also excellent at 1% or less. Further, as in the case of the ceramic article of Example 1, the ratio of the lengths of the respective sides of the modeled object and the ceramic article is almost the same and has a similar shape, and the modeling by the step (ii) and the step (iii) is performed. No bending or surface irregularities were observed.
 さらに、実施例2のセラミックス物品も、実施例1と同様の相分離構造を有していた。具体的には、Alよりなる相、GdAlOよりなる相、GdAlよりなる相、Gd相および、蛍石構造の酸化ジルコニウムを主成分とする相の5種類の相を含んでいた。蛍石構造の酸化ジルコニウムを主成分とする相を構成する主な金属元素は、Zr、Gd、Tbであった。酸化ジルコニウムを主成分とする相の分布に偏りはなく、酸化ジルコニウム成分がクラックから造形物中に拡散し、希土類元素を取り込みながら相分離構造として再結晶化したことが確認された。 Further, the ceramic article of Example 2 also had the same phase separation structure as that of Example 1. Specifically, 5 of a phase consisting of Al 2 O 3 , a phase consisting of Gd AlO 3 , a phase consisting of Gd 4 Al 2 O 9 , a Gd 2 O 3 phase, and a phase containing zirconium oxide having a fluorite structure as a main component. Included a variety of phases. The main metal elements constituting the phase containing zirconium oxide as a main component of the fluorite structure were Zr, Gd, and Tb. It was confirmed that there was no bias in the distribution of the phase containing zirconium oxide as the main component, and that the zirconium oxide component diffused from the cracks into the model and recrystallized as a phase-separated structure while incorporating rare earth elements.
 (実施例3)
 ジルコニウムイオンの濃度が20質量%、金属イオン含有液から金属イオンを除いた液に対する水が29質量%、ジルコニウムイオンに対するアクリル酸2-ヒドロキシルエチルが200モル%の金属イオン含有液を用いたことと、工程(ii)を1回実施した後に工程(iii)を1回実施するサイクルを3回繰り返した点を除いて、実施例2と同様にセラミックス物品5個を作製した。
(Example 3)
A metal ion-containing liquid having a zirconium ion concentration of 20% by mass, 29% by mass of water for a liquid obtained by removing metal ions from a metal ion-containing liquid, and 200 mol% of 2-hydroxylethyl acrylate with respect to zirconium ions was used. , Five ceramic articles were produced in the same manner as in Example 2, except that the cycle in which the step (iii) was carried out once and then the step (iii) was carried out once was repeated three times.
 得られたセラミックス物品について、実施例1と同様に、3点曲げ強度、寸法精度、相対密度、および、セラミックス物品を構成する相の結晶構造と組成の分析を行った。 For the obtained ceramic article, the three-point bending strength, dimensional accuracy, relative density, and the crystal structure and composition of the phases constituting the ceramic article were analyzed in the same manner as in Example 1.
 相対密度および3点曲げ強度の評価結果を、実施例1の結果と共に表1に示す。相対密度の平均値は96.0%、3点曲げ強度の平均値は164MPaであった。 The evaluation results of the relative density and the three-point bending strength are shown in Table 1 together with the results of Example 1. The average value of the relative density was 96.0%, and the average value of the three-point bending strength was 164 MPa.
 実施例3のセラミックス物品の寸法精度も、1%以下と優れていた。また、実施例1のセラミックス物品と同様に、造形物とセラミックス物品との各辺の長さの比はほぼ一致して相似形状になっており、工程(ii)および工程(iii)による、造形物撓みや表面の凹凸なども見られなかった。 The dimensional accuracy of the ceramic article of Example 3 was also excellent at 1% or less. Further, as in the case of the ceramic article of Example 1, the ratio of the lengths of the respective sides of the modeled object and the ceramic article is almost the same and has a similar shape, and the modeling by the step (ii) and the step (iii) is performed. No bending or surface irregularities were observed.
 さらに、実施例3のセラミックス物品も、実施例1と同様の相分離構造を有していた。具体的には、Alよりなる相、GdAlOよりなる相、GdAlよりなる相、Gd相および、蛍石構造の酸化ジルコニウムを主成分とする相の5種類の相を含んでいた。蛍石構造の酸化ジルコニウムを主成分とする相を構成する主な金属元素は、Zr、Gd、Tbであった。酸化ジルコニウムを主成分とする相の分布に偏りはなく、酸化ジルコニウム成分がクラックから造形物中に拡散し、希土類元素を取り込みながら相分離構造として再結晶化したことが確認された。 Further, the ceramic article of Example 3 also had the same phase separation structure as that of Example 1. Specifically, 5 of a phase consisting of Al 2 O 3 , a phase consisting of Gd AlO 3 , a phase consisting of Gd 4 Al 2 O 9 , a Gd 2 O 3 phase, and a phase containing zirconium oxide having a fluorite structure as a main component. Included a variety of phases. The main metal elements constituting the phase containing zirconium oxide as a main component of the fluorite structure were Zr, Gd, and Tb. It was confirmed that there was no bias in the distribution of the phase containing zirconium oxide as the main component, and that the zirconium oxide component diffused from the cracks into the model and recrystallized as a phase-separated structure while incorporating rare earth elements.
 (実施例4)
 ジルコニウムイオンの濃度が20質量%、金属イオン含有液から金属イオンを除いた液に対する水が13質量%、ジルコニウムイオンに対するアクリル酸2-ヒドロキシルエチルが288モル%の金属イオン含有液を用いたことと、工程(ii)を1回実施した後に工程(iii)を1回実施するサイクルを3回繰り返した点を除いて、実施例2と同様にセラミックス物品5個を作製した。
(Example 4)
A metal ion-containing liquid having a zirconium ion concentration of 20% by mass, 13% by mass of water for a liquid obtained by removing metal ions from a metal ion-containing liquid, and 288 mol% of 2-hydroxylethyl acrylate for zirconium ions was used. , Five ceramic articles were produced in the same manner as in Example 2, except that the cycle in which the step (iii) was carried out once and then the step (iii) was carried out once was repeated three times.
 得られたセラミックス物品について、実施例1と同様に、3点曲げ強度、寸法精度、相対密度、および、セラミックス物品を構成する相の結晶構造と組成の分析を行った。 For the obtained ceramic article, the three-point bending strength, dimensional accuracy, relative density, and the crystal structure and composition of the phases constituting the ceramic article were analyzed in the same manner as in Example 1.
 相対密度および3点曲げ強度の評価結果を、実施例1の結果と共に表1に示す。相対密度の平均値は95.9%、3点曲げ強度の平均値は160MPaであった。 The evaluation results of the relative density and the three-point bending strength are shown in Table 1 together with the results of Example 1. The average value of the relative density was 95.9%, and the average value of the three-point bending strength was 160 MPa.
 実施例4のセラミックス物品の寸法精度も、1%以下と優れていた。また、実施例1のセラミックス物品と同様に、造形物とセラミックス物品との各辺の長さの比はほぼ一致して相似形状になっており、工程(ii)および工程(iii)による、造形物撓みや表面の凹凸なども見られなかった。 The dimensional accuracy of the ceramic article of Example 4 was also excellent at 1% or less. Further, as in the case of the ceramic article of Example 1, the ratio of the lengths of the respective sides of the modeled object and the ceramic article is almost the same and has a similar shape, and the modeling by the step (ii) and the step (iii) is performed. No bending or surface irregularities were observed.
 さらに、実施例4のセラミックス物品も、実施例1と同様の相分離構造を有していた。具体的には、Alよりなる相、GdAlOよりなる相、GdAlよりなる相、Gd相および、蛍石構造の酸化ジルコニウムを主成分とする相の5種類の相を含んでいた。蛍石構造の酸化ジルコニウムを主成分とする相を構成する主な金属元素は、Zr、Gd、Tbであった。酸化ジルコニウムを主成分とする相の分布に偏りはなく、酸化ジルコニウム成分がクラックから造形物中に拡散し、希土類元素を取り込みながら相分離構造として再結晶化したことが確認された。 Further, the ceramic article of Example 4 also had the same phase separation structure as that of Example 1. Specifically, 5 of a phase consisting of Al 2 O 3 , a phase consisting of Gd AlO 3 , a phase consisting of Gd 4 Al 2 O 9 , a Gd 2 O 3 phase, and a phase containing zirconium oxide having a fluorite structure as a main component. Included a variety of phases. The main metal elements constituting the phase containing zirconium oxide as a main component of the fluorite structure were Zr, Gd, and Tb. It was confirmed that there was no bias in the distribution of the phase containing zirconium oxide as the main component, and that the zirconium oxide component diffused from the cracks into the model and recrystallized as a phase-separated structure while incorporating rare earth elements.
 (実施例5)
 ジルコニウムイオンの濃度が44質量%、金属イオン含有液から金属イオンを除いた液に対する水が10質量%、ジルコニウムイオンに対するアクリル酸2-ヒドロキシルエチルが30モル%の金属イオン含有液を用いたことと、工程(ii)を1回実施した後に工程(iii)を1回実施するサイクルを3回繰り返した点を除いて、実施例2と同様にセラミックス物品5個を作製した。
(Example 5)
A metal ion-containing liquid having a zirconium ion concentration of 44% by mass, 10% by mass of water for a liquid obtained by removing metal ions from a metal ion-containing liquid, and 30 mol% of 2-hydroxylethyl acrylate for zirconium ions was used. , Five ceramic articles were produced in the same manner as in Example 2, except that the cycle in which the step (iii) was carried out once and then the step (iii) was carried out once was repeated three times.
 得られたセラミックス物品について、実施例1と同様に、3点曲げ強度、寸法精度、相対密度、および、セラミックス物品を構成する相の結晶構造と組成の分析を行った。 For the obtained ceramic article, the three-point bending strength, dimensional accuracy, relative density, and the crystal structure and composition of the phases constituting the ceramic article were analyzed in the same manner as in Example 1.
 相対密度および3点曲げ強度の評価結果を、実施例1の結果と共に表1に示す。相対密度の平均値は96.2%、3点曲げ強度の平均値は163MPaであった。 The evaluation results of the relative density and the three-point bending strength are shown in Table 1 together with the results of Example 1. The average value of the relative density was 96.2%, and the average value of the three-point bending strength was 163 MPa.
 実施例5のセラミックス物品の寸法精度も、1%以下と優れていた。また、実施例1のセラミックス物品と同様に、造形物とセラミックス物品との各辺の長さの比はほぼ一致して相似形状になっており、工程(ii)および工程(iii)による、造形物撓みや表面の凹凸なども見られなかった。 The dimensional accuracy of the ceramic article of Example 5 was also excellent at 1% or less. Further, as in the case of the ceramic article of Example 1, the ratio of the lengths of the respective sides of the modeled object and the ceramic article is almost the same and has a similar shape, and the modeling by the step (ii) and the step (iii) is performed. No bending or surface irregularities were observed.
 さらに、実施例5のセラミックス物品も、実施例1と同様の相分離構造を有していた。具体的には、Alよりなる相、GdAlOよりなる相、GdAlよりなる相、Gd相および、蛍石構造の酸化ジルコニウムを主成分とする相の5種類の相を含んでいた。蛍石構造の酸化ジルコニウムを主成分とする相を構成する主な金属元素は、Zr、Gd、Tbであった。酸化ジルコニウムを主成分とする相の分布に偏りはなく、酸化ジルコニウム成分がクラックから造形物中に拡散し、希土類元素を取り込みながら相分離構造として再結晶化したことが確認された。 Further, the ceramic article of Example 5 also had the same phase separation structure as that of Example 1. Specifically, 5 of a phase consisting of Al 2 O 3 , a phase consisting of Gd AlO 3 , a phase consisting of Gd 4 Al 2 O 9 , a Gd 2 O 3 phase, and a phase containing zirconium oxide having a fluorite structure as a main component. Included a variety of phases. The main metal elements constituting the phase containing zirconium oxide as a main component of the fluorite structure were Zr, Gd, and Tb. It was confirmed that there was no bias in the distribution of the phase containing zirconium oxide as the main component, and that the zirconium oxide component diffused from the cracks into the model and recrystallized as a phase-separated structure while incorporating rare earth elements.
 (実施例6)
 ジルコニウムイオンの濃度が15質量%、金属イオン含有液から金属イオンを除いた液に対する水が29質量%の金属イオン含有液を用いた。さらに、工程(ii)を1回実施した後に工程(iii)を1回実施するサイクルを4回繰り返した点を除いては、実施例1と同様にセラミックス物品5個を作製した。
(Example 6)
A metal ion-containing liquid having a zirconium ion concentration of 15% by mass and water of 29% by mass with respect to the liquid obtained by removing the metal ions from the metal ion-containing liquid was used. Further, 5 ceramic articles were produced in the same manner as in Example 1 except that the cycle in which the step (iii) was carried out once and then the step (iii) was carried out once was repeated four times.
 工程(ii)と工程(iii)を繰り返す毎に光学顕微鏡で観察したところ、3回のサイクルを実施した時点では、造形物にクラックが残存していた。 When observed with an optical microscope each time the step (ii) and the step (iii) were repeated, cracks remained in the modeled object when three cycles were performed.
 作製したセラミックス物品について、実施例1と同様に、3点曲げ強度、寸法精度、相対密度、および、セラミックス物品を構成する相の結晶構造と組成の分析を行った。相対密度の平均値は96.3%、3点曲げ強度の平均値は153MPaであった。評価結果を表1に示す。 For the produced ceramic article, the three-point bending strength, dimensional accuracy, relative density, and the crystal structure and composition of the phases constituting the ceramic article were analyzed in the same manner as in Example 1. The average value of the relative density was 96.3%, and the average value of the three-point bending strength was 153 MPa. The evaluation results are shown in Table 1.
 実施例6のセラミックス物品も、寸法精度は1%以下と優れていた。また、実施例1のセラミックス物品と同様に、造形物とセラミックス物品との各辺の長さの比はほぼ一致して相似形状になっており、工程(ii)および工程(iii)による、造形物撓みや表面の凹凸なども見られなかった。 The ceramic article of Example 6 was also excellent in dimensional accuracy of 1% or less. Further, as in the case of the ceramic article of Example 1, the ratio of the lengths of the respective sides of the modeled object and the ceramic article is almost the same and has a similar shape, and the modeling by the step (ii) and the step (iii) is performed. No bending or surface irregularities were observed.
 本実施例にかかるセラミックス物品も、相分離構造を有していた。具体的には、Alよりなる相、GdAlOよりなる相、および、蛍石構造の酸化ジルコニウムを主成分とする相の3種類の相を含んでいた。蛍石構造の酸化ジルコニウムを主成分とする相を構成する主な金属元素は、Zr、Gd、Tbであった。さらに、物品中に酸化ジルコニウムを主成分とする相の分布に偏りはなく、酸化ジルコニウム成分がクラック部から造形物中に拡散し、希土類元素を取り込みながら相分離構造として再結晶化したことが確認された。なおGdAlよりなる相は含まれていなかった。 The ceramic article according to this embodiment also had a phase-separated structure. Specifically, it contained three types of phases: a phase composed of Al 2 O 3 , a phase composed of Gd AlO 3 , and a phase having a fluorite structure containing zirconium oxide as a main component. The main metal elements constituting the phase containing zirconium oxide as a main component of the fluorite structure were Zr, Gd, and Tb. Furthermore, it was confirmed that there was no bias in the distribution of the phase containing zirconium oxide as the main component in the article, and that the zirconium oxide component diffused from the cracks into the model and recrystallized as a phase-separated structure while incorporating rare earth elements. Was done. The phase consisting of Gd 4 Al 2 O 9 was not included.
 (実施例7)
 工程(iii)の1680℃の保持時間を80分にした点を除いて、実施例1と同様にセラミックス物品5個を作製した。
(Example 7)
Five ceramic articles were produced in the same manner as in Example 1 except that the holding time at 1680 ° C. in the step (iii) was set to 80 minutes.
 得られたセラミックス物品について、実施例1と同様に、3点曲げ強度、寸法精度、相対密度、および、セラミックス物品を構成する相の結晶構造と組成の分析を行った。 For the obtained ceramic article, the three-point bending strength, dimensional accuracy, relative density, and the crystal structure and composition of the phases constituting the ceramic article were analyzed in the same manner as in Example 1.
 相対密度および3点曲げ強度の評価結果を、実施例1の結果と共に表1に示す。相対密度の平均値は97.5%、3点曲げ強度の平均値は151MPaであった。 The evaluation results of the relative density and the three-point bending strength are shown in Table 1 together with the results of Example 1. The average value of the relative density was 97.5%, and the average value of the three-point bending strength was 151 MPa.
 実施例7のセラミックス物品の寸法精度も、1%以下と優れていた。また、実施例1のセラミックス物品と同様に、造形物とセラミックス物品との各辺の長さの比はほぼ一致して相似形状になっており、工程(ii)および工程(iii)による、造形物撓みや表面の凹凸なども見られなかった。 The dimensional accuracy of the ceramic article of Example 7 was also excellent at 1% or less. Further, as in the case of the ceramic article of Example 1, the ratio of the lengths of the respective sides of the modeled object and the ceramic article is almost the same and has a similar shape, and the modeling by the step (ii) and the step (iii) is performed. No bending or surface irregularities were observed.
 本実施例にかかるセラミックス物品も、相分離構造を有していた。具体的には、Alよりなる相、GdAlOよりなる相、および、蛍石構造の酸化ジルコニウムを主成分とする相の3種類の相を含んでいた。蛍石構造の酸化ジルコニウムを主成分とする相を構成する主な金属元素は、Zr、Gd、Tbであった。さらに、物品中に酸化ジルコニウムを主成分とする相の分布に偏りはなく、酸化ジルコニウム成分がクラック部から造形物中に拡散し、希土類元素を取り込みながら相分離構造として再結晶化したことが確認された。なおGdAlよりなる相は含まれていなかった。また結晶粒の平均粒径が80μmと大きかった。 The ceramic article according to this embodiment also had a phase-separated structure. Specifically, it contained three types of phases: a phase composed of Al 2 O 3 , a phase composed of Gd AlO 3 , and a phase having a fluorite structure containing zirconium oxide as a main component. The main metal elements constituting the phase containing zirconium oxide as a main component of the fluorite structure were Zr, Gd, and Tb. Furthermore, it was confirmed that there was no bias in the distribution of the phase containing zirconium oxide as the main component in the article, and that the zirconium oxide component diffused from the cracks into the model and recrystallized as a phase-separated structure while incorporating rare earth elements. Was done. The phase consisting of Gd 4 Al 2 O 9 was not included. Moreover, the average particle size of the crystal grains was as large as 80 μm.
 (実施例8)
 本実施例では、二酸化シリコンを主成分とする物品を作製した。
(Example 8)
In this example, an article containing silicon dioxide as a main component was prepared.
 平均粒子径が約38μmのSiO粉末、Tb3.5粉末(Tb粉末)粉末を用意し、モル比がSiO:Tb3.5=98.2:1.8となるように各粉末を秤量した。なお、SiO粉末はクリストバライトが主成分である。各秤量粉末を乾式ボールミルで30分間混合して混合粉末を得た。ICP発光分光分析により混合粉末の組成分析を行ったところ、酸化ジルコニウムの含有量は1質量%未満であった。 Prepare SiO 2 powder and Tb 2 O 3.5 powder (Tb 4 O 7 powder) powder having an average particle diameter of about 38 μm, and the molar ratio is SiO 2 : Tb 2 O 3.5 = 98.2: 1.8. Each powder was weighed so as to be. The main component of SiO 2 powder is cristobalite. Each weighing powder was mixed with a dry ball mill for 30 minutes to obtain a mixed powder. When the composition of the mixed powder was analyzed by ICP emission spectroscopic analysis, the content of zirconium oxide was less than 1% by mass.
 実施例1と同様に、粉末床溶融結合方式にて、5mm×42mm×6mmの直方体の造形物を5個作製した。造形プロセスは、実施例1と同様であるが、レーザービームを出力47.5W、描画速度60mm/s、描画ピッチ80μmで走査した点が異なっている。 Similar to Example 1, five 5 mm × 42 mm × 6 mm rectangular parallelepiped shaped objects were produced by the powder bed fusion bonding method. The modeling process is the same as in Example 1, except that the laser beam is scanned at an output of 47.5 W, a drawing speed of 60 mm / s, and a drawing pitch of 80 μm.
 光学顕微鏡で作製した造形物の表面を観察したところ、造形物表面の凹凸のRaはいずれも30μm以下であった。造形物の表面には図5と同様の、長方形の各辺に対してほぼ斜め45度となるような方向に延びたクラックが存在していた。 When the surface of the modeled object produced with an optical microscope was observed, the Ra of the unevenness on the surface of the modeled object was 30 μm or less. Similar to FIG. 5, cracks extending in a direction at an angle of approximately 45 degrees with respect to each side of the rectangle existed on the surface of the modeled object.
 造形物をアルミナ製の基台から切り離し、3点曲げ強度試験用に、研磨によってW40mm×D4mm×H3mmに加工した。研磨面をSEMで観察すると、レーザービームの描画方向に依存した数nmから数μm幅のクラックが形成されていた。クラックは、光学顕微鏡での観察結果と同様に、長方形の各辺に対してほぼ斜め45度となるような方向に延び、格子状になっていた。 The modeled object was separated from the alumina base and processed into W40 mm x D4 mm x H3 mm by polishing for a three-point bending strength test. When the polished surface was observed by SEM, cracks having a width of several nm to several μm were formed depending on the drawing direction of the laser beam. Similar to the observation result with the optical microscope, the cracks extended in a direction at an angle of about 45 degrees with respect to each side of the rectangle and formed a grid pattern.
 実施例1と同様のジルコニウムイオンを含んだ金属イオン含有液を造形物に吸収させ(工程(ii))、電気炉に入れて加熱した(工程(iii))。工程(iii)では、大気雰囲気において1670℃まで2時間で昇温させ、1670℃で50分間保持した後、通電を終了して自然放冷により冷却した。工程(ii)を1回施した後に工程(iii)を1回実施するサイクルを2回繰り返した。 A metal ion-containing liquid containing zirconium ions similar to that in Example 1 was absorbed by the modeled object (step (ii)), placed in an electric furnace, and heated (step (iii)). In the step (iii), the temperature was raised to 1670 ° C. in 2 hours in the air atmosphere, the temperature was maintained at 1670 ° C. for 50 minutes, the energization was terminated, and the mixture was cooled by natural cooling. The cycle of performing the step (iii) once and then performing the step (iii) once was repeated twice.
 得られたセラミックス物品について寸法精度を評価したところ、工程(ii)および工程(iii)を実施する前の研磨後の造形物の寸法(W40mm×D4mm×H3mm)に対して、1%以内であった。また、造形物とセラミックス物品との各辺の長さの比はほぼ一致して相似形状になっており、工程(ii)および工程(iii)による、撓みや表面の凹凸なども見られなかった。 When the dimensional accuracy of the obtained ceramic article was evaluated, it was within 1% with respect to the dimensions (W40 mm × D4 mm × H3 mm) of the shaped object after polishing before performing the step (ii) and the step (iii). rice field. In addition, the ratios of the lengths of the sides of the modeled object and the ceramic article were almost the same and had similar shapes, and no bending or surface irregularities due to the steps (ii) and the steps (iii) were observed. ..
 相対密度の平均値は82.4%、3点曲げ強度の平均値は13MPaであった。 The average value of the relative density was 82.4%, and the average value of the 3-point bending strength was 13 MPa.
 セラミックス物品に含まれる相について分析したところ、SiOよりなる相、SiTbよりなる相、および、蛍石構造の酸化ジルコニウムを主成分とする相の3種類の相が含まれていた。またSiOはクリストバライトであり、その割合は98質量%であった。 Analysis of the phases contained in the ceramic article revealed that they contained three types of phases: a phase consisting of SiO 2 , a phase consisting of Si 2 Tb 2 O 7 , and a phase containing zirconium oxide having a fluorite structure as a main component. rice field. Further, SiO 2 was cristobalite, and its proportion was 98% by mass.
 (実施例9)
 本実施例も、二酸化シリコンを主成分とする物品を作製した。
(Example 9)
In this example as well, an article containing silicon dioxide as a main component was produced.
 SiO粉末、Al粉末、吸収体として平均粒子径が5μmのSiO粉末を用意して、モル比がSiO:Al:SiO=66.5:30.0:3.5となるように各粉末を秤量した。なお、SiO粉末はクリストバライトが主成分である。各秤量粉末を乾式ボールミルで30分間混合して混合粉末を得た。 Prepare SiO 2 powder, Al 2 O 3 powder, and SiO powder having an average particle diameter of 5 μm as an absorber, and the molar ratio is SiO 2 : Al 2 O 3 : SiO = 66.5: 30.0: 3.5. Each powder was weighed so as to be. The main component of SiO 2 powder is cristobalite. Each weighing powder was mixed with a dry ball mill for 30 minutes to obtain a mixed powder.
 ICP発光分光分析により前記混合粉末の組成分析を行ったところ、酸化ジルコニウムの含有量は1質量%未満であった。次に実施例4と同様に、5mm×42mm×6mmの直方体の造形物を作製したが、レーザービームを、出力40W、描画速度140mm/s、描画ピッチ110μmで走査した点が異なっている。 When the composition of the mixed powder was analyzed by ICP emission spectroscopic analysis, the content of zirconium oxide was less than 1% by mass. Next, a rectangular parallelepiped object of 5 mm × 42 mm × 6 mm was produced in the same manner as in Example 4, except that the laser beam was scanned at an output of 40 W, a drawing speed of 140 mm / s, and a drawing pitch of 110 μm.
 作製した造形物の表面を光学顕微鏡で観察したところ、造形物表面の凹凸のRaはいずれも30μm以下であった。造形物の表面には、図5と同様の、長方形の各辺に対してほぼ斜め45度となるような方向に延びたクラックが存在していた。 When the surface of the produced model was observed with an optical microscope, the Ra of the unevenness on the surface of the model was 30 μm or less. Similar to FIG. 5, cracks extending in a direction at an angle of approximately 45 degrees to each side of the rectangle existed on the surface of the modeled object.
 それぞれの前記造形物をアルミナ製の基台から切り離し、3点曲げ強度試験用にW40mm×D4mm×H3mmとなるよう研磨した。研磨面をSEMで観察すると、レーザービームの描画方向に依存した数nmから数μm幅のクラックが形成されていた。クラックは、光学顕微鏡での観察結果と同様に、長方形の各辺に対してほぼ斜め45度となるような方向に延び、格子状になっていた。 Each of the above-mentioned shaped objects was separated from the alumina base and polished to W40 mm × D4 mm × H3 mm for a three-point bending strength test. When the polished surface was observed by SEM, cracks having a width of several nm to several μm were formed depending on the drawing direction of the laser beam. Similar to the observation result with the optical microscope, the cracks extended in a direction at an angle of about 45 degrees with respect to each side of the rectangle and formed a grid pattern.
 造形物に、実施例1と同様のジルコニウムイオンを含んだ金属イオン含有液を吸収させ(工程(ii))、電気炉に入れて加熱した(工程(iii))。工程(iii)では、大気雰囲気において1680℃まで2時間で昇温させ、1680℃で20分間保持した後、通電を終了して自然放冷により冷却した。工程(ii)、工程(iii)はそれぞれ1回ずつ実施した。 The modeled object was made to absorb the same metal ion-containing liquid containing zirconium ions as in Example 1 (step (ii)), and was placed in an electric furnace and heated (step (iii)). In the step (iii), the temperature was raised to 1680 ° C. in 2 hours in the air atmosphere, the temperature was maintained at 1680 ° C. for 20 minutes, the energization was terminated, and the mixture was cooled by natural cooling. The step (iii) and the step (iii) were carried out once each.
 得られたセラミックス物品について寸法精度を評価したところ、1%以内であった。また、造形物とセラミックス物品との各辺の長さの比はほぼ一致して相似形状になっており、工程(ii)および工程(iii)による、造形物撓みや表面の凹凸なども見られなかった。 When the dimensional accuracy of the obtained ceramic article was evaluated, it was within 1%. In addition, the ratio of the length of each side of the modeled object and the ceramic article is almost the same and has a similar shape, and bending of the modeled object and unevenness of the surface due to the steps (ii) and the process (iii) can be seen. There wasn't.
 相対密度の平均値は85.0%、3点曲げ強度の平均値は58MPaであった。 The average value of the relative density was 85.0%, and the average value of the three-point bending strength was 58 MPa.
 (比較例1)
 実施例1と同様にして、W40mm×D4mm×H3mmの造形物を5個作製した。光学顕微鏡で造形物の表面を観察したところ、造形物表面の凹凸のRaはいずれも20μm以下であった。
(Comparative Example 1)
In the same manner as in Example 1, five shaped objects of W40 mm × D4 mm × H3 mm were produced. When the surface of the modeled object was observed with an optical microscope, Ra of the unevenness on the surface of the modeled object was 20 μm or less.
 本比較例では、セラミックス物品を作製するにあたり、金属イオン含有液を吸収させる工程(工程(ii)と、ジルコニウムイオンを含んだ金属イオン含有液を含浸させた造形物を加熱する工程(工程(iii))をいずれも実施しなかった。 In this comparative example, in producing a ceramic article, a step of absorbing a metal ion-containing liquid (step (ii)) and a step of heating a model impregnated with a metal ion-containing liquid containing zirconium ions (step (iii)). )) Was not carried out.
 比較例1の造形物についても、実施例1と同様に、3点曲げ強度、相対密度造形物を構成する相の結晶構造と組成の評価を行った。相対密度の平均値は94.4%、3点曲げ強度の平均値は18MPaであった。3点曲げ強度と相対密度の評価結果を表1に示す。 As for the model of Comparative Example 1, the crystal structure and composition of the phases constituting the three-point bending strength and the relative density model were evaluated in the same manner as in Example 1. The average value of the relative density was 94.4%, and the average value of the three-point bending strength was 18 MPa. Table 1 shows the evaluation results of the three-point bending strength and the relative density.
 比較例1のセラミックス物品は、Alよりなる相と、GdAlOよりなる相と、組成にゆらぎのあるアモルファス相で構成されていた。また、物品には、レーザービームの描画方向に依存して、長方形の各辺に対してほぼ斜め45度となるような方向に延びたクラックが存在していた。クラックの幅は数nmから数μmであった。 The ceramic article of Comparative Example 1 was composed of a phase composed of Al 2 O 3 , a phase composed of Gd AlO 3 , and an amorphous phase having a fluctuating composition. Further, the article had cracks extending in a direction at an angle of approximately 45 degrees with respect to each side of the rectangle, depending on the drawing direction of the laser beam. The width of the crack was several nm to several μm.
 (比較例2)
 実施例1と同様にして、W40mm×D4mm×H3mmの造形物を5個を作製し、光学顕微鏡で造形物の表面を観察したところ、造形物表面の凹凸のRaはいずれも20μm以下であった。
(Comparative Example 2)
In the same manner as in Example 1, five W40 mm × D4 mm × H3 mm shaped objects were prepared, and when the surface of the shaped objects was observed with an optical microscope, the Ra of the unevenness on the surface of the shaped objects was 20 μm or less. ..
 得られた造形物に、金属イオン含有液を吸収させる工程(工程(ii))を実施しなかった点を除き、実施例1と同様にして造形物に処理を施し、3点曲げ強度試験用のW40mm×D4mm×H3mmのセラミックス物品を5個作製した。工程(iii)として、大気雰囲気において1670℃まで2.5時間で昇温させ、1680℃で2時間保持した後、通電を終了して自然放冷により冷却する工程を2回繰り返した。 The modeled object was treated in the same manner as in Example 1 except that the step (step (ii)) of absorbing the metal ion-containing liquid into the obtained modeled object was not performed, and the product was subjected to a three-point bending strength test. Five ceramic articles of W40 mm × D4 mm × H3 mm were produced. As a step (iii), the temperature was raised to 1670 ° C. in 2.5 hours in an air atmosphere, the temperature was maintained at 1680 ° C. for 2 hours, the energization was terminated, and the step of cooling by natural cooling was repeated twice.
 実施例1と同様に、比較例2のセラミックス物品についても、3点曲げ強度、相対密度、および、セラミックス物品を構成する相の結晶構造と組成の分析を行った。 Similar to Example 1, for the ceramic article of Comparative Example 2, the three-point bending strength, the relative density, and the crystal structure and composition of the phases constituting the ceramic article were analyzed.
 相対密度の平均値は93.8%、3点曲げ強度の平均値は30MPaであった。 The average value of the relative density was 93.8%, and the average value of the three-point bending strength was 30 MPa.
 比較例2のセラミックス物品は、Alよりなる相、GdAlOよりなる相の2相で構成されていた。また、比較例2のセラミックス物品には、レーザービームの描画方向に依存して、長方形の各辺に対してほぼ斜め45度となるような方向に延びたクラックが残存していた。クラックの幅は数nmから数μmであった。 The ceramic article of Comparative Example 2 was composed of two phases, a phase composed of Al 2 O 3 and a phase composed of Gd Al O 3 . Further, in the ceramic article of Comparative Example 2, cracks extending in a direction at an angle of approximately 45 degrees with respect to each side of the rectangle remained depending on the drawing direction of the laser beam. The width of the crack was several nm to several μm.
 (比較例3)
 実施例1と同様にして、W40mm×D4mm×H3mmの造形物5個を作製し、光学顕微鏡で造形物の表面を観察したところ、造形物表面の凹凸のRaはいずれも20μm以下であった。
(Comparative Example 3)
When five shaped objects of W40 mm × D4 mm × H3 mm were prepared in the same manner as in Example 1 and the surface of the modeled object was observed with an optical microscope, the Ra of the unevenness on the surface of the modeled object was 20 μm or less.
 金属イオン含有液は、水に替えて有機溶媒を用い、以下のように調製した。85質量%のジルコニウムブトキシド(ジルコニウム(IV)ブトキシド(以下、Zr(O-n-Bu)4と表記する))を1-ブタノール中に溶解させた溶液を用意した。前記Zr(O-n-Bu)4の溶液を2-プロパノール(IPA)中に溶解させ、安定化剤としてアセト酢酸エチル(EAcAc)を添加した。各成分モル比率は、Zr(O-n-Bu)4:IPA:EAcAc=1.00:2.95:2.00とした。その後、室温で約3時間攪拌することにより、ジルコニウムイオンの濃度が酸化ジルコニウム換算で30質量%のジルコニウムイオン含有液を調製した。 The metal ion-containing liquid was prepared as follows by using an organic solvent instead of water. A solution prepared by dissolving 85% by mass of zirconium butoxide (zirconium (IV) butoxide (hereinafter referred to as Zr (On-Bu) 4)) in 1-butanol was prepared. The solution of Zr (On-Bu) 4 was dissolved in 2-propanol (IPA), and ethyl acetoacetate (EAcAc) was added as a stabilizer. The molar ratio of each component was Zr (On-Bu) 4: IPA: EAcAc = 1.00: 2.95: 2.00. Then, by stirring at room temperature for about 3 hours, a zirconium ion-containing liquid having a zirconium ion concentration of 30% by mass in terms of zirconium oxide was prepared.
 有機溶媒を含む金属イオン含有液を用いた点と、工程(ii)と工程(iii)を施すサイクルを3回実施した点を除き、実施例1と同様にしてセラミックス物品を5個作製した。実施例1と違い、程(ii)と工程(iii)を施すサイクルを3回実施したのは、2回では造形物にクラックが残存していたためである。 Five ceramic articles were produced in the same manner as in Example 1, except that a metal ion-containing liquid containing an organic solvent was used and the cycle of performing the step (ii) and the step (iii) was carried out three times. Unlike the first embodiment, the cycle of performing the steps (ii) and the step (iii) was carried out three times because cracks remained in the modeled object in the second time.
 得られたセラミックス物品について、実施例1と同様に、3点曲げ強度、寸法精度、相対密度の評価を行った。相対密度の平均値は95.2%、3点曲げ強度の平均値は164MPaであった。結果を表1に示す。 The obtained ceramic articles were evaluated for three-point bending strength, dimensional accuracy, and relative density in the same manner as in Example 1. The average value of the relative density was 95.2%, and the average value of the three-point bending strength was 164 MPa. The results are shown in Table 1.
 比較例3のセラミックス物品の寸法精度も、1%以下と優れていた。また、実施例1のセラミックス物品と同様に、造形物とセラミックス物品とは相似形状であった。 The dimensional accuracy of the ceramic article of Comparative Example 3 was also excellent at 1% or less. Further, similarly to the ceramic article of Example 1, the modeled object and the ceramic article had similar shapes.
 さらに、セラミックス物品を構成する相の結晶構造と組成の分析を行った。 Furthermore, the crystal structure and composition of the phases constituting the ceramic article were analyzed.
 比較例3のセラミックス物品は、実施例1と同様の相分離構造を有していた。すなわち、Alよりなる相、GdAlOよりなる相、および、蛍石構造の酸化ジルコニウムを主成分とする相の3相で構成されていた。蛍石構造の酸化ジルコニウムを主成分とする相を構成する主な金属元素は、Zr、Gd、Tbであった。 The ceramic article of Comparative Example 3 had the same phase-separated structure as that of Example 1. That is, it was composed of three phases: a phase composed of Al 2 O 3 , a phase composed of Gd AlO 3 , and a phase having a fluorite structure containing zirconium oxide as a main component. The main metal elements constituting the phase containing zirconium oxide as a main component of the fluorite structure were Zr, Gd, and Tb.
 酸化ジルコニウムを主成分とする相の分布に偏りはなく、酸化ジルコニウム成分がクラック部から造形物中に拡散し、希土類元素を取り込みながら相分離構造として再結晶化していた。 There was no bias in the distribution of the phase containing zirconium oxide as the main component, and the zirconium oxide component diffused from the cracks into the modeled object and recrystallized as a phase-separated structure while incorporating rare earth elements.
 (比較例4)
 比較例3で用いた金属イオン含有液のジルコニウムイオンの濃度を酸化ジルコニウム換算で15質量%に調製して用いた点と、工程(ii)と工程(iii)を施すサイクルを5回実施した点を除き、実施例3と同様にしてセラミックス物品5個を作製した。実施例3と違い、工程(ii)と工程(iii)を施すサイクルを5回実施したのは、4回では造形物にクラックが残存していたためである。
(Comparative Example 4)
The point that the concentration of zirconium ion in the metal ion-containing liquid used in Comparative Example 3 was adjusted to 15% by mass in terms of zirconium oxide and used, and the point that the cycle of performing the step (ii) and the step (iii) was carried out five times. 5 ceramic articles were produced in the same manner as in Example 3. Unlike the third embodiment, the cycle of performing the step (ii) and the step (iii) was carried out five times because cracks remained in the modeled object after four times.
 得られたセラミックス物品について、実施例1と同様に、3点曲げ強度、寸法精度、相対密度を評価した。相対密度の平均値は96.5%、3点曲げ強度の平均値は145MPaであった。実施例1の結果と共に表1に示す。比較例4のセラミックス物品の寸法精度お1%以下と優れており、造形物とセラミックス物品とは相似形状であった。 The obtained ceramic articles were evaluated for three-point bending strength, dimensional accuracy, and relative density in the same manner as in Example 1. The average value of the relative density was 96.5%, and the average value of the three-point bending strength was 145 MPa. The results of Example 1 are shown in Table 1. The dimensional accuracy of the ceramic article of Comparative Example 4 was excellent at 1% or less, and the modeled object and the ceramic article had similar shapes.
 さらに、セラミックス物品を構成する相の結晶構造と組成の分析を行ったところ、実施例1と同様の相分離構造を有していた。すなわち、Alよりなる相、GdAlOよりなる相、および、蛍石構造の酸化ジルコニウムを主成分とする相の3種類の相を含んでいた。蛍石構造の酸化ジルコニウムを主成分とする相を構成する主な金属元素は、Zr、Gd、Tbであった。また、酸化ジルコニウムを主成分とする相の分布に偏りはなく、酸化ジルコニウム成分がクラック部から造形物中に拡散し、希土類元素を取り込みながら相分離構造として再結晶化したことが確認された。 Further, when the crystal structure and composition of the phases constituting the ceramic article were analyzed, they had the same phase separation structure as in Example 1. That is, it contained three types of phases: a phase composed of Al 2 O 3 , a phase composed of Gd AlO 3 , and a phase having a fluorite structure containing zirconium oxide as a main component. The main metal elements constituting the phase containing zirconium oxide as a main component of the fluorite structure were Zr, Gd, and Tb. It was also confirmed that the distribution of the phase containing zirconium oxide as a main component was not biased, and that the zirconium oxide component diffused from the crack portion into the modeled object and recrystallized as a phase-separated structure while incorporating rare earth elements.
 (比較例5)
 実施例4と同様にして、W40mm×D4mm×H3mmの造形物を5個作製した。造形物の表面を光学顕微鏡で観察したところ、造形物表面の凹凸のRaはいずれも30μm以下であった。
(Comparative Example 5)
In the same manner as in Example 4, five W40 mm × D4 mm × H3 mm shaped objects were produced. When the surface of the modeled object was observed with an optical microscope, Ra of the unevenness on the surface of the modeled object was 30 μm or less.
 本比較例では、作製した造形物に対して、金属イオン含有液を吸収させる工程(工程(ii))と、金属イオン含有液を含浸させた造形物を加熱する工程(工程(iii))をいずれも実施しなかった。 In this comparative example, a step of absorbing the metal ion-containing liquid into the produced modeled object (step (iii)) and a step of heating the modeled object impregnated with the metal ion-containing liquid (step (iii)) are performed. Neither was carried out.
 比較例5のセラミックス物品についても、実施例1と同様に、3点曲げ強度、相対密度、造形物を構成する相の結晶構造と組成の評価を行った。相対密度の平均値は80.3%、3点曲げ強度の平均値は4MPaであった。3点曲げ強度と相対密度の評価結果を表1に示す。 For the ceramic article of Comparative Example 5, the three-point bending strength, the relative density, and the crystal structure and composition of the phases constituting the model were evaluated in the same manner as in Example 1. The average value of the relative density was 80.3%, and the average value of the three-point bending strength was 4 MPa. Table 1 shows the evaluation results of the three-point bending strength and the relative density.
 比較例5のセラミックス物品は、SiOよりなる相と、SiTbよりなる相と、組成にゆらぎのあるアモルファス相で構成されていた。 The ceramic article of Comparative Example 5 was composed of a phase made of SiO 3 , a phase made of Si 2 Tb 2 O 7 , and an amorphous phase having a fluctuating composition.
 (比較例6)
 実施例5と同様にして、W40mm×D4mm×H3mmの造形物を5個作製した。光学顕微鏡で造形物の表面を観察したところ、造形物表面の凹凸のRaは30μm以下であった。
(Comparative Example 6)
In the same manner as in Example 5, five W40 mm × D4 mm × H3 mm shaped objects were produced. When the surface of the modeled object was observed with an optical microscope, Ra of the unevenness on the surface of the modeled object was 30 μm or less.
 作製した造形物に、金属イオン含有液を吸収させる工程(工程(ii))、および、金属イオン含有液を含浸させた造形物を加熱する工程(工程(iii))はいずれも実施しなかった。 Neither the step of absorbing the metal ion-containing liquid into the produced model (step (iii)) nor the step of heating the model impregnated with the metal ion-containing liquid (step (iii)) was performed. ..
 比較例6の造形物についても、実施例1と同様に、3点曲げ強度、相対密度造形物を構成する相の結晶構造と組成の評価を行った。 As for the model of Comparative Example 6, the crystal structure and composition of the phases constituting the three-point bending strength and the relative density model were evaluated in the same manner as in Example 1.
 相対密度の平均値は83.2%、3点曲げ強度の平均値は8MPaであった。3点曲げ強度と相対密度の評価結果を表1に示す。 The average value of the relative density was 83.2%, and the average value of the 3-point bending strength was 8 MPa. Table 1 shows the evaluation results of the three-point bending strength and the relative density.
 比較例6のセラミックス物品は、SiOよりなる相と、SiTbよりなる相と、組成にゆらぎのあるアモルファス相で構成されていた。
Figure JPOXMLDOC01-appb-T000001
The ceramic article of Comparative Example 6 was composed of a phase made of SiO 3 , a phase made of Si 2 Tb 2 O 7 , and an amorphous phase having a fluctuating composition.
Figure JPOXMLDOC01-appb-T000001
 (考察)
 表1に示した結果から、以下のことが分かった。
 実施例1と比較例3、実施例6と比較例4の比較より、溶媒を水とする金属イオン含有液を用いることにより、工程(ii)と工程(iii)が少ない回数で造形物のクラックを減少せしめることができ、かつより大きな3点曲げ強度が得られている。このことから、本発明にかかる金属イオン含有液を用いることでより、少ない後処理工程の回数で、造形物の機械的強度を向上させることができることを確認できた。
(Discussion)
From the results shown in Table 1, the following was found.
From the comparison between Example 1 and Comparative Example 3 and Example 6 and Comparative Example 4, by using a metal ion-containing liquid using water as a solvent, the number of steps (ii) and steps (iii) is small and the number of cracks in the modeled object is small. Can be reduced, and a larger three-point bending strength is obtained. From this, it was confirmed that the mechanical strength of the modeled product can be improved by using the metal ion-containing liquid according to the present invention with a smaller number of post-treatment steps.
 また、実施例1と実施例6との比較から、金属イオン含有液のジルコニウムイオンの濃度が大きいと、工程(iii)および工程(iv)の実施回数が少なくても高い機械的強度が得られることが分かる。また工程(iii)の実施回数が多く積算加熱時間が大きいと構成する相の数が減少し、機械的強度が低下することが分かる。さらに、実施例1と実施例2との比較から、金属イオン含有液のジルコニウムイオンの濃度が同じでも、安定化剤を加えることで、得られる物品の相対密度と機械的強度のいずれも高くなることが分かる。さらに、実施例1と、比較例1および比較例2との比較から、造形物に工程(ii)および工程(iii)を実施しないと、高い機械的強度が得られないことが分かる。さらに実施例1と実施例7との比較から工程(iii)の焼成温度保持時間が長いと積算加熱時間が長くなり、得られる物品の結晶粒径が大きくなり、機械的強度が低下することが分かる。 Further, from the comparison between Example 1 and Example 6, when the concentration of zirconium ion in the metal ion-containing liquid is high, high mechanical strength can be obtained even if the number of steps (iii) and step (iv) is small. You can see that. Further, it can be seen that when the number of times the step (iii) is performed is large and the integrated heating time is long, the number of constituent phases decreases and the mechanical strength decreases. Further, from the comparison between Example 1 and Example 2, even if the concentration of zirconium ion in the metal ion-containing liquid is the same, the addition of the stabilizer increases both the relative density and the mechanical strength of the obtained article. You can see that. Further, from the comparison between Example 1 and Comparative Example 1 and Comparative Example 2, it can be seen that high mechanical strength cannot be obtained unless the step (ii) and the step (iii) are performed on the modeled object. Further, from the comparison between Example 1 and Example 7, if the firing temperature holding time in the step (iii) is long, the integrated heating time becomes long, the crystal grain size of the obtained article becomes large, and the mechanical strength may decrease. I understand.
 酸化ケイ素を主成分とした実施例8および9のセラミックス物品は、それぞれ相対密度が82.4%および85.0%とポーラスであった。これは、レーザー照射によって溶融した時の酸化ケイ素成分の粘性が高いため、ポーラス状態になったと推測される。作製された造形物がポーラスであったにも関わらず、本発明の金属イオン含有液を用いることで13MPa、58MPaの機械的強度が得られた。それに対して、工程(iii)および工程(iv)の実施しなかった比較例5および6は、3点曲げ強度が4MPa、8Mpaと低かった。 The ceramic articles of Examples 8 and 9 containing silicon oxide as a main component had relative densities of 82.4% and 85.0%, respectively, which were porous. It is presumed that this is due to the high viscosity of the silicon oxide component when melted by laser irradiation, resulting in a porous state. Despite the fact that the produced model was porous, mechanical strength of 13 MPa and 58 MPa was obtained by using the metal ion-containing liquid of the present invention. On the other hand, in Comparative Examples 5 and 6 in which the step (iii) and the step (iv) were not carried out, the three-point bending strength was as low as 4 MPa and 8 Mpa.
 以上のように本発明の金属イオン含有液を用いれば、付加製造技術によって作製された造形物を、少ない後処理工程回数で、高い形状精度を達成しながら造形物の機械的強度の向上を実現することができる。そして、複雑形状や微細形状でありながら高い機械的強度を有するセラミックス物品を得ることが可能となる。 As described above, by using the metal ion-containing liquid of the present invention, it is possible to improve the mechanical strength of the modeled product produced by the additive manufacturing technique while achieving high shape accuracy with a small number of post-treatment steps. can do. Then, it becomes possible to obtain a ceramic article having a high mechanical strength while having a complicated shape or a fine shape.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, the following claims are attached in order to publicize the scope of the present invention.
 本願は、2020年10月16日提出の日本国特許出願特願2020-174679と2021年10月4日提出の日本国特許出願特願2021-163593を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。 This application claims priority based on Japanese Patent Application No. 2020-174679 filed on October 16, 2020 and Japanese Patent Application No. 2021-163593 submitted on October 4, 2021. All of the contents are incorporated here.

Claims (39)

  1.  付加製造技術を用いたセラミックス物品の製造方法であって、
     セラミックスを主成分とする粉末にエネルギービームを照射して前記粉末を固化させて造形物を作製する工程と、
     前記造形物に、水と金属イオンとを含む金属イオン含有液を吸収させる工程と、
     前記金属イオン含有液を吸収させた造形物を加熱する工程と、
     を含むことを特徴とするセラミックス物品の製造方法。
    A method for manufacturing ceramic articles using additional manufacturing technology.
    A process of irradiating a powder containing ceramics as a main component with an energy beam to solidify the powder to produce a model.
    A step of causing the modeled object to absorb a metal ion-containing liquid containing water and metal ions,
    The step of heating the modeled object that has absorbed the metal ion-containing liquid, and
    A method for manufacturing a ceramic article, which comprises.
  2.  前記金属イオン含有液が、前記金属イオン含有液から金属イオンを除いた液に対して10質量%以上の水を含むことを特徴とする請求項1に記載のセラミックス物品の製造方法。 The method for producing a ceramic article according to claim 1, wherein the metal ion-containing liquid contains 10% by mass or more of water with respect to a liquid obtained by removing metal ions from the metal ion-containing liquid.
  3.  前記金属イオン含有液の前記金属イオンの含有量が、金属酸化物に換算して10質量%以上80質量%以下であることを特徴とする請求項1または2に記載のセラミックス物品の製造方法。 The method for producing a ceramic article according to claim 1 or 2, wherein the metal ion content of the metal ion-containing liquid is 10% by mass or more and 80% by mass or less in terms of metal oxide.
  4.  前記金属イオン含有液の前記金属イオンの含有量が、金属酸化物に換算して30質量%以上60質量%以下であることを特徴とする請求項3に記載のセラミックス物品の製造方法。 The method for producing a ceramic article according to claim 3, wherein the metal ion content of the metal ion-containing liquid is 30% by mass or more and 60% by mass or less in terms of metal oxide.
  5.  前記金属イオン含有液が、安定化剤として、さらに有機酸、界面活性剤、キレート剤の中から選択されるいずれか一種を含むことを特徴とする請求項1乃至4のいずれか一項に記載のセラミックス物品の製造方法。 The invention according to any one of claims 1 to 4, wherein the metal ion-containing liquid further contains, as a stabilizer, any one selected from an organic acid, a surfactant, and a chelating agent. How to manufacture ceramic articles.
  6.  前記金属イオン含有液の前記安定化剤の含有量が、前記金属イオンに対して10モル%以上300モル%以下であることを特徴とする請求項5に記載のセラミックス物品の製造方法。 The method for producing a ceramic article according to claim 5, wherein the content of the stabilizer in the metal ion-containing liquid is 10 mol% or more and 300 mol% or less with respect to the metal ions.
  7.  前記金属イオン含有液の前記安定化剤の含有量が、前記金属イオンに対して50モル%以上200モル%以下であることを特徴とする請求項6に記載のセラミックス物品の製造方法。 The method for producing a ceramic article according to claim 6, wherein the content of the stabilizer in the metal ion-containing liquid is 50 mol% or more and 200 mol% or less with respect to the metal ions.
  8.  前記造形物を加熱する工程において、前記金属イオン含有液が、前記造形物に含まれる化合物と共晶を形成しうる金属酸化物を生じることを特徴とする請求項1乃至7のいずれか一項に記載のセラミックス物品の製造方法。 One of claims 1 to 7, wherein in the step of heating the model, the metal ion-containing liquid produces a metal oxide capable of forming a eutectic with the compound contained in the model. The method for manufacturing a ceramic article according to.
  9.  前記金属酸化物が、前記造形物の主成分と共晶を形成しうることを特徴とする請求項8に記載のセラミックス物品の製造方法。 The method for producing a ceramic article according to claim 8, wherein the metal oxide can form a eutectic with the main component of the modeled product.
  10.  前記造形物を加熱する工程において、到達する最高温度が、前記金属酸化物と、前記金属酸化物と共晶を形成しうる化合物との共晶点より高いことを特徴とする請求項8または9に記載のセラミックス物品の製造方法。 8. The method for manufacturing a ceramic article according to.
  11.  前記造形物が酸化アルミニウムを含み、前記金属イオン含有液が前記金属イオンとしてジルコニウムイオンまたはケイ酸イオンを含むことを特徴とする請求項1乃至10のいずれか一項に記載のセラミックス物品の製造方法。 The method for producing a ceramic article according to any one of claims 1 to 10, wherein the modeled product contains aluminum oxide, and the metal ion-containing liquid contains zirconium ion or silicate ion as the metal ion. ..
  12.  前記造形物が酸化シリコンを含み、前記金属イオン含有液が前記金属イオンとしてジルコニウムイオンまたはアルミニウムイオンを含むことを特徴とする請求項1乃至10のいずれか一項に記載のセラミックス物品の製造方法。 The method for producing a ceramic article according to any one of claims 1 to 10, wherein the modeled product contains silicon oxide, and the metal ion-containing liquid contains zirconium ions or aluminum ions as the metal ions.
  13.  前記造形物が、さらに希土類元素の酸化物を含むことを特徴とする請求項1乃至12のいずれか一項に記載のセラミックス物品の製造方法。 The method for producing a ceramic article according to any one of claims 1 to 12, wherein the modeled object further contains an oxide of a rare earth element.
  14.  前記希土類元素の酸化物が、酸化ガドリニウム、酸化イットリウム、酸化テルビウムおよび酸化プラセオジムの群から選択される少なくとも一種であることを特徴とする請求項13に記載のセラミックス物品の製造方法。 The method for producing a ceramic article according to claim 13, wherein the oxide of the rare earth element is at least one selected from the group of gadolinium oxide, yttrium oxide, terbium oxide and praseodymium oxide.
  15.  前記金属イオン含有液を吸収させる工程において、減圧した雰囲気の下で前記造形物に前記金属イオン含有液を吸収させることを特徴とする請求項1乃至14のいずれか一項に記載のセラミックス物品の製造方法。 The ceramic article according to any one of claims 1 to 14, wherein in the step of absorbing the metal ion-containing liquid, the metal ion-containing liquid is absorbed by the modeled object under a reduced atmosphere. Production method.
  16.  前記造形物を作製するにおいて照射するエネルギービームが、レーザービームまたは電子ビームであることを特徴とする請求項1乃至15のいずれか一項に記載のセラミックス物品の製造方法。 The method for manufacturing a ceramic article according to any one of claims 1 to 15, wherein the energy beam to be irradiated in manufacturing the modeled object is a laser beam or an electron beam.
  17.  前記金属イオン含有液を吸収させる工程と前記造形物を加熱する工程とを複数回繰り返すことを特徴とする請求項1乃至16のいずれか一項に記載のセラミックス物品の製造方法。 The method for manufacturing a ceramic article according to any one of claims 1 to 16, wherein the step of absorbing the metal ion-containing liquid and the step of heating the modeled object are repeated a plurality of times.
  18.  エネルギービームを用いる付加製造技術によってセラミックス物品を製造するためのセラミックス物品製造用キットであって、
     セラミックスを主成分とする粉末と、金属イオン含有液と、を含んでおり、
     前記金属イオン含有液は水と金属イオンとを含み、
     前記金属イオンが、前記セラミックスを主成分とする粉末から作製されるセラミックス造形物に含まれる化合物と共晶を形成する金属酸化物を生成しうることを特徴とするセラミックス物品製造用キット。
    A kit for manufacturing ceramic articles for manufacturing ceramic articles by additional manufacturing technology using an energy beam.
    It contains a powder containing ceramics as the main component and a metal ion-containing liquid.
    The metal ion-containing liquid contains water and metal ions, and contains water and metal ions.
    A kit for manufacturing ceramic articles, wherein the metal ions can form a metal oxide that forms a eutectic with a compound contained in a ceramic model formed from a powder containing the ceramic as a main component.
  19.  前記金属イオン含有液が、前記金属イオン含有液から金属イオンを除いた液に対して10質量%以上の水を含むことを特徴とする請求項18に記載のセラミックス物品製造用キット。 The kit for manufacturing ceramic articles according to claim 18, wherein the metal ion-containing liquid contains 10% by mass or more of water with respect to a liquid obtained by removing metal ions from the metal ion-containing liquid.
  20.  前記金属イオン含有液の前記金属イオンの含有量が、金属酸化物に換算して10質量%以上80質量%以下であることを特徴とする請求項18または19に記載のセラミックス物品製造用キット。 The kit for manufacturing ceramic articles according to claim 18 or 19, wherein the metal ion content of the metal ion-containing liquid is 10% by mass or more and 80% by mass or less in terms of metal oxide.
  21.  前記金属イオン含有液の前記金属イオンの含有量が、金属酸化物に換算して30質量%以上60質量%以下であることを特徴とする請求項20に記載のセラミックス物品製造用キット。 The kit for manufacturing ceramic articles according to claim 20, wherein the metal ion content of the metal ion-containing liquid is 30% by mass or more and 60% by mass or less in terms of metal oxide.
  22.  前記金属イオン含有液が、安定化剤として、さらに有機酸、界面活性剤、キレート剤の中から選択されるいずれか一種を含むことを特徴とする請求項18乃至21のいずれか一項に記載のセラミックス物品製造用キット。 The invention according to any one of claims 18 to 21, wherein the metal ion-containing liquid further contains, as a stabilizer, any one selected from an organic acid, a surfactant, and a chelating agent. Kit for manufacturing ceramic articles.
  23.  前記金属イオン含有液の前記安定化剤の含有量が、前記金属イオンに対して10モル%以上300モル%以下のであることを特徴とする請求項22に記載のセラミックス物品製造用キット。 The kit for manufacturing ceramic articles according to claim 22, wherein the content of the stabilizer in the metal ion-containing liquid is 10 mol% or more and 300 mol% or less with respect to the metal ions.
  24.  前記金属イオン含有液の前記安定化剤の含有量が、前記金属イオンに対して50モル%以上200モル%以下であることを特徴とする請求項23に記載のセラミックス物品製造用キット。 The kit for manufacturing ceramic articles according to claim 23, wherein the content of the stabilizer in the metal ion-containing liquid is 50 mol% or more and 200 mol% or less with respect to the metal ions.
  25.  前記金属イオンは、加熱処理によって前記金属酸化物を生成することを特徴とする請求項18乃至24のいずれか一項に記載のセラミックス物品製造用キット。 The kit for manufacturing a ceramic article according to any one of claims 18 to 24, wherein the metal ion produces the metal oxide by heat treatment.
  26.  前記金属イオンが、前記粉末に含まれる化合物と共晶を形成する金属酸化物を生じうることを特徴とする請求項18乃至25のいずれか一項に記載のセラミックス物品製造用キット。 The kit for manufacturing a ceramic article according to any one of claims 18 to 25, wherein the metal ion can form a metal oxide that forms a eutectic with the compound contained in the powder.
  27.  前記金属酸化物が、前記粉末の主成分と共晶になりうることを特徴とする請求項26に記載のセラミックス物品製造用キット。 The kit for manufacturing ceramic articles according to claim 26, wherein the metal oxide can be eutectic with the main component of the powder.
  28.  前記セラミックスを主成分とする粉末の主成分が酸化アルミニウムであり、前記金属イオン含有液が前記金属イオンとしてジルコニウムイオンまたはケイ酸イオンを含むことを特徴とする請求項18乃至27のいずれか一項に記載のセラミックス物品製造用キット。 One of claims 18 to 27, wherein the main component of the powder containing the ceramic as a main component is aluminum oxide, and the metal ion-containing liquid contains zirconium ion or silicate ion as the metal ion. Kit for manufacturing ceramic articles according to.
  29.  前記セラミックスを主成分とする粉末の主成分が酸化シリコンであり、前記金属イオン含有液が前記金属イオンとしてジルコニウムイオンまたはアルミニウムイオンを含むことを特徴とする請求項18乃至27のいずれか一項に記載のセラミックス物品製造用キット。 The invention according to any one of claims 18 to 27, wherein the main component of the powder containing the ceramic as a main component is silicon oxide, and the metal ion-containing liquid contains zirconium ion or aluminum ion as the metal ion. The described kit for manufacturing ceramic articles.
  30.  付加製造技術によって形成されたセラミックス造形物に含まれるクラックを補修するために用いられる金属イオン含有液であって、
     前記金属イオン含有液は、水と金属イオンとを含み、前記金属イオンが、前記セラミックス造形物に含まれる化合物と共晶を形成する金属酸化物を生成しうることを特徴とする金属イオン含有液。
    A metal ion-containing liquid used for repairing cracks contained in a ceramic model formed by additional manufacturing technology.
    The metal ion-containing liquid contains water and metal ions, and the metal ions can form a metal oxide that forms a eutectic with a compound contained in the ceramic model. ..
  31.  前記金属イオン含有液から金属イオンを除いた液に対して10質量%以上の水を含むことを特徴とする請求項30に記載の金属イオン含有液。 The metal ion-containing liquid according to claim 30, wherein the metal ion-containing liquid contains 10% by mass or more of water with respect to the liquid obtained by removing the metal ions.
  32.  前記金属イオンの含有量は、金属酸化物に換算して10質量%以上80質量%以下であることを特徴とする請求項30または31に記載の金属イオン含有液。 The metal ion-containing liquid according to claim 30 or 31, wherein the content of the metal ion is 10% by mass or more and 80% by mass or less in terms of metal oxide.
  33.  前記金属イオンの含有量は、金属酸化物に換算して30質量%以上60質量%以下であることを特徴とする請求項32に記載の金属イオン含有液。 The metal ion-containing liquid according to claim 32, wherein the metal ion content is 30% by mass or more and 60% by mass or less in terms of metal oxide.
  34.  安定化剤として、さらに有機酸、界面活性剤、キレート剤の中から選択されるいずれか一種を含むことを特徴とする請求項30乃至33のいずれか一項に記載の金属イオン含有液。 The metal ion-containing liquid according to any one of claims 30 to 33, further comprising any one selected from an organic acid, a surfactant, and a chelating agent as a stabilizer.
  35.  前記安定化剤の含有量が、前記金属イオンに対して10モル%以上300モル%以下のであることを特徴とする請求項34に記載の金属イオン含有液。 The metal ion-containing liquid according to claim 34, wherein the content of the stabilizer is 10 mol% or more and 300 mol% or less with respect to the metal ion.
  36.  前記金属イオンが、前記造形物に含まれる化合物と共晶を形成しうる金属酸化物を生じうることを特徴とする請求項30乃至35のいずれか一項に記載の金属イオン含有液。 The metal ion-containing liquid according to any one of claims 30 to 35, wherein the metal ion can form a metal oxide capable of forming a eutectic with the compound contained in the model.
  37.  前記金属イオンが、前記セラミックス造形物の主成分と共晶を形成しうる金属酸化物を生じうることを特徴とする請求項36に記載の金属イオン含有液。 The metal ion-containing liquid according to claim 36, wherein the metal ion can form a metal oxide capable of forming a eutectic with the main component of the ceramic model.
  38.  前記セラミックス造形物が酸化アルミニウムを含む場合に用いられ、前記金属イオン含有液が、金属イオンとしてジルコニウムイオンまたはケイ酸イオンを含むことを特徴とする請求項30乃至37のいずれか一項に記載の金属イオン含有液。 The invention according to any one of claims 30 to 37, which is used when the ceramic model contains aluminum oxide, and the metal ion-containing liquid contains zirconium ion or silicate ion as a metal ion. Metal ion-containing liquid.
  39.  前記セラミックス造形物の主成分が酸化シリコンである場合に用いられ、前記金属イオン含有液が、金属イオンとしてジルコニウムイオンまたはアルミニウムイオンを含むことを特徴とする請求項30乃至37のいずれか一項に記載の金属イオン含有液。 The invention according to any one of claims 30 to 37, which is used when the main component of the ceramic model is silicon oxide, and the metal ion-containing liquid contains zirconium ions or aluminum ions as metal ions. The metal ion-containing liquid according to the above.
PCT/JP2021/037578 2020-10-16 2021-10-11 Method for producing ceramic article, metal ion-containing liquid used therein, and kit for producing ceramic article WO2022080318A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-174679 2020-10-16
JP2020174679 2020-10-16
JP2021-163593 2021-10-04
JP2021163593A JP2022066155A (en) 2020-10-16 2021-10-04 Method for manufacturing ceramic article, metal ion-containing liquid used therein, and kit for manufacturing ceramic article

Publications (1)

Publication Number Publication Date
WO2022080318A1 true WO2022080318A1 (en) 2022-04-21

Family

ID=81209210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037578 WO2022080318A1 (en) 2020-10-16 2021-10-11 Method for producing ceramic article, metal ion-containing liquid used therein, and kit for producing ceramic article

Country Status (1)

Country Link
WO (1) WO2022080318A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820776A (en) * 1981-07-28 1983-02-07 東海高熱工業株式会社 Zirconia-impregnated alumina refractories
JPH06321662A (en) * 1993-03-19 1994-11-22 Sumitomo Metal Ind Ltd Production of brick for coke oven and structure of furnace
JP2018031050A (en) * 2016-08-24 2018-03-01 株式会社ノリタケカンパニーリミテド Laminate-molding sintered body, method for producing laminate-molding sintered body, and kit for producing laminate-molding sintered body
WO2019208570A1 (en) * 2018-04-24 2019-10-31 キヤノン株式会社 Ceramics product manufacturing mehtod and ceramics product
WO2020116568A1 (en) * 2018-12-06 2020-06-11 キヤノン株式会社 Ceramic article production method and ceramic article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820776A (en) * 1981-07-28 1983-02-07 東海高熱工業株式会社 Zirconia-impregnated alumina refractories
JPH06321662A (en) * 1993-03-19 1994-11-22 Sumitomo Metal Ind Ltd Production of brick for coke oven and structure of furnace
JP2018031050A (en) * 2016-08-24 2018-03-01 株式会社ノリタケカンパニーリミテド Laminate-molding sintered body, method for producing laminate-molding sintered body, and kit for producing laminate-molding sintered body
WO2019208570A1 (en) * 2018-04-24 2019-10-31 キヤノン株式会社 Ceramics product manufacturing mehtod and ceramics product
WO2020116568A1 (en) * 2018-12-06 2020-06-11 キヤノン株式会社 Ceramic article production method and ceramic article

Similar Documents

Publication Publication Date Title
JP7383738B2 (en) Powder for ceramic modeling, ceramic modeling, and manufacturing method thereof
US11718567B2 (en) Powder for ceramic manufacturing, ceramic manufactured object, and manufacturing method thereof
US11440850B2 (en) Powder for additive modeling, structure, semiconductor production device component, and semiconductor production device
JP2006282447A (en) Translucent material and method for manufacturing the same
JP2021066177A (en) Ceramic article manufacturing method and ceramic article
JP6465202B2 (en) Magneto-optical material, manufacturing method thereof, and magneto-optical device
JP2023086845A (en) Method for producing ceramic article, and ceramic article
JPWO2015037649A1 (en) Magneto-optical material, manufacturing method thereof, and magneto-optical device
JP2022066155A (en) Method for manufacturing ceramic article, metal ion-containing liquid used therein, and kit for manufacturing ceramic article
US20210309575A1 (en) Ceramic article production method and ceramic article
WO2022080318A1 (en) Method for producing ceramic article, metal ion-containing liquid used therein, and kit for producing ceramic article
JP7191644B2 (en) Material powders for additive manufacturing, structures, semiconductor manufacturing equipment parts, and semiconductor manufacturing equipment
US20220227021A1 (en) Method for manufacturing ceramic article and ceramic article
WO2020116568A1 (en) Ceramic article production method and ceramic article
JP2021066653A (en) Ceramic article manufacturing method, metal component-containing liquid, ceramic article manufacturing kit, and ceramic article
JP7269084B2 (en) Ceramic article manufacturing method and ceramic article
CN110709368B (en) Polycrystalline YAG sintered body and method for producing same
WO2021079907A1 (en) Method for manufacturing ceramic article, metal-component-containing liquid, ceramic-article manufacturing kit, and ceramic article
JP2019181930A (en) Ceramic powder, ceramic powder production method and production method of ceramic structure using ceramic powder
JP2010254523A (en) Method for producing spinel-based ceramic
JP2004315834A (en) Fluoride thin film manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21880057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21880057

Country of ref document: EP

Kind code of ref document: A1