JP2010083729A - Alumina-based sintered compact excellent in corrosion resistance, heat shock resistance, and durability - Google Patents

Alumina-based sintered compact excellent in corrosion resistance, heat shock resistance, and durability Download PDF

Info

Publication number
JP2010083729A
JP2010083729A JP2008256726A JP2008256726A JP2010083729A JP 2010083729 A JP2010083729 A JP 2010083729A JP 2008256726 A JP2008256726 A JP 2008256726A JP 2008256726 A JP2008256726 A JP 2008256726A JP 2010083729 A JP2010083729 A JP 2010083729A
Authority
JP
Japan
Prior art keywords
alumina
sintered body
corrosion resistance
durability
shock resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008256726A
Other languages
Japanese (ja)
Other versions
JP4357584B1 (en
Inventor
Hiroshi Uemura
浩 植村
Koji Onishi
宏司 大西
Akira Kochi
章 胡内
Hironori Fujita
浩範 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkato Corp
Original Assignee
Nikkato Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkato Corp filed Critical Nikkato Corp
Priority to JP2008256726A priority Critical patent/JP4357584B1/en
Application granted granted Critical
Publication of JP4357584B1 publication Critical patent/JP4357584B1/en
Publication of JP2010083729A publication Critical patent/JP2010083729A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alumina-based sintered compact excellent in corrosion resistance, heat shock resistance, and durability, to provide a production method thereof, and to provide a heat treatment member comprising the alumina-based sintered compact. <P>SOLUTION: The alumina-based sintered compact excellent in corrosion resistance, heat shock resistance, and durability is characterized in that (a) it is an alumina-based sintered compact having an alumina content of 99.5 wt.% or higher, (b) it has a bulk density of 3.7 g/cm<SP>3</SP>or higher, (c) it has an average crystal particle diameter of 20-70 μm, (d) the major diameter/minor diameter of crystal particles on each of one surface of the sintered compact and the surface vertical thereto is 2.0 or higher, and (e) the ratio R1/R2 (wherein R1 is the major diameter/minor diameter on a larger one of the major diameter/minor diameter ratios on the one surface and the surface vertical thereto and the R2 is smaller one of them) is 1.0-2.0. A production method thereof, and a heat treatment member comprising the alumina-based sintered compact are also provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、耐食性、耐熱衝撃抵抗性及び耐久性に優れたアルミナ質焼結体およびそれよりなる熱処理用部材に関する。   The present invention relates to an alumina sintered body excellent in corrosion resistance, thermal shock resistance and durability, and a heat treatment member comprising the same.

アルミナの結晶構造は板状からなる六方晶系であり、結晶軸はa軸とc軸とからなるが、a軸とc軸では熱膨張係数が異なる。結晶粒径が小さい場合には結晶粒形は粒状であるが、結晶粒子が大きくなると結晶粒形は板状が明確になるという特徴を有している。   The crystal structure of alumina is a hexagonal system having a plate shape, and the crystal axis is composed of an a-axis and a c-axis. When the crystal grain size is small, the crystal grain shape is granular, but when the crystal grain becomes large, the crystal grain shape has a feature that the plate shape becomes clear.

アルミナは耐食性、耐熱性等に優れ、他のセラミックス材料と比べて、安価で取り扱いやすいものであることから、高温部材、熱処理用部材などの広い分野で使用されている。特に、最近のリチウム2次電池用正極材料をはじめとする電子材料や蛍光体材料は精密な組成制御が必要不可欠であるため、製造工程における不純物混入の抑制が図られている。また、それらの熱処理においては組成の変動を極力少なくするためや生産効率を高めるために急速な昇温・降温処理がなされている。このような使用条件では耐食性に加え、耐熱衝撃抵抗性並びに耐久性の高いアルミナ製熱処理用部材が要求されている。   Alumina is excellent in corrosion resistance, heat resistance, etc., and is cheaper and easier to handle than other ceramic materials, so it is used in a wide range of fields such as high temperature members and heat treatment members. In particular, electronic materials such as recent positive electrode materials for lithium secondary batteries and phosphor materials are indispensable for precise composition control, and therefore, contamination of impurities in the manufacturing process is suppressed. In these heat treatments, rapid temperature increase / decrease processes are performed in order to minimize the variation of the composition and increase the production efficiency. Under such use conditions, an alumina heat treatment member having high thermal shock resistance and durability in addition to corrosion resistance is required.

これらの問題点を解決するために、アルミナ結晶を配向させることが検討されている。例えば、特許文献1には耐食性に優れたアルミナ質焼結体よりなる熱処理用部材として、アルミナ結晶粒子を大きく成長させて板状の粒子とし、かつ高い配向度の配向性アルミナ質焼結体が開示されている。しかしながら、このアルミナ質焼結体は耐食性には優れているものの、結晶粒子が大きいためアルミナ結晶のa軸とc軸の熱膨張差が顕著に表れる。従来のアルミナ質焼結体においても結晶粒形はほとんど粒状であるが、結晶粒子が大きくなるとa軸とc軸との熱膨張差が大きくなって、破壊靱性の向上に寄与し、耐熱衝撃抵抗性の向上に効果がある。しかしながら、本発明は結晶粒径が大きくなると同時に、一方向に結晶が配向しているため、熱膨張差により生じる歪みが大きく現れる。そのため、機械的特性の低下を招き、耐熱衝撃抵抗性の低下による急速な昇温・降温処理によるクラックの発生や割れ等の問題が発生する。また、加熱・冷却の繰り返しによりマイクロクラックの生成と成長が起こり、耐熱衝撃抵抗性の低下で見られるような割れの発生につながる問題を有している。また、該配向性アルミナ質焼結体は、粒成長を促進させ、結晶を配向させるため、板状アルミナ粒子と粒状アルミナ粒子粉体をある特定の比率で組み合わせる必要があり、厳選したアルミナ原料粉体が必要であるため高コストであるだけでなく、スラリーの分散状態が不安定で成形しにくく、収率が低いという問題もあった。   In order to solve these problems, orientation of alumina crystals has been studied. For example, Patent Document 1 discloses an oriented alumina sintered body having a high degree of orientation as a member for heat treatment made of an alumina sintered body having excellent corrosion resistance, by growing alumina crystal particles greatly to form plate-like particles. It is disclosed. However, although this alumina sintered body is excellent in corrosion resistance, since the crystal grains are large, a difference in thermal expansion between the a-axis and the c-axis of the alumina crystal appears remarkably. Even in the conventional alumina sintered body, the crystal grain shape is almost granular, but as the crystal grain becomes larger, the difference in thermal expansion between the a-axis and the c-axis increases, contributing to the improvement of fracture toughness, and the thermal shock resistance It is effective in improving the sex. However, in the present invention, the crystal grain size is increased, and at the same time, the crystals are oriented in one direction, so that distortion caused by the difference in thermal expansion appears greatly. For this reason, the mechanical properties are deteriorated, and problems such as generation of cracks and cracks due to rapid temperature increase / decrease processing due to the decrease in thermal shock resistance are caused. In addition, the generation and growth of microcracks occur due to repeated heating and cooling, and there is a problem that leads to the occurrence of cracks as seen in the decrease in thermal shock resistance. Further, the oriented alumina sintered body needs to combine the plate-like alumina particles and the granular alumina particle powder at a specific ratio in order to promote grain growth and orient the crystal. In addition to the high cost due to the need for a body, there is a problem in that the dispersion state of the slurry is unstable and difficult to mold, and the yield is low.

一方、特許文献2にはアルミナにジルコニアを微量添加することで結晶粒子の粒状化と結晶粒径の均一化を図り、高い耐熱衝撃抵抗性並びに耐食性を有するアルミナ質焼結体を開示している。しかしながら、加熱・冷却による熱疲労には優れているものの、耐熱衝撃抵抗性は最近の過酷な急速加熱冷却には対応できない場合があり、安定して使用できない。また、耐食性についてもさらなる向上が求められている。   On the other hand, Patent Document 2 discloses an alumina-based sintered body having high thermal shock resistance and corrosion resistance by adding a small amount of zirconia to alumina so as to granulate crystal grains and make the crystal grain size uniform. . However, although it is excellent in thermal fatigue due to heating / cooling, the thermal shock resistance may not be able to cope with recent severe rapid heating / cooling and cannot be used stably. Moreover, further improvement is requested | required also about corrosion resistance.

特開平7−315915号公報JP 7-315915 A 特開2001−114555号公報JP 2001-114555 A

本発明の目的は、耐食性、耐熱衝撃抵抗性及び耐久性に優れたアルミナ質焼結体及びそれよりなる熱処理用部材を提供することにある。   An object of the present invention is to provide an alumina sintered body excellent in corrosion resistance, thermal shock resistance and durability, and a heat treatment member comprising the same.

本発明者らは優れた耐食性、耐熱衝撃抵抗性及び耐久性を有するアルミナ質焼結体を得るべく、鋭意研究を重ねてきた。その結果、アルミナ結晶の結晶粒径、結晶粒子形状及び結晶の配向性を制御することで、耐食性、耐熱衝撃抵抗性及び耐久性に優れたアルミナ質焼結体が得られることを見出した。アルミナ結晶粒子をある特定の範囲内の大きさで、かつ板状にし、配向させずにランダムにすることで、耐食性の向上だけでなく、強度及び破壊靱性の向上が同時に得られ、耐熱衝撃抵抗性及び耐久性に優れることを見出した。なお、本発明でいう耐久性とは加熱・冷却による割れ等が見られず、長寿命であることを言う。本発明は、アルミナ含有量及びかさ密度をある特定の範囲内で、アルミナ結晶粒子はある特定の大きさを有する板状に近い形状であるが、結晶の配向がほとんど無く(すなわちR1/R2が1.0〜2.0であること)、ランダムに分布していることが特徴である。   The inventors of the present invention have made extensive studies to obtain an alumina sintered body having excellent corrosion resistance, thermal shock resistance and durability. As a result, it was found that an alumina sintered body excellent in corrosion resistance, thermal shock resistance and durability can be obtained by controlling the crystal grain size, crystal grain shape and crystal orientation of alumina crystals. By making the alumina crystal particles in a certain size, plate-like, and random without being oriented, not only corrosion resistance but also strength and fracture toughness can be improved at the same time, thermal shock resistance And found to be excellent in durability and durability. In addition, the durability as used in the field of this invention means that it is long-life, without the crack by heating / cooling etc. being seen. In the present invention, the alumina content and the bulk density are within a certain range, and the alumina crystal particles have a shape close to a plate shape having a certain size, but there is almost no crystal orientation (that is, R1 / R2 is less than It is 1.0 to 2.0), and is characterized by being randomly distributed.

即ち、本発明の第1は、(a)アルミナ含有量が99.5重量%以上からなるアルミナ質焼結体であって、(b)かさ密度が3.7g/cm以上であり、(c)平均結晶粒径が20〜70μmで、(d)焼結体のひとつの面とその面に垂直な面の結晶粒子の長径/短径が共に2.0以上であり、(e)ひとつの面とその面に垂直な面で結晶粒子の長径/短径が大きい方の面の長径/短径:R1と小さい方の面の長径/短径:R2の比:R1/R2が1.0〜2.0であることを特徴とする耐食性、耐熱衝撃抵抗性及び耐久性に優れたアルミナ質焼結に関する。
本発明の第2は、請求項1記載の耐食性、耐熱衝撃抵抗性及び耐久性に優れたアルミナ質焼結体からなる熱処理用部材に関する。
本発明の第3は、アルミナ含有量が99.7重量%以上、平均粒子径が0.5〜3μmのアルミナ原料粉体に平均粒子径が25μm以下のフッ素化合物を0.03〜0.5重量%添加し、平均粒子径を2μm以下に粉砕混合し、成形し、大気中で1600〜1800℃で焼成することを特徴とする請求項1記載の耐食性、耐熱衝撃抵抗性及び耐久性に優れたアルミナ質焼結体の製造方法に関する。
That is, the first of the present invention is (a) an alumina sintered body having an alumina content of 99.5% by weight or more, (b) a bulk density of 3.7 g / cm 3 or more, ( c) The average crystal grain size is 20 to 70 μm, (d) the major axis / minor axis of the crystal grain of one surface of the sintered body and the surface perpendicular to the surface are both 2.0 or more, and (e) one The major axis / minor axis of the surface having the larger major axis / minor axis of the crystal grain in the plane perpendicular to that plane and the major axis / minor axis of the smaller surface: ratio of the major axis / minor axis: R2 of the smaller one: R1 / R2 is 1. The present invention relates to alumina-based sintering excellent in corrosion resistance, thermal shock resistance and durability characterized by being 0 to 2.0.
A second aspect of the present invention relates to a heat treatment member comprising an alumina sintered body having excellent corrosion resistance, thermal shock resistance and durability according to claim 1.
According to the third aspect of the present invention, an alumina raw material powder having an alumina content of 99.7% by weight or more and an average particle size of 0.5 to 3 μm is added with a fluorine compound having an average particle size of 25 μm or less from 0.03 to 0.5. 2% by weight addition, pulverized and mixed with an average particle size of 2 μm or less, molded, and fired at 1600 to 1800 ° C. in the atmosphere, excellent in corrosion resistance, thermal shock resistance and durability The present invention relates to a method for producing an alumina sintered body.

なお、本発明でいう熱処理用部材とは、各種材料の熱処理のときに用いる被焼成物を収納する容器あるいは各種焼成炉や溶融炉などの内部や周辺部で使用する各種部材を意味する。具体的には、例えば、セラミックス粉末の仮焼合成用容器、ガラス溶解用容器、セッター、金属溶解用容器、単結晶育成用容器、蛍光体材料の熱処理用容器、管状炉用炉心管、ラジアントチューブ、ヒーターサポートチューブ、測温用保護管、ガス吹き込み管、ガス採取管、内張炉材などを示す。   In addition, the member for heat processing as used in the field of this invention means the various members used in the inside or peripheral part of the container which stores the to-be-fired material used at the time of heat processing of various materials, or various baking furnaces, melting furnaces. Specifically, for example, ceramic powder calcining synthesis vessel, glass melting vessel, setter, metal melting vessel, single crystal growth vessel, phosphor material heat treatment vessel, tubular furnace core tube, radiant tube , Heater support tube, temperature measuring protection tube, gas blowing tube, gas sampling tube, lining furnace material, etc.

以下に本発明の耐食性、耐熱衝撃抵抗性及び耐久性に優れたアルミナ質焼結体が充足すべき各要件について詳細に説明する。   Hereinafter, each requirement to be satisfied by the alumina sintered body excellent in corrosion resistance, thermal shock resistance and durability of the present invention will be described in detail.

(a)アルミナ含有量が99.5重量%以上であることについて
本発明において、アルミナ含有量が99.5重量%以上であることが必要であり、好ましくは99.7重量%以上である。アルミナ含有量が99.5重量%未満である場合、アルミナ結晶粒界にガラス相もしくは第2相が多く生成し、耐食性が低下するだけでなく、耐クリープ性の低下をきたすため好ましくない。さらに、アルミナ含有量が99.5重量%未満の場合、不純物が多く含有することとなり、結晶粒径、粒形等の微構造制御がしにくくなり好ましくない。尚、工業的には上限は99.8重量%程度である。
(A) Alumina content is 99.5% by weight or more In the present invention, the alumina content is required to be 99.5% by weight or more, and preferably 99.7% by weight or more. When the alumina content is less than 99.5% by weight, a large amount of glass phase or second phase is generated at the alumina crystal grain boundary, which not only deteriorates corrosion resistance but also undesirably decreases creep resistance. Furthermore, when the alumina content is less than 99.5% by weight, a large amount of impurities are contained, which makes it difficult to control the microstructure such as the crystal grain size and grain shape. Industrially, the upper limit is about 99.8% by weight.

(b)かさ密度が3.7g/cm以上であることについて
本発明において、かさ密度は3.7g/cm以上であることが必要であり、3.8g/cm以上であることがより好ましい。かさ密度が3.7g/cm未満である場合、焼結体内部に気孔が多く存在することとなり、機械的特性が低下し、耐熱衝撃抵抗性や耐久性の低下だけでなく、高温での変形の原因となるので好ましくなく、また、気孔から腐食が進行しやすくなり、耐食性の低下を引き起こすので好ましくない。
(B) a bulk density in the present invention will be at 3.7 g / cm 3 or more, is possible bulk density must be at 3.7 g / cm 3 or more and 3.8 g / cm 3 or more More preferred. If the bulk density is less than 3.7 g / cm 3 , there will be many pores inside the sintered body, resulting in a decrease in mechanical properties, thermal shock resistance and durability, as well as at high temperatures. This is not preferable because it causes deformation, and corrosion is likely to proceed from the pores, causing a decrease in corrosion resistance.

(c)平均結晶粒径が20〜70μmであることについて
本発明において、平均結晶粒径が20〜70μmであることが必要であり、好ましくは30〜70μm、より好ましくは30〜60μmである。平均結晶粒径が20μm未満である場合は、高温において変形しやすくなり、耐熱性の低下を生じると共に、耐食性も低下するため好ましくない。70μmを超える場合は、アルミナ結晶の結晶面間の熱膨張率の違いにより、焼結体の歪みが大きくなり、機械的特性が低下するだけでなく、耐熱衝撃性及び耐久性が低下し、熱処理用部材としての実用性に劣るため、好ましくない。但し、平均結晶粒径が本発明の範囲内にあっても、結晶粒子の形状が著しく不均一であると、耐食性、耐熱性、耐熱衝撃抵抗性及び耐久性が低い場合がある。尚、平均結晶粒径はアルミナ質焼結体のひとつの面及びその面に垂直な面を鏡面研磨し、熱エッチングを施した後、走査電子顕微鏡により観察し、インターセプト法により10点平均から、下式よりひとつの面及びその面に垂直な面の値を各々求め、その値の平均値を用いた。
D=1.5×L/n
[D:平均結晶粒径(μm)、L:測定距離(μm)、n:長さL当たりの結晶の数]
(C) About an average crystal grain size of 20 to 70 μm In the present invention, the average crystal grain size needs to be 20 to 70 μm, preferably 30 to 70 μm, more preferably 30 to 60 μm. An average crystal grain size of less than 20 μm is not preferable because it tends to be deformed at a high temperature, resulting in a decrease in heat resistance and a decrease in corrosion resistance. When it exceeds 70 μm, the distortion of the sintered body increases due to the difference in thermal expansion coefficient between the crystal faces of the alumina crystals, and not only the mechanical properties deteriorate, but also the thermal shock resistance and durability deteriorate, Since it is inferior in practicality as a member for use, it is not preferable. However, even if the average crystal grain size is within the range of the present invention, if the crystal grain shape is extremely uneven, the corrosion resistance, heat resistance, thermal shock resistance and durability may be low. In addition, the average crystal grain size is one surface of the alumina sintered body and a surface perpendicular to the surface is mirror-polished, subjected to thermal etching, observed with a scanning electron microscope, and from an average of 10 points by the intercept method, The values of one surface and a surface perpendicular to the surface were obtained from the following formula, and the average value of the values was used.
D = 1.5 × L / n
[D: average crystal grain size (μm), L: measurement distance (μm), n: number of crystals per length L]

(d)焼結体のひとつの面とその面に垂直な面の結晶粒子の長径/短径が共に2.0以上であることについて
本発明において、焼結体のひとつの面とその面に垂直な面の結晶粒子の長径/短径が共に2.0以上であることが必要で、より好ましくは2.5以上であることが必要である。長径/短径が2.0未満の場合は、結晶粒形が球状に近いことを意味するため、破壊靱性の向上に寄与せず、耐熱衝撃抵抗性及び耐久性の低下をきたすので好ましくない。なお、長径/短径の上限は5程度である。なお、長径/短径の測定は、上記結晶粒径の測定方法と同様にして結晶粒子を走査電子顕微鏡により観察し、結晶粒子の長径と短径を50ヶ測定し、長径/短径の平均値を求めた。
(D) Both the major axis / minor axis of the crystal grains of one surface of the sintered body and the surface perpendicular to the surface are 2.0 or more In the present invention, one surface of the sintered body and its surface Both the major axis / minor axis of the crystal grains in the vertical plane are required to be 2.0 or more, more preferably 2.5 or more. When the major axis / minor axis is less than 2.0, it means that the crystal grain shape is close to a sphere, so that it does not contribute to the improvement of fracture toughness, and the thermal shock resistance and durability are lowered. The upper limit of the major axis / minor axis is about 5. The major axis / minor axis is measured by observing the crystal particles with a scanning electron microscope in the same manner as the above-described method for measuring the crystal grain size, measuring 50 major and minor axes of the crystal particles, and calculating the average of the major axis / minor axis. The value was determined.

(e)焼結体のひとつの面とその面に垂直な面で結晶粒子の長径/短径が大きい方の面の長径/短径:R1と小さい方の面の長径/短径:R2の比:R1/R2が1.0〜2.0である点について
本発明において、ひとつの面とその面に垂直な面で結晶粒子の長径/短径が大きい方の面の長径/短径:R1と小さい方の面の長径/短径:R2の比:R1/R2が1.0〜2.0であることが必要で、好ましくは1.0〜1.5である。本発明では長径/短径の比は結晶粒子の配向性を示しており、この比が大きいほど配向が顕著であることを示している。また、長径/短径の比が1.0とは、どの面においても結晶粒径の長径/短径が同じであることを示している。長径/短径の比が2.0を超える場合は、結晶粒子の配向があることを示しており、その結果、焼結体の歪みが大きくなって機械的特性の低下をきたし、耐熱衝撃抵抗性及び耐久性の低下を示すので好ましくない。
なお、配向がある、あるいは配向しているとは、“焼結体のひとつの面”と“焼結体のその面と垂直な面”の結晶粒子の形状が大きく異なることを指すものである。例えば、図5に示すように、配向している場合はひとつの面は細長い粒子がたくさんあり、その面に垂直な面には丸い粒子がたくさんあるケースであり、配向していない場合は、ひとつの面もその面に垂直な面も同じ様な形状の結晶粒子があるケースである。
配向性の数値化は、“焼結体のひとつの面”と“焼結体のその面と垂直な面”の結晶粒子の長径/短径を50ヶ測定して平均値を求め、値が大きい方をR1、小さい方をR2とし、R1/R2で表わす。配向している場合はR1とR2の差が大きくなり、R1/R2が2.0より大きくなる。また、配向していない場合はR1とR2の差がほとんど無くなるので1.0〜2.0の範囲内になる。
(E) The major axis / minor axis of the surface having the larger major axis / minor axis of the crystal grain on one surface of the sintered body and the surface perpendicular to the surface: R1 and the major axis / minor axis of the smaller surface: R2 Ratio: About the point where R1 / R2 is 1.0 to 2.0 In the present invention, the major axis / minor axis of the larger one of the major axis / minor axis of the crystal grain in one plane and a plane perpendicular to the plane: The ratio of the major axis / minor axis: R2 of R1 and the smaller surface: R1 / R2 needs to be 1.0 to 2.0, preferably 1.0 to 1.5. In the present invention, the ratio of major axis / minor axis indicates the orientation of crystal grains, and the larger the ratio, the more remarkable the orientation. Further, a ratio of major axis / minor axis of 1.0 indicates that the major axis / minor axis of the crystal grain size is the same on any plane. When the ratio of major axis / minor axis exceeds 2.0, it indicates that there is orientation of crystal grains, and as a result, the distortion of the sintered body increases and the mechanical properties deteriorate, resulting in a thermal shock resistance. This is not preferable because it shows a decrease in durability and durability.
“Oriented” or “orientated” means that the shape of crystal grains of “one surface of the sintered body” and “surface perpendicular to the surface of the sintered body” are greatly different. . For example, as shown in FIG. 5, in the case of being oriented, one surface has a lot of elongated particles, and the surface perpendicular to the surface has a lot of round particles. This is a case where there are crystal grains having the same shape on both the surface and the surface perpendicular to the surface.
The numerical value of the orientation is obtained by measuring 50 major / minor axis diameters of “one surface of the sintered body” and “a plane perpendicular to the surface of the sintered body” to obtain an average value. The larger one is R1, and the smaller one is R2, and is represented by R1 / R2. In the case of orientation, the difference between R1 and R2 becomes large, and R1 / R2 becomes larger than 2.0. Moreover, when it is not oriented, the difference between R1 and R2 is almost eliminated, so that it is in the range of 1.0 to 2.0.

本発明の耐食性、耐熱衝撃抵抗性及び耐久性に優れたアルミナ質焼結体の製造方法について説明する。
使用するアルミナ原料粉体は、アルミナ含有量が99.7重量%以上が好ましく、より好ましくは99.9重量%以上であり、平均粒子径が0.5〜3μm、好ましくは0.5〜2μmであることが必要である。尚、アルミナ原料粉体のフッ素含有量は100ppm以下であることが好ましい。また、使用するフッ素化合物は純度99.7重量%以上が好ましく、より好ましくは99.9重量%以上であり、平均粒子径は25μm以下が好ましく、より好ましくは15μm以下である。尚、フッ素化合物は1次粒子が細かく、凝集しやすいため、ここでいう平均粒子径はフッ素化合物の凝集体をレーザー回折法で測定した値である。アルミナ原料粉体で耐火物用などの原料は水酸化アルミニウムを焼成してアルミナにする場合にフッ素化合物を添加してアルミナ結晶粒子の成長を促進させることがなされているが、本発明においてはアルミナ原料粉体とフッ素化合物を焼成により反応させることが必要で、予め水酸化アルミニウム原料粉体にフッ素化合物を添加して作製したアルミナ原料粉体を用いた場合には焼結性が低いという欠点だけでなく、本発明の微構造からなるアルミナ質焼結体が得られない。
アルミナ原料粉体及びフッ素化合物の純度が99.7重量%未満の場合は、耐食性、耐熱衝撃抵抗性及び耐久性に優れたアルミナ質焼結体に含有する不純物量が多くなり、アルミナ結晶粒界にガラス相もしくは第2相を形成するため、耐食性だけでなく、高温下で負荷加重による変形が起こりやすくなるため好ましくない。アルミナ原料粉体の平均粒子径が0.5μm未満の場合は、粉体の凝集が起こりやすく、成形性等の低下をきたすので好ましくない。一方、アルミナ原料粉体の3μmを超える場合は、所定の粉砕・分散時間が長くなり、結果的に粉砕機からの摩耗粉の混入により不純物量が増加するため好ましくない。フッ素化合物の平均粒子径が25μmを超える場合は、凝集が強いため分散性に劣り、その結果、アルミナ原料粉体とフッ素化合物の均一混合分散性が劣り、焼成で十分に反応せず、アルミナ結晶粒子の形状が不均一になり、耐食性、耐熱衝撃抵抗性および耐久性が劣るため好ましくない。
The method for producing an alumina sintered body having excellent corrosion resistance, thermal shock resistance and durability according to the present invention will be described.
The alumina raw material powder to be used preferably has an alumina content of 99.7% by weight or more, more preferably 99.9% by weight or more, and an average particle diameter of 0.5 to 3 μm, preferably 0.5 to 2 μm. It is necessary to be. In addition, it is preferable that the fluorine content of the alumina raw material powder is 100 ppm or less. Further, the fluorine compound used preferably has a purity of 99.7% by weight or more, more preferably 99.9% by weight or more, and the average particle diameter is preferably 25 μm or less, more preferably 15 μm or less. Since the fluorine compound has fine primary particles and easily aggregates, the average particle diameter here is a value obtained by measuring an aggregate of the fluorine compound by a laser diffraction method. The raw material for refractories, such as alumina raw material powder, is used to promote the growth of alumina crystal particles by adding a fluorine compound when aluminum hydroxide is baked into alumina. It is necessary to react the raw material powder and the fluorine compound by firing, and when using the alumina raw material powder prepared by adding the fluorine compound to the aluminum hydroxide raw material powder in advance, only the disadvantage of low sinterability In addition, an alumina sintered body having the microstructure of the present invention cannot be obtained.
When the purity of the alumina raw material powder and the fluorine compound is less than 99.7% by weight, the amount of impurities contained in the alumina sintered body excellent in corrosion resistance, thermal shock resistance and durability is increased, and the alumina grain boundary Since the glass phase or the second phase is formed on the surface, not only the corrosion resistance but also deformation due to load loading is likely to occur at high temperatures. When the average particle diameter of the alumina raw material powder is less than 0.5 μm, the powder is likely to agglomerate and the moldability and the like are lowered, which is not preferable. On the other hand, when the alumina raw material powder exceeds 3 μm, the predetermined pulverization / dispersion time becomes long, and as a result, the amount of impurities increases due to the mixing of wear powder from the pulverizer, such being undesirable. When the average particle size of the fluorine compound exceeds 25 μm, the dispersion is inferior due to strong aggregation, and as a result, the uniform mixing and dispersibility of the alumina raw material powder and the fluorine compound is inferior, and the alumina crystal does not react sufficiently during firing. This is not preferable because the shape of the particles becomes uneven and the corrosion resistance, thermal shock resistance and durability are poor.

以上の原料を用い、かつフッ素化合物が0.03〜0.5重量%、好ましくは0.05〜0.3重量%になるように添加し、原料の組成が所定の割合となるように配合し、湿式でボールミルやアトリッションミルを用い、粉砕・分散を行う。フッ素化合物が0.03重量%未満の場合はフッ素化合物添加による微構造制御ができず、0.5重量%を超える場合には焼結性の低下だけでなく、ガラス相もしくは第2相を結晶粒界に多く形成し、耐食性及び機械的特性の低下をきたすので好ましくない。   The above raw materials are used, and the fluorine compound is added so as to be 0.03 to 0.5% by weight, preferably 0.05 to 0.3% by weight, and blended so that the composition of the raw materials becomes a predetermined ratio. Then, it is pulverized and dispersed using a wet ball mill or an attrition mill. When the fluorine compound is less than 0.03% by weight, the microstructure cannot be controlled by adding the fluorine compound, and when it exceeds 0.5% by weight, not only the sinterability is lowered but also the glass phase or the second phase is crystallized. It is not preferable because it forms a lot at the grain boundary and deteriorates the corrosion resistance and mechanical properties.

なお、本発明において、使用するフッ素化合物としてはフッ化マグネシウム、フッ化カルシウムがあげられる。   In the present invention, examples of the fluorine compound used include magnesium fluoride and calcium fluoride.

さらにジルコニア粉体の添加は焼結助剤として効果があるが、その添加量は0.1重量%未満であることが好ましく、0.1重量%を超える場合には結晶粒子が粒状になりやすくなるため好ましくない。また、アルミナ質焼結体に比し、ジルコニア質焼結体は耐食性が低いため、熱処理用部材として用いた場合、被処理物により腐食され、ジルコニア成分が被処理物中に混入する等の問題を有するので好ましくない。
粉砕・分散後の平均粒子径は、粉砕・分散時の粉体濃度、使用するボール径や処理時間の調整によりコントロールする。尚、粉砕・分散後の平均粒子径は2μm以下が好ましく、より好ましくは1.5μm以下である。平均粒子径が2μmを超える場合は、成形体密度が大きくならず、焼結性が低下し、気孔率が増加することから耐食性が低下するため好ましくない。下限は0.3μm程度とする。
Furthermore, the addition of zirconia powder is effective as a sintering aid, but the addition amount is preferably less than 0.1% by weight, and if it exceeds 0.1% by weight, the crystal particles are likely to be granular. Therefore, it is not preferable. In addition, the zirconia sintered body has lower corrosion resistance than the alumina sintered body, and therefore, when used as a heat treatment member, it is corroded by the object to be processed, and the zirconia component is mixed into the object to be processed. Is not preferable.
The average particle size after pulverization / dispersion is controlled by adjusting the powder concentration during pulverization / dispersion, the diameter of the balls used and the processing time. The average particle size after pulverization / dispersion is preferably 2 μm or less, more preferably 1.5 μm or less. When the average particle diameter exceeds 2 μm, the density of the compact does not increase, the sinterability decreases, and the porosity increases, which is not preferable because the corrosion resistance decreases. The lower limit is about 0.3 μm.

成形方法としては通常のセラミックスの成形法が採用でき、プレス成形、ラバープレス成形、冷間等方圧成形(CIP)等が採用される。得られた粉砕・分散スラリーに必要により公知の成形助剤(例えばワックスエマルジョン、PVA、アクリル系樹脂等)を加え、スプレードライヤー等の公知の方法で乾燥させて成形粉体を作製し、これを用いて成形する。
得られた成形体は大気中1600〜1800℃、好ましくは1650〜1750℃で焼成する。焼成温度が1600℃未満の場合は、焼結が不十分なため気孔が増加し、耐食性が低下するため好ましくなく、1800℃を超える場合は、焼結性は向上するが、異常粒成長及び粒界に気孔が発生しやすくなるので、好ましくない。
As a forming method, an ordinary ceramic forming method can be employed, and press forming, rubber press forming, cold isostatic pressing (CIP), or the like is employed. If necessary, a known molding aid (for example, wax emulsion, PVA, acrylic resin, etc.) is added to the obtained pulverized / dispersed slurry, and dried by a known method such as a spray dryer to produce a molded powder. Use to mold.
The obtained molded body is fired in the atmosphere at 1600 to 1800 ° C., preferably 1650 to 1750 ° C. When the firing temperature is less than 1600 ° C., the sintering is insufficient and the pores are increased, and the corrosion resistance is lowered. This is not preferable, and when it exceeds 1800 ° C., the sinterability is improved, but abnormal grain growth and grain Since pores are easily generated in the boundary, it is not preferable.

本発明の耐食性、耐熱衝撃抵抗性及び耐久性に優れたアルミナ質焼結体は、下記の如き優れた性質を有するものである。
(1)耐食性に優れているために、被熱処理物を汚染することを防止できる。
(2)高温特性に優れているため、高温での変形等が少ない。
(3)耐熱衝撃抵抗性に優れているため、加熱、冷却の繰り返しに十分に耐えることができる。
(4)本発明の耐食性、耐熱衝撃抵抗性及び耐久性に優れたアルミナ質焼結体は、以上のように優れた耐熱性および耐食性を有するものであり、この様な優れた性質を利用して、リチウム2次電池正極材料の合成、蛍光体材料の合成、セラミックスコンデンサー、圧電体および誘電体の様な電子部品熱処理用部材として有効に用いることができる。さらに、金属および合金の溶解用ルツボとしても有効である。また、優れた耐熱衝撃性を有するため、各種熱処理用炉心管、高温搬送用ローラ、サポートチューブ、ラジアントチューブ、ガス吹込管、ガス採取管に有効である。特に還元、真空および不活性雰囲気下での使用に有効である。
The alumina sintered body excellent in corrosion resistance, thermal shock resistance and durability of the present invention has the following excellent properties.
(1) Since the corrosion resistance is excellent, it is possible to prevent the object to be heat-treated from being contaminated.
(2) Since the high temperature characteristics are excellent, there is little deformation at high temperatures.
(3) Since it has excellent thermal shock resistance, it can sufficiently withstand repeated heating and cooling.
(4) The alumina sintered body excellent in corrosion resistance, thermal shock resistance and durability of the present invention has excellent heat resistance and corrosion resistance as described above, and utilizes such excellent properties. Thus, it can be effectively used as a member for heat treatment of electronic parts such as synthesis of positive electrode materials for lithium secondary batteries, synthesis of phosphor materials, ceramic capacitors, piezoelectric bodies and dielectrics. Furthermore, it is also effective as a crucible for melting metals and alloys. In addition, since it has excellent thermal shock resistance, it is effective for various heat treatment core tubes, high-temperature transfer rollers, support tubes, radiant tubes, gas blowing tubes, and gas sampling tubes. It is particularly effective for use in reducing, vacuum and inert atmospheres.

以下、実施例及び比較例により具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。   Hereinafter, although an example and a comparative example explain concretely, the present invention is not limited at all by these examples.

実施例(試料No.1〜5)、比較例(試料No.1〜6)
実施例No.1〜3及び比較例No.5、6は、原料として純度が99.8重量%、平均粒子径が0.8μmからなるアルミナ原料粉体を用い、実施例No.4、5及び比較例2、3は原料として純度が99.8重量%、平均粒子径が1.5μmからなるアルミナ原料粉体を用い、比較例No.1は、純度が99.88重量%、平均粒子径が3μmの板状粒子からなるアルミナ原料粉体と純度99.89重量%、平均粒子径0.5μmの粒状粒子からなるアルミナ原料粉体を重量比で8:2で混合して使用し、比較例No.4は純度が99.85重量%、平均粒子径が3.5μmからなるフッ素含有量が170ppmのアルミナ原料粉体を使用した。また、実施例No.1〜5及び比較例No.2〜5は、純度が99.9重量%、平均粒子径が15μmからなるフッ化カルシウムを用い、比較例No.6は純度が99.9重量%、平均粒子径が45μmのフッ化カルシウムを用いた。
表1に示す通り、所定量になるようにアルミナ原料粉体とフッ化カルシウム粉体を配合し、アルミナ製ボール及びポットミルを用い、溶媒として水を用いて粉砕・分散・混合し、スラリーを作製した。得られたスラリーの粉砕粉体の平均粒子径を表1に示す。得られたスラリーを石膏型により鋳込成形し、1550℃〜1800℃で焼成して、φ6×45mmのアルミナ質焼結体を得た。得られたアルミナ質焼結体の特性を表2に示す。実施例試料No.1〜5は本発明の範囲内(実施例)のアルミナ質焼結体であり、比較例試料No.1〜6は本発明の要件を少なくとも一つ以上満足していない(比較例)アルミナ質焼結体である。
なお、表1における「粉砕粉体」は「アルミナ原料粉体、フッ化カルシウム粉体(フッ素化合物)を所定量になるように配合し、粉砕・分散・混合処理し、得られたスラリーの粉砕粉体」の平均粒子径を指す。
Example (sample No. 1-5), comparative example (sample No. 1-6)
Example No. 1 to 3 and Comparative Example No. 1 In Examples 5 and 6, alumina raw material powder having a purity of 99.8% by weight and an average particle diameter of 0.8 μm was used as the raw material. 4, 5 and Comparative Examples 2 and 3 use alumina raw material powder having a purity of 99.8% by weight and an average particle size of 1.5 μm as a raw material. 1 is an alumina raw material powder composed of plate-like particles having a purity of 99.88% by weight and an average particle diameter of 3 μm, and an alumina raw material powder composed of granular particles having a purity of 99.89% by weight and an average particle diameter of 0.5 μm. It was used by mixing at a weight ratio of 8: 2. No. 4 used alumina raw material powder having a purity of 99.85% by weight and an average particle size of 3.5 μm and a fluorine content of 170 ppm. In addition, Example No. 1-5 and Comparative Example No. Nos. 2 to 5 use calcium fluoride having a purity of 99.9% by weight and an average particle size of 15 μm. 6 used calcium fluoride having a purity of 99.9% by weight and an average particle diameter of 45 μm.
As shown in Table 1, the alumina raw material powder and calcium fluoride powder are blended so as to be a predetermined amount, and are pulverized, dispersed, and mixed using water as a solvent using an alumina ball and pot mill to produce a slurry. did. Table 1 shows the average particle size of the pulverized powder of the obtained slurry. The obtained slurry was cast by a plaster mold and fired at 1550 ° C. to 1800 ° C. to obtain an alumina sintered body having a diameter of 6 × 45 mm. Table 2 shows the characteristics of the obtained alumina sintered body. Example Sample No. Nos. 1 to 5 are alumina sintered bodies within the scope of the present invention (Examples). Nos. 1 to 6 are alumina sintered bodies that do not satisfy at least one of the requirements of the present invention (Comparative Example).
The “pulverized powder” in Table 1 is “alumina raw material powder and calcium fluoride powder (fluorine compound) mixed in a predetermined amount, pulverized / dispersed / mixed, and pulverized. It refers to the average particle size of “powder”.

本発明の範囲内である実施例試料No.4の走査電子顕微鏡写真を図1に示す。さらに本発明の範囲外の走査電子顕微鏡写真について、比較例試料No.1を図2に、比較例試料No.3のものを図3、比較例試料No.6のものを図4に示す。   Example Sample No. which falls within the scope of the present invention. A scanning electron micrograph of 4 is shown in FIG. Further, for a scanning electron micrograph outside the scope of the present invention, the comparative sample No. 1 is shown in FIG. 3 is shown in FIG. 6 is shown in FIG.

耐食性試験は各焼結体の上にチタン酸ジルコン酸鉛(PZT)成形体をのせ、電気炉中に1250℃で5時間熱処理した後にPZT成形体の成分であるPbOの浸食深さを測定した。尚、浸食深さは、焼結体断面をエネルギー分散形X線分析(EDX)により分析して決定した。その結果を表2に示す。   In the corrosion resistance test, a lead zirconate titanate (PZT) molded body was placed on each sintered body, and after heat treatment at 1250 ° C. for 5 hours in an electric furnace, the erosion depth of PbO as a component of the PZT molded body was measured. . The erosion depth was determined by analyzing the cross section of the sintered body by energy dispersive X-ray analysis (EDX). The results are shown in Table 2.

熱衝撃試験は電気炉中に試料を入れ、180℃で30分間加熱し、20℃の水中に落下させるテストを行い、テスト後の試料を蛍光探傷によるクラックの有無により評価した。また、耐久性試験は、上記と同試料を150℃で30分加熱し、20℃の水中に落下させるテストを10回繰り返し行い、蛍光探傷でクラックの発生の有無により評価した。その結果を表2に示す。   In the thermal shock test, a sample was placed in an electric furnace, heated at 180 ° C. for 30 minutes, and dropped into water at 20 ° C., and the sample after the test was evaluated by the presence or absence of cracks due to fluorescent flaw detection. In the durability test, the same sample as above was heated at 150 ° C. for 30 minutes and dropped into water at 20 ° C., and the test was repeated 10 times. The results are shown in Table 2.

図1〜3の左と右の図面は、図5が示すように「焼結体のひとつの面」と「その面に垂直な面」を並べている。つまり、各焼結体のひとつの面(左)とその面に垂直な面(右)のSEM写真である。
本発明の焼結体は、前記表2より明らかなように、高い耐食性を有しつつ、耐熱衝撃抵抗性及び耐久性に優れている。例えば、実施例(試料No.4)の焼結体は、図1の写真1に示すようなひとつの面と、写真2に示すその面に垂直な面の長径/短径の平均値は表1に示した通り共に2.0以上と本発明範囲内である。しかも、ひとつの面とその面に垂直な面で結晶粒子の長径/短径が大きい方の面(写真1)の長径/短径:R1と、長径/短径が小さい方の面(写真2)の長径/短径:R2の比:R1/R2を表1に示すが、1.04と本発明の範囲内である。しかしながら、本発明の要件を少なくとも一つ以上を満足していない焼結体は耐食性、耐熱衝撃抵抗性及び耐久性のいずれか一つ以上が劣っており、熱処理用部材として満足できるものではなかった。
例えば、比較例(試料No.1)は、図2が示すように、ひとつの面とその面に垂直な面の長径/短径の大きい方の面(写真3)の長径/短径:R1は表1に示す通り本発明の範囲内であるが、長径/短径の小さい方の面(写真4)の長径/短径:R2及びR1/R2が本発明の範囲より外れており、耐久性に劣ったものとなった。比較例(試料No.2)は、平均結晶粒径の点で本発明の範囲より外れており、耐食性及び耐熱衝撃抵抗性に劣ったものとなった。比較例(試料No.3)は、図3の写真5、6が示すように、ひとつの面とその面に垂直な面の結晶粒子の長径/短径が共に2.0以上の点で本発明の範囲より外れており、耐熱衝撃抵抗性に劣ったものとなった。比較例(試料No.4)は、かさ密度の点で本発明の範囲より外れており、耐食性、耐熱衝撃抵抗性及び耐久性に劣ったものとなった。比較例(試料No.5)は、ひとつの面とその面に垂直な面の結晶粒子の長径/短径の大きい方の面の長径/短径:R1は本発明の範囲内であるが、平均結晶粒径、ひとつの面とその面に垂直な面の結晶粒子の長径/短径の小さい方の面の長径/短径:R2及びR1/R2の点で本発明の範囲より外れており、耐久性に劣ったものとなった。比較例(試料No.6)は、図4の写真7が示すように、ひとつの面とその面に垂直な面の結晶粒子の長径/短径の大きい方の面の長径/短径:R1は本発明の範囲内であるが、写真8に示す長径/短径の小さい方の面の長径/短径:R2が本発明の範囲より外れており、更に結晶粒子の形状が著しく不均一であったため、耐食性、耐熱衝撃抵抗性及び耐久性に劣ったものとなった。
本発明のように板状の結晶粒子からなる焼結体は、結晶粒子の並び方に二通りがある。図5(A)が示すように、配向している場合は、板状の結晶粒子が規則正しく一定方向に配列している。一方、図5(B)が示すように、配向していない場合は、板状の結晶粒子が不規則で色々な方向を向いている。つまり、両焼結体の微構造を「ひとつの面」と「その面に垂直な面」で観察すると図5のようになる。
The left and right drawings of FIGS. 1 to 3 arrange “one surface of the sintered body” and “a surface perpendicular to the surface” as shown in FIG. That is, it is an SEM photograph of one surface (left) of each sintered body and a surface perpendicular to the surface (right).
As is clear from Table 2 above, the sintered body of the present invention has high thermal shock resistance and durability while having high corrosion resistance. For example, in the sintered body of Example (Sample No. 4), the average value of the major axis / minor axis of one surface as shown in Photo 1 in FIG. As shown in FIG. 1, both are 2.0 or more and are within the scope of the present invention. In addition, the major axis / minor axis: R1 of one surface and the surface having a larger major axis / minor axis of the crystal particle (Photo 1) and a surface having a smaller major axis / minor axis (Photo 2). The ratio of major axis / minor axis :) of R2: R1 / R2 is shown in Table 1 and is 1.04, which is within the scope of the present invention. However, a sintered body that does not satisfy at least one of the requirements of the present invention is inferior in any one or more of corrosion resistance, thermal shock resistance and durability, and is not satisfactory as a heat treatment member. .
For example, in the comparative example (sample No. 1), as shown in FIG. 2, the major axis / minor axis: R1 of one surface and the surface with the larger major axis / minor axis of the surface perpendicular to the surface (Photo 3): R1 Is within the scope of the present invention as shown in Table 1, but the major axis / minor axis of the smaller major axis / minor axis (Photo 4): R2 and R1 / R2 are out of the scope of the present invention and It became inferior. The comparative example (sample No. 2) was out of the range of the present invention in terms of the average crystal grain size, and was inferior in corrosion resistance and thermal shock resistance. As shown in photographs 5 and 6 in FIG. 3, the comparative example (sample No. 3) is the main point in that the major axis / minor axis of the crystal grains on one plane and the plane perpendicular to the plane are both 2.0 or more. It was outside the scope of the invention, and was inferior in thermal shock resistance. The comparative example (sample No. 4) was out of the range of the present invention in terms of bulk density, and was inferior in corrosion resistance, thermal shock resistance and durability. In the comparative example (sample No. 5), the major axis / minor axis of the larger diameter / minor axis of the crystal grain of one surface and the surface perpendicular to the surface: R1 is within the scope of the present invention. The average crystal grain size, the major axis / minor axis of the smaller one of the major axis / minor axis of the crystal grain of one plane and the plane perpendicular to the plane: out of the scope of the present invention in terms of R2 and R1 / R2. The durability was inferior. In Comparative Example (Sample No. 6), as shown in Photo 7 of FIG. 4, the major axis / minor axis of the larger one of the major axis / minor axis of the crystal grain of one surface and the surface perpendicular to the surface: R1 Is within the scope of the present invention, but the major axis / minor axis of the smaller major axis / minor axis shown in Photo 8 is outside the scope of the present invention, and the shape of the crystal grains is extremely uneven. Therefore, it was inferior in corrosion resistance, thermal shock resistance and durability.
The sintered body made of plate-like crystal particles as in the present invention has two ways of arranging the crystal particles. As shown in FIG. 5A, when oriented, the plate-like crystal particles are regularly arranged in a certain direction. On the other hand, as shown in FIG. 5B, when not oriented, the plate-like crystal particles are irregular and face in various directions. That is, when the microstructures of both sintered bodies are observed on “one surface” and “a surface perpendicular to the surface”, the result is as shown in FIG.

本発明の範囲内(実施例)である試料No.4の走査電子顕微鏡写真である。Sample No. within the scope of the present invention (Example). 4 is a scanning electron micrograph of No. 4; 本発明の範囲外(比較例)である試料No.1の走査電子顕微鏡写真である。Sample No. which is outside the scope of the present invention (comparative example). 1 is a scanning electron micrograph of 1. 本発明の範囲外(比較例)である試料No.3の走査電子顕微鏡写真である。Sample No. which is outside the scope of the present invention (comparative example). 3 is a scanning electron micrograph of 3. 本発明の範囲外(比較例)である試料No.6の走査電子顕微鏡写真である。Sample No. which is outside the scope of the present invention (comparative example). 6 is a scanning electron micrograph of 6. (A)は結晶粒子が配向している場合の1例を示す図であり、(B)は結晶粒子が配向していない場合の1例を示す図である。(A) is a figure which shows an example when the crystal grain is orientated, (B) is a figure which shows an example when the crystal grain is not oriented.

Claims (3)

(a)アルミナ含有量が99.5重量%以上からなるアルミナ質焼結体であって、(b)かさ密度が3.7g/cm以上であり、(c)平均結晶粒径が20〜70μmで、(d)焼結体のひとつの面とその面に垂直な面の結晶粒子の長径/短径が共に2.0以上であり、(e)ひとつの面とその面に垂直な面で結晶粒子の長径/短径が大きい方の面の長径/短径:R1と小さい方の面の長径/短径:R2の比:R1/R2が1.0〜2.0であることを特徴とする耐食性、耐熱衝撃抵抗性及び耐久性に優れたアルミナ質焼結体。 (A) An alumina sintered body having an alumina content of 99.5% by weight or more, (b) a bulk density of 3.7 g / cm 3 or more, and (c) an average crystal grain size of 20 to 70 μm, (d) the major axis / minor axis of the crystal grain of one surface of the sintered body and the surface perpendicular to the surface are both 2.0 or more, and (e) one surface and the surface perpendicular to the surface The major axis / minor axis of the surface having the larger major axis / minor axis of the crystal particle: R1 and the major axis / minor axis of the smaller surface: R2 ratio: R1 / R2 is 1.0 to 2.0. Alumina sintered body with excellent corrosion resistance, thermal shock resistance and durability. 請求項1記載の耐食性、耐熱衝撃抵抗性及び耐久性に優れたアルミナ質焼結体からなる熱処理用部材。   A member for heat treatment comprising an alumina sintered body having excellent corrosion resistance, thermal shock resistance and durability according to claim 1. アルミナ含有量が99.7重量%以上、平均粒子径が0.5〜3μmのアルミナ原料粉体に平均粒子径が25μm以下のフッ素化合物を0.03〜0.5重量%添加し、平均粒子径を2μm以下に粉砕混合し、成形し、大気中で1600〜1800℃で焼成することを特徴とする請求項1記載の耐食性、耐熱衝撃抵抗性及び耐久性に優れたアルミナ質焼結体の製造方法。   0.03 to 0.5% by weight of a fluorine compound having an average particle size of 25 μm or less is added to an alumina raw material powder having an alumina content of 99.7% by weight or more and an average particle size of 0.5 to 3 μm. The alumina sintered body excellent in corrosion resistance, thermal shock resistance and durability according to claim 1, wherein the diameter is pulverized and mixed to 2 µm or less, molded, and fired at 1600 to 1800 ° C in the air. Production method.
JP2008256726A 2008-10-01 2008-10-01 Alumina sintered body with excellent corrosion resistance, thermal shock resistance and durability Active JP4357584B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008256726A JP4357584B1 (en) 2008-10-01 2008-10-01 Alumina sintered body with excellent corrosion resistance, thermal shock resistance and durability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008256726A JP4357584B1 (en) 2008-10-01 2008-10-01 Alumina sintered body with excellent corrosion resistance, thermal shock resistance and durability

Publications (2)

Publication Number Publication Date
JP4357584B1 JP4357584B1 (en) 2009-11-04
JP2010083729A true JP2010083729A (en) 2010-04-15

Family

ID=41393472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008256726A Active JP4357584B1 (en) 2008-10-01 2008-10-01 Alumina sintered body with excellent corrosion resistance, thermal shock resistance and durability

Country Status (1)

Country Link
JP (1) JP4357584B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104829217A (en) * 2015-03-31 2015-08-12 苏州维泰生物技术有限公司 Corrosion resistant alumina ceramic and preparation method thereof
US9108887B2 (en) 2010-05-31 2015-08-18 Nishimura Porcelain Co., Ltd. Method for producing ceramic for heat-radiating members, ceramic for heat-radiating members, and solar cell module and LED light-emitting module using said ceramic
JP2016108185A (en) * 2014-12-05 2016-06-20 豊田合成株式会社 Method for manufacturing group iii nitride semiconductor, and crucible
US9963182B2 (en) 2013-03-28 2018-05-08 Honda Motor Co., Ltd. Headlight for two-wheeled motor vehicle
WO2019073782A1 (en) * 2017-10-12 2019-04-18 住友電気工業株式会社 Ceramic substrate, laminate, and saw device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084721A1 (en) * 2014-11-28 2016-06-02 日本碍子株式会社 Method for producing transparent alumina sintered body
TWI705951B (en) 2015-09-30 2020-10-01 日商日本碍子股份有限公司 Method for preparing transparent alumina sintered body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9108887B2 (en) 2010-05-31 2015-08-18 Nishimura Porcelain Co., Ltd. Method for producing ceramic for heat-radiating members, ceramic for heat-radiating members, and solar cell module and LED light-emitting module using said ceramic
US9963182B2 (en) 2013-03-28 2018-05-08 Honda Motor Co., Ltd. Headlight for two-wheeled motor vehicle
JP2016108185A (en) * 2014-12-05 2016-06-20 豊田合成株式会社 Method for manufacturing group iii nitride semiconductor, and crucible
US9903042B2 (en) 2014-12-05 2018-02-27 Toyoda Gosei Co., Ltd. Method for producing group III nitride semiconductor using a crucible
CN104829217A (en) * 2015-03-31 2015-08-12 苏州维泰生物技术有限公司 Corrosion resistant alumina ceramic and preparation method thereof
WO2019073782A1 (en) * 2017-10-12 2019-04-18 住友電気工業株式会社 Ceramic substrate, laminate, and saw device

Also Published As

Publication number Publication date
JP4357584B1 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
JP4357584B1 (en) Alumina sintered body with excellent corrosion resistance, thermal shock resistance and durability
JP6636307B2 (en) Alumina sintered body with excellent high temperature properties and corrosion resistance
KR101729650B1 (en) Mullite ceramic and method for producing same
JP7062230B2 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
JP2021134092A (en) Light-weight kiln tool and manufacturing method thereof
KR20230012573A (en) Ceramic sintered body containing magnesium aluminate spinel
JP4667520B2 (en) Silicon nitride based composite ceramics and method for producing the same
TWI491580B (en) Tablet for vapor depositing and method for producing the same
JP2011088759A (en) Alumina refractory and method of producing the same
JP4836348B2 (en) Heat-treating member made of an alumina sintered body with excellent durability
JP4798693B2 (en) Yttria ceramic parts for plasma processing apparatus and method for manufacturing the same
JP6982000B2 (en) Oriented AlN sintered body and its manufacturing method
JP4721947B2 (en) Corrosion-resistant magnesia sintered body, heat treatment member comprising the same, and method for producing the sintered body
JP4560199B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
TW202028154A (en) Mullite-base sintered compact and method for producing same
JP5036110B2 (en) Lightweight ceramic sintered body
JP4546609B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP2916664B2 (en) Oriented alumina sintered body
JP4043425B2 (en) Zirconia heat treatment material
JP2010095393A (en) Ceramic member for heat treatment excellent in corrosion resistance and method for producing the same
JP4993812B2 (en) Heat treatment member made of zirconia sintered body
JP3737917B2 (en) Thermal shock-resistant alumina sintered body and heat treatment member comprising the same
JP2014024740A (en) Ceramic sintered body, and member for heat treatment
JP4906240B2 (en) Alumina sintered body excellent in thermal shock resistance and corrosion resistance, heat treatment member comprising the same, and method for producing the same
JP2004315293A (en) Zirconia member for heat treatment and method for manufacturing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090804

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4357584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250