JP2002316866A - Member for heat treatment consisting of alumina sintered compact having excellent durability - Google Patents

Member for heat treatment consisting of alumina sintered compact having excellent durability

Info

Publication number
JP2002316866A
JP2002316866A JP2001121805A JP2001121805A JP2002316866A JP 2002316866 A JP2002316866 A JP 2002316866A JP 2001121805 A JP2001121805 A JP 2001121805A JP 2001121805 A JP2001121805 A JP 2001121805A JP 2002316866 A JP2002316866 A JP 2002316866A
Authority
JP
Japan
Prior art keywords
sintered body
heat treatment
alumina
sintered compact
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001121805A
Other languages
Japanese (ja)
Other versions
JP4836348B2 (en
Inventor
Koji Onishi
宏司 大西
Hironori Naka
博律 中
Kazuya Tani
和哉 谷
Toshio Kawanami
利夫 河波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkato Corp
Original Assignee
Nikkato Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkato Corp filed Critical Nikkato Corp
Priority to JP2001121805A priority Critical patent/JP4836348B2/en
Publication of JP2002316866A publication Critical patent/JP2002316866A/en
Application granted granted Critical
Publication of JP4836348B2 publication Critical patent/JP4836348B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a member for heat treatment consisting of an alumina sintered compact having excellent durability. SOLUTION: This member for heat treatment consists of an alumina sintered compact having excellent durability. (a) The alumina sintered compact has an Al2 O3 content of >=95 wt.%. (b) The pores thereof have a round shape, and are composed of sealed and connected pores. (c) The average pore size of the sintered compact is 2 to 100 μm. (d) The average crystal particle size of the sintered compact is 5 to 50 μm. (e) The relative density of the sintered compact is 50 to 70%. (f) The amount of deflection at 140 deg.C under the stress of 2 MPa is <=2 mm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐久性にすぐれた
アルミナ質焼結体からなる熱処理用部材に関する。な
お、本発明でいう熱処理用部材とは圧電体、誘電体など
の電子部品材料、リチウムイオン2次電池正極材料、蛍
光体材料およびセラミック材料の熱処理用容器、単結晶
育成用ルツボ、金属溶解用ルツボ、各種電気炉用炉心
管、サポートチューブ、ラジアントチューブ、ガス吹込
管、ガス採取管、測温用熱電対および各種機器用の保護
管、サポート用治具材などである。
The present invention relates to a heat treatment member made of an alumina sintered body having excellent durability. The heat treatment member referred to in the present invention includes electronic component materials such as a piezoelectric material and a dielectric material, a lithium ion secondary battery positive electrode material, a phosphor material and a ceramic material heat treatment container, a single crystal growing crucible, and a metal melting material. These include crucibles, furnace tubes for various electric furnaces, support tubes, radiant tubes, gas injection tubes, gas sampling tubes, thermocouples for temperature measurement, protective tubes for various devices, and support jig materials.

【0002】[0002]

【従来技術とその問題点】アルミナ質焼結体は耐食性、
耐熱性等にすぐれ、他のセラミックスに比べて安価で取
り扱いが容易であることから、古くから高温部材、熱処
理用容器、セッター、炉心管、測温用保護管等の広い分
野で使用されている。
[Prior art and its problems] Alumina sintered body has corrosion resistance,
It has excellent heat resistance, is inexpensive and easy to handle compared to other ceramics, and has long been used in a wide range of fields such as high-temperature members, heat treatment vessels, setters, furnace tubes, and temperature measurement protection tubes. .

【0003】最近の電子セラミックスの焼成は被焼成体
の蒸発成分を極力少なくして組成の変動を少なくするた
めに急速昇温・降温がなされている。一方で焼成コスト
低減のため、焼成炉の断熱性を高め、焼成用部材を軽量
化して熱エネルギーの損失を低減したりすることが望ま
れている。そのため、例えば焼成用セッターには、肉薄
軽量で、耐熱衝撃性にすぐれ、耐荷重の高いものが求め
られている。
[0003] In recent baking of electronic ceramics, the temperature is rapidly raised and lowered in order to minimize the evaporation component of the object to be fired and to reduce the fluctuation of the composition. On the other hand, in order to reduce the firing cost, it is desired to enhance the heat insulation of the firing furnace, reduce the weight of the firing member, and reduce the loss of thermal energy. For this reason, for example, a baking setter that is thin, lightweight, excellent in thermal shock resistance and high in load resistance is required.

【0004】緻密質の焼結体からなる熱処理用部材は耐
食性にはすぐれているものの急速昇温・降温では熱衝撃
による割れが発生する危険性を有しており、また重量が
重いという欠点を有している。
[0004] The heat treatment member made of a dense sintered body has excellent corrosion resistance, but has the risk of cracking due to thermal shock at rapid temperature rise / fall, and has the disadvantage of being heavy. Have.

【0005】このようなことから、特許第278806
1号に軽量で耐熱衝撃抵抗性に優れた焼成用治具が提案
されている。しかしながら、該特許発明は気孔率、気孔
形状および気孔径について規定した軽量・耐熱衝撃抵抗
性の優れた焼成用治具が開示されているが、最近の高機
能材料の焼成用治具としては反応がしやすく、強度が低
く、使用により治具が変形する等の寿命の点で十分に満
足できるものでない。
[0005] From such a fact, Japanese Patent No. 278806.
No. 1 proposes a firing jig that is lightweight and has excellent thermal shock resistance. However, this patent invention discloses a light-weight, excellent thermal shock-resistant baking jig that defines the porosity, pore shape, and pore diameter. It is not sufficiently satisfactory in terms of life, such as easy removal, low strength, and deformation of the jig due to use.

【0006】また、電子部品などの焼成は一般的に熱処
理用セッターの上に積み重ねて載せた状態で焼成する
が、セッターと直接接する被焼成体はそうでない被焼成
体に比べて焼成時の雰囲気が異なるため、目的とする特
性が得られないなどの問題がある。そのため、電子部品
などの焼成に用いられる熱処理用セッターには焼成雰囲
気を制御できる適度な通気性を有するものが求められて
いる。
In general, electronic parts and the like are fired in a state where they are stacked and placed on a heat treatment setter, but a fired body directly in contact with the setter has a higher atmosphere during firing than a non-fired body. However, there is a problem that desired characteristics cannot be obtained. Therefore, a heat treatment setter used for firing electronic components and the like is required to have a moderate air permeability capable of controlling a firing atmosphere.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、耐久
性にすぐれたアルミナ質焼結体からなる熱処理用部材を
提供する点にある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a heat treatment member made of an alumina sintered body having excellent durability.

【0008】[0008]

【課題を解決するための手段】本発明は前記のような現
状を鑑みて鋭意研究を重ねてきた結果、アルミナ質焼結
体において、ある特定の相対密度を有し、丸みを帯びた
密閉気孔と連結した開気孔を有し、その気孔径と結晶粒
径の制御、焼結体の相対密度の制御をすることによりす
ぐれた耐久性にすぐれたアルミナ質焼結体からなる熱処
理用部材を見出した。なお、本発明においては、耐久性
とは急熱・急冷によるクラックの発生や割れに対する抵
抗性だけでなく、耐食性および耐クリープ性にすぐれる
ことを意味する。
SUMMARY OF THE INVENTION The present invention has been studied intensively in view of the above-mentioned situation, and as a result, it has been found that alumina-based sintered bodies have a specific relative density and are rounded and closed. Found a heat treatment member made of an alumina-based sintered body with excellent durability by controlling the pore size and crystal grain size, and controlling the relative density of the sintered body. Was. In the present invention, durability means not only resistance to crack generation and cracking due to rapid heat / quenching, but also excellent corrosion resistance and creep resistance.

【0009】本発明の第1は、(a)Al含有量
が95重量%以上のアルミナ質焼結体であって、(b)
その気孔は丸味を帯びた形状で、密閉および連結した開
気孔とからなり、(c)焼結体の平均気孔径が2〜10
0μmであり、(d)焼結体の平均結晶粒径5〜50μ
m、(e)焼結体の相対密度が50〜70%であり、
(f)1400℃、2MPaの応力下でのたわみ量が2
mm以下であることを特徴とするアルミナ質焼結体より
なる耐久性に優れたアルミナ質焼結体からなる熱処理用
部材に関する。本発明の第2は、MgOが0.3重量%
以下含有されているものである請求項1記載の耐久性に
優れたアルミナ質焼結体からなる熱処理用部材に関す
る。本発明の第3は、ジルコニアが5重量%以下含有さ
れているものである請求項1または2記載の耐久性に優
れたアルミナ質焼結体からなる熱処理用部材に関する。
A first aspect of the present invention is (a) an alumina-based sintered body having an Al 2 O 3 content of 95% by weight or more;
The pores have a rounded shape and consist of closed and connected open pores, and (c) the average pore diameter of the sintered body is 2 to 10
0 μm, and (d) the average crystal grain size of the sintered body is 5 to 50 μm.
m, (e) the relative density of the sintered body is 50 to 70%,
(F) The amount of deflection under stress of 1400 ° C. and 2 MPa is 2
mm or less, and relates to a heat-treating member made of an alumina-based sintered body having excellent durability, which is made of an alumina-based sintered body. The second aspect of the present invention is that MgO is 0.3% by weight.
The heat treatment member according to claim 1, wherein the heat treatment member is made of an alumina sintered body having excellent durability. The third aspect of the present invention relates to the heat treatment member according to claim 1 or 2, wherein the zirconia content is 5% by weight or less.

【0010】以下に詳細に本発明について説明する。Hereinafter, the present invention will be described in detail.

【0011】(a)アルミナ含有量が95重量%以上で
あるという点について、本発明においては、焼結体のア
ルミナ含有量が95重量%以上であることが必要であ
る。アルミナ含有量が95重量%未満の場合は、焼結体
中に含有する不純物量が多くなり、結晶粒界に不純物で
形成される第2相及びガラス相が多くなり、耐食性の低
下だけでなく、機械的特性、特に高温下での強度の低下
をきたし、その結果、耐クリープ性および耐熱衝撃抵抗
性が低下するので好ましくない。アルミナ含有量は、好
ましくは、97重量%以上である。
(A) Regarding that the alumina content is 95% by weight or more, in the present invention, the alumina content of the sintered body needs to be 95% by weight or more. When the alumina content is less than 95% by weight, the amount of impurities contained in the sintered body increases, the second phase and the glass phase formed by impurities at the crystal grain boundaries increase, and not only the corrosion resistance decreases, but also In addition, mechanical properties, particularly strength at high temperatures, are reduced, and as a result, creep resistance and thermal shock resistance are lowered, which is not preferable. The alumina content is preferably at least 97% by weight.

【0012】(b)その気孔は丸味を帯びた形状で、密
閉および連結した開気孔からなる点について、本発明に
おける密閉気孔および連結した開気孔の形成には、粉砕
・分散スラリーに所定の相対密度および気孔径になるよ
うに気孔形成剤としてのアクリル系樹脂球状粒子や多糖
類球状粒子などの有機質球状粒子のような有機質で丸味
を帯びた粒子を使用することが必要である。この気孔形
成剤をセラミック粉体に添加、混合して成形し、これを
焼成すると、有機質の気孔形成剤は消失し、跡形として
の密閉気孔および連結した開気孔が残るので、密閉気孔
および連結した開気孔の形状は本質的には気孔形成剤の
形状に基因した形状となり、密閉気孔は丸味をもつ気孔
形成剤の使用により丸味を帯びた密閉したものとなり、
また密閉気孔は実質的に独立したものとすることができ
る。連結した開気孔はこの丸味を帯びた気孔が連結した
形状となる。気孔形状が丸味を帯びていない場合には、
焼結体に応力が負荷されると気孔に応力集中がおこりや
すくなって、強度や耐熱衝撃抵抗性の低下および高温で
の変形がおこりやすくなるので好ましくない。なお、本
発明でいう密閉気孔とは外部へ通じていない内部気孔の
ことを指すものである。
(B) With regard to the point that the pores have a rounded shape and are composed of closed and connected open pores, the formation of the closed pores and the connected open pores in the present invention requires a predetermined relative It is necessary to use organic and round particles such as organic spherical particles such as acrylic resin spherical particles and polysaccharide spherical particles as a pore-forming agent so as to obtain a density and a pore diameter. When this pore-forming agent was added to the ceramic powder, mixed and molded, and then fired, the organic pore-forming agent disappeared, leaving closed pores and connected open pores as traces. The shape of the open pores is essentially a shape based on the shape of the pore-forming agent, and the closed pores become rounded and sealed by using a rounded pore-forming agent,
Also, the closed pores can be substantially independent. The connected open pores have a shape in which the rounded pores are connected. If the pore shape is not rounded,
When stress is applied to the sintered body, stress concentration is apt to occur in the pores, and strength and thermal shock resistance decrease and deformation at high temperatures are apt to occur, which is not preferable. Note that the closed pores in the present invention refer to internal pores that do not communicate with the outside.

【0013】(c)平均気孔径が2〜100μmである
という点について、本発明においては、焼結体の平均気
孔径は2〜100μm、好ましくは5〜80μm、より
好ましくは5〜50μm以下であることが必要である。
平均気孔径が2μm未満の場合は気孔形成による耐久性
の向上の効果が少なく、100μmを越える場合には連
続する気孔が多くなり、耐久性の低下をきたすため好ま
しくない。平均気孔径は焼結体を鏡面仕上げし、走査電
子顕微鏡により観察し、無作為に100個の気孔径を測
定し、等価円直径に換算し、平均値:Pを求め、
(C) Regarding that the average pore diameter is 2 to 100 μm, in the present invention, the average pore diameter of the sintered body is 2 to 100 μm, preferably 5 to 80 μm, more preferably 5 to 50 μm or less. It is necessary to be.
When the average pore diameter is less than 2 μm, the effect of improving the durability by pore formation is small, and when the average pore diameter exceeds 100 μm, continuous pores increase and the durability decreases, which is not preferable. The average pore diameter is obtained by mirror finishing the sintered body, observing it with a scanning electron microscope, measuring 100 pore diameters at random, converting the pore diameter into an equivalent circular diameter, and obtaining an average value: P,

【数1】平均気孔径=1.5×P として求める。## EQU1 ## The average pore diameter is determined as 1.5 × P.

【0014】(d)焼結体の平均結晶粒径が5〜50μ
mであるという点について、本発明においては、焼結体
の平均結晶粒径は5〜50μmであることが必要であ
る。平均結晶粒径が5μm未満の場合は、繰り返しの使
用による変形などが起こり、耐久性が低下するので好ま
しくない。一方、50μmを越える場合には耐熱衝撃性
が低下するので好ましくない。好ましくは10〜40μ
mである。平均結晶粒径は焼結体を鏡面仕上げし、熱エ
ッチングを施し、走査電子顕微鏡にて観察し、無作為に
100個の結晶粒の直径を測定し、等価円直径に換算
し、平均値:dを求め、
(D) The average grain size of the sintered body is 5 to 50 μm.
In the present invention, the average crystal grain size of the sintered body needs to be 5 to 50 μm. When the average crystal grain size is less than 5 μm, deformation or the like occurs due to repeated use, and durability is reduced, which is not preferable. On the other hand, if it exceeds 50 μm, the thermal shock resistance is undesirably reduced. Preferably 10 to 40μ
m. The average crystal grain size is obtained by mirror-finishing a sintered body, performing thermal etching, observing with a scanning electron microscope, measuring the diameter of 100 crystal grains at random, converting the diameter into an equivalent circular diameter, and calculating the average value: Find d,

【数2】平均結晶粒径D=1.5×d(μm) として求める。## EQU2 ## The average crystal grain size is determined as D = 1.5 × d (μm).

【0015】(e)相対密度が50〜70%であるとい
う点について、本発明においては、焼結体の相対密度が
50〜70%であることが必要であり、より好ましくは
53〜68%であることが必要である。相対密度が50
%未満の場合は気孔量が多くなり、各々の気孔が連結し
て気孔径が大きくなり、耐久性の低下をきたすので好ま
しくない。また、相対密度が70%を越える場合は耐熱
衝撃抵抗性の低下をきたすだけでなく、連結した開気孔
が少なくなるので好ましくない。なお、本発明は、焼成
温度を低くして十分に焼結させずに気孔を残存させた
り、従来の多孔質材料のように粒度の大きい原料粉末を
使用して高温で焼成しても気孔が残存するものでなく、
気孔が存在しない部分は結晶が従来の緻密質の焼結体と
全く同様に焼結しているものである。このようにするこ
とにより、耐熱衝撃抵抗性、耐クリープ性および強度が
高く、耐食性に優れた熱処理用部材とすることができ
る。
(E) With respect to the fact that the relative density is 50 to 70%, in the present invention, the relative density of the sintered body needs to be 50 to 70%, more preferably 53 to 68%. It is necessary that 50 relative density
% Is not preferable because the amount of pores increases and the pores are connected to each other to increase the pore diameter and decrease the durability. On the other hand, when the relative density exceeds 70%, not only is the thermal shock resistance reduced, but also the number of connected open pores is reduced, which is not preferable. In the present invention, the sintering temperature is lowered to leave pores without sufficiently sintering, or the pores are formed even when sintering at a high temperature using a raw material powder having a large particle size like a conventional porous material. Not surviving,
In the portion where no pores exist, the crystal is sintered in exactly the same manner as a conventional dense sintered body. By doing so, a heat treatment member having high thermal shock resistance, high creep resistance, and high strength and excellent corrosion resistance can be obtained.

【0016】本発明でいう前記相対密度とは、The relative density referred to in the present invention is:

【数3】(焼結体かさ密度/理論密度)×100(%) で算出したものを表す。## EQU3 ## The value is calculated by (sintered bulk density / theoretical density) × 100 (%).

【0017】(f)1400℃、2MPaの応力下での
たわみ量が2mm以下であるという点について、本発明
において、焼結体のたわみ量は下記の条件で測定したも
のである。焼結体を5×2×150mmに加工し、上ス
パン:31.3mm、下スパン:100mmの4点曲げ
で、2MPaの応力で1400℃、5時間加熱保持後の
サンプルの下スパン50mmの位置のたわみ量を測定す
る。本発明では上記条件で測定した場合のたわみ量は2
mm以下であることが必要である。2mmを越える場合
には被焼成体を多量に焼成できず、また、繰り返しの使
用による変形が大きくなるので熱処理用部材としての寿
命低下をきたすため、焼成コストが高くなり好ましくな
い。より好ましくは1.8mm以下である。上記たわみ
量測定用サンプル形状以外でたわみ量を測定する場合に
は上スパンと下スパンの長さの比率および負荷荷重を同
じにして測定したたわみ量:δとで、下記式により補正
した値:δ′が2mm以下であることが必要である。
(F) With respect to the fact that the amount of deflection under a stress of 1400 ° C. and 2 MPa is 2 mm or less, in the present invention, the amount of deflection of the sintered body is measured under the following conditions. The sintered body was processed into 5 × 2 × 150 mm, and the upper span: 31.3 mm, the lower span: 100 mm, four-point bending, stress of 2 MPa, 1400 ° C., position of lower sample 50 mm after heating and holding for 5 hours The amount of deflection is measured. In the present invention, the deflection amount measured under the above conditions is 2
mm or less. If it exceeds 2 mm, the object to be fired cannot be fired in a large amount, and the deformation due to repeated use becomes large, so that the life as a heat treatment member is shortened. It is more preferably 1.8 mm or less. When measuring the deflection amount other than the deflection measurement sample shape, the deflection ratio measured with the same ratio of the length of the upper span and the lower span and the applied load: δ, corrected by the following equation: It is necessary that δ ′ is 2 mm or less.

【数4】 δ′=δ×{下スパンの長さ(mm)/100} 要はサンプルサイズが短くなった場合に下スパン100
mmで測定できない場合に形状から補正するものであ
る。
Δ ′ = δ × {length of lower span (mm) / 100} In short, when the sample size becomes shorter, lower span 100
If the measurement cannot be made in mm, it is corrected from the shape.

【0018】(g)アルミナ質焼結体に対してMgOを
0.3重量%以下含有しているという点について、本発
明ではアルミナ質焼結体に対しMgOを0.3重量%以
下含有することにより、焼結性の向上及び結晶粒径の均
一性を高くする効果がある。さらに、ジルコニアとMg
Oを同時に含有していると還元雰囲気下での強度劣化を
抑制することができる。MgOの含有量はより好ましく
は0.25重量%以下である。MgOが0.3重量%以
上含有する場合には、アルミナ結晶粒界に第2相を析出
しやすくなり、耐久性が劣るので好ましくない。
(G) Regarding the fact that MgO is contained in an amount of 0.3% by weight or less based on the alumina sintered body, the present invention contains MgO in an amount of 0.3% by weight or less based on the alumina based sintered body. This has the effect of improving the sinterability and increasing the uniformity of the crystal grain size. Furthermore, zirconia and Mg
When O is simultaneously contained, it is possible to suppress the strength deterioration under a reducing atmosphere. The content of MgO is more preferably 0.25% by weight or less. If MgO is contained in an amount of 0.3% by weight or more, the second phase tends to precipitate at the alumina crystal grain boundaries, and the durability is poor, which is not preferable.

【0019】(h)ジルコニアを5重量%以下含有して
いるという点について、本発明においては、焼結体中の
ジルコニアを5重量%以下、より好ましくは3重量%以
下含有していることが好ましい。また、ジルコニア結晶
粒径は0.5μm以下であることが好ましい。ジルコニ
アはアルミナ焼結体の強度及び靭性の向上に寄与するだ
けでなく、焼結性を向上させ、結晶粒径分布の少ない微
構造にするために重要である。ジルコニア含有量が5重
量%を越える場合、あるいは結晶粒径が0.5μmを越
える場合には加熱・冷却の繰り返しにより、ジルコニア
とアルミナとの熱膨張差による残存膨張により焼結体に
クラックが発生し、耐久性に欠けるので好ましくない。
(H) Regarding the fact that zirconia is contained in an amount of 5% by weight or less, in the present invention, the sintered body preferably contains 5% by weight or less, more preferably 3% by weight or less. preferable. The zirconia crystal grain size is preferably 0.5 μm or less. Zirconia is important not only for improving the strength and toughness of the alumina sintered body, but also for improving the sinterability and obtaining a microstructure with a small crystal grain size distribution. If the zirconia content exceeds 5% by weight or the crystal grain size exceeds 0.5 μm, cracks occur in the sintered body due to residual expansion due to the difference in thermal expansion between zirconia and alumina due to repeated heating and cooling. However, it is not preferable because of lack of durability.

【0020】本発明の耐熱衝撃性にすぐれた熱処理用部
材は種々の方法で作製できるが、その一例を下記に示
す。
The heat treatment member of the present invention having excellent thermal shock resistance can be manufactured by various methods, one example of which is shown below.

【0021】アルミナ原料粉末は純度が99%以上、平
均粒子径が2μm以下であることが好ましく、より好ま
しくは1.5μm以下である。平均粒子径が2μmを越
える場合には、焼結体内部の欠陥が多く存在するため、
耐熱衝撃抵抗性をはじめとする機械的特性の低下をきた
すので好ましくない。
The alumina raw material powder preferably has a purity of 99% or more and an average particle size of 2 μm or less, more preferably 1.5 μm or less. If the average particle size exceeds 2 μm, there are many defects inside the sintered body,
It is not preferable because mechanical properties such as thermal shock resistance are deteriorated.

【0022】また、ジルコニア原料粉末としては、液相
法により作製された粉末を用いるのが好ましく、比表面
積が5m/g以上である必要があり、より好ましくは
8m /g以上である。さらには、ジルコニアゾルや焼
成によりジルコニアとなるジルコニウム化合物を用いる
こともできる。ジルコニア原料粉末の比表面積が5m
/g未満の場合は、ジルコニア結晶粒子の分散性が低下
するだけでなく、焼結体に存在するジルコニア結晶粒子
が大きくなるため耐久性が低下するので好ましくない。
また、ジルコニアにイットリアが1〜5モル%含有して
いることがより好ましい。
The zirconia raw material powder may be a liquid phase
It is preferable to use a powder produced by the method
Product is 5m2/ G or more, more preferably
8m 2/ G or more. Furthermore, zirconia sol and baking
Uses a zirconium compound that becomes zirconia by formation
You can also. Specific surface area of zirconia raw material powder is 5m 2
/ G, the dispersibility of the zirconia crystal particles is reduced.
As well as zirconia crystal particles present in the sintered body
Is undesirably increased since durability is reduced.
In addition, zirconia contains 1-5 mol% of yttria
Is more preferable.

【0023】なお、焼結体が含有するSiO、TiO
、Fe、CaO、NaO及びKOの合計量
は2重量%以下であることが好ましく、より好ましくは
1重量%以下であることが必要である。不純物量が2重
量%を越えると結晶粒界にガラス相を多く形成し、高温
特性の低下をきたすので好ましくない。
The sintered body contains SiO 2 and TiO.
2 , the total amount of Fe 2 O 3 , CaO, Na 2 O and K 2 O is preferably at most 2% by weight, more preferably at most 1% by weight. If the amount of impurities exceeds 2% by weight, a large amount of a glass phase is formed at the crystal grain boundary, and the high-temperature characteristics are undesirably reduced.

【0024】各成分が所定量となるように各原料粉末に
配合し、溶媒として水または有機溶媒を用いて、ポット
ミル、アトリッションミル等の粉砕機により粉砕・分散
・混合する。MgOを添加する場合は、粉砕・分散・混
合時に水酸化物、炭酸化物等のマグネシア化合物の形態
で添加しても良いし、予めアルミナ原料粉末に添加した
粉末を用いても良い。得られた粉体の平均粒子径は1.
5μm以下であることが好ましく、より好ましくは1.
0μm以下である。粒度がこれらの範囲外の場合は、成
形性が低下し、得られた焼結体に欠陥が多く含有するだ
けでなく、本発明の微構造を有した焼結体が得られず、
耐熱衝撃性が低下するだけでなく、その他の機械的特性
及び耐食性も低下するので好ましくない。
Each ingredient is blended with each raw material powder in a predetermined amount, and crushed, dispersed, and mixed by a crusher such as a pot mill or an attrition mill using water or an organic solvent as a solvent. When MgO is added, it may be added in the form of a magnesia compound such as a hydroxide or a carbonate at the time of pulverization, dispersion, and mixing, or a powder previously added to the alumina raw material powder may be used. The average particle size of the obtained powder was 1.
It is preferably 5 μm or less, more preferably 1.
0 μm or less. If the particle size is outside these ranges, the moldability is reduced, the obtained sintered body not only contains many defects, but a sintered body having a microstructure of the present invention cannot be obtained,
Not only is thermal shock resistance reduced, but also other mechanical properties and corrosion resistance are reduced.

【0025】気孔の形成は粉砕・分散スラリーに所定の
相対密度および気孔径になるように気孔形成剤としてア
クリル樹脂球状粒子、多糖類球状粒子等を添加する。気
孔形成剤の粒子形状は球状であることが必要で、球状で
ない場合は形成される気孔形状が球状にならないので好
ましくない。
For the formation of pores, acrylic resin spherical particles, polysaccharide spherical particles and the like are added as pore-forming agents to the pulverized / dispersed slurry so as to have predetermined relative density and pore diameter. It is necessary that the particle shape of the pore-forming agent is spherical, and if it is not spherical, the formed pore shape is not spherical, which is not preferable.

【0026】成形方法としてプレス成形、ラバープレス
成形等の方法を採用する場合には、粉砕・分散スラリー
に必要により公知の成形助剤(例えばワックスエマルジ
ョン、PVA、アクリル系樹脂等)を加え、スプレード
ライヤー等の公知の方法で乾燥させて成形粉体を作製
し、これを用いて成形する。また、鋳込成形法を採用す
る場合には、粉砕・分散スラリーに必要により公知のバ
インダー(例えばワックスエマルジョン、アクリル系樹
脂等)を加え、石膏型あるいは樹脂型を用いて排泥鋳
込、充填鋳込、加圧鋳込法により成形する。さらに、押
出成形法を採用する場合には、粉砕・分散したスラリー
を乾燥させ、整粒し、混合機を用いて水、バインダー
(例えばメチルセルロース等)、可塑剤(例えばポリエ
チレングリコール等)、滑剤(例えばステアリン酸等)
を混合して坏土を作製し、押出成形する。以上のように
して得た成形体を1500〜1800℃、より好ましく
は1600〜1750℃で焼成することによって焼結体
を得る。
When a molding method such as press molding or rubber press molding is employed, if necessary, a known molding aid (eg, wax emulsion, PVA, acrylic resin, etc.) is added to the pulverized / dispersed slurry and sprayed. It is dried by a known method such as a drier to produce a molding powder, and molded using this. When the casting method is adopted, a known binder (for example, wax emulsion, acrylic resin, etc.) is added to the pulverized / dispersed slurry as necessary, and the slurry is cast and filled using a plaster type or a resin type. It is formed by casting and pressure casting. Further, when the extrusion molding method is employed, the slurry that has been pulverized and dispersed is dried, sized, and mixed with water, a binder (eg, methyl cellulose), a plasticizer (eg, polyethylene glycol), a lubricant (eg, polyethylene glycol). For example, stearic acid)
Are mixed to form a kneaded material, which is extruded. The molded body obtained as described above is fired at 1500 to 1800 ° C, more preferably 1600 to 1750 ° C to obtain a sintered body.

【0027】[0027]

【実施例】以下に実施例を示し、本発明を説明するが、
本発明はこれにより何ら限定されるものでない。
The present invention will be described below with reference to examples.
The present invention is not limited thereby.

【0028】実施例1〜8、比較例1〜8 純度99.8%、平均粒子径2μmからなるアルミナ粉
末を用い表1に示す配合量にしたがって原料を配合した
アルミナ粉末にジルコニアを添加する場合は所定量のジ
ルコニア粉末を、マグネシアを添加する場合は炭酸マグ
ネシウムを、それぞれ所定量になるように配合し、ポッ
トミルにより溶媒として水あるいはエタノールを用いて
粉砕・分散・混合し、スラリーを作製した。比較例5は
純度99.8%、平均粒子径15μmからなるアルミナ
粉末を用いた。気孔形成剤としては多糖類球状粒子を所
定の気孔率および気孔径になるように添加、混合した。
また、ジルコニア粉末はY無添加、もしくは1〜
3.5モル%含有しており、比表面積が15m/gで
ある粉末を用いた。なお、比較例4および5は気孔形成
剤を添加せず、焼成温度により本発明の範囲内の相対密
度にした焼結体である。得られたスラリーにPVA等の
バインダーを添加し、スプレードライヤー乾燥を施して
成形用粉体とした。得られた成形用粉体を金型に入れを
用いて1tonf/cmの圧力でプレス成形し、14
50〜1800℃で焼成して、150mm角で厚さ5m
mの板状熱処理用セッターを作製した。得られた実施例
1〜8、比較例1〜8の熱処理用セッターの焼結体特性
を表2に示す。実施例1〜8は本発明の範囲内の熱処理
用セッターであり、比較例1〜8は本発明の要件を少な
くとも一つ以上満足していない熱処理用セッターであ
る。本発明の熱処理用部材はすぐれた耐熱衝撃抵抗性お
よび耐久性にすぐれることが明らかである。たわみ量は
5×2×150mmに加工した棒状のテストピースを上
スパン:31.3mm、下スパン:100mm、2MP
aの応力で1400℃、5時間の条件でクリープテスト
を行い、テスト後のテストピースのたわみ量をダイヤル
ゲージで測定した。熱衝撃抵抗性は得られた熱処理用セ
ッターを耐火物の上に載せて800℃に加熱保持してい
る電気炉中に挿入し、30分加熱保持後、耐火物に載せ
たまま即座に炉外に取り出し、室温下で急冷し、割れの
有無により評価した。また、上記と同条件の繰り返しに
よるクラック発生の有無についても評価した。本発明の
熱処理用部材は耐久性にすぐれることが明らかである。
Examples 1 to 8 and Comparative Examples 1 to 8 When zirconia is added to alumina powder obtained by mixing raw materials in accordance with the amounts shown in Table 1 using alumina powder having a purity of 99.8% and an average particle diameter of 2 μm. Was prepared by mixing a predetermined amount of zirconia powder and magnesium carbonate in the case of adding magnesia so as to have a predetermined amount, and pulverizing, dispersing, and mixing using a pot mill using water or ethanol as a solvent to prepare a slurry. In Comparative Example 5, alumina powder having a purity of 99.8% and an average particle diameter of 15 μm was used. As the pore-forming agent, polysaccharide spherical particles were added and mixed so as to have predetermined porosity and pore diameter.
Also, the zirconia powder does not contain Y 2 O 3 ,
A powder containing 3.5 mol% and having a specific surface area of 15 m 2 / g was used. Comparative Examples 4 and 5 are sintered bodies in which the pore density was not added and the relative density was within the range of the present invention by the firing temperature. A binder such as PVA was added to the obtained slurry, and the slurry was dried by a spray drier to obtain a molding powder. The obtained molding powder was press-molded in a mold at a pressure of 1 tonf / cm 2 ,
Fired at 50-1800 ° C, 150mm square and 5m thick
m was prepared. Table 2 shows the properties of the sintered bodies of the obtained heat treatment setters of Examples 1 to 8 and Comparative Examples 1 to 8. Examples 1 to 8 are heat treatment setters within the scope of the present invention, and Comparative Examples 1 to 8 are heat treatment setters that do not satisfy at least one of the requirements of the present invention. It is clear that the heat treatment member of the present invention has excellent thermal shock resistance and excellent durability. The deflection amount of a rod-shaped test piece processed to 5 × 2 × 150 mm was 31.3 mm for the upper span, 100 mm for the lower span, and 2MP.
A creep test was performed at 1400 ° C. for 5 hours under the stress of “a”, and the amount of deflection of the test piece after the test was measured with a dial gauge. The thermal shock resistance was obtained by placing the obtained heat treatment setter on an refractory and inserting it into an electric furnace heated and maintained at 800 ° C., and after heating and holding for 30 minutes, immediately left the furnace while being placed on the refractory. And quenched at room temperature to evaluate the presence or absence of cracks. In addition, the presence or absence of cracks due to the repetition of the same conditions as above was also evaluated. It is clear that the heat treatment member of the present invention has excellent durability.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【発明の効果】本発明の熱処理用部材は、急速昇温、急
速降温によってもクラックを発生しないなど耐熱衝撃性
及び耐食性にすぐれるため、圧電体、誘電体などの電子
部品材料、リチウムイオン2次電池正極材料、蛍光体材
料およびセラミック材料の熱処理用容器、単結晶育成用
ルツボ、金属溶解用ルツボ、各種電気炉用炉心管、サポ
ートチューブ、ラジアントチューブ、ガス吹込管、ガス
採取管、測温用熱電対および各種機器用の保護管、サポ
ート用治具材などに有用である。
The heat-treating member of the present invention has excellent thermal shock resistance and corrosion resistance such that no crack is generated even when the temperature is rapidly increased or decreased, so that electronic component materials such as piezoelectrics and dielectrics, lithium ion 2 Containers for heat treatment of secondary battery positive electrode materials, phosphor materials and ceramic materials, crucibles for growing single crystals, crucibles for melting metals, furnace tubes for various electric furnaces, support tubes, radiant tubes, gas injection tubes, gas sampling tubes, temperature measurement Useful for thermocouples, protective tubes for various devices, and jig materials for supports.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷 和哉 大阪府堺市遠里小野町3丁2番24号 株式 会社ニッカトー内 (72)発明者 河波 利夫 大阪府堺市遠里小野町3丁2番24号 株式 会社ニッカトー内 Fターム(参考) 4G030 AA07 AA12 AA17 AA36 BA20 BA23 BA25 BA32 CA04 CA09 4K051 AA03 BE03 4K055 AA04 AA06 HA01 HA07 HA27 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Kazuya Tani 3--24, Enri-Ono-cho, Sakai-shi, Osaka Nikkato Co., Ltd. (72) Toshio Kawanami 3-Tori Ono-cho, Sakai-shi, Osaka No. 2-24 F-term in Nikkato Co., Ltd. (reference) 4G030 AA07 AA12 AA17 AA36 BA20 BA23 BA25 BA32 CA04 CA09 4K051 AA03 BE03 4K055 AA04 AA06 HA01 HA07 HA27

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 (a)Al含有量が95重量%以
上のアルミナ質焼結体であって、(b)その気孔は丸味
を帯びた形状で、密閉および連結した開気孔とからな
り、(c)焼結体の平均気孔径が2〜100μmであ
り、(d)焼結体の平均結晶粒径5〜50μm、(e)
焼結体の相対密度が50〜70%であり、(f)140
0℃、2MPaの応力下でのたわみ量が2mm以下であ
ることを特徴とするアルミナ質焼結体よりなる耐久性に
優れたアルミナ質焼結体からなる熱処理用部材。
1. An alumina-based sintered body having an Al 2 O 3 content of 95% by weight or more, and (b) its pores are rounded and have a closed and connected open pores. (C) the average pore diameter of the sintered body is 2 to 100 μm, (d) the average crystal grain size of the sintered body is 5 to 50 μm, and (e)
The relative density of the sintered body is 50 to 70%, and (f) 140
A heat-treating member made of an alumina-based sintered body having excellent durability and having a deflection amount of 2 mm or less under a stress of 0 ° C. and 2 MPa.
【請求項2】 MgOが0.3重量%以下含有されてい
るものである請求項1記載の耐久性に優れたアルミナ質
焼結体からなる熱処理用部材。
2. The heat treatment member according to claim 1, wherein the heat treatment member comprises 0.3% by weight or less of MgO.
【請求項3】 ジルコニアが5重量%以下含有されてい
るものである請求項1または2記載の耐久性に優れたア
ルミナ質焼結体からなる熱処理用部材。
3. The heat treatment member according to claim 1, wherein the zirconia content is 5% by weight or less.
JP2001121805A 2001-04-19 2001-04-19 Heat-treating member made of an alumina sintered body with excellent durability Expired - Lifetime JP4836348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001121805A JP4836348B2 (en) 2001-04-19 2001-04-19 Heat-treating member made of an alumina sintered body with excellent durability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001121805A JP4836348B2 (en) 2001-04-19 2001-04-19 Heat-treating member made of an alumina sintered body with excellent durability

Publications (2)

Publication Number Publication Date
JP2002316866A true JP2002316866A (en) 2002-10-31
JP4836348B2 JP4836348B2 (en) 2011-12-14

Family

ID=18971607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001121805A Expired - Lifetime JP4836348B2 (en) 2001-04-19 2001-04-19 Heat-treating member made of an alumina sintered body with excellent durability

Country Status (1)

Country Link
JP (1) JP4836348B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006150234A (en) * 2004-11-29 2006-06-15 Kyocera Corp Filter medium and liquid bottle using the same
US7558524B2 (en) 2002-03-01 2009-07-07 Seiko Epson Corporation Image reading system
JP2013528552A (en) * 2010-04-01 2013-07-11 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン Ceramic material containing truncated conical tubular holes
JP2016510299A (en) * 2013-01-28 2016-04-07 ショット アクチエンゲゼルシャフトSchott AG Polycrystalline ceramics, their manufacture and use
JP2016132577A (en) * 2015-01-16 2016-07-25 三井金属鉱業株式会社 Alumina-zirconia sintered body
JP2017078016A (en) * 2011-03-11 2017-04-27 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Refractory object used in forming glass object
US10590041B2 (en) 2012-01-11 2020-03-17 Saint-Gobain Ceramics & Plastics, Inc. Refractory object and process of forming a glass sheet using the refractory object
WO2020116568A1 (en) * 2018-12-06 2020-06-11 キヤノン株式会社 Ceramic article production method and ceramic article
CN113165207A (en) * 2018-12-06 2021-07-23 佳能株式会社 Method for manufacturing ceramic product and ceramic product
WO2023085313A1 (en) * 2021-11-12 2023-05-19 京セラ株式会社 Sliding member and false twister disc using same
US11814317B2 (en) 2015-02-24 2023-11-14 Saint-Gobain Ceramics & Plastics, Inc. Refractory article and method of making

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02154982A (en) * 1988-12-05 1990-06-14 Toshiba Ceramics Co Ltd Tool for heat treatment and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02154982A (en) * 1988-12-05 1990-06-14 Toshiba Ceramics Co Ltd Tool for heat treatment and manufacture thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7558524B2 (en) 2002-03-01 2009-07-07 Seiko Epson Corporation Image reading system
JP2006150234A (en) * 2004-11-29 2006-06-15 Kyocera Corp Filter medium and liquid bottle using the same
JP4610314B2 (en) * 2004-11-29 2011-01-12 京セラ株式会社 Filter member and liquid bottle using the same
JP2013528552A (en) * 2010-04-01 2013-07-11 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン Ceramic material containing truncated conical tubular holes
JP2017078016A (en) * 2011-03-11 2017-04-27 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Refractory object used in forming glass object
US10590041B2 (en) 2012-01-11 2020-03-17 Saint-Gobain Ceramics & Plastics, Inc. Refractory object and process of forming a glass sheet using the refractory object
JP2016510299A (en) * 2013-01-28 2016-04-07 ショット アクチエンゲゼルシャフトSchott AG Polycrystalline ceramics, their manufacture and use
KR101747015B1 (en) * 2013-01-28 2017-06-14 쇼오트 아게 Polycrystalline ceramics, production thereof, and uses thereof
JP2016132577A (en) * 2015-01-16 2016-07-25 三井金属鉱業株式会社 Alumina-zirconia sintered body
US11814317B2 (en) 2015-02-24 2023-11-14 Saint-Gobain Ceramics & Plastics, Inc. Refractory article and method of making
WO2020116568A1 (en) * 2018-12-06 2020-06-11 キヤノン株式会社 Ceramic article production method and ceramic article
CN113165207A (en) * 2018-12-06 2021-07-23 佳能株式会社 Method for manufacturing ceramic product and ceramic product
US20210309575A1 (en) * 2018-12-06 2021-10-07 Canon Kabushiki Kaisha Ceramic article production method and ceramic article
WO2023085313A1 (en) * 2021-11-12 2023-05-19 京セラ株式会社 Sliding member and false twister disc using same

Also Published As

Publication number Publication date
JP4836348B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP3600933B2 (en) Method for producing aluminum titanate-based sintered body
JP6636307B2 (en) Alumina sintered body with excellent high temperature properties and corrosion resistance
JP2862245B2 (en) Alumina / zirconia ceramic
JP2002316866A (en) Member for heat treatment consisting of alumina sintered compact having excellent durability
JP4357584B1 (en) Alumina sintered body with excellent corrosion resistance, thermal shock resistance and durability
JP2010254545A (en) Silicon nitride-based composite ceramic and method for producing the same
JP2011088759A (en) Alumina refractory and method of producing the same
JP4560199B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP4721947B2 (en) Corrosion-resistant magnesia sintered body, heat treatment member comprising the same, and method for producing the sintered body
JP5036110B2 (en) Lightweight ceramic sintered body
JP4507148B2 (en) Heat treatment member made of mullite sintered body
JP4546609B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP4249830B2 (en) Sintering jig and manufacturing method thereof
JP4993812B2 (en) Heat treatment member made of zirconia sintered body
JP2916664B2 (en) Oriented alumina sintered body
JP4822605B2 (en) Roller hearth roller made of heat-resistant mullite sintered body
JP3737917B2 (en) Thermal shock-resistant alumina sintered body and heat treatment member comprising the same
JP4906228B2 (en) Alumina sintered body excellent in thermal shock resistance and corrosion resistance and heat treatment member using the same
JP4485615B2 (en) Corrosion-resistant spinel sintered body and heat treatment member comprising the same
JP2014024740A (en) Ceramic sintered body, and member for heat treatment
JP4906240B2 (en) Alumina sintered body excellent in thermal shock resistance and corrosion resistance, heat treatment member comprising the same, and method for producing the same
JPH1087366A (en) Oxygen sensor for automobile
JP2961389B2 (en) High strength magnesia sintered body and method for producing the same
JPH0532454A (en) Sintered magnesia containing dispersed cubic zirconia particle and its production
JP2004217488A (en) Magnesia spinel refractory and its producing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4836348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term