JP2011088759A - Alumina refractory and method of producing the same - Google Patents

Alumina refractory and method of producing the same Download PDF

Info

Publication number
JP2011088759A
JP2011088759A JP2009241284A JP2009241284A JP2011088759A JP 2011088759 A JP2011088759 A JP 2011088759A JP 2009241284 A JP2009241284 A JP 2009241284A JP 2009241284 A JP2009241284 A JP 2009241284A JP 2011088759 A JP2011088759 A JP 2011088759A
Authority
JP
Japan
Prior art keywords
alumina
crystal
content
weight
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009241284A
Other languages
Japanese (ja)
Inventor
Hiroshi Uemura
浩 植村
Koji Onishi
宏司 大西
Shungo Isaka
俊吾 井坂
Hironori Naka
博律 中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkato Corp
Original Assignee
Nikkato Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkato Corp filed Critical Nikkato Corp
Priority to JP2009241284A priority Critical patent/JP2011088759A/en
Publication of JP2011088759A publication Critical patent/JP2011088759A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alumina refractory excellent in corrosion resistance, heat shock resistance and endurance. <P>SOLUTION: The alumina refractory is characterized in that (a) it comprises a corundum single phase having no second phase as crystalline phase, (b) an alumina content is 94 wt.% or more, (c) a silica content is 0.5 to 5 wt.%, (d) a porosity is 20 to 40%, (e) an average crystal particle size (D<SB>1</SB>) of crystal particles of which the crystal particle size is 10 μm or less is 1 to 8 μm, an average crystal particle size (D<SB>2</SB>) of crystal particles of which the crystal particle size is more than 10 μm is 60 to 500 μm and the ratio D<SB>2</SB>/D<SB>1</SB>is 10 or more, and (f) a volume ratio V<SB>2</SB>/V<SB>1</SB>of the content V<SB>2</SB>(vol.%) of crystal particles of which the crystal particle size is more than 10 μm to the content V<SB>1</SB>(vol.%) of crystal particles of which the crystal particle size is 10 μm or less is 0.6 to 4.0. A method of producing the alumina refractory is also provided. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、耐食性、耐熱衝撃抵抗性及び耐久性に優れたアルミナ質耐火物及びその製造方法に関する。   The present invention relates to an alumina refractory excellent in corrosion resistance, thermal shock resistance and durability, and a method for producing the same.

最近のリチウム2次電池用正極材料をはじめとする電子材料や蛍光体材料などの高機能材料は精密な組成制御が必要不可欠であるため、製造工程における不純物混入の抑制が図られている。そのため熱処理工程においても組成の変動を極力少なくするために急速昇温・降温処理がなされており、このような過酷な使用条件では用いる熱処理用部材には高い耐食性、耐熱衝撃抵抗性並びに耐久性が要求されている。   Since highly functional materials such as electronic materials and phosphor materials such as recent positive electrode materials for lithium secondary batteries are indispensable for precise composition control, contamination of impurities in the manufacturing process is suppressed. Therefore, rapid heat-up and temperature-fall treatments are performed in the heat treatment process to minimize the composition variation. Under such severe use conditions, the heat treatment member used has high corrosion resistance, thermal shock resistance and durability. It is requested.

従来の緻密質熱処理用部材は耐食性及び耐久性に優れているものの、耐熱衝撃抵抗性が低いため割れやすく、しかも爆(は)ぜて割れる可能性があり、爆ぜて割れた場合、被焼成物が炉内に飛散して炉内が汚染されるだけでなく、連続炉等は操業停止となる問題があるため、耐火物の採用を検討されるケースは少なくない。   Although conventional dense heat-treating members are excellent in corrosion resistance and durability, they are easily cracked due to their low thermal shock resistance, and may be cracked by explosion. However, there are many cases where the adoption of refractory is considered because there is a problem that the continuous furnace and the like are suspended because not only the inside of the furnace is scattered and the inside of the furnace is contaminated.

しかしながら、耐火物は耐熱衝撃抵抗性には優れているものの、耐食性及び耐久性が低い欠点があるだけでなく、繰り返しの使用によって耐火物を構成している粒子が脱粒して被焼成物に混入する問題や、耐火物の変形や機械的特性が低下する問題がある。例えば、一般的に使用されている耐火物はコーディエライト、コランダム及びムライト結晶で構成されているが、昇降温で各々の結晶が異なる熱膨張挙動を示すため、焼結体内で熱膨張差が発生してマイクロクラックの生成によって、耐火物の変形や強度劣化をきたすなど、耐久性に劣る問題が指摘されている。また、この耐火物の変形に従って、被焼成物も変形するため、電子部品のように精密な形状制御が必要な被焼成物の場合、焼成後の歩留まりが大幅に低下する問題もある。   However, although the refractory is excellent in thermal shock resistance, it has not only the disadvantage of low corrosion resistance and durability, but also the particles that make up the refractory are separated by repeated use and mixed into the material to be fired. There is a problem that the refractory is deformed and mechanical properties are deteriorated. For example, commonly used refractories are composed of cordierite, corundum and mullite crystals, but each crystal shows different thermal expansion behavior with increasing temperature, so there is a difference in thermal expansion within the sintered body. Problems that are inferior in durability, such as deformation and strength deterioration of refractories due to generation of microcracks, have been pointed out. In addition, since the object to be fired is deformed in accordance with the deformation of the refractory, there is a problem in that the yield after firing is significantly reduced in the case of an object to be fired that requires precise shape control such as an electronic component.

このように、高機能材料の熱処理工程で使用される場合には、従来の熱処理用部材は各々問題点を有しており、特に爆ぜて割れる問題は致命的である。そのため耐食性、耐熱衝撃抵抗性及び耐久性に優れ、更に爆ぜて割れない熱処理用部材が要望されており、これまでにも様々な検討がなされてきた。   As described above, when used in the heat treatment process of a high-functional material, each of the conventional heat treatment members has a problem, and particularly the problem of being explode and breaking is fatal. Therefore, there is a demand for a heat treatment member that is excellent in corrosion resistance, thermal shock resistance and durability, and that does not explode and break, and various studies have been made so far.

例えば、特許文献1には、粒径10〜300μmの電融アルミナ及び電融ムライトと粒径10μm未満のローソーダ仮焼アルミナからなる複合耐火物を開示されている。該発明品は、第一骨材である電融アルミナに第二骨材の電融ムライトが所定の比率となるよう混合し、結合材にローソーダ仮焼アルミナを用いることで、アルミナの優れた耐食性だけでなく、ムライトの特性が十分に発揮されて、耐熱性並びに耐久性に優れているものとしている。しかしながら、該発明品は骨材や結合材の材質並びに原料粒度は調整しているものの、焼結体内での骨材粒子及び結合材粒子の分散状態には全く配慮がなされていないため、それぞれの粒子が偏析しやすく、均一な微構造が形成されにくいため、耐熱衝撃抵抗性に劣るものであった。また、骨材粒子と結合材粒子の粒子径の大きさが近いと、骨材としての効果が十分に得られず、繰り返しの使用によって焼結体内でマイクロクラックが大量に生成され、耐久性も劣る問題があった。しかも、コランダム並びにムライトの二相からなる複合耐火物であるため、焼結体内で熱膨張差が発生し、繰り返しの使用により焼結体内にマイクロクラックが発生し、耐久性に劣るものであった。
また、特許文献2には、原料粉体の粒度分布を制御し、高強度及び耐スポール性に優れた耐火物が開示されている。該発明品はアルミナ含有量が低いため耐食性が低く、精密な組成制御を必要とする高機能材料の用途ではまったく使用できないものであった。更に、該発明品は原料の粒度分布を制御して、一定の比率で且つ連続的に粒子を配列させることで高強度且つ耐スポール性に優れたものとしている。しかしながら、該発明品は、骨材の粒度が粗すぎるため、曲げ強さが低く、高機能材料の過酷な熱処理条件では耐熱衝撃抵抗性において十分満足できるものではなかった。
以上に説明したように、従来の耐火物の問題点であった耐久性などが劣る欠点を改善すべく、様々な検討はなされてきたが、高機能材料の焼成に使用される熱処理用部材として、十分使用できるものは全く無かった。
For example, Patent Document 1 discloses a composite refractory composed of fused alumina and fused mullite having a particle size of 10 to 300 μm and low soda calcined alumina having a particle size of less than 10 μm. The invention product has excellent corrosion resistance of alumina by mixing fused mullite of the second aggregate in a predetermined ratio with the fused alumina which is the first aggregate, and using low-soda calcined alumina as the binder. Not only that, the properties of mullite are sufficiently exhibited, and the heat resistance and durability are excellent. However, although the material of the aggregate and the binder and the raw material particle size of the invention are adjusted, no consideration is given to the dispersion state of the aggregate particles and the binder particles in the sintered body. Since the particles are easily segregated and a uniform microstructure is difficult to form, the thermal shock resistance is poor. In addition, if the particle diameters of the aggregate particles and the binder particles are close to each other, the effect as an aggregate cannot be sufficiently obtained, and a large number of microcracks are generated in the sintered body by repeated use, and durability is also improved. There was an inferior problem. Moreover, since it is a composite refractory composed of two phases of corundum and mullite, a difference in thermal expansion occurs in the sintered body, and microcracks occur in the sintered body due to repeated use, resulting in poor durability. .
Patent Document 2 discloses a refractory that controls the particle size distribution of the raw material powder and is excellent in high strength and spall resistance. The product of the present invention has low corrosion resistance due to its low alumina content, and cannot be used at all for high-functional material applications that require precise composition control. Furthermore, the product of the present invention has high strength and excellent spall resistance by controlling the particle size distribution of the raw material and arranging the particles continuously at a constant ratio. However, the product of the invention has a low bending strength because the particle size of the aggregate is too coarse, and the thermal shock resistance is not sufficiently satisfactory under the severe heat treatment conditions of the high-performance material.
As described above, various studies have been made in order to improve the disadvantages of inferior durability, which was a problem of conventional refractories, but as a heat treatment member used for firing high-performance materials. There was nothing that could be used enough.

特開2003−252677号公報Japanese Patent Laid-Open No. 2003-252677 特開平11−189480号公報JP-A-11-189480

本発明は、耐食性、耐熱衝撃抵抗性及び耐久性に優れたアルミナ質耐火物及びその製造方法を提供することにある。   An object of the present invention is to provide an alumina refractory excellent in corrosion resistance, thermal shock resistance and durability, and a method for producing the same.

本発明者らは、これまでに提案されてきた耐火物では、リチウム2次電池正極材料、蛍光体及び電子部品などに代表される高機能材料において、熱処理に使用される熱処理用部材として満足できるものでは無かったことから、耐食性、耐熱衝撃抵抗性及び耐久性に優れたアルミナ質耐火物を得るべく、鋭意研究を重ねてきた。その結果、アルミナ結晶はコランダム単相とし、アルミナ含有量、シリカ含有量並びに気孔率を特定範囲に制御すると同時に、平均結晶粒子径が異なる2種類のアルミナ結晶のそれぞれの平均結晶粒子径の比と、その含有量を特定範囲に制御することにより、バイモーダルな2つのピークをもつ結晶粒子分布の焼結体微構造とすることで、従来の耐火物では成しえなかった、耐火物の優れた耐熱衝撃抵抗性を有しながらも、緻密質と同等の高い耐食性及び耐久性を得られることを見出し、本発明の完成に至った。即ち、従来の耐火物のように製造に使用するアルミナ原料の粒度や含有量を制御しただけに過ぎないものでは、焼結体中のアルミナ結晶粒子の分布はブロードな分布を有する微構造となるため、優れた耐食性、耐熱衝撃抵抗性及び耐久性を同時に実現できなかったことから、本発明では結晶相、組成、気孔率並びに結晶粒子などを特定範囲にして精密な微構造制御が課題解決に有効な手段であることに着眼したのである。尚、本発明でいう耐食性とは被焼成物との反応が少なく、また耐久性とは加熱・冷却による割れ等が見られず、長寿命であることを言う。   The present inventors have been satisfied with the refractories proposed so far as heat treatment members used for heat treatment in high-functional materials typified by lithium secondary battery positive electrode materials, phosphors and electronic components. Since it was not a thing, we have intensively studied to obtain an alumina refractory having excellent corrosion resistance, thermal shock resistance and durability. As a result, the alumina crystal is a corundum single phase, and the alumina content, silica content, and porosity are controlled within a specific range, and at the same time, the ratio of the average crystal particle size of each of two types of alumina crystals having different average crystal particle sizes By controlling the content to a specific range, it becomes a sintered microstructure with two distributions of bimodal peaks and a fine structure of sintered body, which is not possible with conventional refractories. It has been found that high corrosion resistance and durability equivalent to denseness can be obtained while having high thermal shock resistance, and the present invention has been completed. That is, in the case of only controlling the particle size and content of the alumina raw material used for production as in the case of conventional refractories, the distribution of alumina crystal particles in the sintered body becomes a microstructure having a broad distribution. Therefore, since excellent corrosion resistance, thermal shock resistance and durability could not be realized at the same time, in the present invention, precise microstructure control within a specific range of crystal phase, composition, porosity, crystal particles, etc. solved the problem. He focused on being an effective means. The corrosion resistance as used in the present invention means that there is little reaction with the object to be fired, and the durability means that there is no cracking due to heating / cooling and that the life is long.

即ち、本発明の第1は、(a)結晶相として第二相が存在しないコランダム単相からなり、(b)アルミナ含有量が94重量%以上で、(c)シリカ含有量が0.5〜5重量%で、(d)気孔率が20〜40%であり、(e)結晶粒子径が10μm以下の結晶粒子の平均結晶粒子径(D)が1〜8μmであり、結晶粒子径が10μmを超える結晶粒子の平均結晶粒子径(D)が60〜500μmであって、その比D/Dが10以上で、(f)結晶粒子径が10μm以下の結晶粒子の含有量V(体積%)と結晶粒子径が10μmを超える結晶粒子の含有量V(体積%)の体積比V/Vが0.6〜4.0であることを特徴とするアルミナ質耐火物に関する。
本発明の第2は、アルミナ含有量が99.5重量%以上、平均粒子径が60〜500μmの粗大アルミナ原料粉体と、アルミナ含有量が99.5重量%以上、平均粒子径が0.5〜8μmの微小アルミナ原料粉体の重量比が粗大アルミナ:微小アルミナ=80:20〜40:60の範囲にあり、比表面積が3m/g以上のケイ素化合物を焼結体のシリカ含有量が0.5〜5重量%となる様に前記2種類のアルミナ原料粉体と混合し、成形して大気中1400℃〜1700℃で焼成することを特徴とする請求項1記載のアルミナ質耐火物の製造方法に関する。尚、本発明でいうアルミナ質耐火物はリチウム2次電池正極材料の合成、蛍光体材料の合成、セラミックスコンデンサー、圧電体および誘電体の様な電子部品の焼成用熱処理用部材として有効に用いることができる。
That is, the first of the present invention comprises (a) a corundum single phase having no second phase as a crystal phase, (b) an alumina content of 94% by weight or more, and (c) a silica content of 0.5. in 5wt%, (d) porosity of 20~40%, (e) an average crystal grain size of the crystal grains of the crystal grain size of 10μm or less (D 1) is 1 to 8 .mu.m, crystal grain size The average crystal particle diameter (D 2 ) of crystal grains having a diameter of more than 10 μm is 60 to 500 μm, the ratio D 2 / D 1 is 10 or more, and (f) the content of crystal grains having a crystal grain diameter of 10 μm or less Alumina characterized in that the volume ratio V 2 / V 1 between V 1 (volume%) and the content V 2 (volume%) of crystal grains having a crystal grain diameter exceeding 10 μm is 0.6 to 4.0. Regarding refractories.
The second of the present invention is a coarse alumina raw material powder having an alumina content of 99.5% by weight or more and an average particle size of 60 to 500 μm, an alumina content of 99.5% by weight or more and an average particle size of 0.00. The weight ratio of 5-8 μm fine alumina raw material powder is in the range of coarse alumina: fine alumina = 80: 20-40: 60, and the silica content of the sintered body is a silicon compound having a specific surface area of 3 m 2 / g or more. The alumina-based refractory according to claim 1, wherein the two kinds of alumina raw material powders are mixed, molded, and fired at 1400 ° C to 1700 ° C in the air so that the amount of N is 0.5 to 5% by weight. The present invention relates to a method for manufacturing a product. The alumina-based refractory referred to in the present invention is effectively used as a heat treatment member for sintering of electronic components such as a lithium secondary battery positive electrode material, a phosphor material, a ceramic capacitor, a piezoelectric body and a dielectric. Can do.

本発明のアルミナ質耐火物は、以上のように耐食性、耐熱衝撃抵抗性及び耐久性に優れたものであり、この様な優れた性質を利用して、各種材料の熱処理のときに用いる被焼成物を収納する容器あるいは各種焼成炉や溶融炉などの内部や周辺部で使用することが可能である。具体的には、例えば、リチウムイオン二次電池材料の合成、セラミックス粉末の仮焼合成用容器、セッター、金属溶解用容器、単結晶育成用容器、蛍光体材料の熱処理用容器などで使用できる。   The alumina-based refractory of the present invention is excellent in corrosion resistance, thermal shock resistance and durability as described above. Utilizing such excellent properties, the material to be used for heat treatment of various materials is used. It can be used inside or around a container for storing objects or various firing furnaces or melting furnaces. Specifically, it can be used in, for example, synthesis of lithium ion secondary battery materials, ceramic powder calcined synthesis containers, setters, metal melting containers, single crystal growth containers, and phosphor material heat treatment containers.

本発明品の微構造の一例を示す図である。It is a figure which shows an example of the fine structure of this invention goods. 本発明の範囲内(実施例)である試料No.1の光学顕微鏡写真である。Sample No. within the scope of the present invention (Example). 1 is an optical micrograph of 1. 本発明の範囲内(実施例)である試料No.1の走査電子顕微鏡写真である。Sample No. within the scope of the present invention (Example). 1 is a scanning electron micrograph of 1. 本発明の範囲外(比較例)である試料No.1の光学顕微鏡写真である。Sample No. which is outside the scope of the present invention (comparative example). 1 is an optical micrograph of 1.

以下に、本発明の耐食性、耐熱衝撃抵抗性及び耐久性に優れたアルミナ質耐火物が充足すべき各要件について詳細に説明する。   Hereinafter, each requirement to be satisfied by the alumina refractory excellent in corrosion resistance, thermal shock resistance and durability of the present invention will be described in detail.

(a)結晶相として第二相が存在しないコランダム単相からなることについて
本発明において、結晶相は、アルミナの結晶相の中で最も優れた機械的特性及び化学安定性を有するコランダムであることが必要で、コランダム以外の第二相が存在してはならない。コランダム以外の第二相が存在する場合、繰り返して使用するとコランダムと第二相の熱膨張差により焼結体内にマイクロクラックが発生し、変形や強度劣化をきたし、耐久性が低下するため好ましくない。尚、本発明でいう第二相が存在しないということは、X線回折(粉末X線回折)で、定性分析できないレベルのことを指し、X線回折は該焼結体を平均粒径5μm以下となるように粉砕した後、ターゲットとしてCu、モノクロメータを使用し、スリットを0.15mm、ダイバースリットを1°に設定してスキャニングスピードを3°/分として測定した。
このように、本発明の結晶相はコランダム単相からなるため、焼結体内での熱膨張差の発生が従来の耐火物に比べて極めて小さく、繰り返しの使用によって耐火物の変形度合いを指す残存線変化率は0〜0.2%である。残存線変化率が0.2%を超える場合、繰り返しの昇降温で焼結体内部にマイクロクラックが多量に生成されていることとなり、耐久性が低下するため好ましくない。残存線変化率が0%未満である場合、耐火物が収縮しているため、耐火物に充填できる被焼成物の量が減少するだけでなく、気孔率が低下し、耐久性に劣るため好ましくない。尚、本発明でいう残存線変化率はJIS R2208に基づき、20×20×50mmの焼結体を、10℃/minで昇温し、1300℃で2h保持し、室温まで下げる熱処理を5回繰り返し、その後、50mm方向の長さを測定し、下式により求めた。

〔数1〕
残存線変化率(%)=(L’−L)/L×100
[L:50(mm)、L’:昇降温後の50mm方向の長さ(mm)]
(A) Consisting of a corundum single phase having no second phase as a crystal phase In the present invention, the crystal phase is a corundum having the most excellent mechanical properties and chemical stability among the crystal phases of alumina. Must be present and there should be no second phase other than corundum. When a second phase other than corundum is present, it is not preferable if it is used repeatedly because microcracks are generated in the sintered body due to the difference in thermal expansion between the corundum and the second phase, resulting in deformation and strength deterioration, and the durability is reduced. . Note that the absence of the second phase in the present invention means that X-ray diffraction (powder X-ray diffraction) cannot be qualitatively analyzed, and X-ray diffraction indicates that the sintered body has an average particle size of 5 μm or less. Then, Cu and a monochromator were used as targets, the slit was set to 0.15 mm, the diver slit was set to 1 °, and the scanning speed was set to 3 ° / min.
Thus, since the crystalline phase of the present invention consists of a corundum single phase, the occurrence of a difference in thermal expansion in the sintered body is extremely small compared to the conventional refractory, and the residual indicates the degree of deformation of the refractory by repeated use. The line change rate is 0 to 0.2%. If the residual line change rate exceeds 0.2%, a large amount of microcracks are generated inside the sintered body due to repeated heating and cooling, which is not preferable because durability is lowered. When the residual line change rate is less than 0%, since the refractory is contracted, not only the amount of the fired material that can be filled into the refractory is decreased, but also the porosity is lowered and the durability is poor, which is preferable. Absent. The residual line change rate referred to in the present invention is based on JIS R2208. The heat treatment of a 20 × 20 × 50 mm sintered body at 10 ° C./min, held at 1300 ° C. for 2 hours, and lowered to room temperature 5 times. Repeatedly, the length in the 50 mm direction was then measured and determined by the following formula.

[Equation 1]
Residual line change rate (%) = (L′−L) / L × 100
[L: 50 (mm), L ′: length in the 50 mm direction after raising and lowering the temperature (mm)]

(b)アルミナ含有量が94重量%以上であることについて
本発明において、アルミナ含有量は耐食性に寄与するため、94重量%以上であることが必要であり、好ましくは96重量%以上である。アルミナ含有量が94重量%未満である場合、不純物が多いこととなり、耐食性が低下するため好ましくない。尚、本発明でいう不純物とは、CaO、MgO、NaO、KO、ZrOなどであり、不純物量は1.0重量%以下が好ましい。不純物量が1.0重量%を超える場合、耐食性が低下するため好ましくない。
(B) Alumina content is 94% by weight or more In the present invention, the alumina content contributes to corrosion resistance, so it needs to be 94% by weight or more, preferably 96% by weight or more. When the alumina content is less than 94% by weight, there are many impurities, which is not preferable because the corrosion resistance is lowered. The impurities referred to in the present invention are CaO, MgO, Na 2 O, K 2 O, ZrO 2 and the like, and the amount of impurities is preferably 1.0% by weight or less. When the amount of impurities exceeds 1.0% by weight, corrosion resistance is lowered, which is not preferable.

(c)シリカ含有量が0.5〜5重量%であることについて
本発明において、シリカはアルミナ結晶粒界に適度なガラス相の形成に寄与して結晶粒界の結合力を高める働きがあり、焼結助剤として必要なものである。シリカ含有量は0.5〜5重量%であることが必要であり、好ましくは2〜4重量%である。シリカ含有量が5重量%を超えると、アルミナ結晶粒界にガラス相が多くなり耐食性が低下するだけでなく、ガラス相は優先的に腐食されるためアルミナ粒子が脱粒し、被焼成物に混入する危険性があるため好ましくない。シリカ含有量が0.5重量%未満の場合、焼結助剤の効果が不足して、結晶粒界の結合力が低下するため、曲げ強さが低下し、耐熱衝撃抵抗性に劣るため好ましくない。
(C) About silica content of 0.5 to 5% by weight In the present invention, silica contributes to the formation of an appropriate glass phase at the alumina crystal grain boundary and has a function of increasing the bond strength of the crystal grain boundary. It is necessary as a sintering aid. The silica content needs to be 0.5 to 5% by weight, preferably 2 to 4% by weight. When the silica content exceeds 5% by weight, not only does the glass phase increase at the alumina crystal grain boundary and the corrosion resistance decreases, but the glass phase is preferentially corroded, so the alumina particles are deagglomerated and mixed into the material to be fired. This is not preferable because of the risk of When the silica content is less than 0.5% by weight, the effect of the sintering aid is insufficient, and the bonding strength of the grain boundaries is reduced, so that the bending strength is reduced and the thermal shock resistance is inferior, which is preferable. Absent.

(d)気孔率が20〜40%であることについて
本発明において、気孔はクラックの進展速度を抑制して耐久性の向上に寄与し、更に爆ぜて割れにくくする効果を得るために必要である。気孔率は20〜40%であることが必要であり、好ましくは20〜30%である。気孔率が20%未満である場合、気孔量が少ないため気孔によるクラックの分散効果が減少してクラックが急速に進展しやすく、耐久性が低下し、爆ぜて割れやすくなるため好ましくない。気孔率が40%を超える場合、焼結体内部に気孔が多く存在することとなり、曲げ強さが低下し、耐熱衝撃抵抗性に劣るため好ましくない。しかも、気孔から腐食が進行しやすくなり、耐食性の低下を引き起こすことともなる。また気孔の細孔径は10μm未満であることが好ましく、より好ましくは7μm未満、更に好ましくは5μm未満である。細孔径が10μm以上である場合は、被焼成物が耐火物に容易に含浸するため、被焼成物と耐火物の反応が促進され、耐食性が低下するため好ましくない。下限値は4μm程度である。尚、本発明でいう気孔率は見かけ気孔率を指し、アルキメデス法(JIS R2205に準拠)で測定した。細孔径は水銀圧入法(ポロシメーター)で測定しており下式より算出した。

〔数2〕
細孔径(μm)=−4γcosθ/P
[P=圧力(MPa)、γ:水銀の表面張力480dyne・cm−1
θ:水銀の接触角140°]
(D) Porosity is 20 to 40% In the present invention, the pores are necessary to suppress the crack growth rate and contribute to the improvement of durability, and further to obtain the effect of making it difficult to explode. . The porosity is required to be 20 to 40%, and preferably 20 to 30%. When the porosity is less than 20%, since the amount of pores is small, the effect of dispersing cracks due to the pores is reduced and the cracks are likely to progress rapidly, and the durability is lowered. When the porosity exceeds 40%, there are many pores in the sintered body, the bending strength is lowered, and the thermal shock resistance is inferior. In addition, corrosion tends to proceed from the pores, causing a decrease in corrosion resistance. The pore diameter is preferably less than 10 μm, more preferably less than 7 μm, still more preferably less than 5 μm. When the pore diameter is 10 μm or more, the fired material easily impregnates the refractory material, and thus the reaction between the fired material and the refractory material is promoted, and the corrosion resistance is lowered, which is not preferable. The lower limit is about 4 μm. In addition, the porosity as used in the field of this invention refers to the apparent porosity, and was measured by the Archimedes method (based on JIS R2205). The pore diameter was measured by a mercury intrusion method (porosimeter) and calculated from the following formula.

[Equation 2]
Pore diameter (μm) = − 4γcos θ / P
[P = pressure (MPa), γ: surface tension of mercury 480 dyne · cm −1 ,
θ: mercury contact angle 140 °]

(e)結晶粒子径が10μm以下の結晶粒子の平均結晶粒子径(D)が1〜8μmであり、結晶粒子径が10μmを超える結晶粒子の平均結晶粒子径(D)が60〜500μmであって、その比D/Dが10以上であることについて
本発明におけるアルミナ質耐火物は、結晶粒子径が10μmを境に平均結晶粒子径が異なる二種類のアルミナ結晶粒子から構成され、その結晶粒子の分布はピークが2つ山のバイモーダルな分布であることが必要であり、各々の平均結晶粒子径及びそれらの平均結晶粒子径の比を制御する必要がある。本発明では結晶粒子径が10μm以下の結晶粒子の大きさで曲げ強さを制御できるものである。この平均結晶粒子径(D)が1〜8μmである必要があり、好ましくは2〜6μmである。Dが1μm未満である場合、曲げ強さは向上するものの、耐食性が著しく低下するため好ましくない。Dが8μmを超える場合、曲げ強さが低下し、耐熱衝撃抵抗性に劣るため好ましくない。
また、本発明は結晶粒子径が10μmを超える結晶粒子の大きさで耐食性を制御できるものである。この平均結晶粒子径(D)が60〜500μmである必要があり、好ましくは70〜300μmで、より好ましくは80〜200μmである。Dが60μm未満の場合、耐食性が低下するため好ましくない。Dが500μmを超える場合、耐食性は向上するものの、曲げ強さが低下し、耐熱衝撃抵抗性に劣るため好ましくない。
一方、本発明はD/Dを特定の範囲にすることで耐久性が制御できるものであり、その値は10以上であることが必要で、好ましくは15以上である。結晶粒子径が10μm以下の結晶粒子の平均結晶粒子径Dと結晶粒子径が10μmを超える結晶粒子の平均結晶粒子径Dの比が10未満の場合、結晶粒子径が10μm以下の結晶粒子と結晶粒子径が10μmを超える結晶粒子の結晶粒子径の差が小さいため、結晶粒子径が10μmを超える結晶粒子のクラック進展速度を抑制する粒子架橋効果が十分に得られずに、クラックが急速に進展して耐久性が低下するため好ましくない。また、D/Dの上限は本発明のD及びDの範囲から500である。尚、本発明でいう結晶粒子径Dは、鏡面研磨した焼結体断面を、走査型電子顕微鏡及び光学顕微鏡により観察し、アルミナ結晶粒子の長径及び短径を測定し、下式により算出した。また、平均結晶粒子径の測定には100ヶ以上の測定が必要で、好ましくは500ヶ以上、より好ましくは1000ヶ以上である。

〔数3〕
D=(a+b)/2
[D:結晶粒子径(μm)、a:結晶粒子の長径(μm)、
b:結晶粒子の短径(μm)]
(E) The average crystal particle diameter (D 1 ) of crystal particles having a crystal particle diameter of 10 μm or less is 1 to 8 μm, and the average crystal particle diameter (D 2 ) of crystal particles having a crystal particle diameter exceeding 10 μm is 60 to 500 μm. The ratio D 2 / D 1 is 10 or more. The alumina refractory according to the present invention is composed of two types of alumina crystal particles having different average crystal particle sizes with a crystal particle size of 10 μm as a boundary. The crystal particle distribution needs to be a bimodal distribution with two peaks, and the average crystal particle diameter and the ratio of the average crystal particle diameters must be controlled. In the present invention, the bending strength can be controlled by the size of the crystal particles having a crystal particle diameter of 10 μm or less. The average crystal particle diameter (D 1 ) needs to be 1 to 8 μm, preferably 2 to 6 μm. When D1 is less than 1 μm, the bending strength is improved, but the corrosion resistance is remarkably lowered. If D 1 is greater than 8 [mu] m, and bending strength is lowered, unfavorably inferior in thermal shock resistance.
In the present invention, the corrosion resistance can be controlled by the size of crystal grains having a crystal grain diameter exceeding 10 μm. The average crystal particle diameter (D 2 ) needs to be 60 to 500 μm, preferably 70 to 300 μm, and more preferably 80 to 200 μm. If D 2 is less than 60 [mu] m, undesirably corrosion resistance decreases. If D 2 is greater than 500 [mu] m, although the corrosion resistance is improved, the bending strength is lowered, unfavorably inferior in thermal shock resistance.
On the other hand, in the present invention, the durability can be controlled by setting D 2 / D 1 in a specific range, and the value needs to be 10 or more, preferably 15 or more. When the crystal particle diameter is less 10 [mu] m in average less than the ratio of crystal grain diameter D 2 of 10 crystal grains mean crystal grain size and the crystal grain diameter D 1 of the crystal grains exceeds 10 [mu] m, the crystal grains the crystal grain size of less 10 [mu] m Since the difference in crystal grain size between crystal grains exceeding 10 μm and the crystal grain diameter is small, the particle cross-linking effect that suppresses the crack growth rate of crystal grains exceeding 10 μm in crystal grain diameter cannot be sufficiently obtained, and cracks occur rapidly. It is not preferable because it progresses to a lowering of durability. The upper limit of D 2 / D 1 is 500 from the range of D 1 and D 2 of the present invention. The crystal particle diameter D referred to in the present invention was calculated by the following equation by observing the mirror-polished sintered body cross section with a scanning electron microscope and an optical microscope, measuring the major axis and minor axis of the alumina crystal particle. Further, the measurement of the average crystal particle diameter requires 100 or more measurements, preferably 500 or more, more preferably 1000 or more.

[Equation 3]
D = (a + b) / 2
[D: Crystal particle diameter (μm), a: Crystal particle major diameter (μm),
b: minor diameter of crystal particle (μm)]

(f)結晶粒子径が10μm以下の結晶粒子の含有量V(体積%)と結晶粒子径が10μmを超える結晶粒子の含有量V(体積%)の体積比V/Vが0.6〜4.0であることについて
本発明において、結晶粒子径が10μm以下の結晶粒子の含有量V(体積%)と結晶粒子径が10μmを超える結晶粒子の含有量V(体積%)の体積比V/Vが0.6〜4.0であることが必要であり、好ましくは0.7〜3.0である。V/Vが0.6未満の場合、結晶粒子径が10μmを超える結晶粒子の含有量が少ないこととなり、耐食性が低下するため好ましくない。V/Vが4.0を超える場合、曲げ強さが低下し、耐熱衝撃抵抗性に劣るため好ましくない。尚、本発明でいう結晶粒子径が10μm以下の結晶粒子の含有量V(体積%)と結晶粒子径が10μmを超える結晶粒子の含有量V(体積%)の体積比V/Vは、焼結体の単位面積当たりに占める結晶粒子径が10μm以下の結晶粒子の総面積S1と結晶粒子径が10μmを超える結晶粒子の総面積S2の面積比S1/S2に相当するものである。S1及びS2の面積は画像解析などで測定し、測定面積は4mm以上が必要で、好ましくは9mm以上である。
また、本発明において、曲げ強さは30MPa以上が好ましく、より好ましくは35MPa以上である。曲げ強さが30MPa未満の場合、耐熱衝撃抵抗性が劣るため好ましくない。尚、本発明でいう曲げ強さはJIS R2208に基づき、試験片サイズは20×20×50mmで焼結体の成形面に引っ張り応力が発生するようにして求めた。また、一般的に市販されている耐火物の曲げ強さは10〜20MPaであり、この程度の曲げ強さでは、高機能材料などの過酷な熱処理条件では十分満足できるものではなかったが、本発明品は30MPa以上の曲げ強さを有し、過酷な熱処理条件でも十分使用できる。
(F) volume ratio V 2 / V 1 of the content V 2 of crystal grains the crystal grain size crystal grain size content V 1 of the following crystal grains 10 [mu] m and (vol%) is more than 10 [mu] m (volume percent) 0 in the present invention about a .6~4.0, content V 1 (vol%) of the crystal grain size is 10μm or less crystal grains and the content V 2 (vol% of crystal grains having a particle diameter of more than 10μm ) Volume ratio V 2 / V 1 of 0.6 to 4.0, preferably 0.7 to 3.0. When V 2 / V 1 is less than 0.6, the content of crystal particles having a crystal particle diameter exceeding 10 μm is small, which is not preferable because corrosion resistance is lowered. When V 2 / V 1 exceeds 4.0, the bending strength is lowered and the thermal shock resistance is inferior. The volume ratio V 2 / V content of the crystal grain size of 10 [mu] m or less of crystal grains in the present invention V 1 content V 2 (volume%) and the crystal grains the crystal grain size exceeds 10 [mu] m (volume%) 1 corresponds to the area ratio S1 / S2 of the total area S1 of crystal grains having a crystal grain diameter of 10 μm or less per unit area of the sintered body and the total area S2 of crystal grains having a crystal grain diameter of more than 10 μm. is there. The areas of S1 and S2 are measured by image analysis or the like, and the measurement area needs to be 4 mm 2 or more, preferably 9 mm 2 or more.
In the present invention, the bending strength is preferably 30 MPa or more, more preferably 35 MPa or more. When the bending strength is less than 30 MPa, the thermal shock resistance is inferior, which is not preferable. The bending strength referred to in the present invention was determined based on JIS R2208 such that the test piece size was 20 × 20 × 50 mm and a tensile stress was generated on the molding surface of the sintered body. In addition, the bending strength of refractories that are generally available on the market is 10 to 20 MPa, and this level of bending strength is not sufficiently satisfactory under severe heat treatment conditions such as highly functional materials. The invention product has a bending strength of 30 MPa or more, and can be sufficiently used even under severe heat treatment conditions.

本発明の耐食性、耐熱衝撃抵抗性及び耐久性に優れたアルミナ質耐火物の製造方法について説明する。   The method for producing an alumina refractory having excellent corrosion resistance, thermal shock resistance and durability according to the present invention will be described.

アルミナ含有量が99.5重量%以上で平均粒子径が60〜500μmの粗大アルミナ原料粉体と、アルミナ含有量が99.5重量%以上で平均粒子径0.5〜8μmの微小アルミナ原料粉体を、重量比で粗大アルミナ原料粉体:微小アルミナ原料粉体=40:60〜80:20で混合する必要があり、好ましくは50:50〜75〜25である。この混合アルミナ原料粉体に比表面積が3m/g以上のケイ素化合物を焼結体のシリカ含有量が0.5〜5重量%となる様に混合する必要がある。粗大アルミナ原料粉体及び微小アルミナ原料粉体の純度が99.5重量%未満の場合、不純物量が増加し、耐食性が低下するため好ましくない。粗大アルミナ原料粉体の平均粒子径が60μm未満の場合、耐食性が低下するため好ましくない。粗大アルミナ原料粉体の平均粒子径が500μmを超える場合、耐食性は向上するものの、曲げ強さが低下し、耐熱衝撃抵抗性に劣るため好ましくない。微小アルミナ原料粉体の平均粒子径が0.5μm未満の場合、粉体の凝集が起こりやすく、粗大アルミナ原料粉体との混合・分散性が低下するため、粒度に偏りが生じたり、成形型内への充填時に原料が分離を起こしやすくなるため、焼結体が不均質なものとなり曲げ強さが低下し、耐熱衝撃抵抗性に劣るため好ましくない。微小アルミナ原料粉体の平均粒子径が8μmを超える場合、曲げ強さが低下し、耐熱衝撃抵抗性に劣るため好ましくない。ケイ素化合物として、シリカ等の人工原料や長石等の天然原料が使用でき、これらの中の一種類を単独で、或いは二種類以上を混合して用いることができる。ケイ素化合物のシリカ含有量は60重量%以上が好ましい。また、比表面積が3m/g未満の場合、アルミナ原料との混合分散性が低下するため、アルミナ結晶粒界に第二相を析出しやすくなり、耐久性が劣るため好ましくない。尚、比表面積の上限は30m/g程度である。
各成分が所定量となる様に配合し、公知の成形助剤(例えば、CMC、アクリル系樹脂等)を所定量添加して万能混合撹拌機やミル等で混合・分散する。尚、混合した原料粉体の粒度分布は、微小アルミナと粗大アルミナを均一に分散させるためレーザー回折式粒度分布測定装置(日機装:MT−3300EX)の測定で二つ山のバイモーダルな分布にする必要があり、混合・分散装置の選定や処理条件で調整する。成形方法として、通常の耐火物の成形方法が採用でき、プレス成形、冷間等方圧成形等が採用される。得られた成形体は大気中1400〜1700℃、好ましくは1450〜1650℃で焼成する。焼成温度が1400℃未満の場合、気孔率が増加するだけでなく、焼結が不十分であり結晶粒界の結合力が不足するため、曲げ強さが低下し、耐熱衝撃抵抗性に劣るため好ましくない。焼成温度が1700℃を超える場合、焼結性は向上するものの、気孔が減少し、クラックが進展する際に気孔によるクラックの分散効果が十分でなくなり、クラックが急速に進展して耐久性が低下するため好ましくない。
Coarse alumina raw material powder having an alumina content of 99.5% by weight or more and an average particle size of 60 to 500 μm, and a fine alumina raw material powder having an alumina content of 99.5% by weight or more and an average particle size of 0.5 to 8 μm It is necessary to mix the body at a weight ratio of coarse alumina raw material powder: fine alumina raw material powder = 40: 60 to 80:20, preferably 50:50 to 75-25. A silicon compound having a specific surface area of 3 m 2 / g or more needs to be mixed with the mixed alumina raw material powder so that the sintered body has a silica content of 0.5 to 5% by weight. When the purity of the coarse alumina raw material powder and the fine alumina raw material powder is less than 99.5% by weight, the amount of impurities increases and the corrosion resistance decreases, which is not preferable. When the average particle diameter of the coarse alumina raw material powder is less than 60 μm, the corrosion resistance is lowered, which is not preferable. When the average particle diameter of the coarse alumina raw material powder exceeds 500 μm, the corrosion resistance is improved, but the bending strength is lowered and the thermal shock resistance is inferior. If the average particle size of the fine alumina raw material powder is less than 0.5 μm, the powder is likely to agglomerate, and the mixing / dispersibility with the coarse alumina raw material powder is reduced. Since the raw materials are likely to be separated during filling, the sintered body becomes inhomogeneous, the bending strength is lowered, and the thermal shock resistance is inferior. When the average particle diameter of the fine alumina raw material powder exceeds 8 μm, the bending strength is lowered and the thermal shock resistance is inferior. As the silicon compound, artificial raw materials such as silica and natural raw materials such as feldspar can be used, and one of them can be used alone or two or more of them can be used in combination. The silica content of the silicon compound is preferably 60% by weight or more. Further, when the specific surface area is less than 3 m 2 / g, the mixing and dispersibility with the alumina raw material is lowered, so that the second phase is likely to be precipitated at the alumina crystal grain boundary and the durability is inferior. The upper limit of the specific surface area is about 30 m 2 / g.
Each component is blended in a predetermined amount, and a known molding aid (for example, CMC, acrylic resin, etc.) is added in a predetermined amount, and mixed and dispersed with a universal mixing stirrer, a mill, or the like. The particle size distribution of the mixed raw material powder is a bimodal distribution measured by a laser diffraction particle size distribution measuring device (Nikkiso: MT-3300EX) in order to disperse fine alumina and coarse alumina uniformly. It is necessary to make adjustments according to the selection and processing conditions of the mixing / dispersing device. As a molding method, a normal refractory molding method can be employed, and press molding, cold isostatic pressing, or the like is employed. The obtained molded body is fired in the atmosphere at 1400 to 1700 ° C, preferably 1450 to 1650 ° C. When the firing temperature is less than 1400 ° C., not only the porosity is increased, but also the sintering is insufficient and the bonding strength of the grain boundaries is insufficient, so the bending strength is lowered and the thermal shock resistance is inferior. It is not preferable. When the firing temperature exceeds 1700 ° C., the sinterability is improved, but the pores are reduced, and when the cracks progress, the effect of dispersing the cracks due to the pores becomes insufficient, and the cracks rapidly progress and the durability is lowered. Therefore, it is not preferable.

以下、実施例及び比較例により具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。   Hereinafter, although an example and a comparative example explain concretely, the present invention is not limited at all by these examples.

実施例(試料No.1〜5)、比較例(試料No.1〜14)
使用するアルミナ原料粉体は、以下の通りである。実施例(試料No.1)は、アルミナ含有量が99.8重量%、平均粒子径が125μmからなる粗大アルミナ原料粉体と、アルミナ含有量が99.5重量%、平均粒子径が4.6μmからなる微小アルミナ原料粉体を用い、実施例(試料No.2)は、アルミナ含有量が99.7重量%、平均粒子径が214μmからなる粗大アルミナ原料粉体と、アルミナ含有量が99.7重量%、平均粒子径7.1μmの微小アルミナ原料粉体を用い、実施例(試料No.3)は、アルミナ含有量99.8重量%、平均粒子径が71μmからなる粗大アルミナ原料粉体と、アルミナ含有量99.5重量%、平均粒子径が4.6μmの微小アルミナ原料粉体を用い、実施例(試料No.4、5)は、アルミナ含有量99.8重量%、平均粒子径453μmからなる粗大アルミナ原料粉体と、アルミナ含有量が99.8重量%、平均粒子径が0.8μmの微小アルミナ原料粉体を用い、比較例(試料No.1)は、アルミナ含有量99.8重量%、平均粒子径453μmからなる粗大アルミナ原料粉体と、アルミナ含有量が99.5重量%、平均粒子径が4.6μmの微小アルミナ原料粉体を用い、比較例(試料No.2、6)は、アルミナ含有量が99.7重量%、平均粒子径が214μmからなる粗大アルミナ原料粉体と、純度が99.5重量%、平均粒子径が4.6μmからなる微小アルミナ原料粉体を用い、比較例(試料No.3)は、アルミナ含有量99.8重量%、平均粒子径が533μmからなる粗大アルミナ原料粉体と、アルミナ含有量が99.9重量%、平均粒子径1.2μmの微小アルミナ原料粉体を用い、比較例(試料No.4)は、アルミナ含有量99.7重量%、平均粒子径317μmからなる粗大アルミナ原料粉体と、アルミナ含有量が99.5重量%、平均粒子径が4.6μmからなる微小アルミナ原料粉体を用い、比較例(試料No.5)は、アルミナ含有量99.2重量%、平均粒子径317μmからなる粗大アルミナ原料粉体と、アルミナ含有量が99.1重量%、平均粒子径が7.1μmからなる微小アルミナ原料粉体を用い、比較例(試料No.7)は、アルミナ含有量99.7重量%、平均粒子径317μmからなる粗大アルミナ原料粉体と、アルミナ含有量が99.7重量%、平均粒子径が7.1μmからなる微小アルミナ原料粉体を用い、比較例(試料No.8、10)は、アルミナ含有量99.8重量%、平均粒子径453μmからなる粗大アルミナ原料粉体と、アルミナ含有量が99.7重量%、平均粒子径が7.1μmからなる微小アルミナ原料粉体を用い、比較例(試料No.9)は、アルミナ含有量99.8重量%、平均粒子径57μmからなる粗大アルミナ原料粉体と、アルミナ含有量が99.7重量%、平均粒子径が3.1μmからなる微小アルミナ原料粉体を用い、比較例(試料No.11)は、アルミナ含有量99.7重量%、平均粒子径214μmからなる粗大アルミナ原料粉体と、アルミナ含有量が99.7重量%、平均粒子径が0.4μmからなる微小アルミナ原料粉体を用い、比較例(試料No.12)は、アルミナ含有量99.8重量%、平均粒子径67μmからなる粗大アルミナ原料粉体と、アルミナ含有量が99.7重量%、平均粒子径が7.1μmからなる微小アルミナ原料粉体を用い、比較例(試料No.13)は、アルミナ含有量99.7重量%、平均粒子径214μmからなる粗大アルミナ原料粉体と、アルミナ含有量が99.8重量%、平均粒子径が0.8μmからなる微小アルミナ原料粉体を用い、比較例(試料No.14)は、アルミナ含有量99.7重量%、平均粒子径214μmからなる粗大アルミナ原料粉体と、アルミナ含有量が99.7重量%、平均粒子径が13.3μmからなる微小アルミナ原料粉体を用いた。
また、使用するケイ素化合物は、以下の通りである。実施例(試料No.1〜4)及び比較例(試料No.1、3、4、7、8、10、11、13、14)は比表面積が4m/gのインド長石を用い、実施例(試料No.5)及び比較例(試料No.2、12)は比表面積が25m/gのシリカゾルを用い、比較例(試料No.9)は比表面積が2m/gのインド長石を用い、比較例(試料No.5)は比表面積が8m/gのインド長石を用い、比較例(試料No.6)は比表面積が6m/gのムライトを用いた。
表1に示す通り、所定量になる様にアルミナ原料粉体とケイ素化合物を配合し、CMC量は適宜調整して添加し、万能混合攪拌機を用いて混合・分散し、プレス成形にて成形し、1350〜1730℃で焼成して、20×20×50mmのアルミナ質耐火物を得た。得られたアルミナ質耐火物の特性を表2に示す。実施例(試料No.1〜5)は本発明の範囲内(実施例)のアルミナ質耐火物であり、比較例(試料No.1〜14)は本発明の要件を少なくとも1つ以上満足していない(比較例)アルミナ質耐火物である。
Example (sample No. 1-5), comparative example (sample No. 1-14)
The alumina raw material powder to be used is as follows. In the example (sample No. 1), the alumina content is 99.8% by weight, the coarse alumina raw material powder has an average particle size of 125 μm, the alumina content is 99.5% by weight, and the average particle size is 4. Using fine alumina raw material powder of 6 μm, the example (sample No. 2) has a coarse alumina raw material powder having an alumina content of 99.7% by weight and an average particle diameter of 214 μm, and an alumina content of 99. Example 7 (Sample No. 3) is a coarse alumina raw material powder having an alumina content of 99.8% by weight and an average particle diameter of 71 μm, using a fine alumina raw material powder having an average particle size of 7.1 μm. And an alumina content of 99.5% by weight and a fine alumina raw material powder having an average particle diameter of 4.6 μm, the examples (sample Nos. 4 and 5) have an alumina content of 99.8% by weight and an average From particle size 453μm Coarse alumina raw material powder and fine alumina raw material powder having an alumina content of 99.8% by weight and an average particle diameter of 0.8 μm, and the comparative example (sample No. 1) has an alumina content of 99.8. Using a coarse alumina raw material powder having a weight percent of 453 μm and an average particle size of 453 μm, and a fine alumina raw material powder having an alumina content of 99.5% by weight and an average particle size of 4.6 μm, a comparative example (sample No. 2, 6) A coarse alumina raw material powder having an alumina content of 99.7% by weight and an average particle diameter of 214 μm, and a fine alumina raw material powder having a purity of 99.5% by weight and an average particle diameter of 4.6 μm. In Comparative Example (Sample No. 3), an alumina content of 99.8% by weight, an average particle diameter of 533 μm, a coarse alumina raw material powder, an alumina content of 99.9% by weight, and an average particle diameter of 1 .2μm micro-al Comparative Example (Sample No. 4) was prepared using a raw material powder of 99.5% by weight with an alumina content and an average particle diameter of 317 μm, an average content of 99.5% by weight and an alumina content of 99.5% by weight. Using a fine alumina raw material powder having a particle diameter of 4.6 μm, the comparative example (sample No. 5) is a coarse alumina raw material powder having an alumina content of 99.2% by weight and an average particle diameter of 317 μm, and an alumina-containing powder. Using a fine alumina raw material powder having an amount of 99.1% by weight and an average particle size of 7.1 μm, the comparative example (Sample No. 7) has an alumina content of 99.7% by weight and an average particle size of 317 μm. A coarse alumina raw material powder and a fine alumina raw material powder having an alumina content of 99.7% by weight and an average particle diameter of 7.1 μm were used. The comparative example (sample Nos. 8 and 10) had an alumina content of 99. .8 layers %, Mean a coarse alumina raw material powder consisting of particles size 453Myuemu, alumina content 99.7 wt%, using a micro alumina raw material powder having an average particle size of from 7.1 [mu] m, comparative example (Sample No. 9) a coarse alumina raw material powder having an alumina content of 99.8% by weight and an average particle diameter of 57 μm, and a fine alumina raw material powder having an alumina content of 99.7% by weight and an average particle diameter of 3.1 μm. In Comparative Example (Sample No. 11), a coarse alumina raw material powder having an alumina content of 99.7% by weight and an average particle size of 214 μm, an alumina content of 99.7% by weight, and an average particle size of 0 In the comparative example (sample No. 12), a coarse alumina raw material powder having an alumina content of 99.8% by weight and an average particle diameter of 67 μm and an alumina content of 99.99 μm were used. Using a fine alumina raw material powder having 7% by weight and an average particle size of 7.1 μm, a comparative example (Sample No. 13) is a coarse Al material having an alumina content of 99.7% by weight and an average particle size of 214 μm. The raw material powder and the fine alumina raw material powder having an alumina content of 99.8% by weight and an average particle diameter of 0.8 μm were used, and the comparative example (sample No. 14) had an alumina content of 99.7% by weight. %, A coarse alumina raw material powder having an average particle diameter of 214 μm, and a fine alumina raw material powder having an alumina content of 99.7% by weight and an average particle diameter of 13.3 μm.
Moreover, the silicon compound to be used is as follows. Examples (Sample Nos. 1 to 4) and Comparative Examples (Sample Nos. 1, 3, 4, 7, 8, 10, 11, 13, 14) were conducted using Indian feldspar with a specific surface area of 4 m 2 / g. Example (Sample No. 5) and Comparative Example (Sample No. 2, 12) use silica sol with a specific surface area of 25 m 2 / g, and Comparative Example (Sample No. 9) has Indian feldspar with a specific surface area of 2 m 2 / g. In Comparative Example (Sample No. 5), Indian feldspar with a specific surface area of 8 m 2 / g was used. In Comparative Example (Sample No. 6), mullite with a specific surface area of 6 m 2 / g was used.
As shown in Table 1, the alumina raw material powder and the silicon compound are blended so that a predetermined amount is obtained, the CMC amount is adjusted and added as appropriate, mixed and dispersed using a universal mixing stirrer, and formed by press molding. And firing at 1350 to 1730 ° C. to obtain 20 × 20 × 50 mm alumina refractories. The properties of the obtained alumina refractory are shown in Table 2. Examples (Sample Nos. 1 to 5) are alumina refractories within the scope of the present invention (Examples), and Comparative Examples (Sample Nos. 1 to 14) satisfy at least one of the requirements of the present invention. (Comparative example) Alumina refractory.

耐食性試験は各焼結体の上にコバルト酸リチウム(LiCoO)成形体をのせ、電気炉中に900℃で5時間熱処理した後にコバルト酸リチウム成形体の成分であるLiの浸食深さを測定した。尚、浸食深さは、焼結体断面を鏡面研磨し、エネルギー分散型X線分析(EDX)により分析して決定した。その結果を表2に示す。
熱衝撃試験は電気炉中に試料を入れ、500℃で30分間加熱し、20℃の水中に落下させるテストを行い、テスト後の試料を目視でクラック発生の有無を評価した。また、耐久性試験は、上記の熱衝撃試験でクラックが発生しなかった場合、同試料を上記の熱衝撃試験と同条件で30回繰り返し行い、目視でクラック発生の有無を評価した。その結果を表2に示す。
残存線変化率はJIS R2208に基づき、20×20×50mmの焼結体を、10℃/minで昇温し、1300℃で2h保持し、室温まで下げる熱処理を5回繰り返し、その後、50mm方向の長さを測定し、下式により求めた。

〔数4〕
残存線変化率(%)=(L’−L)/L×100
[L:50(mm)、L’:昇降温後の50mm方向の長さ(mm)]

曲げ強さはJIS R2208に基づき、試験片サイズは20×20×50mmで焼結体の成形面に引っ張り応力が発生するようにして求めた。
本発明の焼結体は、表2より明らかなように、腐食性の高いLiの浸食深さが1mm未満と緻密質熱処理用部材と同等の高い耐食性を有しつつ、更に30回以上500℃から急激に冷却してもクラックが発生しない高い耐熱衝撃抵抗性及び耐久性を有している。しかしながら、本発明の要件を少なくとも一つ以上を満足していない焼結体は耐食性、耐熱衝撃性及び耐久性のいずれか一つ以上が劣っており、熱処理用部材として満足できるものではなかった。尚、表2において、熱衝撃試験でクラックが発生したものについては、耐久性試験は行わなかった。
例えば、比較例(試料No.1)は結晶粒子径が10μm以下の結晶粒子の含有量と結晶粒子径が10μmを超える結晶粒子の含有量の体積比が本発明の範囲から外れており、耐食性に劣ったものとなった。比較例(試料No.2)は、シリカ含有量が本発明の範囲外であったため、耐食性に劣るものであった。比較例(試料No.3)は平均結晶粒子径Dが本発明の範囲外であったため、耐熱衝撃抵抗性に劣るものであった。比較例(試料No.4)は粗大アルミナ結晶粒子と微小アルミナ結晶粒子の体積比が本発明の範囲外であったため、耐熱衝撃抵抗性に劣るものであった。比較例(試料No.5)は、アルミナ含有量が本発明の範囲外であり、耐食性に劣るものであった。比較例(試料No.6)は結晶相がコランダムとムライトの複合であったため、残存線変化率が高く、耐久性に劣るものであった。比較例(試料No.7)はシリカ含有量が本発明の範囲外であったため、耐熱衝撃抵抗性に劣るものであった。比較例(試料No.8)は気孔率が本発明の範囲外であったため、耐熱衝撃抵抗性に劣るものであった。比較例(試料No.9)は結晶粒子径が10μmを超えるアルミナ結晶粒子の平均結晶粒子径が本発明の範囲外であったため、耐食性に劣るものであった。比較例(試料No.10)は気孔率が本発明の範囲外であったため、耐熱衝撃抵抗性に劣るものであった。比較例(試料No.11)は粒子径が10μm以下の結晶粒子の平均結晶粒子径が本発明の範囲外であったため、耐食性に劣るものであった。比較例(試料No.12)は、粗大アルミナ原料粉体と微小アルミナ原料粉体の平均粒子径が近いものを使用したため、結晶粒子径が10μm以下の結晶粒子の平均結晶粒子径と結晶粒子径が10μmを超える結晶粒子の平均結晶粒子径の比が本発明の範囲外であったため、耐久性に劣るものであった。比較例(試料No.13)は気孔率が本発明の範囲外であったため、耐久性に劣るものであった。比較例(試料No.14)は粒子径が10μm以下の結晶粒子の平均結晶粒子径が本発明の範囲外であったため、耐熱衝撃抵抗性に劣るものであった。
In the corrosion resistance test, a lithium cobalt oxide (LiCoO 2 ) compact is placed on each sintered compact, and after heat treatment at 900 ° C. for 5 hours in an electric furnace, the erosion depth of Li as a component of the lithium cobalt oxide compact is measured. did. The erosion depth was determined by mirror-polishing the sintered body cross section and analyzing it by energy dispersive X-ray analysis (EDX). The results are shown in Table 2.
In the thermal shock test, a sample was put in an electric furnace, heated at 500 ° C. for 30 minutes, and dropped into water at 20 ° C., and the sample after the test was visually evaluated for the presence of cracks. Further, in the durability test, when no crack was generated in the above thermal shock test, the sample was repeated 30 times under the same conditions as in the thermal shock test, and the presence or absence of the crack was visually evaluated. The results are shown in Table 2.
Residual line change rate is based on JIS R2208, 20x20x50mm sintered body is heated at 10 ° C / min, kept at 1300 ° C for 2h, and lowered to room temperature 5 times, then 50mm direction The length of was measured and determined by the following formula.

[Equation 4]
Residual line change rate (%) = (L′−L) / L × 100
[L: 50 (mm), L ′: length in the 50 mm direction after raising / lowering temperature (mm)]

The bending strength was determined based on JIS R2208 so that the test piece size was 20 × 20 × 50 mm and a tensile stress was generated on the molding surface of the sintered body.
As is clear from Table 2, the sintered body of the present invention has a high corrosion resistance equivalent to that of a dense heat-treating member with a corrosive depth of less than 1 mm of Li having high corrosiveness, and is further 30 times or more and 500 ° C. It has high thermal shock resistance and durability that does not generate cracks even when cooled rapidly. However, a sintered body that does not satisfy at least one of the requirements of the present invention is inferior in any one or more of corrosion resistance, thermal shock resistance and durability, and is not satisfactory as a heat treatment member. In Table 2, the durability test was not performed for those in which cracks occurred in the thermal shock test.
For example, in the comparative example (sample No. 1), the volume ratio of the content of crystal particles having a crystal particle diameter of 10 μm or less and the content of crystal particles having a crystal particle diameter of more than 10 μm is out of the scope of the present invention. It was inferior to that. The comparative example (Sample No. 2) was inferior in corrosion resistance because the silica content was outside the scope of the present invention. In Comparative Example (Sample No.3) has an average crystal grain size D 2 were outside the scope of the present invention, it was inferior in thermal shock resistance. Comparative Example (Sample No. 4) was inferior in thermal shock resistance because the volume ratio of coarse alumina crystal particles to fine alumina crystal particles was outside the range of the present invention. The comparative example (sample No. 5) had an alumina content outside the scope of the present invention and was inferior in corrosion resistance. In Comparative Example (Sample No. 6), the crystal phase was a composite of corundum and mullite, so the residual line change rate was high and the durability was inferior. Comparative Example (Sample No. 7) was inferior in thermal shock resistance because the silica content was outside the scope of the present invention. Since the porosity of the comparative example (Sample No. 8) was outside the range of the present invention, the thermal shock resistance was inferior. Comparative Example (Sample No. 9) was inferior in corrosion resistance because the average crystal particle size of alumina crystal particles having a crystal particle size exceeding 10 μm was outside the range of the present invention. Since the porosity of the comparative example (sample No. 10) was outside the range of the present invention, the thermal shock resistance was inferior. Comparative Example (Sample No. 11) was inferior in corrosion resistance because the average crystal particle size of crystal particles having a particle size of 10 μm or less was outside the range of the present invention. Since the comparative example (sample No. 12) used a coarse alumina raw material powder and a fine alumina raw material powder having similar average particle sizes, the average crystal particle size and crystal particle size of crystal particles having a crystal particle size of 10 μm or less were used. Since the ratio of the average crystal particle diameter of crystal grains exceeding 10 μm was out of the range of the present invention, the durability was inferior. The comparative example (Sample No. 13) was inferior in durability because the porosity was outside the range of the present invention. Comparative Example (Sample No. 14) was inferior in thermal shock resistance because the average crystal particle size of crystal particles having a particle size of 10 μm or less was outside the range of the present invention.

Claims (2)

(a)結晶相として第二相が存在しないコランダム単相からなり、(b)アルミナ含有量が94重量%以上で、(c)シリカ含有量が0.5〜5重量%で、(d)気孔率が20〜40%であり、(e)結晶粒子径が10μm以下の結晶粒子の平均結晶粒子径(D)が1〜8μmであり、結晶粒子径が10μmを超える結晶粒子の平均結晶粒子径(D)が60〜500μmであって、その比D/Dが10以上で、(f)結晶粒子径が10μm以下の結晶粒子の含有量V(体積%)と結晶粒子径が10μmを超える結晶粒子の含有量V(体積%)の体積比V/Vが0.6〜4.0であることを特徴とするアルミナ質耐火物。 (A) a corundum single phase having no second phase as a crystal phase, (b) alumina content is 94% by weight or more, (c) silica content is 0.5 to 5% by weight, (d) The average crystal of crystal grains having a porosity of 20 to 40%, (e) crystal grains having a crystal grain diameter of 10 μm or less, an average crystal grain diameter (D 1 ) of 1 to 8 μm, and a crystal grain diameter exceeding 10 μm The particle diameter (D 2 ) is 60 to 500 μm, the ratio D 2 / D 1 is 10 or more, and (f) the content V 1 (volume%) of crystal particles having a crystal particle diameter of 10 μm or less and the crystal particles Alumina refractory, wherein the volume ratio V 2 / V 1 of the content V 2 (volume%) of crystal particles having a diameter exceeding 10 μm is 0.6 to 4.0. アルミナ含有量が99.5重量%以上、平均粒子径が60〜500μmの粗大アルミナ原料粉体と、アルミナ含有量が99.5重量%以上、平均粒子径が0.5〜8μmの微小アルミナ原料粉体の重量比が粗大アルミナ:微小アルミナ=80:20〜40:60の範囲にあり、比表面積が3m/g以上のケイ素化合物を焼結体のシリカ含有量が0.5〜5重量%となる様に前記2種類のアルミナ原料粉体と混合し、成形して大気中1400℃〜1700℃で焼成することを特徴とする請求項1記載のアルミナ質耐火物の製造方法。 Coarse alumina raw material powder having an alumina content of 99.5% by weight or more and an average particle size of 60 to 500 μm, and a fine alumina raw material having an alumina content of 99.5% by weight or more and an average particle size of 0.5 to 8 μm The weight ratio of the powder is coarse alumina: fine alumina = 80: 20 to 40:60, and a silicon compound having a specific surface area of 3 m 2 / g or more has a silica content of 0.5 to 5 weight. 2. The method for producing an alumina refractory according to claim 1, wherein the two kinds of alumina raw material powders are mixed so as to be%, molded, and fired at 1400 ° C. to 1700 ° C. in the atmosphere.
JP2009241284A 2009-10-20 2009-10-20 Alumina refractory and method of producing the same Pending JP2011088759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009241284A JP2011088759A (en) 2009-10-20 2009-10-20 Alumina refractory and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009241284A JP2011088759A (en) 2009-10-20 2009-10-20 Alumina refractory and method of producing the same

Publications (1)

Publication Number Publication Date
JP2011088759A true JP2011088759A (en) 2011-05-06

Family

ID=44107375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009241284A Pending JP2011088759A (en) 2009-10-20 2009-10-20 Alumina refractory and method of producing the same

Country Status (1)

Country Link
JP (1) JP2011088759A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013106609A3 (en) * 2012-01-11 2013-08-29 Saint-Gobain Ceramics & Plastics, Inc. Refractory object and process of forming a glass sheet using the refractory object
US9073773B2 (en) 2011-03-11 2015-07-07 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process for glass object manufacture
US9174874B2 (en) 2011-03-30 2015-11-03 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process of forming and using the refractory object
US9216928B2 (en) 2011-04-13 2015-12-22 Saint-Gobain Ceramics & Plastics, Inc. Refractory object including beta alumina and processes of making and using the same
WO2020138335A1 (en) * 2018-12-27 2020-07-02 住友化学株式会社 Inorganic powder for heat-dissipating resin composition, heat-dissipating resin composition using same, and methods for producing same
US11814317B2 (en) 2015-02-24 2023-11-14 Saint-Gobain Ceramics & Plastics, Inc. Refractory article and method of making

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9714185B2 (en) 2011-03-11 2017-07-25 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process for glass object manufacture
US9073773B2 (en) 2011-03-11 2015-07-07 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process for glass object manufacture
US9174874B2 (en) 2011-03-30 2015-11-03 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process of forming and using the refractory object
US9796630B2 (en) 2011-03-30 2017-10-24 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process of forming and using the refractory object
US9216928B2 (en) 2011-04-13 2015-12-22 Saint-Gobain Ceramics & Plastics, Inc. Refractory object including beta alumina and processes of making and using the same
US9249043B2 (en) 2012-01-11 2016-02-02 Saint-Gobain Ceramics & Plastics, Inc. Refractory object and process of forming a glass sheet using the refractory object
WO2013106609A3 (en) * 2012-01-11 2013-08-29 Saint-Gobain Ceramics & Plastics, Inc. Refractory object and process of forming a glass sheet using the refractory object
US9902653B2 (en) 2012-01-11 2018-02-27 Saint-Gobain Ceramics & Plastics, Inc. Refractory object and process of forming a glass sheet using the refractory object
US10590041B2 (en) 2012-01-11 2020-03-17 Saint-Gobain Ceramics & Plastics, Inc. Refractory object and process of forming a glass sheet using the refractory object
US11814317B2 (en) 2015-02-24 2023-11-14 Saint-Gobain Ceramics & Plastics, Inc. Refractory article and method of making
WO2020138335A1 (en) * 2018-12-27 2020-07-02 住友化学株式会社 Inorganic powder for heat-dissipating resin composition, heat-dissipating resin composition using same, and methods for producing same
CN113227238A (en) * 2018-12-27 2021-08-06 住友化学株式会社 Inorganic powder for heat-dissipating resin composition, heat-dissipating resin composition using same, and method for producing same
CN113227238B (en) * 2018-12-27 2023-04-11 住友化学株式会社 Inorganic powder for heat-dissipating resin composition, heat-dissipating resin composition using same, and method for producing same
JP7470051B2 (en) 2018-12-27 2024-04-17 住友化学株式会社 Inorganic powder for heat-dissipating resin composition, heat-dissipating resin composition using the same, and method for producing the same

Similar Documents

Publication Publication Date Title
JP5255574B2 (en) Zirconium lite refractory raw material and plate brick
JP6636307B2 (en) Alumina sintered body with excellent high temperature properties and corrosion resistance
JP2011088759A (en) Alumina refractory and method of producing the same
JP7062230B2 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
JP4357584B1 (en) Alumina sintered body with excellent corrosion resistance, thermal shock resistance and durability
JP4944610B2 (en) Green component for manufacturing sintered refractory products with improved bubble generation behavior
TW201718440A (en) Bonded zirconia refractories and methods for making the same
EP2864731B1 (en) Ceramic compositions comprising alumina
JP4836348B2 (en) Heat-treating member made of an alumina sintered body with excellent durability
JP4721947B2 (en) Corrosion-resistant magnesia sintered body, heat treatment member comprising the same, and method for producing the sintered body
JP4560199B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP4546609B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP2003040688A (en) Lightweight ceramic sintered compact
JP2007112670A (en) Firing vessel
JP2002137962A (en) Component for heat treatment consisting of mullite-based sintered compact
JP3737917B2 (en) Thermal shock-resistant alumina sintered body and heat treatment member comprising the same
JP4485615B2 (en) Corrosion-resistant spinel sintered body and heat treatment member comprising the same
KR101850585B1 (en) Heat insulator
JP4906240B2 (en) Alumina sintered body excellent in thermal shock resistance and corrosion resistance, heat treatment member comprising the same, and method for producing the same
JP6366976B2 (en) Heat treatment member made of porous ceramics
JP4430782B2 (en) CHROMIA-ZIRCONIA SINTERED BODY AND PROCESS FOR PRODUCING THE SAME
JP6314231B2 (en) Glossite ceramics, kiln tool using the same, and method for producing globite ceramics
JP6989722B1 (en) Mullite sintered body with excellent heat resistance and durability and its manufacturing method
JP6041719B2 (en) Heat treatment member made of zirconia sintered body
JP2014024740A (en) Ceramic sintered body, and member for heat treatment