JP4043425B2 - Zirconia heat treatment material - Google Patents

Zirconia heat treatment material Download PDF

Info

Publication number
JP4043425B2
JP4043425B2 JP2003315007A JP2003315007A JP4043425B2 JP 4043425 B2 JP4043425 B2 JP 4043425B2 JP 2003315007 A JP2003315007 A JP 2003315007A JP 2003315007 A JP2003315007 A JP 2003315007A JP 4043425 B2 JP4043425 B2 JP 4043425B2
Authority
JP
Japan
Prior art keywords
zirconia
less
heat treatment
sintered body
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003315007A
Other languages
Japanese (ja)
Other versions
JP2005082429A (en
Inventor
宏司 大西
浩 植村
徹郎 福原
利夫 河波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkato Corp
Original Assignee
Nikkato Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkato Corp filed Critical Nikkato Corp
Priority to JP2003315007A priority Critical patent/JP4043425B2/en
Publication of JP2005082429A publication Critical patent/JP2005082429A/en
Application granted granted Critical
Publication of JP4043425B2 publication Critical patent/JP4043425B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Furnace Charging Or Discharging (AREA)

Description

本発明は耐久性及び耐食性にすぐれたジルコニア製熱処理用部材に関する。なお、本発明でいう熱処理用部材とは、圧電体、誘電体、磁性体などの電子部品材料、蛍光体及びセラミック材料のための熱処理用容器およびセッター、単結晶育成用ルツボ、金属溶解用ルツボ、各種電気炉用炉心管及び各種機器の保護管などである。   The present invention relates to a heat treatment member made of zirconia having excellent durability and corrosion resistance. The heat treatment member referred to in the present invention is an electronic component material such as a piezoelectric material, a dielectric material, or a magnetic material, a heat treatment container and setter for phosphor and ceramic material, a crucible for growing a single crystal, and a crucible for melting metal. And various types of furnace core tubes for electric furnaces and protective tubes for various devices.

電子部品材料である圧電体、あるいは誘電体や磁性体の焼成は、被焼成成分の蒸発成分を極力少なくして組成の変動を少なくする焼成方法がとられている。圧電体、誘電体や磁性体の焼成の場合、被焼成体からの蒸発成分が熱処理用部材と反応し、被焼成体と部材が引っ付いたり、部材が腐食により短期間で使用できなくなるなどの問題があり、被焼成体の電気特性の低下が起こったりするため、圧電体や誘電体の組成成分に対する耐食性が高いジルコニアが使用されており、特許文献1にはジルコニア製焼成用セッターが開示されている。しかしながら、この特許公報に開示されているジルコニア製焼成セッターは立方晶系ジルコニアとすることにより耐食性にすぐれるとしているが、ただ単に立方晶系ジルコニアというだけでは耐食性だけは向上するものの、加熱・冷却の繰り返しによる寿命がすぐれているとは言えず、最近の急速な電子材料部品の発展に伴う、より高機能化された電子部品材料の焼成にはいまだ十分満足できる特性を有するものとは言えない。   As a method of firing a piezoelectric material, or a dielectric or magnetic material, which is an electronic component material, a firing method is adopted in which the evaporation component of the component to be fired is reduced as much as possible to reduce the composition variation. In the case of firing a piezoelectric, dielectric or magnetic body, the evaporation component from the fired body reacts with the heat treatment member, causing the fired body and the member to be stuck, or the member to be used in a short period of time due to corrosion. Therefore, zirconia having high corrosion resistance against the compositional components of the piezoelectric body and the dielectric is used, and Patent Document 1 discloses a zirconia firing setter. Yes. However, although the zirconia calcined setter disclosed in this patent publication is said to be excellent in corrosion resistance by using cubic zirconia, only the corrosion resistance is improved by simply using cubic zirconia, but heating / cooling It cannot be said that it has a long life due to the repetition of the above, and it cannot be said that it still has satisfactory characteristics for firing more sophisticated electronic component materials with the recent rapid development of electronic material components. .

特開平11−337268号公報JP 11-337268 A

本発明の目的は、耐久性及び耐食性にすぐれたジルコニア製熱処理用部材を提供する点にある。
なお、本発明で示す耐久性とは加熱・冷却によるクラックや割れの発生がなく、また、変形もほとんど発生しないことである。
An object of the present invention is to provide a zirconia heat treatment member having excellent durability and corrosion resistance.
The durability shown in the present invention means that cracks and cracks do not occur due to heating and cooling, and that almost no deformation occurs.

本発明者らは前記のような現状を鑑みて鋭意研究を重ねてきた結果、熱処理用部材としてのジルコニア質焼結体が耐食性および耐久性であるための要件としては、結晶相が立方晶系ジルコニアのみからなるという条件だけでは不十分であり、結晶相が立方晶系ジルコニアであることに加え、焼結体密度、平均結晶粒径が特定の条件を満足しているとともに、100〜300℃における内部摩擦挙動が重要であることを見出した。すなわち、結晶相が立方晶系ジルコニアのみからなるジルコニア質焼結体であっても、ジルコニア中に固溶する安定化剤の均一性および焼成温度などによっても内部摩擦ピーク強度は大きく影響を受け、焼結体中の酸素イオンの拡散に起因する100〜300℃における内部摩擦ピーク強度が高ければ耐食性および耐久性が低くなることが分かってきた。そこで本発明者らはジルコニア質焼結体をすぐれた耐食性および耐久性を有する熱処理用部材とするため、ある特定の結晶相からなり、その焼結体の組成及び結晶粒径、さらには内部摩擦ピーク強度を制御することの必要性に着目し、本発明を完成するに至った。   As a result of intensive studies in view of the present situation as described above, the inventors of the present invention, as a requirement for the zirconia sintered body as a heat treatment member to have corrosion resistance and durability, have a crystal phase of cubic system. The condition that it consists only of zirconia is not sufficient. In addition to the fact that the crystal phase is cubic zirconia, the sintered body density and the average crystal grain size satisfy specific conditions, and the temperature is 100 to 300 ° C. It was found that the internal friction behavior in is important. That is, even if the crystal phase is a zirconia sintered body consisting only of cubic zirconia, the internal friction peak strength is greatly influenced by the uniformity of the stabilizer solid-solved in zirconia and the firing temperature, It has been found that the higher the internal friction peak strength at 100 to 300 ° C. due to the diffusion of oxygen ions in the sintered body, the lower the corrosion resistance and durability. In order to make the zirconia sintered body a heat-treating member having excellent corrosion resistance and durability, the inventors of the present invention are composed of a specific crystal phase, the composition and crystal grain size of the sintered body, and further internal friction. Focusing on the necessity of controlling the peak intensity, the present invention has been completed.

即ち、本発明の第1は、(a)立方晶系ジルコニアからなるジルコニア質焼結体であって、(b)気孔率が2%以下であり、(c)平均結晶粒径が5〜30μmであって、(d)SiO 、Na OおよびK Oの合計量が0.3重量%以下であって、(e)100〜300℃における内部摩擦ピーク強度が25×10−3以下であることを特徴とするジルコニア製熱処理用部材に関する。
本発明の第2は、(f)YおよびCaOよりなる群から選ばれた少なくとも1種の安定化剤がジルコニアに対し8〜20mol%含有するものである請求項1記載のジルコニア製熱処理用部材に関する。
本発明の第3は、(g)Al 含有量が1重量%以下であることを特徴とする請求項1または2記載のジルコニア製熱処理用部材に関する。
That is, the first of the present invention is (a) a zirconia sintered body made of cubic zirconia, (b) having a porosity of 2% or less, and (c) an average crystal grain size of 5 to 30 μm. (D) The total amount of SiO 2 , Na 2 O and K 2 O is 0.3% by weight or less, and (e) the internal friction peak strength at 100 to 300 ° C. is 25 × 10 −3 or less. The present invention relates to a member for heat treatment made of zirconia.
The second of the present invention is (f) wherein at least one stabilizer selected from the group consisting of Y 2 O 3 and CaO is contained in an amount of 8 to 20 mol% based on zirconia. The present invention relates to a heat treatment member.
The third invention relates to zirconia thermal treatment member according to claim 1 or 2, wherein it is (g) Al 2 O 3 content is less than 1 wt%.

以下に詳細な本発明について説明する。
(a)立方晶系ジルコニアからなるジルコニア質焼結体である点
本発明において、ジルコニア質焼結体は立方晶系ジルコニアからなることが必要である。焼結体に単斜晶系ジルコニアが多く含有されていると加熱・冷却の繰り返しにより、クラックが発生し、割れや剥離が起こり耐久性に劣るので好ましくない。本発明における単斜晶系ジルコニアの許容できる含有量は5容積%以下までである。
なお、本発明では、単斜晶系ジルコニア(M)の存在および含有量については下記の方法でX線回折により求める。
即ち、焼結体を乳鉢等を用い、指頭に粒子の存在を感じない程度まで粉砕し、X線回折により、回折角27〜34度の範囲で測定し、単斜晶系ジルコニアの有無および含有量を下記式より求める。

Figure 0004043425
Hereinafter, the present invention will be described in detail.
(A) Point that is a zirconia sintered body made of cubic zirconia In the present invention, the zirconia sintered body needs to be made of cubic zirconia. If the sintered body contains a large amount of monoclinic zirconia, cracking occurs due to repeated heating and cooling, and cracking and peeling occur, resulting in poor durability. The acceptable content of monoclinic zirconia in the present invention is up to 5% by volume.
In the present invention, the presence and content of monoclinic zirconia (M) are determined by X-ray diffraction by the following method.
That is, using a mortar or the like, the sintered body was pulverized to such an extent that the presence of particles on the fingertips was not felt, measured by X-ray diffraction in a diffraction angle range of 27 to 34 degrees, and presence or absence of monoclinic zirconia The amount is obtained from the following formula.
Figure 0004043425

(b)気孔率が2%以下である点
本発明においては気孔率は2%以下、好ましくは1%以下であることが必要である。気孔率が2%を超える場合には耐食性の低下が起こるので好ましくない。下限は0%である。なお、気孔率とは焼結体に含有されている空隙の量を指し、その測定はJIS R 1634に準拠して行う。
(B) The porosity is 2% or less In the present invention, the porosity needs to be 2% or less, preferably 1% or less. When the porosity exceeds 2%, the corrosion resistance is lowered, which is not preferable. The lower limit is 0%. The porosity means the amount of voids contained in the sintered body, and the measurement is performed according to JIS R 1634.

(c)平均結晶粒径が5〜30μmである点
本発明においては平均結晶粒径は5〜30μm、好ましくは8〜25μmである。平均結晶粒径が5μm未満の場合は、耐食性の低下や繰り返しの使用による変形が起こるので好ましくない。一方、30μmを超える場合には耐熱衝撃抵抗性の低下が起こるので好ましくない。
平均結晶粒径の測定は、焼結体を鏡面仕上げし、熱エッチングを施し、走査電子顕微鏡により観察してインターセプト法により10点測定した平均値とする。算出式は下記の通りである。
D=1.5×L/n
D:平均結晶粒径(μm)
L:測定長さ(μm)
n:測定長さあたりの結晶粒子数
(C) The point that the average crystal grain size is 5 to 30 μm In the present invention, the average crystal grain size is 5 to 30 μm, preferably 8 to 25 μm. When the average crystal grain size is less than 5 μm, the corrosion resistance is lowered and deformation due to repeated use occurs. On the other hand, when it exceeds 30 μm, the thermal shock resistance is lowered, which is not preferable.
The average grain size is measured by averaging the sintered body with a mirror finish, applying thermal etching, observing with a scanning electron microscope, and measuring 10 points by the intercept method. The calculation formula is as follows.
D = 1.5 × L / n
D: Average crystal grain size (μm)
L: Measurement length (μm)
n: Number of crystal grains per measurement length

(d)SiO、NaOおよびKOの合計量が0.3重量%以下である点
本発明においては、SiO、NaOおよびKOの合計量が0.3重量%以下、好ましくは0.2重量%以下、より好ましくは0.1重量%以下であることが必要である。
SiO、NaOおよびKOの合計量が0.3重量%を越える場合には、ジルコニア結晶粒界にガラス相および第2相として層あるいは固まりとなって存在しやすくなり、耐食性の低下だけでなく、加熱・冷却による変形の原因となるため好ましくない。とりわけ、SiO含有量は0.1重量%以下、より好ましくは0.05重量%以下であることが好ましい。なお、SiO含有量は下限値は0.03重量%程度である。
(D) The total amount of SiO 2 , Na 2 O and K 2 O is 0.3 wt% or less In the present invention, the total amount of SiO 2 , Na 2 O and K 2 O is 0.3 wt% In the following, it is necessary that it is preferably 0.2% by weight or less, more preferably 0.1% by weight or less.
When the total amount of SiO 2 , Na 2 O and K 2 O exceeds 0.3% by weight, it tends to exist as a glass phase and a second phase as a glass phase and a second phase at the zirconia crystal grain boundary, and corrosion resistance This is not preferable because it causes not only a reduction but also deformation due to heating and cooling. In particular, the SiO 2 content is preferably 0.1% by weight or less, more preferably 0.05% by weight or less. The lower limit of the SiO 2 content is about 0.03% by weight.

(e)100〜300℃における内部摩擦ピーク強度が25×10−3以下である点
本発明においては、100〜300℃における内部摩擦ピーク強度は25×10−3以下、より好ましくは20×10−3以下である。内部摩擦ピーク強度が25×10−3を超える場合には耐食性だけでなく、加熱・冷却により立方晶系ジルコニアが正方晶系ジルコニアに変態し、さらにこの正方晶系ジルコニアが単斜晶系ジルコニアに変態して、焼結体中のクラックや割れを引き起こすので好ましくない。
なお、本発明における内部摩擦の測定は、JIS R 1642−1に準拠してねじり振子法により行った。なお、測定に用いる試料は7×2×80mmの板状のものである。
(E) The point that the internal friction peak strength at 100 to 300 ° C. is 25 × 10 −3 or less In the present invention, the internal friction peak strength at 100 to 300 ° C. is 25 × 10 −3 or less, more preferably 20 × 10. -3 or less. When the internal friction peak strength exceeds 25 × 10 −3 , not only corrosion resistance but also cubic zirconia is transformed into tetragonal zirconia by heating and cooling, and this tetragonal zirconia is transformed into monoclinic zirconia. It is not preferable because it transforms and causes cracks and cracks in the sintered body.
In addition, the measurement of the internal friction in this invention was performed by the torsion pendulum method based on JISR1642-1. The sample used for the measurement is a 7 × 2 × 80 mm plate.

(f)ジルコニアと安定化剤の合計量を100mol%としたとき、YおよびCaOよりなる群から選ばれた少なくとも1種の安定化剤が8〜20mol%含有されている点
本発明においては、ジルコニアと安定化剤の合計量を100mol%としたとき、YおよびCaOよりなる群から選ばれた少なくとも1種の安定化剤が8〜20mol%、好ましくは10mol%を超え16mol%以下含有されていることが必要である。通常、ZrO原料中に少量含有することのあるHfOが混入していても良く、このHfO量を含めたZrOとHfOの合計量をZrO量とする。安定化剤の含有量が8mol%未満の場合は焼結体中の単斜晶系ジルコニア量が増加し、耐久性および耐食性の低下をきたすため好ましくない。一方、安定化剤の含有量が20mol%を越える場合にはジルコニアに固溶する安定化剤が多くなりすぎ、ジルコニア結晶粒界に第2相の生成などが起こり、耐食性および耐久性の低下が起こるので好ましくない。なお、HfOは、通常ジルコニア中に1〜3重量%程度含有されている。
また、安定化剤のうち、30重量%までは、MgOおよび他の希土類酸化物(Y以外の希土類酸化物)の1種または2種以上で置換したものも用いることができる。
When a 100 mol% of the total amount of (f) zirconia and stabilizing agent, Y 2 O 3 and at least one stabilizing agent selected from the group consisting of CaO present invention that are contained 8~20Mol% in, when the total amount of zirconia and stabilizing agent and 100 mol%, of at least one stabilizing agent selected from the group consisting of Y 2 O 3 and CaO are 8~20Mol%, preferably more than 10 mol% It is necessary to contain 16 mol% or less. Usually, HfO 2 that may contain minor amounts to ZrO 2 in the raw material may also be mixed to the total amount of ZrO 2 and HfO 2, including the HfO 2 amount and ZrO 2 amount. When the content of the stabilizer is less than 8 mol%, the amount of monoclinic zirconia in the sintered body increases, resulting in a decrease in durability and corrosion resistance. On the other hand, when the content of the stabilizer exceeds 20 mol%, the amount of the stabilizer dissolved in zirconia is excessive, and the formation of the second phase occurs at the zirconia grain boundaries, resulting in a decrease in corrosion resistance and durability. Since it happens, it is not preferable. HfO 2 is usually contained in zirconia in an amount of about 1 to 3% by weight.
Of the stabilizers, up to 30% by weight can be used substituted with one or more of MgO and other rare earth oxides (rare earth oxides other than Y 2 O 3 ).

(g)不純物であるAl の含有量は1重量%以下まで許容できる点。
不純物であるAlの含有量は1重量%以下まで許容できる。Alはジルコニアの焼結性向上に効果がある反面、耐食性低下の原因となる。Al含有量が1重量%を越える場合には耐食性の低下が起こるので好ましくない。通常の精製手段による下限値は0.05重量%程度である。
(G) The content of Al 2 O 3 which is an impurity is acceptable up to 1% by weight or less.
The content of Al 2 O 3 that is an impurity is acceptable up to 1% by weight or less. Al 2 O 3 is effective in improving the sinterability of zirconia, but causes a decrease in corrosion resistance. If the Al 2 O 3 content exceeds 1% by weight, the corrosion resistance is lowered, which is not preferable. The lower limit of the usual purification means is about 0.05% by weight.

また、ジルコニア、安定化剤およびAl以外の不純物は、0.5重量%以下、好ましくは0.3重量%以下、より好ましくは0.05重量%以下である。 Moreover, zirconia, impurities other than stabilizers and Al 2 O 3 is 0.5 wt% or less, preferably 0.3 wt% or less, more preferably 0.05 wt% or less.

本発明のジルコニア製熱処理用部材の製造方法について説明する。
ジルコニアおよび安定化剤であるYおよびCaO原料粉体は、いずれも純度99.5%以上、平均粒子径が5μm以下であることが好ましい。安定化剤として用いるYおよびCaOは炭酸塩、水酸化物等の化合物の形態で添加しても良いが、その場合は予めジルコニアと所定量の安定化剤量となるように化合物を乾式混合もしくは湿式混合し、乾燥後、1000〜1400℃で合成することが好ましい。酸化物を用いる場合には合成を行っても、省略しても良い。
なお、本発明における合成とは、ジルコニア原料粉体と安定化剤とを混合した粉体を焼成温度より低い温度で処理することを言う。この処理を行う目的、効果はジルコニアと安定化剤とをあらかじめ焼成前に反応させておくことによりジルコニアに固溶する安定化剤を均質化する。使用する安定化剤が炭酸塩あるいは水酸化物のような形態の場合には、この処理により酸化物の形に変え、最終的には得られる焼結体の緻密性を向上させる。しかしながら、この合成工程を省略しても問題がない場合には、当然のことながら省略することができる。
The manufacturing method of the member for heat processing made from zirconia of this invention is demonstrated.
It is preferable that the zirconia and the Y 2 O 3 and CaO raw material powders that are stabilizers have a purity of 99.5% or more and an average particle diameter of 5 μm or less. Y 2 O 3 and CaO used as stabilizers may be added in the form of compounds such as carbonates, hydroxides, etc. In this case, the compounds are preliminarily added to zirconia and a predetermined amount of stabilizer. It is preferable to synthesize at 1000 to 1400 ° C. after dry mixing or wet mixing and drying. When an oxide is used, it may be synthesized or omitted.
The synthesis in the present invention means that a powder obtained by mixing a zirconia raw material powder and a stabilizer is treated at a temperature lower than the firing temperature. The purpose and effect of this treatment are to homogenize the stabilizer that is dissolved in zirconia by reacting zirconia and the stabilizer in advance before firing. When the stabilizer to be used is in the form of carbonate or hydroxide, it is changed to the form of oxide by this treatment, and finally the denseness of the obtained sintered body is improved. However, if there is no problem even if this synthesis step is omitted, it can be omitted as a matter of course.

具体的には、ジルコニアおよび安定化剤、もしくは合成粉体を溶媒として水または有機溶媒を用いてポットミル、アトリッションミル等の粉砕機により粉砕・分散・混合する。得られた粉体の平均粒子径(D)は0.8μm以下、好ましくは0.5μm以下であることが必要である。さらに、平均粒子径(D)と比表面積から求まる粒子径(B)との比:D/Bすなわち(平均粒子径)/(比表面積から求まる粒子径)が6以下、好ましくは5以下であることが好ましい。平均粒子径およびD/Bが上記の範囲外の場合は、得られたジルコニア焼結体に固溶する安定化剤の均一性が低下し、立方晶系ジルコニアのみからなる焼結体であっても内部摩擦ピーク強度が高くなって耐食性および耐久性の低下につながるので好ましくない。   Specifically, the mixture is pulverized, dispersed, and mixed by a pulverizer such as a pot mill or an attrition mill using zirconia and a stabilizer or synthetic powder as a solvent and water or an organic solvent. The average particle diameter (D) of the obtained powder needs to be 0.8 μm or less, preferably 0.5 μm or less. Further, the ratio of the average particle diameter (D) to the particle diameter (B) determined from the specific surface area: D / B, that is, (average particle diameter) / (particle diameter determined from the specific surface area) is 6 or less, preferably 5 or less. It is preferable. When the average particle diameter and D / B are out of the above ranges, the uniformity of the stabilizer that dissolves in the obtained zirconia sintered body is lowered, and the sintered body is composed only of cubic zirconia. However, it is not preferable because the internal friction peak strength is increased and the corrosion resistance and durability are lowered.

成形方法として、プレス成形やラバープレス成形等の方法を採用する場合には、粉砕・分散・混合スラリーに必要により公知の成型助剤(例えばワックスエマルジョン、PVA、アクリル樹脂等)を加え、スプレードライヤー等の公知の方法で乾燥させて成形用粉体を作製し、これを用いて成型する。また、鋳込成形法を採用する場合には、粉砕・分散・混合スラリーに必要により公知のバインダー(例えばワックスエマルジョン、アクリル樹脂等)を加え、石膏型あるいは樹脂型を用いて坏泥鋳込、充填鋳込あるいは加圧鋳込法により成形する。さらに、押出成形法を用いる場合には、粉砕・分散・混合スラリーを乾燥させ、整粒し、混合機を用いて水、バインダー(例えばメチルセルロース等)を混合して坏土を作製し、押出成形する。   When a method such as press molding or rubber press molding is adopted as a molding method, a known molding aid (for example, wax emulsion, PVA, acrylic resin, etc.) is added to the pulverized / dispersed / mixed slurry as necessary, and a spray dryer is used. A powder for molding is produced by drying by a known method such as the above, and molded using this. In addition, when adopting a casting method, a known binder (for example, wax emulsion, acrylic resin, etc.) is added to the pulverized / dispersed / mixed slurry as necessary, and a gypsum mold or a resin mold is used to cast the mud. Molded by filling or pressure casting. Furthermore, when using the extrusion molding method, the pulverized / dispersed / mixed slurry is dried, sized, mixed with water and a binder (for example, methyl cellulose) using a mixer to produce a clay, and extruded. To do.

以上のようにして得た成形体を1500〜1750℃、好ましくは1550〜1700℃で焼成することによってジルコニア製熱処理用部材を得る。   The molded body obtained as described above is fired at 1500 to 1750 ° C., preferably 1550 to 1700 ° C., to obtain a zirconia heat treatment member.

本発明のジルコニア製熱処理用部材は耐久性および耐食性にすぐれている。そのため、本発明のジルコニア製熱処理用部材は、圧電体、誘電体および磁性体などの電子部品材料、蛍光体およびセラミック材料の熱処理用容器およびセッター、単結晶育成用ルツボ、金属溶解用ルツボ、各種電気炉用炉心管および各種機器用の保護管などの用途において有用である。   The heat-treating member made of zirconia of the present invention is excellent in durability and corrosion resistance. Therefore, the heat treatment member made of zirconia of the present invention includes electronic parts materials such as piezoelectric bodies, dielectric bodies and magnetic bodies, heat treatment containers and setters for phosphors and ceramic materials, crucibles for growing single crystals, crucibles for melting metals, It is useful in applications such as electric furnace core tubes and protective tubes for various devices.

以下に実施例を挙げて本発明を説明するが、本発明はこれより何ら限定されるものでない。   Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.

実施例1〜6、比較例1〜
純度99.5%、平均粒子径3.5μmであるジルコニア粉体と、安定化剤としての純度99.8%、平均粒子径0.5μmのYおよび純度99.0%、平均粒子径5μmのCaCO粉体とを用いた。安定化剤としてYを用いる場合は、表1に示す所定量のY量になるように配合し、アトリッションミルで湿式で粉砕・分散・混合し、スラリーを作製した。安定化剤としてCaOを用いる場合は、表1に示す所定量のCaO量になるような量のCaCO粉体を湿式で混合、乾燥し、1300℃で合成し、得られた合成粉体を安定化剤としてYを用いる場合と同様にして粉砕・分散し、スラリーを作製した。得られたスラリーに粉体に対してポリビニルアルコール(PVA)を2重量%添加し、スプレードライヤー乾燥を施して成形用粉体とした。得られた成形用粉体を金型を用いて1tonf/cmの圧力によりプレス成形し、1450〜1800℃で焼成して、150mm角で厚さ2mmの板状熱処理用セッターを作製した。得られた焼結体特性を表2に示す。
得られた熱処理用セッターの上に市販のPZT粉体を直径25mm、厚さ5mmに成形した成形体を載せ、さらに成形体に1kPaの応力をかけた状態で1300℃、5時間保持し、700℃まで100℃/hで冷却後、炉外に取り出すテストを5サイクル行い、セッターの割れの有無により耐久性の評価をした。また、上記耐久性テストで割れなかったセッターについてはテスト後の焼結体断面を鏡面仕上げし、EDXにより浸食深さを測定した。
Examples 1-6, Comparative Examples 1-5
Zirconia powder having a purity of 99.5% and an average particle diameter of 3.5 μm, a purity of 99.8% as a stabilizer, Y 2 O 3 having an average particle diameter of 0.5 μm, and a purity of 99.0% and an average particle CaCO 3 powder having a diameter of 5 μm was used. When Y 2 O 3 was used as a stabilizer, it was blended so as to have a predetermined amount of Y 2 O 3 as shown in Table 1, and was pulverized, dispersed, and mixed wet by an attrition mill to prepare a slurry. . When CaO is used as a stabilizer, an amount of CaCO 3 powder of a predetermined amount shown in Table 1 is wet mixed, dried, synthesized at 1300 ° C., and the resulting synthetic powder is obtained. The slurry was pulverized and dispersed in the same manner as in the case of using Y 2 O 3 as a stabilizer. To the obtained slurry, 2% by weight of polyvinyl alcohol (PVA) was added to the powder, followed by spray dryer drying to obtain a molding powder. The obtained molding powder was press-molded with a mold at a pressure of 1 tonf / cm 2 and fired at 1450 to 1800 ° C. to produce a plate heat treatment setter having a 150 mm square and a thickness of 2 mm. The obtained sintered body characteristics are shown in Table 2.
A molded product obtained by molding a commercially available PZT powder with a diameter of 25 mm and a thickness of 5 mm is placed on the setter for heat treatment, and further maintained at 1300 ° C. for 5 hours with a stress of 1 kPa applied to the molded product. After cooling to 100 ° C./h at 100 ° C./h, a test for taking out the outside of the furnace was conducted for 5 cycles, and durability was evaluated by the presence or absence of setter cracks. Moreover, about the setter which was not cracked by the said durability test, the sintered compact cross section after the test was mirror-finished and the erosion depth was measured by EDX.

Figure 0004043425
Figure 0004043425

Figure 0004043425
Figure 0004043425

Claims (3)

(a)立方晶系ジルコニアからなるジルコニア質焼結体であって、(b)気孔率が2%以下であり、(c)平均結晶粒径が5〜30μmであって、(d)SiO 、Na OおよびK Oの合計量が0.3重量%以下であって、(e)100〜300℃における内部摩擦ピーク強度が25×10−3以下であることを特徴とするジルコニア製熱処理用部材。 (A) a zirconia sintered body composed of cubic zirconia, (b) a porosity of 2% or less, (c) an average crystal grain size of 5 to 30 μm, and (d) SiO 2 The total amount of Na 2 O and K 2 O is 0.3% by weight or less, and (e) the internal friction peak strength at 100 to 300 ° C. is 25 × 10 −3 or less. Heat treatment member. (f)YおよびCaOよりなる群から選ばれた少なくとも1種の安定化剤がジルコニアに対し8〜20mol%含有するものである請求項1記載のジルコニア製熱処理用部材。 (F) The member for heat treatment made of zirconia according to claim 1, wherein at least one stabilizer selected from the group consisting of Y 2 O 3 and CaO is contained in an amount of 8 to 20 mol% with respect to zirconia. (g)Al(G) Al 2 O 3 含有量が1重量%以下であることを特徴とする請求項1または2記載のジルコニア製熱処理用部材。Content is 1 weight% or less, The member for heat processing made from a zirconia of Claim 1 or 2 characterized by the above-mentioned.
JP2003315007A 2003-09-08 2003-09-08 Zirconia heat treatment material Expired - Lifetime JP4043425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003315007A JP4043425B2 (en) 2003-09-08 2003-09-08 Zirconia heat treatment material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003315007A JP4043425B2 (en) 2003-09-08 2003-09-08 Zirconia heat treatment material

Publications (2)

Publication Number Publication Date
JP2005082429A JP2005082429A (en) 2005-03-31
JP4043425B2 true JP4043425B2 (en) 2008-02-06

Family

ID=34415394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003315007A Expired - Lifetime JP4043425B2 (en) 2003-09-08 2003-09-08 Zirconia heat treatment material

Country Status (1)

Country Link
JP (1) JP4043425B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4776439B2 (en) * 2005-11-28 2011-09-21 京セラ株式会社 Zirconia sintered body
JP5931542B2 (en) * 2012-03-30 2016-06-08 株式会社ニッカトー Firing member made of zirconia sintered body
FR2996843B1 (en) * 2012-10-15 2020-01-03 Saint-Gobain Centre De Recherches Et D'etudes Europeen CHROME OXIDE PRODUCT.
JP6041719B2 (en) * 2013-03-18 2016-12-14 株式会社ニッカトー Heat treatment member made of zirconia sintered body
JP6969301B2 (en) * 2017-11-03 2021-11-24 株式会社デンソー Solid electrolyte, its manufacturing method, gas sensor
JP6859926B2 (en) * 2017-11-03 2021-04-14 株式会社デンソー Solid electrolyte, its manufacturing method, gas sensor
EP3936489A4 (en) * 2019-03-06 2022-11-23 Nikkato Corporation Ceramic sintered compact having embossed surface, method for manufacturing same, and heat treatment member comprising said ceramic sintered compact

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01121749A (en) * 1987-11-06 1989-05-15 Sumitomo Electric Ind Ltd Nondestructive inspecting method for ceramics
JP3260988B2 (en) * 1994-10-28 2002-02-25 京セラ株式会社 Method for producing solid electrolyte
JP2002333282A (en) * 2001-05-14 2002-11-22 Tokyo Yogyo Co Ltd Sintering setter and its producing method
JP2004315293A (en) * 2003-04-16 2004-11-11 Nitsukatoo:Kk Zirconia member for heat treatment and method for manufacturing the same

Also Published As

Publication number Publication date
JP2005082429A (en) 2005-03-31

Similar Documents

Publication Publication Date Title
EA013699B1 (en) Sintered refractory product exhibiting enhanced thermal shock resistance
JP6636307B2 (en) Alumina sintered body with excellent high temperature properties and corrosion resistance
JP5931542B2 (en) Firing member made of zirconia sintered body
JP4357584B1 (en) Alumina sintered body with excellent corrosion resistance, thermal shock resistance and durability
JP4043425B2 (en) Zirconia heat treatment material
JP4721947B2 (en) Corrosion-resistant magnesia sintered body, heat treatment member comprising the same, and method for producing the sintered body
JP4836348B2 (en) Heat-treating member made of an alumina sintered body with excellent durability
JP3279885B2 (en) Method for producing alumina-based sintered body
JP4560199B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP5036110B2 (en) Lightweight ceramic sintered body
JP4546609B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP2004315293A (en) Zirconia member for heat treatment and method for manufacturing the same
JP4993812B2 (en) Heat treatment member made of zirconia sintered body
JP2916664B2 (en) Oriented alumina sintered body
JP5351405B2 (en) Alumina ceramics with excellent wear resistance
JP2002137962A (en) Component for heat treatment consisting of mullite-based sintered compact
JP3737917B2 (en) Thermal shock-resistant alumina sintered body and heat treatment member comprising the same
JP4485615B2 (en) Corrosion-resistant spinel sintered body and heat treatment member comprising the same
JP6041719B2 (en) Heat treatment member made of zirconia sintered body
JP4906228B2 (en) Alumina sintered body excellent in thermal shock resistance and corrosion resistance and heat treatment member using the same
JP6412646B2 (en) Brick for hearth of hot metal production furnace
JP3368960B2 (en) SiC refractory
JPH06263544A (en) Sialon-based composite sintered compact and its production
WO2020179917A1 (en) Ceramic sintered compact having embossed surface, method for manufacturing same, and heat treatment member comprising said ceramic sintered compact
JP3327883B2 (en) Refractories containing massive graphite

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071113

R150 Certificate of patent or registration of utility model

Ref document number: 4043425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term