JP4485615B2 - Corrosion-resistant spinel sintered body and heat treatment member comprising the same - Google Patents

Corrosion-resistant spinel sintered body and heat treatment member comprising the same Download PDF

Info

Publication number
JP4485615B2
JP4485615B2 JP10464199A JP10464199A JP4485615B2 JP 4485615 B2 JP4485615 B2 JP 4485615B2 JP 10464199 A JP10464199 A JP 10464199A JP 10464199 A JP10464199 A JP 10464199A JP 4485615 B2 JP4485615 B2 JP 4485615B2
Authority
JP
Japan
Prior art keywords
sintered body
mgo
spinel
corrosion resistance
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10464199A
Other languages
Japanese (ja)
Other versions
JP2000302538A (en
Inventor
宏司 大西
一代 乾
匡 大江
一誠 橋村
利夫 河波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkato Corp
Original Assignee
Nikkato Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkato Corp filed Critical Nikkato Corp
Priority to JP10464199A priority Critical patent/JP4485615B2/en
Publication of JP2000302538A publication Critical patent/JP2000302538A/en
Application granted granted Critical
Publication of JP4485615B2 publication Critical patent/JP4485615B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、耐食性スピネル質焼結体及びそれを用いた耐熱性、耐食性にすぐれた熱処理用部材に関する。
【0002】
【従来の技術とその問題点】
圧電材料はフィルタ、レゾネーターなどの周波数制御用に多く使用され、PZT(ジルコン酸チタン酸鉛)などのセラミックスが利用されている。PZTはPbOを含有し、焼成過程でPbOの蒸気が発生するため、PZT粉末の仮焼合成や成形体の焼成に用いる焼成用容器あるいはPbOの蒸気にふれる恐れのある部材は耐食性の観点から、MgO及びAl材質等の熱処理用部材が使用されている。しかしながら、MgO材質はPbOに対する耐食性にはすぐれるものの耐熱衝撃性に劣るため生産性が劣る欠点を有しており、Al材質は耐熱衝撃性の点ではMgO材質に比べて優れるものの、PbOに対する耐食性に劣る欠点を有している。
【0003】
そのため、特開平10−7470号公報記載の発明では、PbOに対する耐食性にすぐれ、耐熱衝撃性が大きく、耐久性にすぐれたAlに対するMgOのモル比が1.0以上である熱処理用部材が開示されている。しかしながら、耐食性、耐熱衝撃性及び耐久性の良否は、焼結体を構成する結晶相だけでなく、第2成分、含有する不純物成分とその量、焼結体密度、結晶粒径等に大きく影響を受けることから、この発明によっても十分満足できるものではなかった。
【0004】
一方、最近、廃棄物の焼成時に発生するダイオキシン等の有害ガスが環境破壊の点から問題となっている。そのため、廃棄物を焼却し、焼却灰を溶融させて、有害成分が遊離しないようにガラス化することなどが行われている。しかしながら、焼却灰の溶融物及び溶融物から発生するガスは腐食性が高いため、溶融炉に使用される部材、例えば炉内温度を制御する測温用保護管、充填材等が腐食され、短期間で使用できなくなり、交換及び補充を頻繁にしなければならないという問題があった。
【0005】
以上のようなことから耐熱衝撃性も備えた耐食性にすぐれるセラミック焼結体が望まれていた。
【0006】
【発明が解決しようとする課題】
本発明の目的は、PbOなどのアルカリや重金属に対してすぐれた耐熱性、耐食性を有するとともに、廃棄物焼却灰溶融炉などから発生するスラグおよび腐食性有害ガスなどに対してすぐれた耐食性を有するスピネル質焼結体およびそれよりなる熱処理用部材を提供することにある。
【0007】
【課題を解決するための手段】
本発明者は前記のような現状を鑑み、鋭意研究を重ねてきた結果、Al/MgOを主成分とし、その重量比を特定の割合で含有するスピネル質焼結体において、ZrOを特定量含有させ、かさ密度及び平均結晶粒径を適切な範囲に調整することによりすぐれた耐食性を有するセラミック焼結体および熱処理用部材が得られることを見出し、本発明を完成するに至った。
【0008】
即ち、本発明の第一は、(a)スピネル結晶の含有量が94vol%以上であり、(b)Al、MgOおよびCaOの合計量が98重量%以上で、この合計量の内にCaOを0.05〜0.5重量%とし、(c)Al/MgO(重量比)が65/35〜80/20、(d)ZrOが0.05〜2重量%含有し、(e)かさ密度が3.40g/cm以上、(f)平均結晶粒径が3μm以上、であることを特徴とする耐食性スピネル質焼結体に関する。
【0009】
本発明の第二は、前記耐食性スピネル質焼結体からなることを特徴とする熱処理用部材に関する。
【0010】
本発明における耐熱性および耐食性にすぐれた熱処理用部材とは、各種材料の熱処理のときに用いる被熱処理物を収納する容器あるいは各種焼成炉や溶融炉などの内部や周辺部で使用する各種部材を意味し、具体的には、例えばセラミックス粉末の仮焼合成及び成形体の焼成に用いる焼成用容器、セッター、金属溶解用るつぼ、ガラス溶解用容器、スラグ溶解用容器、単結晶育成用るつぼ、蛍光体材料の熱処理用容器、管状炉用炉心管、ラジアントチューブ、ヒーターサポートチューブ、測温用保護管、ガス吹き込み管、ガス採取管、内張炉材などを指す。さらに、耐熱性および耐食性にすぐれていることからガス輸送管にも充分使用できる。
【0011】
以下に本発明の耐食性スピネル質焼結体が充足すべき各要件について詳細に説明する。
【0012】
本発明における(a)の要件としては、含有量が94vol%以上のスピネル結晶から構成されている点である。このスピネル結晶は、AlとMgOの個々の結晶の集合体ではなく、AlとMgOとの化合物からなる結晶体である。スピネル質焼結体にAl結晶相を含有しているとPbOアルカリに対する耐食性が低下するので好ましくない。また、MgO結晶相を含有していると熱衝撃抵抗性が低下するので好ましくない。
【0013】
本発明における(b)の要件は、Al 、MgOおよびCaOの合計量が98重量%以上ということである。本発明においてはAl 、MgOおよびCaOの合計量が98重量%以上であることが必要であり、好ましくは98.5重量%以上である。Al 、MgOおよびCaOの合計量が98重量%未満の場合は、不純物が多くなるため、スピネル結晶粒界に第2相もしくはガラス相が多く存在するようになり、耐食性及び機械的特性の低下が起こるので好ましくない。
【0014】
なお、本発明においては、Al 、MgOおよびCaOの合計量が全体の98重量%以上を占めることが基本である。CaOは、AlとMgOとCaOとの合計量に対し0.05〜0.5重量%含有するものであるが、さらには0.05〜0.3重量%含有することが好ましい。この場合は、AlとMgOとCaOの合計量で全体の98重量%以上を占めていればよいことは勿論である。CaOは焼結性の向上に効果があるが、0.5重量%を越えると耐食性の低下が起こるので好ましくない。
【0015】
本発明における(c)の要件は、Al/MgOの重量比が65/35〜80/20にあることであるが、前記重量比はとくに67/33〜75/25にあることが好ましい。Al/MgOの重量比が65/35未満の場合は、焼結体中のMgO結晶相の量が多くなってしまい、耐食性及び機械的特性、特に熱衝撃抵抗性、熱疲労特性が低下するので好ましくない。一方、Al/MgOの重量比が80/20を越えると焼結体中のAl結晶相の量が多くなってしまい、耐食性の低下が起こるので好ましくない。
【0016】
なお、本発明において、Al結晶相及びMgO結晶相含有の有無及び含有量は以下の方法でX線回折により求めることができる。具体的には、焼結体を乳鉢で指頭に粒を感じない程度まで粉砕し、得られた粉末試料をX線回折により測定し、Al結晶相及びMgO結晶相の存在の有無ならびに含有量を下記式により算出する。
【0017】
【数1】
Al結晶相量(vol%)=
{IA(113)/[IS(311)+IA(113)+IM(200)]}×100
(式中、IA(113)はAl結晶回折ピーク(113)のピーク高さ、IS(311)はスピネル結晶回折ピーク(311)のピーク高さ、IM(200)はMgO結晶回折ピーク(200)のピーク高さを示す。)
【数2】
MgO結晶相量(vol%)=
{IM(200)/[IS(311)+IA(113)+IM(200)]}×100
(式中、IM(200)はMgO結晶回折ピーク(200)のピーク高さ、IA(113)はAl結晶回折ピーク(113)のピーク高さ、IS(311)はスピネル結晶回折ピーク(311)のピーク高さを示す。)
【数3】
スピネル結晶相量(vol%)=100−Al結晶相量−MgO結晶相量
【0018】
なお、本発明においては上記X線回折から求めるAl及びMgOのそれぞれの結晶相量は各々3vol%まで許容できる。したがって、本発明は、スピネル結晶以外にこれらの結晶相をそれぞれ3vol%まで含有するケースも包含し、本明細書ではこれらを総称してスピネル質燒結体と定義する
【0019】
本発明における(d)の要件は、ZrOが2重量%以下含有する点にある。本発明においてはZrO0.05〜2重量%であることが必要であり、より好ましくは0.05〜1.5重量%である。ZrOは、スピネル結晶に固溶もしくは粒内、粒界に存在し、機械的特性、特に熱衝撃抵抗性の向上、さらには耐食性、特にPZTに対する耐食性の向上に効果がある。ZrO含有量が2重量%を越える場合には、熱膨張差による加熱冷却の繰り返しにより焼結体内部に歪みやマイクロクラックが生成し、割れにつながるので好ましくなく、さらに、耐食性の低下を招くので好ましくない。なお、ZrOにはY、MgO、CaO等の安定化剤が固溶していても良い。
【0020】
本発明における(e)の要件は、かさ密度が3.40g/cm以上であることであるが、3.45g/cm以上であることが好ましい。上記の要件(a)〜(d)を充足していても、かさ密度が3.40g/cm未満の場合は、焼結体内部に気孔が多く存在することとなり、気孔が起点となって腐食反応が進展し、耐食性の低下をきたすので好ましくなく、さらには機械的特性及び熱衝撃抵抗性が低下するので好ましくない。
【0021】
本発明における(f)の要件は、平均結晶粒径が3μm以上であることであるが、好ましくは5μm以上である。平均結晶粒径が3μm未満の場合は、耐食性の低下が起こるので好ましくないだけでなく、高温での変形や熱疲労が起こりやすくなるので好ましくない。
【0022】
本発明の耐食性スピネル質焼結体は種々の方法により製造できる。その一例を下記に示す。
【0023】
AlとMgOの含有量が所定の重量比になるようにアルミニウム化合物(例えばアルミナ、水酸化アルミニウム)とマグネシウム化合物(例えばマグネシア、炭酸マグネシウム)とを、水を用いて湿式で均一に混合し、乾燥させた後、1000〜1500℃で合成し、スピネル粉体を得る。合成したスピネル粉体のスピネル結晶相量は、70vol%以上であることが必要であり、より好ましくは80vol%以上である。スピネル結晶相量が70vol%未満の場合には得られた焼結体の微構造が不均一となり、耐食性及び機械的特性の低下につながるので好ましくない。Al及びMgO以外の成分の添加は、アルミニウム化合物とマグネシア化合物の混合時に水酸化物等の化合物の形態で添加してもよいし、後記する合成粉体の粉砕・分散時に水酸化物、炭酸化物、酸化物等の形態で添加しても良い。得られた合成粉体を湿式により粉砕・分散する。得られた粉砕粉体の比表面積は2〜20m/g、より好ましくは4〜15m/gである。粉砕粉体粒度がこれらの範囲外の場合は、成形性が低下し、燒結体かさ密度が低くなったり、得られた焼結体に欠陥が多く含有するので耐食性及び機械的特性の低下が起こるので好ましくない。成形方法としてプレス成形、ラバープレス成形等の方法を採用する場合には、粉砕・分散スラリーに必要により公知の成形助剤(例えばワックスエマルジョン、PVA、アクリル系樹脂等)を加え、スプレードライヤー等の公知の方法で乾燥させて成形粉体を作製し、これを用いて成形する。また、鋳込成形法を採用する場合には、粉砕・分散スラリーに必要により公知のバインダー(例えばワックスエマルジョン、アクリル系樹脂等)を加え、石膏型あるいは樹脂型を用いて排泥鋳込、充填鋳込、加圧鋳込法により成形する。さらに、押出成形法を採用する場合には、粉砕・分散したスラリーを乾燥させ、整粒し、混合機を用いて水、バインダー(例えばメチルセルロース等)、可塑剤(例えばポリエチレングリコール等)、滑剤(例えばステアリン酸等)を混合して坏土を作製し、押出成形する。以上のようにして得た成形体を1500〜1750℃、より好ましくは1600〜1700℃で焼成することによって焼結体を得ることができる。
【0024】
【実施例】
以下に実施例を示して本発明を説明するが、本発明はこれにより何ら限定されるものでない。
【0025】
実施例1
純度99.8重量%のアルミナとMgO含有量が98重量%の炭酸マグネシウムを表1に示す割合で湿式混合し、乾燥して、1400℃で2時間合成し、得られたスピネル粉体にZrO及びCaOを表1に示す割合で添加し、湿式で粉砕・分散した。次いで得られたスラリーに、ワックスエマルジョンを粉体に対して3重量%添加し、スプレードライヤーで乾燥させて成形粉体とした。この粉体を用いて金型より1tonf/cmの成形圧で成形し、1600〜1750℃で焼成し、25×25×5mmの試料を得た。また、湿式で粉砕・分散したスラリーを用いて石膏型により鋳込成形し、前記と同条件で焼成し、外形100×100×80mm(肉厚5mm)の角形容器を作製した。
【0026】
得られた焼結体の化学組成、特性を表2に示す。試料No.1〜7は本発明のスピネル質焼結体であり、試料No.8〜15は本発明の要件の少なくとも1つを満たしていない比較品である。試料No.7の燒結体のX線回折チャートを図1に示すが、これによりこの燒結体がスピネル結晶相のみからなっていることが立証できた。
【0027】
次いで、上記で得た試料の上にφ25mmで厚さ3mmのPZT成形体を載せ、さらにPZT成形体の上に63gのアルミナ製ブロックを載せて、アルミナ製焼成用容器〔(株)ニッカトー製SSA−S〕に入れ、蓋をして密閉にし、電気炉で1300℃で2回熱処理した。熱処理後の試料を切断し、鏡面仕上げしてEDXによりPbOの浸透深さを測定した。測定結果を表2に示す。
【0028】
本発明の耐食性にすぐれたスピネル質焼結体は、PbOに対して浸食深さが0.5mm以下とすぐれた耐食性を示すが、本発明の要件を一つでも満足してない焼結体は、その耐食性が劣ることが明らかである。
【0029】
実施例2
表1中の試料No.2、6、9および13について熱衝撃試験を行った。試験は、1000℃に加熱保持した電気炉中に40メッシュの電融ジルコニア粉体を入れた角型容器にいれ、30分間保持した後、室温に取り出し、冷却後、蛍光探傷によりクラック発生の有無を調べる方法により行った。上記試験を10回繰り返した結果を表3に示す。本発明のスピネル質焼結体は、10回の繰り返し熱衝撃試験でもクラックの発生はなく、本発明の要件を一つでも満足していない焼結体に比べてすぐれた耐熱衝撃性を有することが明らかである。
【0030】
実施例3
表1中の試料No.4、7、8および12について一般廃棄物焼却灰に対する耐食性試験を行った。試験は石灰石を添加した一般廃棄物焼却灰をアルミナ製容器〔(株)ニッカトー製SSA−S〕に入れ、その中に25×25×5mmの焼結体を埋め込み、電気炉で1400℃で72時間保持し、炉冷した。焼成後の試料を切り出し、鏡面仕上げしてEDXによりCaおよびSiの線分析を行い、浸食深さを測定した。その結果を表4に示す。本発明のスピネル質焼結体は浸食深さが0.35mm以下とすぐれた耐食性を示し、本発明の要件を一つでも満足していない焼結体は耐食性に劣る。
【0031】
【表1】

Figure 0004485615
【0032】
【表2】
Figure 0004485615
【0033】
【表3】
Figure 0004485615
【0034】
【表4】
Figure 0004485615
【0035】
【発明の効果】
本発明のスピネル質焼結体は、耐食性、耐熱衝撃性及び耐久性にすぐれるため圧電体、誘電体、セラミックコンデンサー等の電子部品の焼成用部材として有効に用いることができる。特にPbOを含有するPZTの焼成における焼成用部材として用いると、PbOに対する耐食性がすぐれるため被焼成物の組成変化が非常に少ないことから好適である。さらに、金属及び合金の溶解用ルツボとしても有効である。また、すぐれた耐食性を利用して、例えばバーナーノズル、炉心管、ラジアントチューブ、ヒーターサポートチューブ、特に廃棄物焼成炉及び溶融炉等に使用される測温用保護管及び燃焼ガス配管の内張り材としても有効に用いることができる。
【0036】
以下に本発明の実施態様を列挙する。
(1)(a)含有量が94vol%以上のスピネル結晶からなり、(b)AlとMgOの合計量が98重量%以上、(c)Al/MgO(重量比)が65/35〜80/20、(d)ZrOが2重量%以下、(e)かさ密度が3.40g/cm以上、(f)平均結晶粒径が3μm以上、であることを特徴とする耐食性スピネル質焼結体。
(2)前記AlとMgOの1部が少量のCaOで置換されたものである前項(1)記載の耐食性スピネル質焼結体。
(3)前記CaOの含有量がAlとMgOとCaOとの合計量に対し0.5重量%以下である前項(2)記載の耐食性スピネル質焼結体。
(4)前記CaOの含有量がAlとMgOとCaOとの合計量に対し0.05〜0.3重量%である前項(3)記載の耐食性スピネル質焼結体。
(5)AlとMgOの含有量が全量の98重量%になるようにアルミニウム化合物とマグネシウム化合物とを、水を用いて湿式で均一に混合し、乾燥させた後、1000〜1500℃で合成し、スピネル結晶相量が、70vol%以上であるスピネル粉体を得、得られたスピネル粉体を湿式により粉砕・分散した後、乾燥し、成形粉体を得、これを用いて所望の形状に成形し、得られた成形体を1500〜1750℃で焼成することを特徴とする耐食性スピネル質焼結体の製造方法。
【図面の簡単な説明】
【図1】実施例1のスピネル質焼結体のX線回折チャートである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a corrosion-resistant spinel sintered body and a heat treatment member using the same and having excellent heat resistance and corrosion resistance.
[0002]
[Prior art and its problems]
Piezoelectric materials are often used for frequency control of filters and resonators, and ceramics such as PZT (lead zirconate titanate) are used. PZT contains PbO, and PbO vapor is generated during the firing process. Therefore, from the viewpoint of corrosion resistance, the firing container used for pre-firing synthesis of PZT powder or the firing of the molded body or a member that may be touched by PbO vapor, Heat treatment members such as MgO and Al 2 O 3 are used. However, although MgO material has excellent corrosion resistance against PbO, it has poor thermal shock resistance and thus has a disadvantage of poor productivity. Although Al 2 O 3 material is superior to MgO material in terms of thermal shock resistance, It has the disadvantage of being inferior in corrosion resistance to PbO.
[0003]
Therefore, in the invention described in Japanese Patent Application Laid-Open No. 10-7470, a heat-treating member having an excellent corrosion resistance to PbO, a large thermal shock resistance, and a molar ratio of MgO to Al 2 O 3 of 1.0 or more. Is disclosed. However, the quality of corrosion resistance, thermal shock resistance and durability greatly affects not only the crystal phase composing the sintered body, but also the second component, impurity components and amount thereof, sintered body density, crystal grain size, etc. Therefore, even this invention was not fully satisfactory.
[0004]
On the other hand, recently, harmful gases such as dioxins generated during the firing of waste have become a problem from the viewpoint of environmental destruction. Therefore, waste is incinerated, incineration ash is melted, and vitrification is performed so that harmful components are not released. However, since the incinerated ash melt and the gas generated from the melt are highly corrosive, the components used in the melting furnace, such as the temperature measuring protective tube for controlling the temperature inside the furnace, the filler, etc. are corroded, and the short term There was a problem that it could not be used between the two, and had to be replaced and replenished frequently.
[0005]
In view of the above, a ceramic sintered body having excellent corrosion resistance and thermal shock resistance has been desired.
[0006]
[Problems to be solved by the invention]
The object of the present invention is to have excellent heat resistance and corrosion resistance against alkalis and heavy metals such as PbO, and also excellent corrosion resistance against slag generated from waste incineration ash melting furnaces and corrosive harmful gases. The object is to provide a spinel sintered body and a heat treatment member comprising the same.
[0007]
[Means for Solving the Problems]
The present inventor has conducted extensive studies in view of the above situation, and as a result, in a spinel sintered body containing Al 2 O 3 / MgO as a main component and containing a specific weight ratio, ZrO 2 It was found that a ceramic sintered body having excellent corrosion resistance and a heat treatment member can be obtained by adjusting the bulk density and the average crystal grain size to an appropriate range by containing a specific amount of the present invention, and completed the present invention. .
[0008]
That is, the first of the present invention is: (a) the content of spinel crystals is 94 vol% or more, and (b) the total amount of Al 2 O 3 , MgO and CaO is 98 wt% or more, CaO is 0.05 to 0.5 wt%, (c) Al 2 O 3 / MgO (weight ratio) is 65/35 to 80/20, and (d) ZrO 2 is 0.05 to 2 wt%. And (e) a bulk density of 3.40 g / cm 3 or more, and (f) an average crystal grain size of 3 μm or more.
[0009]
The second of the present invention relates to a heat treatment member comprising the corrosion-resistant spinel sintered body.
[0010]
The heat-treating member having excellent heat resistance and corrosion resistance in the present invention refers to various members used in or around containers such as containers for storing heat-treated materials used in the heat treatment of various materials or various firing furnaces and melting furnaces. Specifically, for example, firing containers, setters, metal melting crucibles, glass melting containers, slag melting crucibles, single crystal growing crucibles, fluorescent lamps used for calcining synthesis of ceramic powder and firing of molded bodies It refers to a vessel for heat treatment of body materials, a core tube for a tubular furnace, a radiant tube, a heater support tube, a temperature measuring protective tube, a gas blowing tube, a gas sampling tube, a lining furnace material, and the like. Furthermore, since it is excellent in heat resistance and corrosion resistance, it can be sufficiently used for a gas transport pipe.
[0011]
Each requirement to be satisfied by the corrosion-resistant spinel sintered body of the present invention will be described in detail below.
[0012]
The requirement (a) in the present invention is that it is composed of a spinel crystal having a content of 94 vol% or more . The spinel crystal is not a collection of individual crystals of Al 2 O 3 and MgO, a crystal of a compound of Al 2 O 3 and MgO. If the spinel sintered body contains an Al 2 O 3 crystal phase, the corrosion resistance against PbO or alkali is lowered, which is not preferable. Moreover, it is not preferable that the MgO crystal phase is contained because the thermal shock resistance is lowered.
[0013]
The requirement (b) in the present invention is that the total amount of Al 2 O 3 , MgO and CaO is 98% by weight or more. In the present invention, the total amount of Al 2 O 3 , MgO and CaO needs to be 98% by weight or more, preferably 98.5% by weight or more. When the total amount of Al 2 O 3 , MgO and CaO is less than 98% by weight, the amount of impurities increases, so that a lot of second phase or glass phase is present at the spinel grain boundaries, and corrosion resistance and mechanical properties are increased. This is not preferable because of a decrease in the thickness.
[0014]
In the present invention, it is essential that the total amount of Al 2 O 3, MgO and CaO account for at least 98 wt% of the total. CaO is contained in an amount of 0.05 to 0.5% by weight , more preferably 0.05 to 0.3% by weight , based on the total amount of Al 2 O 3 , MgO and CaO. In this case, it is needless to say that the total amount of Al 2 O 3 , MgO and CaO occupies 98% by weight or more of the whole. CaO is effective in improving the sinterability, but if it exceeds 0.5% by weight, corrosion resistance is lowered, which is not preferable.
[0015]
The requirement of (c) in the present invention is that the weight ratio of Al 2 O 3 / MgO is 65/35 to 80/20, and the weight ratio is particularly 67/33 to 75/25. preferable. When the weight ratio of Al 2 O 3 / MgO is less than 65/35, the amount of MgO crystal phase in the sintered body increases, and corrosion resistance and mechanical characteristics, particularly thermal shock resistance and thermal fatigue characteristics are increased. Since it falls, it is not preferable. On the other hand, when the weight ratio of Al 2 O 3 / MgO exceeds 80/20, the amount of the Al 2 O 3 crystal phase in the sintered body increases, and the corrosion resistance is lowered.
[0016]
In the present invention, the presence / absence and content of Al 2 O 3 crystal phase and MgO crystal phase can be determined by X-ray diffraction by the following method. Specifically, the sintered body was pulverized with a mortar to such an extent that no grain was felt on the fingertips, and the obtained powder sample was measured by X-ray diffraction, and whether or not Al 2 O 3 crystal phase and MgO crystal phase existed, and The content is calculated by the following formula.
[0017]
[Expression 1]
Al 2 O 3 crystal phase amount (vol%) =
{IA (113) / [IS (311) + IA (113) + IM (200)]} × 100
(Where IA (113) is the peak height of the Al 2 O 3 crystal diffraction peak (113), IS (311) is the peak height of the spinel crystal diffraction peak (311), and IM (200) is the MgO crystal diffraction peak. (Shows the peak height of (200).)
[Expression 2]
MgO crystal phase amount (vol%) =
{IM (200) / [IS (311) + IA (113) + IM (200)]} × 100
(Where IM (200) is the peak height of the MgO crystal diffraction peak (200), IA (113) is the peak height of the Al 2 O 3 crystal diffraction peak (113), and IS (311) is the spinel crystal diffraction peak. (Shows the peak height of (311).)
[Equation 3]
Spinel crystal phase amount (vol%) = 100−Al 2 O 3 crystal phase amount−MgO crystal phase amount
In the present invention, the respective crystal phase amounts of Al 2 O 3 and MgO obtained from the X-ray diffraction can be allowed up to 3 vol%. Therefore, the present invention includes a case of containing up to 3 vol% of each of these crystal phases in addition to the spinel crystal, and in the present specification, these are generically defined as a spinel sintered body .
[0019]
The requirement (d) in the present invention is that ZrO 2 is contained in an amount of 2% by weight or less. In the present invention, ZrO 2 needs to be 0.05 to 2 % by weight , more preferably 0.05 to 1.5% by weight . ZrO 2 is dissolved in the spinel crystal, or exists in the grains and at the grain boundaries, and is effective in improving mechanical properties, particularly thermal shock resistance, and further improving corrosion resistance, particularly corrosion resistance against PZT. When the content of ZrO 2 exceeds 2% by weight, it is not preferable because distortion and micro cracks are generated inside the sintered body due to repeated heating and cooling due to the difference in thermal expansion, leading to cracks, and further, corrosion resistance is reduced. Therefore, it is not preferable. In addition, stabilizers such as Y 2 O 3 , MgO, and CaO may be dissolved in ZrO 2 .
[0020]
The requirement (e) in the present invention is that the bulk density is 3.40 g / cm 3 or more, but preferably 3.45 g / cm 3 or more. Even if the above requirements (a) to (d) are satisfied, if the bulk density is less than 3.40 g / cm 3 , many pores exist inside the sintered body, and the pores are the starting points. The corrosion reaction progresses and the corrosion resistance is lowered, which is not preferable. Further, the mechanical properties and the thermal shock resistance are deteriorated, which is not preferable.
[0021]
The requirement (f) in the present invention is that the average crystal grain size is 3 μm or more, preferably 5 μm or more. When the average crystal grain size is less than 3 μm, not only is the corrosion resistance lowered, but it is not preferable because deformation at high temperature and thermal fatigue are likely to occur.
[0022]
The corrosion-resistant spinel sintered body of the present invention can be produced by various methods. An example is shown below.
[0023]
Aluminum compound (for example, alumina, aluminum hydroxide) and magnesium compound (for example, magnesia, magnesium carbonate) are uniformly mixed with water so that the content of Al 2 O 3 and MgO becomes a predetermined weight ratio. And dried and then synthesized at 1000 to 1500 ° C. to obtain spinel powder. The amount of the spinel crystal phase of the synthesized spinel powder needs to be 70 vol% or more, and more preferably 80 vol% or more. When the spinel crystal phase amount is less than 70 vol%, the microstructure of the obtained sintered body becomes non-uniform, which leads to deterioration of corrosion resistance and mechanical properties. Components other than Al 2 O 3 and MgO may be added in the form of a compound such as a hydroxide during mixing of the aluminum compound and the magnesia compound, or a hydroxide during pulverization / dispersion of the synthetic powder described later. Further, it may be added in the form of carbonate, oxide or the like. The obtained synthetic powder is pulverized and dispersed by a wet process. The specific surface area of the obtained pulverized powder is 2 to 20 m 2 / g, more preferably 4 to 15 m 2 / g. When the pulverized powder particle size is outside these ranges, the moldability is lowered, the sintered bulk density is lowered, and the obtained sintered body contains many defects, so that the corrosion resistance and the mechanical properties are lowered. Therefore, it is not preferable. When adopting a method such as press molding or rubber press molding as a molding method, a known molding aid (for example, wax emulsion, PVA, acrylic resin, etc.) is added to the pulverized / dispersed slurry as necessary, and a spray dryer or the like is added. It is dried by a known method to produce a molded powder, which is then molded. In addition, when adopting the casting method, a known binder (for example, wax emulsion, acrylic resin, etc.) is added to the pulverized / dispersed slurry as required, and the waste mud is cast and filled using a gypsum mold or a resin mold. Molded by casting or pressure casting. Furthermore, when adopting an extrusion molding method, the pulverized / dispersed slurry is dried, sized, and mixed with water, a binder (for example, methylcellulose), a plasticizer (for example, polyethylene glycol), a lubricant (for example). For example, stearic acid or the like is mixed to prepare a clay, and extrusion molding is performed. A sintered body can be obtained by firing the molded body obtained as described above at 1500 to 1750 ° C, more preferably 1600 to 1700 ° C.
[0024]
【Example】
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.
[0025]
Example 1
Alumina having a purity of 99.8% by weight and magnesium carbonate having a MgO content of 98% by weight are wet-mixed in the proportions shown in Table 1, dried, synthesized at 1400 ° C. for 2 hours, and the obtained spinel powder is mixed with ZrO. 2 and CaO were added in the proportions shown in Table 1, and were pulverized and dispersed in a wet manner. Next, 3% by weight of the wax emulsion was added to the obtained slurry, and dried with a spray dryer to obtain a molded powder. Using this powder, it was molded from a mold at a molding pressure of 1 tonf / cm 2 and fired at 1600-1750 ° C. to obtain a 25 × 25 × 5 mm sample. Moreover, it cast-molded by the gypsum type | mold using the slurry grind | pulverized and disperse | distributed by wet, and baked on the same conditions as the above, and produced the square container of external shape 100x100x80mm (wall thickness 5mm).
[0026]
Table 2 shows the chemical composition and characteristics of the obtained sintered body. Sample No. 1 to 7 are spinel sintered bodies of the present invention. 8 to 15 are comparative products that do not satisfy at least one of the requirements of the present invention. Sample No. An X-ray diffraction chart of the sintered body of No. 7 is shown in FIG. 1, and it was proved that this sintered body was composed only of the spinel crystal phase.
[0027]
Next, a PZT molded body having a diameter of 25 mm and a thickness of 3 mm was placed on the sample obtained above, and a 63 g alumina block was placed on the PZT molded body, and the alumina firing container [SSA made by Nikkato Co., Ltd. -S], capped and sealed, and heat treated twice at 1300 ° C. in an electric furnace. The sample after the heat treatment was cut, mirror finished, and the penetration depth of PbO was measured by EDX. The measurement results are shown in Table 2.
[0028]
The spinel sintered body with excellent corrosion resistance of the present invention exhibits excellent corrosion resistance with an erosion depth of 0.5 mm or less with respect to PbO, but a sintered body that does not satisfy even one of the requirements of the present invention is It is clear that its corrosion resistance is inferior.
[0029]
Example 2
Sample No. in Table 1 Thermal shock tests were conducted on 2, 6, 9 and 13. The test was put in a square container containing 40-mesh fused zirconia powder in an electric furnace heated and held at 1000 ° C., held for 30 minutes, taken out to room temperature, cooled, and then cracked by fluorescence flaw detection. It was done by the method of examining. The results of repeating the above test 10 times are shown in Table 3. The spinel sintered body of the present invention has no thermal cracking even after 10 repeated thermal shock tests, and has excellent thermal shock resistance compared to a sintered body that does not satisfy any of the requirements of the present invention. Is clear.
[0030]
Example 3
Sample No. in Table 1 4, 7, 8 and 12 were subjected to a corrosion resistance test against general waste incinerated ash. In the test, the incinerated ash containing limestone was put in an alumina container [SSA-S manufactured by Nikkato Co., Ltd.], and a sintered body of 25 × 25 × 5 mm was embedded therein, and 72 ° C. at 1400 ° C. in an electric furnace. Hold for hours and cool in furnace. A sample after firing was cut out, mirror finished, and Ca and Si line analysis was performed by EDX to measure the erosion depth. The results are shown in Table 4. The spinel sintered body of the present invention exhibits excellent corrosion resistance with an erosion depth of 0.35 mm or less, and a sintered body that does not satisfy even one of the requirements of the present invention is inferior in corrosion resistance.
[0031]
[Table 1]
Figure 0004485615
[0032]
[Table 2]
Figure 0004485615
[0033]
[Table 3]
Figure 0004485615
[0034]
[Table 4]
Figure 0004485615
[0035]
【The invention's effect】
Since the spinel sintered body of the present invention is excellent in corrosion resistance, thermal shock resistance and durability, it can be effectively used as a member for firing electronic parts such as piezoelectric bodies, dielectric bodies and ceramic capacitors. In particular, when used as a firing member in firing PZT containing PbO, the corrosion resistance to PbO is excellent, so that the composition change of the material to be fired is very small. Furthermore, it is also effective as a crucible for melting metals and alloys. In addition, using excellent corrosion resistance, for example, as a lining material for temperature measuring protection tubes and combustion gas pipes used in burner nozzles, furnace core tubes, radiant tubes, heater support tubes, especially waste firing furnaces and melting furnaces, etc. Can also be used effectively.
[0036]
The embodiments of the present invention are listed below.
(1) (a) It consists of a spinel crystal whose content is 94 vol% or more , (b) The total amount of Al 2 O 3 and MgO is 98 wt% or more, and (c) Al 2 O 3 / MgO (weight ratio) is 65 / 35-80 / 20, (d) 2 % by weight or less of ZrO 2 , (e) a bulk density of 3.40 g / cm 3 or more, and (f) an average crystal grain size of 3 μm or more. Corrosion-resistant spinel sintered body.
(2) The corrosion-resistant spinel sintered body according to (1), wherein a part of the Al 2 O 3 and MgO is substituted with a small amount of CaO.
(3) The corrosion-resistant spinel sintered body according to (2), wherein the content of CaO is 0.5% by weight or less with respect to the total amount of Al 2 O 3 , MgO, and CaO.
(4) The corrosion-resistant spinel sintered body according to (3), wherein the content of CaO is 0.05 to 0.3% by weight with respect to the total amount of Al 2 O 3 , MgO, and CaO.
(5) The aluminum compound and the magnesium compound are uniformly mixed with water so that the content of Al 2 O 3 and MgO is 98% by weight of the total amount and dried, and then 1000 to 1500 ° C. To obtain a spinel powder having a spinel crystal phase amount of 70 vol% or more, pulverize and disperse the obtained spinel powder by a wet process, and then dry to obtain a molded powder. A method for producing a corrosion-resistant spinel sintered body, characterized in that the molded body obtained by molding is sintered at 1500 to 1750 ° C.
[Brief description of the drawings]
1 is an X-ray diffraction chart of a spinel sintered body of Example 1. FIG.

Claims (2)

(a)スピネル結晶の含有量が94vol%以上であり、(b)Al、MgOおよびCaOの合計量が98重量%以上で、この合計量の内にCaOを0.05〜0.5重量%とし、(c)Al/MgO(重量比)が65/35〜80/20、(d)ZrOが0.05〜2重量%含有し、(e)かさ密度が3.40g/cm以上、(f)平均結晶粒径が3μm以上、であることを特徴とする耐食性スピネル質焼結体。 (A) The content of spinel crystals is 94 vol% or more , (b) the total amount of Al 2 O 3 , MgO and CaO is 98 wt% or more. 5% by weight, (c) Al 2 O 3 / MgO (weight ratio) 65/35 to 80/20, (d) ZrO 2 0.05 to 2 % by weight, (e) Bulk density 3 .40 g / cm 3 or more and (f) an average crystal grain size of 3 μm or more. 請求項1記載の耐食性スピネル質焼結体からなることを特徴とする熱処理用部材。  A heat-treating member comprising the corrosion-resistant spinel sintered body according to claim 1.
JP10464199A 1999-04-12 1999-04-12 Corrosion-resistant spinel sintered body and heat treatment member comprising the same Expired - Lifetime JP4485615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10464199A JP4485615B2 (en) 1999-04-12 1999-04-12 Corrosion-resistant spinel sintered body and heat treatment member comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10464199A JP4485615B2 (en) 1999-04-12 1999-04-12 Corrosion-resistant spinel sintered body and heat treatment member comprising the same

Publications (2)

Publication Number Publication Date
JP2000302538A JP2000302538A (en) 2000-10-31
JP4485615B2 true JP4485615B2 (en) 2010-06-23

Family

ID=14386090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10464199A Expired - Lifetime JP4485615B2 (en) 1999-04-12 1999-04-12 Corrosion-resistant spinel sintered body and heat treatment member comprising the same

Country Status (1)

Country Link
JP (1) JP4485615B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5806158B2 (en) * 2012-03-30 2015-11-10 京セラ株式会社 Magnesium aluminate sintered body
EP3936489A4 (en) 2019-03-06 2022-11-23 Nikkato Corporation Ceramic sintered compact having embossed surface, method for manufacturing same, and heat treatment member comprising said ceramic sintered compact
CN112778799B (en) * 2020-12-31 2021-09-07 深圳市丁鼎陶瓷科技有限公司 Purple ceramic pigment powder particle, preparation method thereof and prepared purple zirconia ceramic

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08208324A (en) * 1995-01-30 1996-08-13 Toshiba Ceramics Co Ltd Tool material for firing

Also Published As

Publication number Publication date
JP2000302538A (en) 2000-10-31

Similar Documents

Publication Publication Date Title
JP5879414B2 (en) Sintered refractories with improved thermal shock resistance
JP5255574B2 (en) Zirconium lite refractory raw material and plate brick
JP4836348B2 (en) Heat-treating member made of an alumina sintered body with excellent durability
JP2010083729A (en) Alumina-based sintered compact excellent in corrosion resistance, heat shock resistance, and durability
JP5149294B2 (en) Fired refractory products
JP2011088759A (en) Alumina refractory and method of producing the same
JP4721947B2 (en) Corrosion-resistant magnesia sintered body, heat treatment member comprising the same, and method for producing the sintered body
JP4485615B2 (en) Corrosion-resistant spinel sintered body and heat treatment member comprising the same
JP4560199B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP5036110B2 (en) Lightweight ceramic sintered body
JP4507148B2 (en) Heat treatment member made of mullite sintered body
JP4043425B2 (en) Zirconia heat treatment material
JP4546609B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP4612330B2 (en) Rotary kiln
JP4993812B2 (en) Heat treatment member made of zirconia sintered body
JP3737917B2 (en) Thermal shock-resistant alumina sintered body and heat treatment member comprising the same
JP3368960B2 (en) SiC refractory
JP2000327408A (en) Thermal shock resistant silica brick for hot repairing and its production
JP4906240B2 (en) Alumina sintered body excellent in thermal shock resistance and corrosion resistance, heat treatment member comprising the same, and method for producing the same
JP4906228B2 (en) Alumina sintered body excellent in thermal shock resistance and corrosion resistance and heat treatment member using the same
JP5108311B2 (en) Oxide-bonded silicon carbide sintered body and manufacturing method thereof
JP2000128622A (en) Magnesian refractory
TW202413307A (en) Magnesia-alumina based castable and refractory brick
JP2015193510A (en) MgO-TiO2-NiO CLINKER AND BURNT BASIC BRICK USING THE SAME
JP2003342080A (en) Castable chromia refractory and precast block manufactured using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100325

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term