JP4721947B2 - Corrosion-resistant magnesia sintered body, heat treatment member comprising the same, and method for producing the sintered body - Google Patents

Corrosion-resistant magnesia sintered body, heat treatment member comprising the same, and method for producing the sintered body Download PDF

Info

Publication number
JP4721947B2
JP4721947B2 JP2006116034A JP2006116034A JP4721947B2 JP 4721947 B2 JP4721947 B2 JP 4721947B2 JP 2006116034 A JP2006116034 A JP 2006116034A JP 2006116034 A JP2006116034 A JP 2006116034A JP 4721947 B2 JP4721947 B2 JP 4721947B2
Authority
JP
Japan
Prior art keywords
magnesia
sintered body
weight
corrosion
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006116034A
Other languages
Japanese (ja)
Other versions
JP2007284314A (en
Inventor
博律 中
宏司 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkato Corp
Original Assignee
Nikkato Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkato Corp filed Critical Nikkato Corp
Priority to JP2006116034A priority Critical patent/JP4721947B2/en
Publication of JP2007284314A publication Critical patent/JP2007284314A/en
Application granted granted Critical
Publication of JP4721947B2 publication Critical patent/JP4721947B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、耐食性に優れたマグネシア質焼結体、それよりなる熱処理用部材および前記焼結体の製造方法に関する。   The present invention relates to a magnesia sintered body having excellent corrosion resistance, a heat treatment member comprising the same, and a method for producing the sintered body.

最近の急速な電子部品の発展に伴い、いろいろな開発や製品化が進められている、より高機能化された電子部品材料は、精密な組成制御が必要不可欠なため、製造工程における不純物混入の抑制が図られている。そのため、焼成工程に用いる熱処理用部材には、電子部品材料の組成変動をきたすことが無く、耐食性に優れた緻密なセラミックス焼結体が採用されている。特に、PbOを含有する圧電体等の電子部品材料の熱処理工程には、PbOに対する耐食性が高い、マグネシア質焼結体の熱処理用部材が使用されてきた。   With the recent rapid development of electronic components, more advanced electronic component materials are being developed and commercialized, and precise composition control is indispensable. Suppression is achieved. For this reason, a dense ceramic sintered body excellent in corrosion resistance is used for the heat-treating member used in the firing process without causing compositional variation of the electronic component material. In particular, a member for heat treatment of a magnesia sintered body having high corrosion resistance to PbO has been used in a heat treatment process of an electronic component material such as a piezoelectric body containing PbO.

例えば、特許文献1にはマグネシア含有量99.9%以上で、気孔率が2%以下からなる、緻密で耐食性、耐スポーリング性に優れた高純度マグネシア焼結体が開示されている。しかしながら、マグネシア含有量が99.9%であっても最近の高機能な圧電体等の焼成では被焼成体との反応があり、十分満足できるものではない。しかも、高純度のマグネシアは焼結性が極めて悪いため、緻密な焼結体を得るには焼成温度を非常に高くする必要があり、省エネルギーやコストの点からみて問題がある。   For example, Patent Document 1 discloses a high-purity magnesia sintered body having a magnesia content of 99.9% or more and a porosity of 2% or less and excellent in corrosion resistance and spalling resistance. However, even if the magnesia content is 99.9%, there is a reaction with the material to be fired in the recent firing of a highly functional piezoelectric body or the like, and it is not satisfactory. Moreover, since high-purity magnesia has extremely poor sinterability, it is necessary to make the firing temperature very high in order to obtain a dense sintered body, which is problematic in terms of energy saving and cost.

一方、特許文献2には、マグネシア、アルミナ、ジルコニアが特定範囲の含有量を有する、低温で磁器化するマグネシア磁器組成物が開示され、特許文献3には超微粒子アルミナを焼結助剤とした高純度マグネシア焼結体が開示されている。しかしながら、これら焼結助剤の添加によって低温焼成が可能であるものの、これらの焼結助剤は被焼成体と反応して、マグネシア焼結体の耐食性を著しく低下させる問題があり、精密な組成制御が必要とされる高機能な電子部品材料の焼成に用いるには、耐食性の点で十分満足できない問題があった。   On the other hand, Patent Document 2 discloses a magnesia porcelain composition having a specific range of contents of magnesia, alumina, and zirconia, and porcelain at a low temperature. Patent Document 3 uses ultrafine alumina as a sintering aid. A high purity magnesia sintered body is disclosed. However, although these sintering aids can be fired at a low temperature, these sintering aids have a problem of reacting with the body to be fired to significantly reduce the corrosion resistance of the magnesia sintered body, and have a precise composition. There is a problem that it is not satisfactory in terms of corrosion resistance when used for firing high-performance electronic component materials that require control.

特開平1−188459号公報Japanese Patent Laid-Open No. 1-18859 特開平6−191926号公報JP-A-6-191926 特開昭62−83358号公報JP-A-62-83358

本発明の目的は、優れた耐食性を有し、高純度マグネシア焼結体よりも低温焼成が可能なマグネシア質焼結体、それよりなる熱処理用部材および前記マグネシア質焼結体の製造方法を提供する点にある。   An object of the present invention is to provide a magnesia sintered body having excellent corrosion resistance and capable of firing at a lower temperature than a high-purity magnesia sintered body, a heat treatment member comprising the same, and a method for producing the magnesia sintered body There is in point to do.

本発明は前記のような現状を鑑みて鋭意研究を重ねてきた結果、Nbをある特定量マグネシアに添加し、特定の範囲内の気孔率、平均結晶粒径にすることにより、高純度マグネシアよりも耐食性に優れ、しかも、低温焼成が可能なマグネシア質焼結体、それよりなる熱処理用部材および前記焼結体の製造方法を見出し、本発明の完成に至った。なお、Nbを添加することで耐食性が向上する理由は明らかではないが、微量のNbがマグネシアに固溶し、焼結の促進と粒界の耐食性を向上すると共に、Nbとマグネシアの化合物がマグネシアの結晶粒界に生成し、被焼成体に含有される成分の浸透を防ぐものと考えられる。
即ち、本発明の第1は、(a)マグネシアとNbの合計量が98重量%以上、(b)マグネシア/Nb(重量比)が80/20〜98/2、(c)気孔率が1.0%以下、(d)平均結晶粒径が3〜60μm、であることを特徴とする耐食性マグネシア質焼結体に関する。
本発明の第2は、請求項1記載の耐食性マグネシア質焼結体からなる熱処理用部材に関する。
本発明における耐食性マグネシア質焼結体からなる熱処理用部材とは、各種材料の熱処理のときに用いる被焼成体を収納する容器あるいは各種焼成炉や溶融炉などの内部や周辺部で使用する各種部材を意味する。具体的には、例えばセラミックス粉末の仮焼合成及び成形体の焼成に用いる焼成容器、セッター、金属溶解用ルツボ、ガラス溶解用容器、スラグ溶解用容器、単結晶育成用ルツボ、蛍光体材料の熱処理用容器、管状炉用炉心管、ラジアントチューブ、ヒーターサポートチューブ、測温用保護管、ガス吹き込み管、ガス採取管、内張炉材などを示す。
本発明の第3は、純度99重量%以上のマグネシア原料粉末と、純度99重量%以上のNb原料粉末を、マグネシアとNbの合計量が98重量%以上、マグネシア/Nbの重量比が80/20〜98/2になるように配合し、平均粒子径0.4〜3μmまで粉砕・混合した粉体を用いて成形し、1300〜1700℃で焼成することを特徴とする請求項1記載の耐食性マグネシア質焼結体の製造方法に関する。
As a result of intensive studies in view of the present situation as described above, the present invention adds Nb 2 O 5 to a specific amount of magnesia to obtain a porosity and an average crystal grain size within a specific range. The present inventors have found a magnesia sintered body that is superior in corrosion resistance to pure magnesia and that can be fired at a low temperature, a heat treatment member comprising the same, and a method for producing the sintered body, thereby completing the present invention. The reason why the corrosion resistance is improved by adding Nb 2 O 5 is not clear, but a small amount of Nb 2 O 5 is dissolved in magnesia, which promotes sintering and improves the corrosion resistance of grain boundaries. It is considered that a compound of 2 O 5 and magnesia is generated at the magnesia grain boundary and prevents penetration of components contained in the fired body.
That is, according to the first aspect of the present invention, (a) the total amount of magnesia and Nb 2 O 5 is 98% by weight or more, (b) magnesia / Nb 2 O 5 (weight ratio) is 80/20 to 98/2, ( c) It relates to a corrosion-resistant magnesia sintered body having a porosity of 1.0% or less and (d) an average crystal grain size of 3 to 60 μm.
2nd of this invention is related with the member for heat processing which consists of a corrosion-resistant magnesia sintered compact of Claim 1.
The heat-treating member comprising the corrosion-resistant magnesia-based sintered body in the present invention is a member for storing a body to be fired used for heat-treating various materials, or various members used in or around various firing furnaces or melting furnaces. Means. Specifically, for example, calcining containers, setters, metal melting crucibles, glass melting containers, slag melting containers, single crystal growth crucibles, and phosphor materials used for calcining synthesis and molding of ceramic powder Containers, tubular furnace core tubes, radiant tubes, heater support tubes, temperature measuring protection tubes, gas blowing tubes, gas sampling tubes, lining furnace materials, etc.
A third aspect of the present invention is a magnesia raw material powder having a purity of 99% by weight or more and an Nb 2 O 5 raw material powder having a purity of 99% by weight or more, and the total amount of magnesia and Nb 2 O 5 is 98% by weight or more. Mixing so that the weight ratio of 2 O 5 is 80/20 to 98/2, molding using powder pulverized and mixed to an average particle size of 0.4 to 3 μm, and firing at 1300 to 1700 ° C. The method for producing a corrosion-resistant magnesia sintered body according to claim 1.

(a)マグネシアとNbの合計量が98重量%以上である点
本発明において、マグネシアとNbの合計量が98重量%以上であることが必要で、好ましくは99重量%以上である。マグネシアとニオブの合計量が98重量%未満である場合、アルカリ金属等の不純物量が増加して結晶粒界に第2相またはガラス相を多く生成し、耐食性が低下するため好ましくない。尚、上限は99.8重量%程度である。
(A) The total amount of magnesia and Nb 2 O 5 is 98% by weight or more In the present invention, the total amount of magnesia and Nb 2 O 5 needs to be 98% by weight or more, preferably 99% by weight. That's it. When the total amount of magnesia and niobium is less than 98% by weight, the amount of impurities such as alkali metals increases, and a large amount of the second phase or glass phase is generated at the crystal grain boundary, which is not preferable. The upper limit is about 99.8% by weight.

(b)マグネシア/Nb(重量比)が80/20〜98/2である点
本発明において、マグネシア/Nbの重量比が80/20〜98/2であることが必要であり、その重量比は、好ましくは85/15〜95/5である。マグネシア/Nbの重量比が80/20を下廻る場合には、原料費が高価なNb含有量が多くなって、結果的にマグネシア質焼結体のコストアップを招き、しかもマグネシア本来の耐食性の低下をきたすため、好ましくない。マグネシア/Nbの重量比が98/2上廻る場合には、Nb含有量が低下して、Nb添加の効果が得られないため、優れた耐食性が得られず、焼結に必要な焼成温度も高くなるため好ましくない。
(B) Magnesia / Nb 2 O 5 (weight ratio) is 80/20 to 98/2 In the present invention, the weight ratio of magnesia / Nb 2 O 5 needs to be 80/20 to 98/2. The weight ratio is preferably 85/15 to 95/5. When the weight ratio of magnesia / Nb 2 O 5 is less than 80/20, the Nb 2 O 5 content, which is an expensive raw material cost, increases, resulting in an increase in the cost of the magnesia sintered body. In addition, it is not preferable because it lowers the inherent corrosion resistance of magnesia. When the weight ratio of magnesia / Nb 2 O 5 exceeds 98/2, the Nb 2 O 5 content decreases and the effect of adding Nb 2 O 5 cannot be obtained, so that excellent corrosion resistance cannot be obtained. This is not preferable because the firing temperature required for sintering is also increased.

(c)気孔率が1.0%以下である点
本発明において、気孔率は1.0%以下であることが必要で、好ましくは0.5%以下である。気孔率が1.0%を越える場合には焼結体の気孔が増加し、この気孔が起点となって腐食(ここでいう腐食とは、耐食性マグネシア焼結体が被焼成体と反応して徐々に破壊される化学的劣化損傷現象を指す)及び反応(ここでいう反応とは、被焼成体を熱処理した際に、被焼成体と接触した耐食性マグネシア焼結体面側に別の物質が生成することを指す)が進行しやすくなって、耐食性が低下し、しかも機械的特性が下がって耐久性の低下が生じるため、好ましくない。気孔率の下限は0.04%程度である。尚、本発明における気孔率とは開気孔率を示し、測定はJIS R 1634に準拠して行う。
(C) Point whose porosity is 1.0% or less In the present invention, the porosity needs to be 1.0% or less, preferably 0.5% or less. When the porosity exceeds 1.0%, the pores of the sintered body increase, and the pores serve as a starting point for corrosion (corrosion here means that the corrosion-resistant magnesia sintered body reacts with the fired body. Chemical degradation damage phenomenon that is gradually destroyed) and reaction (here, reaction means that when a fired body is heat-treated, another substance is formed on the surface of the corrosion-resistant magnesia sintered body that is in contact with the fired body. This is not preferable because the corrosion resistance is lowered and the mechanical properties are lowered and the durability is lowered. The lower limit of the porosity is about 0.04%. In addition, the porosity in this invention shows an open porosity, and a measurement is performed based on JISR1634.

(d)平均結晶粒径が3〜60μmである点
本発明において、平均結晶粒径は3〜60μmであることが必要で、好ましくは5〜50μm、より好ましくは10〜40μmである。平均結晶粒径が3μm未満の場合、耐食性が低下するため、好ましくない。平均結晶粒径が60μmを越える場合には、機械的特性の低下だけでなく、耐熱衝撃抵抗性が下がって耐久性が低下し、熱処理用部材としての実用性に劣るため、好ましくない。
平均結晶粒径は、焼結体を鏡面仕上げし、熱エッチングを施し、走査型電子顕微鏡にて観察し、インターセプト法により十点平均から求めたものである。尚、以下の算出式を用いる。

Figure 0004721947
(D) The point that an average crystal grain diameter is 3-60 micrometers In this invention, an average crystal grain diameter needs to be 3-60 micrometers, Preferably it is 5-50 micrometers, More preferably, it is 10-40 micrometers. When the average crystal grain size is less than 3 μm, the corrosion resistance is lowered, which is not preferable. When the average crystal grain size exceeds 60 μm, not only the mechanical properties are lowered, but also the thermal shock resistance is lowered, the durability is lowered, and the practicality as a heat treatment member is inferior.
The average crystal grain size is obtained from a ten-point average by an intercept method after mirror-finishing the sintered body, applying thermal etching, and observing with a scanning electron microscope. The following calculation formula is used.
Figure 0004721947

本発明における耐食性マグネシア質焼結体は種々の方法で作製できるが、その一例を下記に示す。
マグネシア原料粉末としては、マグネシア純度が99重量%以上であることが好ましい。また、マグネシア原料粉末の平均粒子径は10μm以下が好ましく、より好ましくは8μm以下である。平均粒子径が10μmを越える場合には、所定の粉砕・混合処理時間が長くなり、その結果、粉砕機からの摩耗による不純物が多く混入して、耐食性が低下するため好ましくない。尚、マグネシア原料粉末の平均粒子径の下限は0.5μm程度である。
Nb原料粉末としては、Nb純度が99重量%以上であることが好ましい。また、Nb原料粉末の平均粒子径は3μm以下が好ましく、より好ましくは2.0μm以下である。平均粒子径が3μmを越える場合には、Nb成分の分布が焼結体内部で不均一となりやすく、Nb添加の効果が得られず、耐食性が低下するため好ましくない。尚、Nb原料粉末の平均粒子径の下限は0.3μm程度である。
製品におけるマグネシアとNbの合計量を98重量%以上とするためには、製造工程中、とくに粉砕機中で不純物が混入しやすいので、マグネシア原料やNb原料の純度は99重量%以上が好ましいのである。
尚、本発明においてマグネシア、Nb原料粉末とも使用前に予め粉砕処理を行って、所定の平均粒子径に調整したものを使用しても良い。また、マグネシア原料粉末としては、水酸化マグネシウム等を仮焼して、所定のマグネシア純度並びに平均粒子径に調整したものを使用しても良い。
焼結体に含有するSiO、CaO、Al、ZrO、TiO、Fe、NaO及びKOなどの合計量は2重量%未満である必要があり、より好ましくは1重量%未満である。これらの成分の合計量が2重量%以上の場合、結晶粒界に第2相やガラス相を多く生成し、耐食性が低下するため好ましくない。尚、下限値は0.2重量%程度となるのが現状である。
以上の原料を用いて所定の組成になるように配合し、湿式でポットミル、アトリッションミル及び媒体撹拌ミル等により水または有機溶媒中で粉砕・混合する。本発明における粉砕・混合処理にて得られた粉体の平均粒子径(表1中では「処理スラリーの平均粒子径」として表示)は0.4〜3μmであることが必要であり、好ましくは0.6〜2.0μmである。平均粒子径が0.4μm未満の場合、成形性の低下によって、焼結体内部に欠陥を多く含有し、機械的特性が低下して、耐久性が低下するため好ましくない。平均粒子径が3μmを超える場合、焼結性が低下して、気孔率が高くなり、耐食性や耐久性が低下するため好ましくない。
尚、粉砕・混合後の粉体の平均粒子径は粉砕・混合時の粉体濃度、使用するボール径の選択や処理時間の調整などによりコントロールする。
成形方法としてプレス成形、ラバープレス成形等の方法を採用する場合、粉砕・混合スラリーに必要により公知の成形助剤(例えばアクリル系樹脂、PVA等)を添加し、スプレードライヤー等の公知の方法で乾燥させて成形用粉体を作製し、この成形用粉体を金型やゴム型などに充填して成形する。また、鋳込み成形法を採用する場合には、粉砕・混合スラリーに必要により公知のバインダー(例えばワックスエマルジョン、アクリル系樹脂等)を添加し、石膏型あるいは樹脂型を用いて排泥鋳込法、充填鋳込法、加圧鋳込法などにより成形する。さらに押出成形法を採用する場合は、得られた粉砕・混合スラリーを乾燥し、整粒して、押出成形用バインダー(カルボキシルメチルセルロース、ワックスエマルジョン等の公知のバインダーが使用できる)と水または有機溶媒を添加して、混合し、土練して成形用坏土とする。この成形用坏土を用いて、公知の押出成形機にて、所定の形状になるように押出成形する。以上のようにして得た成形体を1300〜1700℃、より好ましくは1400〜1650℃で焼成することによって耐食性マグネシア質焼結体を得る。
The corrosion-resistant magnesia sintered body in the present invention can be produced by various methods, and an example thereof is shown below.
The magnesia raw material powder preferably has a magnesia purity of 99% by weight or more. The average particle size of the magnesia raw material powder is preferably 10 μm or less, more preferably 8 μm or less. When the average particle size exceeds 10 μm, the predetermined pulverization / mixing treatment time becomes long, and as a result, a large amount of impurities are mixed due to wear from the pulverizer and the corrosion resistance is lowered. In addition, the minimum of the average particle diameter of magnesia raw material powder is about 0.5 micrometer.
The Nb 2 O 5 starting material powder, it is preferable Nb 2 O 5 purity of 99 wt% or more. Further, the average particle size of the Nb 2 O 5 raw material powder is preferably 3 μm or less, and more preferably 2.0 μm or less. When the average particle diameter exceeds 3 μm, the distribution of the Nb 2 O 5 component tends to be non-uniform in the sintered body, the effect of adding Nb 2 O 5 cannot be obtained, and the corrosion resistance is lowered. The average lower limit of the particle size of the Nb 2 O 5 starting material powder is about 0.3 [mu] m.
In order to make the total amount of magnesia and Nb 2 O 5 in the product 98% by weight or more, impurities are likely to be mixed during the manufacturing process, particularly in the pulverizer, so the purity of the magnesia raw material and the Nb 2 O 5 raw material is 99 The weight percent or more is preferred.
In the present invention, both magnesia and Nb 2 O 5 raw material powder may be used after being pulverized in advance and adjusted to a predetermined average particle diameter. Moreover, as magnesia raw material powder, you may use what calcined magnesium hydroxide etc. and adjusted to predetermined magnesia purity and average particle diameter.
The total amount of SiO 2 , CaO, Al 2 O 3 , ZrO 2 , TiO 2 , Fe 2 O 3 , Na 2 O and K 2 O contained in the sintered body must be less than 2% by weight, and more Preferably it is less than 1% by weight. When the total amount of these components is 2% by weight or more, a large amount of the second phase or the glass phase is generated at the crystal grain boundary, and the corrosion resistance is lowered. In addition, the current lower limit is about 0.2% by weight.
The above raw materials are blended so as to have a predetermined composition, and are wet-ground and mixed in water or an organic solvent by a pot mill, an attrition mill, a medium stirring mill or the like. The average particle size of the powder obtained by the pulverization / mixing process in the present invention (indicated as “average particle size of the treated slurry” in Table 1) needs to be 0.4 to 3 μm, preferably 0.6 to 2.0 μm. An average particle size of less than 0.4 μm is not preferable because many defects are contained inside the sintered body due to a decrease in moldability, mechanical properties are decreased, and durability is decreased. When the average particle diameter exceeds 3 μm, the sinterability is lowered, the porosity is increased, and the corrosion resistance and durability are lowered.
The average particle size of the powder after pulverization / mixing is controlled by selecting the powder concentration at the time of pulverization / mixing, selecting the ball diameter to be used and adjusting the processing time.
When adopting a method such as press molding or rubber press molding as a molding method, a known molding aid (for example, acrylic resin, PVA, etc.) is added to the pulverized / mixed slurry as necessary, and a known method such as a spray dryer is used. A molding powder is produced by drying, and the molding powder is filled into a mold or a rubber mold and molded. In addition, when adopting a casting method, a known binder (for example, wax emulsion, acrylic resin, etc.) is added to the pulverized / mixed slurry as necessary, and a waste mud casting method using a gypsum mold or a resin mold. Molded by filling casting method, pressure casting method, etc. Further, when an extrusion molding method is adopted, the obtained pulverized / mixed slurry is dried, sized, and a binder for extrusion molding (a known binder such as carboxyl methyl cellulose and wax emulsion can be used) and water or an organic solvent. Is added, mixed and kneaded to form a molding clay. Using this molding clay, it is extruded to a predetermined shape by a known extruder. The molded body obtained as described above is fired at 1300 to 1700 ° C., more preferably 1400 to 1650 ° C., to obtain a corrosion-resistant magnesia sintered body.

本発明のマグネシア質焼結体は、高純度マグネシアと同等もしくはそれ以上の耐食性及び耐久性に優れ、高純度マグネシア焼結体よりも低温焼成が可能であるため省エネルギーや低コストといった点での優位性が高いものになっている。そのため、圧電体、誘電体などの電子部品材料の熱処理用容器やセッターに好適であることは勿論のこと、蛍光体、β−アルミナ、セラミックス材料などの熱処理用道具材、各種電気炉用炉心管及び各種機器用の保護管などの用途において有用である。また、優れた耐食性を有する点を利用して、例えばバーナーノズル、ラジアントチューブ、ヒーターサポートチューブ、ガス吹き込み管、ガス採取管、内張炉材としても有効に利用できる。   The magnesia sintered body of the present invention is superior in corrosion resistance and durability equal to or higher than that of high-purity magnesia, and can be fired at a lower temperature than the high-purity magnesia sintered body, so it is advantageous in terms of energy saving and low cost. It has become a high quality. Therefore, it is suitable for heat treatment containers and setters for electronic component materials such as piezoelectrics and dielectrics, as well as heat treatment tool materials such as phosphors, β-alumina, and ceramic materials, and furnace tubes for various electric furnaces. It is useful in applications such as protective tubes for various devices. Moreover, it can be effectively used as, for example, a burner nozzle, a radiant tube, a heater support tube, a gas blowing tube, a gas sampling tube, and a lining furnace material by utilizing the point having excellent corrosion resistance.

以下に実施例を挙げて本発明を説明するが、本発明はこれにより何ら限定されるものではない。   Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.

実施例1〜7、比較例1〜8
純度99.5重量%、平均粒子径1〜6μmのマグネシア原料粉末と、純度99.5重量%、平均粒子径1〜3μmのNb原料粉末を用いた。尚、実施例6と比較例6は純度99.9重量%、平均粒子径0.6μmのマグネシア原料粉末を用いた。また比較例3は純度99.5重量%、平均粒子径12μmのマグネシア原料粉末を使用し、比較例7は純度99.5重量%、平均粒子径4μmのNb原料粉末を用いた。
表1に示すマグネシア/Nbの重量比になるように配合し、溶媒にアルコールを使用してアトリッションミルにて処理を行った。得られたスラリーの平均粒子径を表1に示す。このスラリーにアクリル系樹脂バインダーを3重量%添加し、スプレードライヤー乾燥を施して成形用粉体を得た。得られた成形用粉体を金型を用いて1tonf/cmの圧力によりプレス成形し、1250〜1750℃で焼成して、100mm角で厚さ3mmの板状焼結体を作製した。得られた焼結体特性を表1に示す。
耐食性の評価は市販のPbO粉末を直径10mm、厚さ1mmに成形した成形体を板状焼結体の上に載せ、850℃、5時間保持を5サイクル行い、テスト後の焼結体断面を鏡面仕上げし、EDX(Energy Dispersive X−ray spectrometer:エネルギー分散型X線分析装置であり、観察試料に電子ビームをあてることにより試料から発生する特性X線を検出して、観察試料中の元素を調べる装置である)により浸食深さを測定した。その結果を表1に示す。
本願発明の耐食性に優れたマグネシア質焼結体は、PbOに対する浸食深さが400μm以下と優れた耐食性を示したが、本願発明の要件を一つでも満足していない焼結体は、浸食深さが400μm以上と、耐食性が劣ることが明らかである。
Examples 1-7, Comparative Examples 1-8
A magnesia raw material powder having a purity of 99.5% by weight and an average particle size of 1 to 6 μm and an Nb 2 O 5 raw material powder having a purity of 99.5% by weight and an average particle size of 1 to 3 μm were used. In Example 6 and Comparative Example 6, magnesia raw material powder having a purity of 99.9% by weight and an average particle diameter of 0.6 μm was used. Comparative Example 3 used a magnesia raw material powder having a purity of 99.5% by weight and an average particle diameter of 12 μm, and Comparative Example 7 used an Nb 2 O 5 raw material powder having a purity of 99.5% by weight and an average particle diameter of 4 μm.
Table blended in a weight ratio of magnesia / Nb 2 O 5 shown in 1, it was treated by attrition mill using an alcohol as a solvent. The average particle diameter of the obtained slurry is shown in Table 1. 3% by weight of an acrylic resin binder was added to this slurry and spray dryer drying was performed to obtain a molding powder. The obtained molding powder was press-molded with a mold at a pressure of 1 tonf / cm 2 and fired at 1250 to 1750 ° C. to produce a plate-like sintered body having a 100 mm square and a thickness of 3 mm. The obtained sintered body characteristics are shown in Table 1.
Evaluation of corrosion resistance was carried out by placing a molded product of commercially available PbO powder having a diameter of 10 mm and a thickness of 1 mm on a plate-like sintered body, holding it at 850 ° C. for 5 hours, and performing 5 cycles, and showing a cross section of the sintered body after the test. EDX (Energy Dispersive X-ray spectrometer: energy dispersive X-ray analyzer, which detects the characteristic X-rays generated from the sample by applying an electron beam to the observed sample, and detects the elements in the observed sample. The erosion depth was measured with a device to be examined). The results are shown in Table 1.
The magnesia sintered body excellent in corrosion resistance of the present invention showed excellent corrosion resistance with an erosion depth of 400 μm or less with respect to PbO, but the sintered body not satisfying at least one requirement of the present invention is When the thickness is 400 μm or more, it is apparent that the corrosion resistance is inferior.

表1中の実施例3、4及び比較例4、7について、耐久性の評価を行った。試験は、板状焼結体を耐火物の上に載せて500℃に加熱保持している電気炉中に挿入し、30分加熱保持後、耐火物に載せたまま炉外に取り出し、室温下で冷却後、蛍光探傷によりクラック発生の有無を調べる繰り返しを10回実施した。結果を表2に示す。
本発明のマグネシア質焼結体は、10回の繰り返し試験でもクラックが発生しなかったことから、本発明の要件を一つでも満足していない焼結体に比べて優れた耐久性を有することが明らかである。
Durability was evaluated for Examples 3 and 4 and Comparative Examples 4 and 7 in Table 1. In the test, the plate-like sintered body was placed on a refractory and inserted into an electric furnace heated and held at 500 ° C., held for 30 minutes and then taken out of the furnace while being placed on the refractory, at room temperature. After cooling, the test was repeated 10 times for the occurrence of cracks by fluorescent flaw detection. The results are shown in Table 2.
The magnesia sintered body of the present invention has excellent durability compared with a sintered body that does not satisfy even one of the requirements of the present invention because no cracks were generated even after 10 repeated tests. Is clear.

Figure 0004721947
Figure 0004721947

Figure 0004721947
Figure 0004721947

Claims (3)

(a)マグネシアとNbの合計量が98重量%以上、(b)マグネシア/Nb(重量比)が80/20〜98/2、(c)気孔率が1.0%以下、(d)平均結晶粒径が3〜60μm、であることを特徴とする耐食性マグネシア質焼結体。 (A) The total amount of magnesia and Nb 2 O 5 is 98% by weight or more, (b) magnesia / Nb 2 O 5 (weight ratio) is 80/20 to 98/2, and (c) the porosity is 1.0%. Hereinafter, (d) a corrosion-resistant magnesia sintered body having an average crystal grain size of 3 to 60 μm. 請求項1記載の耐食性マグネシア質焼結体からなる熱処理用部材。   A heat-treating member comprising the corrosion-resistant magnesia sintered body according to claim 1. 純度99重量%以上のマグネシア原料粉末と、純度99重量%以上のNb原料粉末を、マグネシアとNbの合計量が98重量%以上、マグネシア/Nbの重量比が80/20〜98/2になるように配合し、平均粒子径0.4〜3μmまで粉砕・混合した粉体を用いて成形し、1300〜1700℃で焼成することを特徴とする請求項1記載の耐食性マグネシア質焼結体の製造方法。
A magnesia raw material powder having a purity of 99% by weight or more and an Nb 2 O 5 raw material powder having a purity of 99% by weight or more, the total amount of magnesia and Nb 2 O 5 being 98% by weight or more, and the weight ratio of magnesia / Nb 2 O 5 is 2. A powder prepared by blending to 80/20 to 98/2, pulverized and mixed to an average particle size of 0.4 to 3 μm, and fired at 1300 to 1700 ° C. The manufacturing method of the corrosion-resistant magnesia sintered body of description.
JP2006116034A 2006-04-19 2006-04-19 Corrosion-resistant magnesia sintered body, heat treatment member comprising the same, and method for producing the sintered body Active JP4721947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006116034A JP4721947B2 (en) 2006-04-19 2006-04-19 Corrosion-resistant magnesia sintered body, heat treatment member comprising the same, and method for producing the sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006116034A JP4721947B2 (en) 2006-04-19 2006-04-19 Corrosion-resistant magnesia sintered body, heat treatment member comprising the same, and method for producing the sintered body

Publications (2)

Publication Number Publication Date
JP2007284314A JP2007284314A (en) 2007-11-01
JP4721947B2 true JP4721947B2 (en) 2011-07-13

Family

ID=38756438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006116034A Active JP4721947B2 (en) 2006-04-19 2006-04-19 Corrosion-resistant magnesia sintered body, heat treatment member comprising the same, and method for producing the sintered body

Country Status (1)

Country Link
JP (1) JP4721947B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201130777A (en) 2009-12-01 2011-09-16 Ngk Insulators Ltd Furnace material and method for manufacturing furnace material
JP5561671B2 (en) * 2010-02-23 2014-07-30 スーパーピュアメタル合同会社 Method for producing crucible for melting metal
KR20190052797A (en) * 2017-11-09 2019-05-17 한국기계연구원 HIGH THERMAL CONDUCTIVE MgO COMPOUNDS AND MgO CERAMICS
WO2020122684A1 (en) * 2018-12-13 2020-06-18 한국기계연구원 Magnesia, method for manufacturing same, highly thermally conductive magnesia composition, and magnesia ceramic using same
KR102143817B1 (en) * 2020-04-29 2020-08-13 한국기계연구원 HIGH THERMAL CONDUCTIVE MgO COMPOUNDS AND MgO CERAMICS

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132762A (en) * 1985-12-04 1987-06-16 アルプス電気株式会社 Ceramic composition
JPH01188459A (en) * 1988-01-22 1989-07-27 Ube Ind Ltd High purity magnesia sintered body and production thereof
JPH06293556A (en) * 1993-02-09 1994-10-21 Mitsubishi Materials Corp Base resistant refractory
JP2002128563A (en) * 2000-10-23 2002-05-09 Nitsukatoo:Kk Ceramic member for thermal treatment which has good thermal shock resistance
JP2005306652A (en) * 2004-04-20 2005-11-04 Nitsukatoo:Kk Magnesia sintered compact having excellent durability
JP2006169036A (en) * 2004-12-15 2006-06-29 Nitsukatoo:Kk Magnesia sintered compact excellent in corrosion resistance and durability

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132762A (en) * 1985-12-04 1987-06-16 アルプス電気株式会社 Ceramic composition
JPH01188459A (en) * 1988-01-22 1989-07-27 Ube Ind Ltd High purity magnesia sintered body and production thereof
JPH06293556A (en) * 1993-02-09 1994-10-21 Mitsubishi Materials Corp Base resistant refractory
JP2002128563A (en) * 2000-10-23 2002-05-09 Nitsukatoo:Kk Ceramic member for thermal treatment which has good thermal shock resistance
JP2005306652A (en) * 2004-04-20 2005-11-04 Nitsukatoo:Kk Magnesia sintered compact having excellent durability
JP2006169036A (en) * 2004-12-15 2006-06-29 Nitsukatoo:Kk Magnesia sintered compact excellent in corrosion resistance and durability

Also Published As

Publication number Publication date
JP2007284314A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
KR101506083B1 (en) Heat-insulating material
JP6636307B2 (en) Alumina sintered body with excellent high temperature properties and corrosion resistance
JP4721947B2 (en) Corrosion-resistant magnesia sintered body, heat treatment member comprising the same, and method for producing the sintered body
JP4357584B1 (en) Alumina sintered body with excellent corrosion resistance, thermal shock resistance and durability
JP4836348B2 (en) Heat-treating member made of an alumina sintered body with excellent durability
JP5036110B2 (en) Lightweight ceramic sintered body
JP2011088759A (en) Alumina refractory and method of producing the same
JP4560199B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP4043425B2 (en) Zirconia heat treatment material
JP4507148B2 (en) Heat treatment member made of mullite sintered body
JP4546609B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP2010095393A (en) Ceramic member for heat treatment excellent in corrosion resistance and method for producing the same
JP2020097509A (en) Mullite-based sintered compact and method for producing the same
JP3737917B2 (en) Thermal shock-resistant alumina sintered body and heat treatment member comprising the same
JP4993812B2 (en) Heat treatment member made of zirconia sintered body
JP4906228B2 (en) Alumina sintered body excellent in thermal shock resistance and corrosion resistance and heat treatment member using the same
JP2004315293A (en) Zirconia member for heat treatment and method for manufacturing the same
JP5351405B2 (en) Alumina ceramics with excellent wear resistance
JP4485615B2 (en) Corrosion-resistant spinel sintered body and heat treatment member comprising the same
JP2002316869A (en) Roller for roller hearth kiln consisting of heat resistant mullite sintered compact
JP4906240B2 (en) Alumina sintered body excellent in thermal shock resistance and corrosion resistance, heat treatment member comprising the same, and method for producing the same
JP2014024740A (en) Ceramic sintered body, and member for heat treatment
Yoleva et al. ADDITION ON THERMAL HYSTERESIS OF ALUMINUM TITANATE
JP6041719B2 (en) Heat treatment member made of zirconia sintered body
Yoleva et al. Aluminum titanate ceramic with mullite addition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4721947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250