JP2007112670A - Firing vessel - Google Patents

Firing vessel Download PDF

Info

Publication number
JP2007112670A
JP2007112670A JP2005306624A JP2005306624A JP2007112670A JP 2007112670 A JP2007112670 A JP 2007112670A JP 2005306624 A JP2005306624 A JP 2005306624A JP 2005306624 A JP2005306624 A JP 2005306624A JP 2007112670 A JP2007112670 A JP 2007112670A
Authority
JP
Japan
Prior art keywords
magnesia
firing
less
thermal shock
shock resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005306624A
Other languages
Japanese (ja)
Inventor
Yutaka Okada
裕 岡田
Kazunori Yamada
和典 山田
Shinji Banya
新二 番屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2005306624A priority Critical patent/JP2007112670A/en
Publication of JP2007112670A publication Critical patent/JP2007112670A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a firing vessel having excellent reaction resistance and thermal shock resistance and capable of high speed firing or being made large-sized in a degree of 300 mm square. <P>SOLUTION: The firing vessel comprises a raw material having ≤3 mm maximum particle diameter and composed essentially of magnesia and magnesia spinel, wherein the total quantity of MgO is 60-90 wt.% and the quantity of Al<SB>2</SB>O<SB>3</SB>contained in powder having about ≤50 μm particle diameter is ≤2.0 wt.%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は焼成容器に係り、特にアルカリを多量に含むセラミックスや、重金属を含有する電子セラミックスの熱処理、焼成に適する焼成容器に関する。   The present invention relates to a firing container, and more particularly to a firing container suitable for heat treatment and firing of ceramics containing a large amount of alkali and electronic ceramics containing heavy metals.

マグネシアはNa、K、Li等のアルカリやPb、Bi等の重金属に対する耐食性に優れることからガラス用の焼成容器として使用されてきた。   Magnesia has been used as a baking container for glass because of its excellent corrosion resistance against alkalis such as Na, K and Li and heavy metals such as Pb and Bi.

一方、アルミナ−ムライト質に代表される電子セラミックスの焼成容器は、SiOを含有する素材が多く、アルカリや重金属を多量に含む製品に使用した場合、これらの成分の影響でガラス化し特性が著しく劣化し耐用が急激に低下する問題があり、マグネシア質が使用されてきた。 On the other hand, firing containers of electronic ceramics typified by alumina-mullite have many materials containing SiO 2 and when used in products containing a large amount of alkalis and heavy metals, the vitrification characteristics are remarkably affected by these components. There is a problem that the durability deteriorates rapidly, and magnesia has been used.

しかしながら、マグネシア質は熱膨張が大きいために、一般的に耐熱衝撃性に劣ることが問題であった。このため、高速焼成や大型形状品のように熱応力の発生しやすい用途では使用することが難しく、セッターや200mm□以下程度のサヤの使用しかできなかった。   However, since magnesia has a large thermal expansion, it is generally inferior in thermal shock resistance. For this reason, it is difficult to use in applications where thermal stress is likely to occur, such as high-speed firing or large-sized products, and only setters and sheaths of about 200 mm □ or less can be used.

なお、MgO・Alを主成分として含有し、ZrOを副成分とする焼成容器が提案されている(特許文献1)。
特開平8−208324号公報
Incidentally, a MgO · Al 2 O 3 containing as a main component, the firing vessel to the ZrO 2 and secondary component is proposed (Patent Document 1).
JP-A-8-208324

本発明は上述した事情を考慮してなされたもので、耐反応性及び耐熱衝撃性に優れ、高速焼成や300mm□程度の大型化も実現可能な焼成容器を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a firing container that has excellent reaction resistance and thermal shock resistance, and can realize high-speed firing and an increase in size of about 300 mm □.

上述した目的を達成するため、本発明に係る焼成容器は、最大粒径が3mm以下で主成分がマグネシアおよびマグネシア・スピネルからなる焼成容器であって、MgOの総量が60〜90wt%で、かつ粒径50μm以下の粉に含まれるAl量が2.0wt%以下であることを特徴とする。 In order to achieve the above-described object, the firing container according to the present invention is a firing container having a maximum particle size of 3 mm or less and composed mainly of magnesia and magnesia spinel, and the total amount of MgO is 60 to 90 wt%, and The amount of Al 2 O 3 contained in the powder having a particle size of 50 μm or less is 2.0 wt% or less.

好適には、ジルコニアを外割で3〜10wt%添加する。
また、好適には、ジルコニア−ムライトを外割で3〜10wt%添加する。
Preferably, 3 to 10 wt% of zirconia is added in an external ratio.
Further, 3 to 10 wt% of zirconia-mullite is preferably added in an external ratio.

本発明に係る焼成容器によれば、耐反応性及び耐熱衝撃性に優れ、高速焼成や300mm□程度の大型化も実現可能な焼成容器を提供することができる。   According to the firing container of the present invention, it is possible to provide a firing container that is excellent in reaction resistance and thermal shock resistance and can realize high-speed firing and an increase in size of about 300 mm □.

以下、本発明に係る焼成容器の一実施形態について説明する。   Hereinafter, an embodiment of a firing container according to the present invention will be described.

本発明に係る焼成容器は、最大粒径が3mm以下で主成分がマグネシアおよびマグネシア・スピネルからなる焼成容器であって、MgOの総量が60〜90wt%で、かつ粒径50μm以下の粉に含まれるAl量が2.0wt%以下である。 The firing container according to the present invention is a firing container having a maximum particle size of 3 mm or less, the main components of which are magnesia and magnesia spinel, and the total amount of MgO is 60 to 90 wt% and contained in powder having a particle size of 50 μm or less. The amount of Al 2 O 3 is 2.0 wt% or less.

好ましくは、上記原料に外割でジルコニアを3〜10wt%添加するか、ジルコニア−ムライトを外割で3〜10wt%添加するのが好ましい。   Preferably, 3 to 10 wt% of zirconia is added to the above raw material as an outer portion, or 3 to 10 wt% of zirconia-mullite is added as an outer portion.

本発明に係る焼成容器は、マグネシアにマグネシア・スピネルを複合することでマグネシア本来の耐食性を保持しつつ耐熱衝撃性が向上できる。マグネシア・スピネルはスピネル型構造(AB型)を持つ化合物で、アルカリや重金属に対し良好な耐食性を有し、熱膨張は1000℃での熱膨張率(%)で比較するとマグネシアの1.45に対して0.94と小さく耐熱衝撃性にとっては有利である。マグネシアにマグネシア・スピネルを複合することで耐熱衝撃性は向上する。最適な複合割合を検討した結果を以下に説明する。 The firing container according to the present invention can improve thermal shock resistance while maintaining the original corrosion resistance of magnesia by combining magnesia and spinel. Magnesia spinel is a compound having a spinel structure (AB 2 X 4 type), which has good corrosion resistance against alkalis and heavy metals, and its thermal expansion is one of magnesia compared with the coefficient of thermal expansion (%) at 1000 ° C. .45 is 0.94, which is advantageous for thermal shock resistance. Thermal shock resistance is improved by combining magnesia and spinel with magnesia. The results of studying the optimum composite ratio will be described below.

マグネシアの割合が少ないと耐反応性が低下し、アルカリや重金属を多量に含む製品に使用すると反応により寿命が低下するためMgOは60%以上が好ましい。マグネシア・スピネル複合量が少ないと耐熱衝撃性の改善効果が少なくなるのでMgOは90%以下が好ましい。   When the proportion of magnesia is small, the reaction resistance is lowered, and when it is used in a product containing a large amount of alkali or heavy metal, the lifetime is reduced by the reaction, so MgO is preferably 60% or more. If the combined amount of magnesia and spinel is small, the effect of improving the thermal shock resistance decreases, so MgO is preferably 90% or less.

骨材となる原料の最大粒子径は3mm以下が好ましい。最大粒子径がこれより大きいと肉厚10mm以下の製品を成形する場合に密度ムラが発生する。焼結に関与する50μm以下の微粉部はMgO中心で構成されることが好ましい。微粉部のマグネシア・スピネル量が増加すると、耐熱衝撃性が低下する傾向がある。また、反応性も微粉を構成する原料種の影響を受けやすく、耐食性の優れたMgOで構成されることが好ましい。このため微粉部である50μm以下の粉に含まれるAlの割合は2wt%以下に抑える必要がある。 The maximum particle diameter of the raw material used as the aggregate is preferably 3 mm or less. When the maximum particle size is larger than this, density unevenness occurs when a product having a thickness of 10 mm or less is formed. The fine powder part of 50 μm or less involved in sintering is preferably composed of MgO centers. When the amount of magnesia spinel in the fine powder part increases, the thermal shock resistance tends to decrease. Moreover, the reactivity is also easily influenced by the raw material species constituting the fine powder, and is preferably composed of MgO having excellent corrosion resistance. For this reason, it is necessary to suppress the ratio of Al 2 O 3 contained in the fine powder part of 50 μm or less to 2 wt% or less.

マグネシアとマグネシア・スピネルを主原料とする材質の耐熱衝撃性をさらに向上させたい場合はジルコニア、ジルコニア−ムライトを添加すると効果がある。いずれの原料も耐食性に優れた原料で、マグネシアとは異なる熱膨張率を有し、適量を添加することで耐熱衝撃性を向上させることができる。   Addition of zirconia or zirconia-mullite is effective for further improving the thermal shock resistance of materials made mainly of magnesia and magnesia spinel. Any of the raw materials is a raw material excellent in corrosion resistance, has a thermal expansion coefficient different from that of magnesia, and the thermal shock resistance can be improved by adding an appropriate amount.

添加量としては3wt%以下では効果が少なく、10wt%以上添加すると耐熱衝撃性が低下するため、3〜10wt%が好ましい。   When the amount added is 3 wt% or less, the effect is small, and when 10 wt% or more is added, the thermal shock resistance is lowered, and therefore 3 to 10 wt% is preferable.

上記本発明に係る焼成容器によれば、リチウム電池用正極材、誘電体原料等のアルカリを多量に含むセラミックスや、Pb、Bi等の重金属を含有するバリスタ、コンデンサ等の電子セラミックスの熱処理、焼成に使用可能な耐反応性に優れ、耐熱衝撃性も同時に有するため高速焼成や300mm□程度の大型化も可能な焼成容器が実現される。   According to the firing container of the present invention, heat treatment and firing of ceramics containing a large amount of alkali, such as a positive electrode material for lithium batteries and dielectric materials, varistors containing heavy metals such as Pb and Bi, and electronic ceramics such as capacitors. In addition, since it has excellent reaction resistance and heat shock resistance at the same time, a firing container capable of high-speed firing and upsizing of about 300 mm □ is realized.

[実施例1]
表1に示すようなMgO、Alの割合で300mm□で高さが100mmのサヤを作製した。使用したマグネシア原料は粒度が3mm以下で、純度が99%以上のものを使用した。マグネシア・スピネル原料は純度が99%以上で粒度が3mm以下0.25mm以上のものを使用し、0.5mm以下のAl量は0.1%に抑えた。成形はメチルセルロースを添加しプレス成形で行った。焼成は1700℃で行った。
[Example 1]
As shown in Table 1, a sheath having a ratio of MgO and Al 2 O 3 of 300 mm □ and a height of 100 mm was produced. The magnesia raw material used had a particle size of 3 mm or less and a purity of 99% or more. The magnesia spinel material used had a purity of 99% or more and a particle size of 3 mm or less and 0.25 mm or more, and the amount of Al 2 O 3 of 0.5 mm or less was suppressed to 0.1%. Molding was performed by press molding with the addition of methylcellulose. Firing was performed at 1700 ° C.

(耐反応性評価)
得られたサヤより切り出した試験片(130×130×9t)上にNaSOを500g積載し、大気中1250℃、4時間保持を3サイクル繰り返し。加熱前後での試験片の寸法を測定し残存膨張率を算出。処理前に比較して試験片は0.18%膨張していた。
(Reaction resistance evaluation)
On a test piece (130 × 130 × 9 t) cut out from the obtained sheath, 500 g of Na 2 SO 4 was loaded, and maintained in the atmosphere at 1250 ° C. for 4 hours for 3 cycles. Measure the dimensions of the specimen before and after heating and calculate the residual expansion rate. Compared to the treatment, the test piece was expanded by 0.18%.

(耐熱衝撃性評価)
電気炉を用いて得られたサヤの耐熱衝撃性評価を行った。粉体の熱処理に使用されることを想定してサヤにアルミナ粒を充填して、プッシャー式の電気炉で600℃に加熱した後炉外に取り出すという急冷条件下でサヤが割れるかどうかで評価した。サヤが割れない場合は加熱温度を50℃上げて上述の操作を繰り返し、サヤが割れない場合はさらに加熱温度を50℃上げて評価を継続した。最終的には850℃に加熱後の急冷時にサヤは割れた。この温度を耐熱衝撃温度△Tとし、他の試験体との比較を行った。
(Evaluation of thermal shock resistance)
The thermal shock resistance of the sheath obtained using an electric furnace was evaluated. Assuming that the sheath is used for heat treatment of powder, it is evaluated whether the sheath is cracked under a rapid cooling condition in which the sheath is filled with alumina particles, heated to 600 ° C in a pusher type electric furnace and then taken out of the furnace. did. When the sheath did not break, the heating temperature was raised by 50 ° C. and the above operation was repeated. When the sheath did not break, the heating temperature was further raised by 50 ° C. and the evaluation was continued. Eventually, the sheath was cracked during rapid cooling after heating to 850 ° C. This temperature was defined as the thermal shock temperature ΔT and compared with other test specimens.

[実施例2〜5、比較例2〜6]
表1に示すMgO、Al、SiO、ZrOの割合で実施例1と同様のプロセスで同形状のサヤを作製した。得られたサヤで実施例1と同様の耐反応性評価、耐熱衝撃性評価を行った。
[Examples 2-5, Comparative Examples 2-6]
Saya having the same shape was produced in the same process as in Example 1 at the ratio of MgO, Al 2 O 3 , SiO 2 , and ZrO 2 shown in Table 1. The obtained sheath was subjected to the same reaction resistance evaluation and thermal shock resistance evaluation as in Example 1.

(実施例2、3)
ジルコニアを添加した例であり、ジルコニアはCaO部分安定化ジルコニアで粒度は150μm以下のものをそれぞれ5wt%、10wt%添加した。ジルコニアの添加により耐熱衝撃性温度△Tは高くなる。残存膨張率はやや大きくなっており耐反応性はやや低下する傾向を示す。
(Examples 2 and 3)
In this example, zirconia was added. The zirconia was CaO partially stabilized zirconia having a particle size of 150 μm or less. Addition of zirconia increases the thermal shock resistance temperature ΔT. The residual expansion rate is slightly increased, and the reaction resistance tends to decrease slightly.

(実施例4、5)
ジルコニア−ムライトを添加した例であり、粒度は200μm以下のものをそれぞれ5wt%、10wt%添加した。ジルコニアの添加により耐熱衝撃性温度△Tは高くなる。5wt%添加の実施例4では△T=1000℃で評価した中で最も良好な耐熱衝撃性を示した。残存膨張率はやや大きくなっており耐反応性はやや低下する傾向、ジルコニア添加に比較して低下傾向は大きい。
(Examples 4 and 5)
In this example, zirconia-mullite was added, and particles having a particle size of 200 μm or less were added at 5 wt% and 10 wt%, respectively. Addition of zirconia increases the thermal shock resistance temperature ΔT. In Example 4 in which 5 wt% was added, the best thermal shock resistance was shown among those evaluated at ΔT = 1000 ° C. The residual expansion rate is somewhat large, the reaction resistance tends to be slightly reduced, and the tendency to decrease is large compared to the addition of zirconia.

(比較例1)
アルミナ−ムライト質で実施例1と同形状のサヤを製作した。耐熱衝撃性は高いが、反応に起因する残存膨張が大きく、本各実施例のマグネシア−スピネル質に比較して耐反応性で劣る。
(Comparative Example 1)
A sheath of the same shape as in Example 1 was made of alumina-mullite. Although the thermal shock resistance is high, the residual expansion due to the reaction is large, and the reaction resistance is inferior to the magnesia-spinel quality of each of the examples.

(比較例2)
マグネシア−スピネル質を添加しないマグネシア質の例であり、耐反応性は優れるが耐熱衝撃性が問題である。
(Comparative Example 2)
This is an example of magnesia without addition of magnesia-spinel, which has excellent reaction resistance but thermal shock resistance.

(比較例3)
マグネシア−スピネル質でMgOの割合が60wt%以下の例であり、耐反応性が不十分である。
(Comparative Example 3)
This is an example of magnesia-spinel with a MgO ratio of 60 wt% or less, and the reaction resistance is insufficient.

(比較例4)
マグネシア−スピネル質で50μm以下のAlの割合が5.0wt%以上の例であり、MgO量は60wt%以上であるが、残存膨張率が大きく耐反応性が不十分であり、また△Tは700℃と低く耐熱衝撃性も不十分である。
(Comparative Example 4)
This is an example in which the proportion of magnesia-spinel 50 μm or less Al 2 O 3 is 5.0 wt% or more, and the amount of MgO is 60 wt% or more, but the residual expansion rate is large and the reaction resistance is insufficient. ΔT is as low as 700 ° C. and the thermal shock resistance is insufficient.

(比較例5)
マグネシア−スピネル質でジルコニアの添加量が10.0wt%以上の例であるが、耐熱衝撃性が不十分である。
(Comparative Example 5)
Although this is an example of magnesia-spinel and zirconia added in an amount of 10.0 wt% or more, the thermal shock resistance is insufficient.

(比較例6)
マグネシア−スピネル質でジルコニア・ムライトの添加量が15.0wt%以上の例であるが、耐熱衝撃性が不十分である。

Figure 2007112670
(Comparative Example 6)
Although it is an example in which the amount of zirconia and mullite added is 15.0 wt% or more in magnesia-spinel, the thermal shock resistance is insufficient.
Figure 2007112670

Claims (3)

最大粒径が3mm以下で主成分がマグネシアおよびマグネシア・スピネルからなる焼成容器であって、MgOの総量が60〜90wt%で、かつ粒径50μm以下の粉に含まれるAl量が2.0wt%以下であることを特徴とする焼成容器。 A firing container having a maximum particle size of 3 mm or less and a main component of magnesia and magnesia spinel, wherein the total amount of MgO is 60 to 90 wt% and the amount of Al 2 O 3 contained in the powder having a particle size of 50 μm or less is 2 A baking container characterized by being not more than 0 wt%. ジルコニアを外割で3〜10wt%添加することを特徴とする請求項1項に記載の焼成容器。 The calcination container according to claim 1, wherein 3 to 10 wt% of zirconia is added in an external ratio. ジルコニア−ムライトを外割で3〜10wt%添加することを特徴とする請求項1項に記載の焼成容器。 The firing container according to claim 1, wherein 3 to 10 wt% of zirconia-mullite is added in an outer ratio.
JP2005306624A 2005-10-21 2005-10-21 Firing vessel Pending JP2007112670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005306624A JP2007112670A (en) 2005-10-21 2005-10-21 Firing vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005306624A JP2007112670A (en) 2005-10-21 2005-10-21 Firing vessel

Publications (1)

Publication Number Publication Date
JP2007112670A true JP2007112670A (en) 2007-05-10

Family

ID=38095190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005306624A Pending JP2007112670A (en) 2005-10-21 2005-10-21 Firing vessel

Country Status (1)

Country Link
JP (1) JP2007112670A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009292704A (en) * 2008-06-09 2009-12-17 Noritake Co Ltd Sagger for producing positive electrode active material of lithium ion battery
KR20110061484A (en) 2009-12-01 2011-06-09 엔지케이 인슐레이터 엘티디 Furnace material and manufacturing method of furnace material
WO2012133525A1 (en) * 2011-03-30 2012-10-04 京セラ株式会社 Member for firing, container for firing using same, and method for producing positive electrode material
JP2015193509A (en) * 2014-03-31 2015-11-05 黒崎播磨株式会社 Magnesia-spinel-zirconia brick

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003165767A (en) * 2001-11-28 2003-06-10 Noritake Co Ltd Spinel refractory and use of the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003165767A (en) * 2001-11-28 2003-06-10 Noritake Co Ltd Spinel refractory and use of the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009292704A (en) * 2008-06-09 2009-12-17 Noritake Co Ltd Sagger for producing positive electrode active material of lithium ion battery
KR20110061484A (en) 2009-12-01 2011-06-09 엔지케이 인슐레이터 엘티디 Furnace material and manufacturing method of furnace material
WO2012133525A1 (en) * 2011-03-30 2012-10-04 京セラ株式会社 Member for firing, container for firing using same, and method for producing positive electrode material
JPWO2012133525A1 (en) * 2011-03-30 2014-07-28 京セラ株式会社 Firing member, firing container using the same, and method for producing positive electrode material
JP2015193509A (en) * 2014-03-31 2015-11-05 黒崎播磨株式会社 Magnesia-spinel-zirconia brick

Similar Documents

Publication Publication Date Title
JP6636307B2 (en) Alumina sintered body with excellent high temperature properties and corrosion resistance
JP5774135B2 (en) Sintered materials based on doped chromium oxide
US8609563B2 (en) Sintered product based on chromium oxide
JP2014228239A (en) Heat treatment vessel
JP2021134092A (en) Light-weight kiln tool and manufacturing method thereof
JP2007504088A (en) Green component for manufacturing sintered refractory products with improved bubble generation behavior
JP2007112670A (en) Firing vessel
JP2011088759A (en) Alumina refractory and method of producing the same
JP4721947B2 (en) Corrosion-resistant magnesia sintered body, heat treatment member comprising the same, and method for producing the sintered body
JP2006206338A (en) Highly corrosion-resistant refractory
BR112016013738B1 (en) Siliceous composition and method to obtain the same
JP2002316866A (en) Member for heat treatment consisting of alumina sintered compact having excellent durability
JP4560199B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP6402131B2 (en) Manufacturing method of firing jig
JP6396938B2 (en) Heat treatment container for positive electrode active material of lithium battery
JP4546609B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP7099898B2 (en) High zirconia electroformed refractory and its manufacturing method
KR101907208B1 (en) Monolithic refractory for heat treating furnace and lining structure of heat treating furnace
JP2005314170A (en) Rotary kiln
JP4485615B2 (en) Corrosion-resistant spinel sintered body and heat treatment member comprising the same
JP3737917B2 (en) Thermal shock-resistant alumina sintered body and heat treatment member comprising the same
JP2014024689A (en) Magnesia monolithic refractory
JP4906240B2 (en) Alumina sintered body excellent in thermal shock resistance and corrosion resistance, heat treatment member comprising the same, and method for producing the same
JP6314231B2 (en) Glossite ceramics, kiln tool using the same, and method for producing globite ceramics
JP2003252677A (en) Ceramic-burning tool and method for producing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110419