JP7099898B2 - High zirconia electroformed refractory and its manufacturing method - Google Patents

High zirconia electroformed refractory and its manufacturing method Download PDF

Info

Publication number
JP7099898B2
JP7099898B2 JP2018138361A JP2018138361A JP7099898B2 JP 7099898 B2 JP7099898 B2 JP 7099898B2 JP 2018138361 A JP2018138361 A JP 2018138361A JP 2018138361 A JP2018138361 A JP 2018138361A JP 7099898 B2 JP7099898 B2 JP 7099898B2
Authority
JP
Japan
Prior art keywords
refractory
mass
content
high zirconia
na2o
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018138361A
Other languages
Japanese (ja)
Other versions
JP2019048761A (en
Inventor
健児 俣野
信雄 戸村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Ceramics Co Ltd
Original Assignee
AGC Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGC Ceramics Co Ltd filed Critical AGC Ceramics Co Ltd
Priority to TW107126673A priority Critical patent/TW201912610A/en
Priority to KR1020180104474A priority patent/KR20190028309A/en
Priority to EP18192492.9A priority patent/EP3453689B1/en
Priority to CN201811045414.0A priority patent/CN109467447B/en
Priority to US16/124,913 priority patent/US10815155B2/en
Publication of JP2019048761A publication Critical patent/JP2019048761A/en
Application granted granted Critical
Publication of JP7099898B2 publication Critical patent/JP7099898B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/43Use of materials for furnace walls, e.g. fire-bricks
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/484Refractories by fusion casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Description

本発明は高ジルコニア質電鋳耐火物及びその製造方法に係り、特に、ガラス製造窯であるガラス溶融炉への使用に適した高ジルコニア質電鋳耐火物及びその製造方法に関する。 The present invention relates to a high zirconia electric casting refractory and a method for producing the same, and more particularly to a high zirconia electric casting refractory suitable for use in a glass melting furnace which is a glass manufacturing kiln and a method for producing the same.

化学成分としてZrOを80質量%以上含む高ジルコニア質電鋳耐火物は、従来からガラス溶融炉用耐火物として使用されている。高ジルコニア質電鋳耐火物は溶融ガラスに対する高い耐食性と低汚染性を有し、ガラス溶融炉における溶融ガラスと接触する部分に多く使用されている。このような高ジルコニア質電鋳耐火物は、多量のジルコニア結晶粒とその粒間を充填する少量のマトリックスガラスから構成される。 A high zirconia electroformed refractory containing 80% by mass or more of ZrO 2 as a chemical component has been conventionally used as a refractory for a glass melting furnace. High zirconia electrocast refractories have high corrosion resistance and low contamination resistance to molten glass, and are often used in parts that come into contact with molten glass in glass melting furnaces. Such high zirconia electroformed refractories are composed of a large amount of zirconia crystal grains and a small amount of matrix glass that fills the spaces between the grains.

ところで、近年、ガラスの溶融温度をさらに高温にする要求が高まってきており、高ジルコニア質電鋳耐火物でも、耐食性を十分に満足できない場合がある。そこで、ガラス溶融炉においては、さらなる高耐食性の耐火物が求められてきている。 By the way, in recent years, there has been an increasing demand for further increasing the melting temperature of glass, and even a highly zirconia electroformed refractory may not be sufficiently satisfactory in corrosion resistance. Therefore, in a glass melting furnace, a refractory material having higher corrosion resistance is required.

ジルコニア結晶を利用した耐火物において、高温の溶融ガラスに対する耐食性を高めるには、一般に、耐火物中のZrOの含有量を高めればよく、耐食性を向上させた高ジルコニア質電鋳耐火物は、種々検討されている。このような高ジルコニア質電鋳耐火物としては、具体的に、ZrOの含有量を90質量%以上、さらには95質量%以上となるまで含有量を高めた高ジルコニア質電鋳耐火物が知られている(例えば、特許文献1~4参照)。 In a refractory using zirconia crystals, in order to improve the corrosion resistance to high-temperature molten glass, it is generally sufficient to increase the content of ZrO 2 in the refractory. Various studies have been conducted. As such a high zirconia electric casting refractory, specifically, a high zirconia electric casting refractory in which the content of ZrO 2 is increased to 90% by mass or more and further to 95% by mass or more is used. It is known (see, for example, Patent Documents 1 to 4).

ZrOを95質量%以上含有する高ジルコニア質電鋳耐火物においては、マトリックスガラスは最大で5質量%と、耐火物全体に対する割合が少ない。しかし、耐火物の特性、例えば、残存体積膨張(以下、残存膨張と略す)の低減や、製造時の亀裂防止には、マトリックスガラスの物性が大きく寄与する。そのため、高ジルコニア質電鋳耐火物においては、最適なマトリックスガラスのガラス組成の調整、特に微量成分の含有量の調整が重要になっている。 In the high zirconia electrocast refractory containing 95% by mass or more of ZrO 2 , the matrix glass has a maximum of 5% by mass, which is a small proportion of the total refractory. However, the physical characteristics of the matrix glass greatly contribute to the reduction of the characteristics of the refractory, for example, the residual volume expansion (hereinafter, abbreviated as the residual expansion) and the prevention of cracks during manufacturing. Therefore, in high zirconia electroformed refractories, it is important to adjust the optimum glass composition of the matrix glass, especially the content of trace components.

また、ジルコニアの含有量が96質量%以上の高ジルコニア質電鋳耐火物は、耐火物に亀裂が生じやすくなり、ガラス窯の炉材に使用できる大きさで製造することは困難であった。通常、高ジルコニア質電鋳耐火物は、耐火物の原料を2500℃以上の高温に溶解し、鋳型中で冷却して製造する。耐火物中のジルコニア含有量が高くなると、原料の溶解温度はさらに高くなり、大型の耐火物を製造した際に亀裂が発生しやすくなる。 Further, a high zirconia electrocast refractory having a zirconia content of 96% by mass or more is liable to crack in the refractory, and it is difficult to manufacture the refractory in a size that can be used as a furnace material for a glass kiln. Usually, a high zirconia electroformed refractory is manufactured by melting the raw material of the refractory at a high temperature of 2500 ° C. or higher and cooling it in a mold. The higher the zirconia content in the refractory, the higher the melting temperature of the raw material, and the more likely it is that cracks will occur when a large refractory is manufactured.

近年、上記のように耐食性を非常に高いレベルまで向上させた高ジルコニア質電鋳耐火物が知られており、さらに、大型の耐火物製造時及びガラス窯の炉材としての使用時に亀裂が発生しない耐火物の提供が期待されている。 In recent years, high zirconia electroformed refractories with improved corrosion resistance to a very high level as described above are known, and cracks occur during the production of large refractories and when used as a furnace material for glass kilns. It is expected to provide refractory materials that do not.

これに対して、本発明者らは、化学成分として、酸化物基準で、ZrOが96.5~98.5質量%、SiOが0.8~2.7質量%、NaO及びKOの合量が0.04~0.35質量%、Bが0.02~0.18質量%、かつ、NaO、KO及びBの含有量が所定の関係を満たす高ジルコニア質電鋳耐火物が、Alを含有してよいこと及び溶融ガラスに対する極めて高い耐食性を有していながら、かつ、その製造時に亀裂の発生を抑制でき、炉材への使用中に亀裂が発生しないという上記課題を解消し得ることを見出した(特許文献5参照)。 On the other hand, the present inventors have, as chemical components, 96.5 to 98.5% by mass of ZrO 2 , 0.8 to 2.7% by mass of SiO 2 , Na 2 O and based on oxides. The total amount of K 2 O is 0.04 to 0.35% by mass, B 2 O 3 is 0.02 to 0.18% by mass, and the contents of Na 2 O, K 2 O and B 2 O 3 are A high zirconia electrocast refractory that satisfies a predetermined relationship may contain Al 2 O 3 and has extremely high corrosion resistance to molten glass, and can suppress the generation of cracks during its manufacture. It has been found that the above-mentioned problem that cracks do not occur during use in a material can be solved (see Patent Document 5).

特開平3-28175号公報Japanese Unexamined Patent Publication No. 3-28175 特公昭59-12619号公報Special Publication No. 59-12619 特表2009-527454号公報Special Table 2009-527454 特公昭55-3319号公報Special Publication No. 55-3319 特開2014-129199号公報Japanese Unexamined Patent Publication No. 2014-129199

このような状況の中、さらに残存膨張の低減や製造時の亀裂の抑制によって、製造コストに優れ、使用時においても安定した使用を可能とする高ジルコニア質電鋳耐火物が求められている。 Under such circumstances, there is a demand for a high zirconia electroformed refractory that has excellent manufacturing cost and enables stable use even during use by further reducing residual expansion and suppressing cracks during manufacturing.

本発明は、溶融ガラスに対する極めて高い耐食性を保持しながら、製造時の亀裂の発生や炉材としての使用時における亀裂の発生がより低減された高ジルコニア質電鋳耐火物及びその製造方法の提供を目的とする。 INDUSTRIAL APPLICABILITY The present invention provides a high zirconia electroformed refractory and a method for producing the same, in which the occurrence of cracks during manufacturing and the occurrence of cracks during use as a furnace material are further reduced while maintaining extremely high corrosion resistance to molten glass. With the goal.

本発明者らは、鋭意検討を重ねた結果、耐火物組成を最適化することにより、ZrO含有量を96.7質量%以上とし、溶融ガラスに対して耐食性が高い耐火物において、該耐火物を大型にしても製造時の亀裂発生を抑制でき、耐火物の残存膨張が小さい高ジルコニア質電鋳耐火物を見出した。 As a result of diligent studies, the present inventors have made the ZrO 2 content 96.7% by mass or more by optimizing the refractory composition, and in the refractory having high corrosion resistance to molten glass, the refractory is said. We have found a high zirconia refractory refractory that can suppress the occurrence of cracks during manufacturing even if the refractory is large and has a small residual expansion of the refractory.

すなわち、本発明の高ジルコニア質電鋳耐火物は、化学成分として、酸化物基準で、ZrOを96.7~98.5質量%、SiOを0.8~2.7質量%、Alを0.1~0.4質量%、NaOを0~0.2質量%、KOを0.21~1質量%、含有し、Bを実質的に含有せず、前記NaO及び前記KOの含有量が、次の式(1)

0.15質量%≦CK2O/2+CNa2O≦0.6質量% …(1)

(式中、CK2OはKOの含有量、CNa2OはNaOの含有量、であり、これら含有量はいずれも耐火物中における質量%で表す。)の関係を満たすことを特徴とする。
That is, the high zirconia electrocasting refractory material of the present invention contains 96.7 to 98.5% by mass of ZrO 2 , 0.8 to 2.7% by mass of SiO 2 , and Al as chemical components based on oxides. 2 O 3 is contained in an amount of 0.1 to 0.4% by mass, Na 2 O is contained in an amount of 0 to 0.2% by mass, K 2 O is contained in an amount of 0.21 to 1% by mass, and B 2 O 3 is substantially contained. However, the content of the Na 2 O and the K 2 O is the following formula (1).

0.15% by mass ≤ C K2O / 2 + C Na2O ≤0.6 % by mass ... (1)

(In the formula, C K2O is the content of K2O, CNa2O is the content of Na2O , and both of these contents are expressed by mass% in the refractory). And.

本発明の高ジルコニア質電鋳耐火物及びその製造方法によれば、ZrOの含有量が高いため、溶融ガラスに対して高い耐食性を示し、かつ、ZrO成分以外の成分の含有量を最適化したため、大型の高ジルコニア質電鋳耐火物を製造する際に、亀裂の発生を抑制でき、かつ、耐火物の残存膨張を小さくできる。 According to the high zirconia electrocast refractory of the present invention and the method for producing the same, since the content of ZrO 2 is high, it exhibits high corrosion resistance to molten glass and the content of components other than the ZrO 2 component is optimized. Therefore, when a large-sized high zirconia electrocast refractory is manufactured, the occurrence of cracks can be suppressed and the residual expansion of the refractory can be reduced.

実施例及び比較例の高ジルコニア電鋳耐火物について、(CK2O/2+CNa2O)と残存膨張との関係を示したグラフである。It is a graph which showed the relationship between ( CK2O / 2 + C Na2O ) and residual expansion about the high zirconia electroformed refractory of an Example and a comparative example. 実施例及び比較例の高ジルコニア電鋳耐火物について、(CK2O/2+CNa2O)と亀裂合計長さとの関係を示したグラフである。It is a graph which showed the relationship between ( CK2O / 2 + C Na2O ) and the total crack length about the high zirconia electroformed refractory of an Example and a comparative example. 実施例及び比較例の電鋳耐火物について、[(CK2O/2+CNa2O)/CSiO2]と残存膨張との関係を示したグラフである。It is a graph which showed the relationship between [( CK2O / 2 + C Na2O ) / C SiO2 ] and the residual expansion with respect to the electroformed refractory of an Example and a comparative example. 実施例及び比較例の電鋳耐火物について、[(CK2O/2+CNa2O)/CSiO2]と亀裂合計長さとの関係を示したグラフである。It is a graph which showed the relationship between [( CK2O / 2 + C Na2O ) / C SiO2 ] and the total crack length about the electroformed refractory of an Example and a comparative example. 実施例及び比較例の電鋳耐火物について、CK2O/CNa2Oと残存膨張との関係を示したグラフである。It is a graph which showed the relationship between CK2O / C Na2O and residual expansion about electroformed refractories of an Example and a comparative example. 実施例及び比較例の電鋳耐火物について、CK2O/CNa2Oと亀裂合計長さとの関係を示したグラフである。It is a graph which showed the relationship between CK2O / C Na2O and the total crack length about the electroformed refractory of an Example and a comparative example.

本発明の高ジルコニア質電鋳耐火物は、上記したように所定の成分を所定の配合割合で含有する高ジルコニア質電鋳耐火物であり、多量のジルコニア結晶と少量のマトリックスガラス、及びわずかの気孔により構成される。耐火物中に含まれる各化学成分が当該耐火物中で果たす役割について、実施形態を参照しながら以下に説明する。 The high zirconia electric casting refractory of the present invention is a high zirconia electric casting refractory containing a predetermined component in a predetermined compounding ratio as described above, and has a large amount of zirconia crystals, a small amount of matrix glass, and a small amount. It is composed of pores. The role played by each chemical component contained in the refractory material in the refractory material will be described below with reference to the embodiments.

本実施形態の高ジルコニア質電鋳耐火物において、ZrOは、耐火物の溶融ガラスに対する耐食性を高める成分であり、必須成分である。 In the high zirconia electroformed refractory of the present embodiment, ZrO 2 is a component that enhances the corrosion resistance of the refractory to the molten glass, and is an essential component.

このZrOの含有量は、高ジルコニア質電鋳耐火物中に、96.7~98.5質量%である。ZrOを96.7質量%以上含有することで、従来の高ジルコニア質電鋳耐火物と比較して、溶融ガラスに対する耐食性に優れた耐火物となる。一方、含有量が98.5質量%を超えると、マトリックスガラス及び他の成分の含有量が少なくなり過ぎて、製造時の亀裂が発生しやすくなり、耐火物の大型化が困難になる。 The content of this ZrO 2 is 96.7 to 98.5% by mass in the high zirconia electroformed refractory. By containing 96.7% by mass or more of ZrO 2 , the refractory has excellent corrosion resistance to molten glass as compared with the conventional high zirconia electroformed refractory. On the other hand, if the content exceeds 98.5% by mass, the content of the matrix glass and other components becomes too small, cracks are likely to occur during manufacturing, and it becomes difficult to increase the size of the refractory.

ZrOの含有量は、溶融ガラスに対する高い耐久性を維持しつつ、マトリックスガラスの含有量を確保する観点から、96.9~98.2質量%が好ましく、97.2~98質量%がより好ましい。 The content of ZrO 2 is preferably 96.9 to 98.2% by mass, more preferably 97.2 to 98% by mass, from the viewpoint of ensuring the content of the matrix glass while maintaining high durability against the molten glass. preferable.

なお、高ジルコニア質電鋳耐火物の製造に用いられるジルコニア原料及びジルコン原料は不可避的に1~3質量%のHfOを含んでいる。そして、HfOは製造時に蒸発などの損失はほとんどなく耐火物中に残存するため、通常の高ジルコニア質電鋳耐火物にも原料に由来するHfOが含まれる。HfOは高ジルコニア質電鋳耐火物一般においてZrOと同じ役割を果たすため、ZrO+HfOの値をもって単にZrOと表記するのが通例である。本明細書においてもZrO+HfOの値をもってZrOと表記する。 The zirconia raw material and the zircon raw material used for producing a high zirconia electroformed refractory inevitably contain 1 to 3% by mass of HfO 2 . Since HfO 2 remains in the refractory with almost no loss such as evaporation during production, the ordinary high zirconia electroformed refractory also contains HfO 2 derived from the raw material. Since HfO 2 plays the same role as ZrO 2 in high zirconia electroformed refractories in general, it is customary to simply refer to the value of ZrO 2 + HfO 2 as ZrO 2 . Also in this specification, the value of ZrO 2 + HfO 2 is referred to as ZrO 2 .

本実施形態の高ジルコニア質電鋳耐火物において、SiOはマトリックスガラスを形成する成分であり、必須成分である。 In the high zirconia electroformed refractory of the present embodiment, SiO 2 is a component forming matrix glass and is an essential component.

このSiOの含有量は、高ジルコニア質電鋳耐火物中に、0.8~2.7質量%である。SiOを0.8質量%以上含有することで、製造時の温度変化に対する熱応力を緩和でき、亀裂を防止できる。一方で、2.7質量%超では、マトリックスガラス中のSiOの割合が高くなり、マトリックスガラスの粘性が高くなり、耐火物の製造時に亀裂を発生させるおそれがある。SiO含有量は、1~2.4質量%が好ましく、1.2~2.1質量%がより好ましい。 The content of SiO 2 is 0.8 to 2.7% by mass in the high zirconia electroformed refractory. By containing 0.8% by mass or more of SiO 2 , the thermal stress due to the temperature change during manufacturing can be relaxed and cracks can be prevented. On the other hand, if it exceeds 2.7% by mass, the ratio of SiO 2 in the matrix glass becomes high, the viscosity of the matrix glass becomes high, and there is a possibility that cracks may occur during the production of the refractory. The SiO 2 content is preferably 1 to 2.4% by mass, more preferably 1.2 to 2.1% by mass.

本実施形態の高ジルコニア質電鋳耐火物において、Alは、マトリックスガラスの粘性を低下させる成分であると同時に、耐火物中におけるジルコンの生成を抑制する成分であり、必須成分である。マトリックスガラスの一部がジルコニア結晶と反応することでジルコンが生成する。ジルコンが生成すると、耐火物中のマトリックスガラス量が減少し、マトリックスガラスの機能を十分に発揮できないおそれがある。また、マトリックスガラスの減少は、耐火物の残存膨張を大きくし、ガラス窯の炉材として使用中に亀裂が発生する原因にもなりうる。 In the high zirconia electrocast refractory of the present embodiment, Al 2 O 3 is a component that lowers the viscosity of the matrix glass and at the same time is a component that suppresses the formation of zircon in the refractory and is an essential component. .. Zircon is produced by the reaction of a part of the matrix glass with zirconia crystals. When zircon is produced, the amount of matrix glass in the refractory material decreases, and the function of the matrix glass may not be fully exhibited. In addition, the decrease in matrix glass increases the residual expansion of the refractory and can cause cracks to occur during use as the furnace material of the glass kiln.

このAlの含有量は、高ジルコニア質電鋳耐火物中に、0.1~0.4質量%である。本実施形態においては、マトリックスガラスの量がジルコニア結晶に対して少ないため、Alは0.1質量%以上の含有量で効果を発揮できる。一方、0.4質量%以上含有すると、耐火物の製造時や使用中に、ムライトなどのアルミノシリケート系結晶を生成し、耐火物に割れが発生するおそれがある。Alの含有量は、0.2~0.3質量%が好ましい。 The content of this Al 2 O 3 is 0.1 to 0.4% by mass in the high zirconia electroformed refractory. In the present embodiment, since the amount of matrix glass is smaller than that of zirconia crystals, Al 2 O 3 can be effective at a content of 0.1% by mass or more. On the other hand, if it is contained in an amount of 0.4% by mass or more, aluminosilicate-based crystals such as mullite may be generated during the production or use of the refractory, and the refractory may be cracked. The content of Al 2 O 3 is preferably 0.2 to 0.3% by mass.

本実施形態の高ジルコニア質電鋳耐火物において、NaO及びKOは、耐火物の製造時の亀裂発生を抑制し得る成分である。本実施形態において、NaOは任意成分であり、その含有量は、高ジルコニア質電鋳耐火物中に、0~0.2質量%が好ましく、0~0.15質量%がより好ましく、0~0.12質量%がさらに好ましい。 In the high zirconia electroformed refractory of the present embodiment, Na 2 O and K 2 O are components that can suppress the generation of cracks during the production of the refractory. In the present embodiment, Na 2 O is an optional component, and the content thereof is preferably 0 to 0.2% by mass, more preferably 0 to 0.15% by mass in the high zirconia electrocast refractory. It is more preferably 0 to 0.12% by mass.

一方、本実施形態において、KOが必須成分であり、その含有量は、高ジルコニア質電鋳耐火物中に、0.21~1質量%が好ましく、0.21~0.9質量%がより好ましく、0.3~0.75質量%がさらに好ましい。KOを必須成分とすることにより、製造時のマトリックスガラスの粘性を低くでき、亀裂を防止できる。また、ガラス窯の炉材として使用する際のマトリックスガラスのジルコンの生成を防止し、亀裂を防止できる。 On the other hand, in the present embodiment, K2O is an essential component, and the content thereof is preferably 0.21 to 1% by mass, preferably 0.21 to 0.9% by mass in the high zirconia electrocast refractory. Is more preferable, and 0.3 to 0.75% by mass is further preferable. By using K2O as an essential component, the viscosity of the matrix glass at the time of manufacturing can be lowered and cracks can be prevented. In addition, it is possible to prevent the formation of zircon in the matrix glass when it is used as a furnace material for a glass kiln and prevent cracks.

そして、これらNaO及びKOは、高ジルコニア質電鋳耐火物中におけるNaO及びKOの含有量が、次の式(1)

0.15質量%≦CK2O/2+CNa2O≦0.6質量% …(1)

(式中、CK2OはKOの含有量、CNa2OはNaOの含有量、であり、これら含有量はいずれも耐火物中における質量%で表す。)の関係を満たすように配合される。
Then, these Na 2 O and K 2 O have the content of Na 2 O and K 2 O in the high zirconia electroformed refractory according to the following formula (1).

0.15% by mass ≤ C K2O / 2 + C Na2O ≤0.6 % by mass ... (1)

(In the formula, C K2O is the content of K2O, CNa2O is the content of Na2O , and both of these contents are expressed by mass% in the refractory). Will be done.

この(CK2O/2+CNa2O)を0.15質量%以上とすると、耐火物中のジルコンの生成を抑制し、これが耐火物の製造時の亀裂発生の抑制に寄与する。この値が高いほど、マトリックスガラスの粘性を低くできるが、アルカリ成分が多くなりすぎると、ガラス化し難くなる。そのため、マトリックスガラス中の他の成分の含有量の調整のため、(CK2O/2+CNa2O)は0.6質量%以下である。 When this ( CK2O / 2 + C Na2O ) is 0.15% by mass or more, the formation of zircon in the refractory is suppressed, which contributes to the suppression of crack generation during the production of the refractory. The higher this value, the lower the viscosity of the matrix glass, but if the amount of alkaline component is too large, it becomes difficult to vitrify. Therefore, ( CK2O / 2 + C Na2O ) is 0.6% by mass or less in order to adjust the content of other components in the matrix glass.

この(CK2O/2+CNa2O)は、0.15~0.55質量%が好ましく、0.2~0.45質量%がより好ましい。なお、この値において、KOの含有量を2で割っているのは、その亀裂と残存膨張への影響に対するNaOの作用とのバランスを考慮しているためである。 This ( CK2O / 2 + C Na2O ) is preferably 0.15 to 0.55% by mass, more preferably 0.2 to 0.45% by mass. In this value, the content of K 2 O is divided by 2, because the balance between the crack and the action of Na 2 O on the influence on the residual expansion is taken into consideration.

また、NaO、KO及びSiOは、高ジルコニア質電鋳耐火物中におけるNaO、KO及びSiOの含有量が、次の式(2)

0.09≦ (CK2O/2+CNa2O)/CSiO2 ≦0.4 …(2)

(式中、CNa2OはNaOの含有量、CK2OはKOの含有量、CSiO2はSiOの含有量であり、これら含有量はいずれも耐火物中における質量%で表す。)の関係を満たすことが好ましい。
Further, in Na 2 O, K 2 O and SiO 2 , the content of Na 2 O, K 2 O and SiO 2 in the highly zirconia electroformed refractory has the following formula (2).

0.09 ≤ (C K2O / 2 + C Na2O ) / C SiO2 ≤ 0.4 ... (2)

(In the formula, C Na 2O is the content of Na 2 O, C K 2 O is the content of K 2 O, and C SiO 2 is the content of SiO 2, and these contents are all expressed by mass% in the fireproof material. ) Satisfying the relationship.

この[(CK2O/2+CNa2O)/CSiO2]を0.09以上とすると、耐火物中のジルコンの生成を抑制し、これが耐火物の製造時の亀裂発生の抑制に寄与する。この値が高いほど、マトリックスガラスの粘性を低くできるが、アルカリ成分が多くなりすぎると、ガラス化し難くなる。そのため、マトリックスガラス中の他の成分の含有量の調整のため、[(CK2O/2+CNa2O)/CSiO2]は0.4以下である。 When this [(C K2O / 2 + C Na2O ) / C SiO2 ] is 0.09 or more, the formation of zircon in the refractory is suppressed, which contributes to the suppression of crack generation during the production of the refractory. The higher this value, the lower the viscosity of the matrix glass, but if the amount of alkaline component is too large, it becomes difficult to vitrify. Therefore, [( CK2O / 2 + C Na2O ) / C SiO2 ] is 0.4 or less in order to adjust the content of other components in the matrix glass.

この[(CK2O/2+CNa2O)/CSiO2]は、0.09~0.3が好ましく、0.12~0.27がより好ましい。 This [(C K2O / 2 + C Na2O ) / C SiO2 ] is preferably 0.09 to 0.3, more preferably 0.12 to 0.27.

また、NaO、KO及びSiOは、高ジルコニア質電鋳耐火物中におけるNaO、KO及びSiOの含有量が、次の式(3)

0.11≦ (CK2O/1.5+CNa2O)/CSiO2 ≦0.5 …(3)

(式中、CNa2OはNaOの含有量、CK2OはKOの含有量、CSiO2はSiOの含有量であり、これら含有量はいずれも耐火物中における質量%で表す。)の関係を満たすことが好ましい。
Further, in Na 2 O, K 2 O and SiO 2 , the content of Na 2 O, K 2 O and SiO 2 in the highly zirconia electroformed refractory has the following formula (3).

0.11 ≤ (C K2O /1.5+CNa2O ) /CSiO2≤0.5 ... (3)

(In the formula, C Na 2O is the content of Na 2 O, C K 2 O is the content of K 2 O, and C SiO 2 is the content of SiO 2, and these contents are all expressed by mass% in the fireproof material. ) Satisfying the relationship.

この[(CK2O/1.5+CNa2O)/CSiO2]を0.11以上とすると、耐火物中のジルコンの生成を抑制し、これが耐火物の製造時の亀裂発生の抑制に寄与する。この値が高いほど、マトリックスガラスの粘性を低くできるが、アルカリ成分が多くなりすぎると、ガラス化し難くなる。
そのため、マトリックスガラス中の他の成分の含有量の調整のため、[(CK2O/1.5+CNa2O)/CSiO2]は0.5以下である。
When this [(C K2O /1.5+CNa2O)/CSiO2 ] is set to 0.11 or more, the formation of zircon in the refractory is suppressed, which contributes to the suppression of crack generation during the production of the refractory. The higher this value, the lower the viscosity of the matrix glass, but if the amount of alkaline component is too large, it becomes difficult to vitrify.
Therefore, [( CK2O /1.5+CNa2O)/CSiO2 ] is 0.5 or less in order to adjust the content of other components in the matrix glass.

この[(CK2O/1.5+CNa2O)/CSiO2]は、0.11~0.4が好ましく、0.14~0.35がより好ましい。この式(3)では、式(1)とはCK2Oを1.5で割っている点のみ異なるが、KOはNaOに対してモル質量が約1.5倍である。そのため、それらの含有量に基づいて評価される効果が質量を基準とする場合に、より正確に評価できる。なお、その傾向は式(1)と式(3)とでほぼ同等である。 This [(C K2O /1.5+CNa2O ) / CSiO2 ] is preferably 0.11 to 0.4, more preferably 0.14 to 0.35. This formula (3) differs from the formula (1) only in that CK2O is divided by 1.5, but K2O has a molar mass of about 1.5 times that of Na2O . Therefore, the effect evaluated based on their content can be evaluated more accurately when the mass is used as a reference. The tendency is almost the same in the equation (1) and the equation (3).

さらに、NaO及びKOは、高ジルコニア質電鋳耐火物中におけるNaO及びKOの含有量が、次の式(4)

2 ≦ CK2O/CNa2O …(4)

(式中、CK2OはKOの含有量、CNa2Oは、であり、これら含有量はいずれも耐火物中における質量%で表す。)の関係を満たすことが好ましい。
Further, Na 2 O and K 2 O have the content of Na 2 O and K 2 O in the high zirconia electroformed refractory according to the following formula (4).

2 ≤ C K2O / C Na2O ... (4)

(In the formula, C K2O is the content of K2O, CNa2O is , and both of these contents are expressed by mass% in the refractory).

このNaOとKO含有量の比(CK2O/CNa2O)が2以上であると、耐火物の亀裂の発生や残存膨張の増加を効果的に抑制できる。この比(CK2O/CNa2O)は、2~11が好ましく、3.5~8がより好ましい。具体的には、製造される高ジルコニア質電鋳耐火物の残存体積膨張率が20%以下とでき、ガラス窯の炉材として使用している場合の亀裂の発生を有効に抑制できる点で好ましい。なお、本明細書において、残存体積膨張率は、試料を800℃と1250℃の間を40回往復させる温度変化を与える熱サイクル試験を経た後、その試験の前後における寸法変化量から導かれる体積変化量である。すなわち、残存体積膨張率は、以下の式により算出できる。
残存体積膨張率(%)=(熱サイクル試験後の体積/熱サイクル試験前の体積)-1)×100
When the ratio of the Na 2 O to K 2 O content (C K2O / C Na2O ) is 2 or more, the generation of cracks in the refractory and the increase in residual expansion can be effectively suppressed. This ratio (C K2O / C Na2O ) is preferably 2 to 11, more preferably 3.5 to 8. Specifically, it is preferable in that the residual volume expansion coefficient of the produced high zirconia electroformed refractory can be 20% or less, and the generation of cracks when used as a furnace material for a glass kiln can be effectively suppressed. .. In the present specification, the residual volume expansion rate is the volume derived from the amount of dimensional change before and after the thermal cycle test in which the sample is reciprocated 40 times between 800 ° C and 1250 ° C. The amount of change. That is, the residual volume expansion coefficient can be calculated by the following formula.
Residual volume expansion rate (%) = (volume after thermal cycle test / volume before thermal cycle test) -1) x 100

本実施形態の高ジルコニア質電鋳耐火物において、Bは実質的に含有しない。ここで実質的に含有しないとは、成分を意図して含有しないとの意味であり、不可避不純物による混入を許容するとの意味である。Bは0.01質量%以下であれば実質的に含有しないといえる。 In the high zirconia electroformed refractory of the present embodiment, B 2 O 3 is substantially not contained. Here, "substantially not contained" means that the component is not intentionally contained, and that mixing by unavoidable impurities is allowed. It can be said that B 2 O 3 is substantially not contained if it is 0.01% by mass or less.

このBは、上記のように高ジルコニア質電鋳耐火物の製造時における亀裂発生を抑制する効果があることが知られており、この分野においては生産性を考慮すれば通常含有させる成分である。しかしながら、KOを必須成分とする本実施形態においては、その共存によって共蒸発するおそれがあることがわかった。すなわち、KOとBが共存する場合、それらの配合量に比べて亀裂発生の抑制効果が低減する傾向を示すことがわかった。そのため、本実施形態においては、Bは実質的に含有しない。 As described above, this B 2 O 3 is known to have an effect of suppressing the generation of cracks during the production of high zirconia electroformed refractories, and in this field, it is usually contained in consideration of productivity. It is an ingredient. However, in the present embodiment containing K2O as an essential component, it was found that co-evaporation may occur due to the coexistence thereof. That is, it was found that when K 2 O and B 2 O 3 coexist, the effect of suppressing crack generation tends to be reduced as compared with the blending amount thereof. Therefore, in this embodiment, B 2 O 3 is substantially not contained.

本実施形態の高ジルコニア質電鋳耐火物において、Pは、マトリックスガラスの粘性を調整し、耐火物の製造時の亀裂を抑制する成分であり、必須成分でない。 In the high zirconia electrocast refractory of the present embodiment, P 2 O 5 is a component that adjusts the viscosity of the matrix glass and suppresses cracks during the production of the refractory, and is not an essential component.

このPの含有量は、上記観点からは高ジルコニア質電鋳耐火物中に、0.03~0.15質量%で含有することが好ましい。この場合、少量含有すればその効果を発揮できる。P含有量は、0.03~0.12質量%が好ましく、0.03~0.06質量%がより好ましい。 From the above viewpoint, the content of P 2 O 5 is preferably 0.03 to 0.15% by mass in the high zirconia electroformed refractory. In this case, the effect can be exhibited if it is contained in a small amount. The P 2 O 5 content is preferably 0.03 to 0.12% by mass, more preferably 0.03 to 0.06% by mass.

一方、Pを含むとジルコンの生成が促進されるおそれがあり、チップオフや残存膨張の抑制の観点からは、Pの含有量は低いほど好ましい。その含有量は、高ジルコニア質電鋳耐火物中に、0.04質量%以下がより好ましく、実質的に含有しないことが特に好ましい。Pにおいても0.01質量%以下であれば実質的に含有しないといえる。 On the other hand, if P 2 O 5 is contained, the production of zircon may be promoted, and from the viewpoint of suppressing chip-off and residual expansion, it is preferable that the content of P 2 O 5 is low. The content thereof is more preferably 0.04% by mass or less, and particularly preferably not substantially contained in the high zirconia electroformed refractory. Even in P 2 O 5 , if it is 0.01% by mass or less, it can be said that it is substantially not contained.

本実施形態の高ジルコニア質電鋳耐火物において、CuOは、溶融ガラスを着色したり、上記PやBと同時に含まれる場合、低融点ガラスを形成し、化学的な耐久性が低下したり、するおそれがある成分である。したがって、本発明では、CuOは実質的に含有しない方が好ましい。 In the high zirconia electrocast refractory of the present embodiment, when CuO colors molten glass or is contained at the same time as P 2 O 5 and B 2 O 3 , it forms a low melting point glass and is chemically durable. It is a component that may have reduced sex or may be affected. Therefore, in the present invention, it is preferable that CuO is not substantially contained.

また、FeとTiOは原料中に不純物として含まれるおそれがある。これらの成分は、溶融ガラスへの着色と発泡を生じさせる成分であり、高含有量となるのは好ましくない。これらFeとTiOは、含有量の合量で0.3質量%以下であれば着色の問題はなく、好ましくは0.2質量%以下である。 Further, Fe 2 O 3 and TiO 2 may be contained as impurities in the raw material. These components are components that cause coloring and foaming of the molten glass, and a high content is not preferable. If the total content of Fe 2 O 3 and TiO 2 is 0.3% by mass or less, there is no problem of coloring, and preferably 0.2% by mass or less.

同様に、原料中には不純物としてMgO及びCaOが含まれるおそれがある。これらは熱サイクル試験での残存膨張を増加させる傾向があり、このMgO及びCaOの含有量は、それぞれ0.05質量%以下であれば問題はなく、好ましくは0.03質量%以下である。 Similarly, the raw material may contain MgO and CaO as impurities. These tend to increase the residual expansion in the thermal cycle test, and if the contents of MgO and CaO are 0.05% by mass or less, there is no problem, and preferably 0.03% by mass or less.

同様に、原料によってはYが不純物として含まれるおそれがある。耐火物中に、Yが含まれるとマトリックスガラスが硬くなり、熱サイクル試験での残存膨張を増加させる傾向がある。Yの含有量は0.3質量%以下であれば問題はなく、好ましくは0.2質量%以下である。 Similarly, depending on the raw material, Y 2 O 3 may be contained as an impurity. The inclusion of Y2O3 in the refractory tends to harden the matrix glass and increase residual expansion in thermal cycle tests. If the content of Y 2 O 3 is 0.3% by mass or less, there is no problem, and preferably 0.2% by mass or less.

高ジルコニア質電鋳耐火物の嵩比重は、5.4g/cm以上が好ましい。本発明の高ジルコニア質電鋳耐火物は、溶融ガラスに対する耐食性が高く、緻密であるほど好ましい。したがって、嵩比重は5.45~5.55g/cmがより好ましい。 The bulk specific gravity of the high zirconia electroformed refractory is preferably 5.4 g / cm 3 or more. The highly zirconia electroformed refractory of the present invention has higher corrosion resistance to molten glass, and the more dense it is, the more preferable it is. Therefore, the bulk specific density is more preferably 5.45 to 5.55 g / cm 3 .

高ジルコニア質電鋳耐火物の気孔率は、1.5%以下が好ましい。本発明の高ジルコニア質電鋳耐火物は、溶融ガラスに対する耐食性が高いほど好ましい。気孔率は耐食特性に影響するため、その気孔率が低いほど好ましい。したがって、気孔率は0.1~1%がより好ましい。 The porosity of the high zirconia electroformed refractory is preferably 1.5% or less. The highly zirconia electroformed refractory of the present invention is preferably more resistant to corrosion against molten glass. Since the porosity affects the corrosion resistance characteristics, it is preferable that the porosity is low. Therefore, the porosity is more preferably 0.1 to 1%.

高ジルコニア質電鋳耐火物の質量は、200kg以上が好ましい。本発明の高ジルコニア質電鋳耐火物は、このような大型の電鋳耐火物を製造する際にも、耐火物への亀裂の発生を抑制でき、従来に比べ飛躍的に大型製品の歩留まりを向上できる。この質量は400~1500kgがより好ましい。 The mass of the high zirconia electroformed refractory is preferably 200 kg or more. The high zirconia electroformed refractory of the present invention can suppress the occurrence of cracks in the refractory even when manufacturing such a large electroformed refractory, and the yield of large products can be dramatically improved as compared with the conventional case. Can be improved. This mass is more preferably 400 to 1500 kg.

以下に、本発明の高ジルコニア質耐火物を実施例(例1~例8)及び比較例(例9~例14)によって具体的に説明するが、本発明はこれらによって何ら限定して解釈されるものではない。 Hereinafter, the high zirconia refractory of the present invention will be specifically described with reference to Examples (Examples 1 to 8) and Comparative Examples (Examples 9 to 14), but the present invention is to be interpreted in any limitation by these. It's not something.

電融鋳造法で耐火物を得るために、ジルコニア原料である脱珪ジルコンにアルミナ、ジルコンサンド、シリカ、炭酸ナトリウム、炭酸カリウム、Bなどの原料を調合して混合原料とし、この混合原料を3本の黒鉛電極を備えた出力1500kVAの三相アーク電気炉に装入して、通電加熱により完全に溶融した。 In order to obtain a refractory by the electric fusion casting method, raw materials such as alumina, zircon sand, silica, sodium carbonate, potassium carbonate , and B2 O 3 are mixed with desiliconized zirconia, which is a zirconia raw material, to make a mixed raw material, and this mixture is used. The raw material was charged into a three-phase arc electric furnace having an output of 1500 kVA equipped with three graphite electrodes, and completely melted by energization heating.

この溶湯を徐冷材であるケイ砂の中に予め埋めておいた黒鉛製の鋳型に600kg流し込んで鋳造し、室温付近の温度になるまで放冷した。この黒鉛製の鋳型は、厚み200mm×幅400mm×高さ900mmの引け巣を含まない耐火物製品の素材が得られるように製作した。具体的には、耐火物製品の素材用とする部分の上方に耐火物製品の素材用の部分と同体積の押し湯部分を設けた鋳塊となるように鋳型は設計、製作された。 600 kg of this molten metal was poured into a graphite mold previously embedded in silica sand, which is a slow-cooling material, cast, and allowed to cool until the temperature was close to room temperature. This graphite mold was manufactured so as to obtain a refractory product material having a thickness of 200 mm, a width of 400 mm, and a height of 900 mm and containing no shrinkage cavities. Specifically, the mold was designed and manufactured so as to form an ingot having a hot water part having the same volume as the part for the material of the refractory product above the part for the material of the refractory product.

鋳造、放冷の後、鋳塊と黒鉛鋳型を徐冷材中から抜き出し、さらに黒鉛鋳型と鋳塊を分離し、高ジルコニア質電鋳耐火物を製造した。 After casting and cooling, the ingot and the graphite mold were extracted from the slow cooling material, and the graphite mold and the ingot were further separated to produce a high zirconia electroformed refractory.

原料組成を調整し、表1に示した化学組成を有する高ジルコニア質電鋳耐火物を得た。ここで、実施例は例1~例8、比較例は例9~例14である。また、表2には、各実施例及び比較例について、それぞれの関係式と物性の関係を示した。なお、耐火物中の化学組成について、基本的には、波長分散型蛍光X線分析法により決定した定量分析値であるが、精度を必要とするB及びPは高周波誘導結合プラズマ発光分光分析法により決定した定量分析値である。しかし、各成分の定量はこの分析方法に限定されるものではなく、他の定量分析方法で行ってもよい。 The raw material composition was adjusted to obtain a highly zirconia electroformed refractory having the chemical composition shown in Table 1. Here, Examples are Examples 1 to 8, and Comparative Examples are Examples 9 to 14. In addition, Table 2 shows the relationship between the relational expression and the physical properties of each Example and Comparative Example. The chemical composition in the refractory material is basically a quantitative analysis value determined by the wavelength dispersion type fluorescent X-ray analysis method, but B 2 O 3 and P 2 O 5 which require accuracy are high frequency induction. It is a quantitative analysis value determined by the coupled plasma emission spectroscopic analysis method. However, the quantification of each component is not limited to this analysis method, and other quantitative analysis methods may be used.

Figure 0007099898000001
Figure 0007099898000001

Figure 0007099898000002
Figure 0007099898000002

〔亀裂〕
鋳塊の外観上の亀裂について次のように評価した。
高ジルコニア質電鋳耐火物の鋳塊から押し湯部分を切除して、厚み200mm×幅400mm×高さ900mm(質量:約400kg)の電鋳耐火物を製造した。この電鋳耐火物の表面に肉眼で確認できる亀裂の全ての長さを測定し、その合計長さを、次の基準で評価した。
優:亀裂合計長さが150mm以下である。
良:亀裂合計長さが150mm超300mm以下である。
可:亀裂合計長さが300mm超600mm以下である。
不可:亀裂合計長さが600mm超である。
〔crack〕
The cracks on the appearance of the ingot were evaluated as follows.
The pressed water portion was excised from the ingot of the highly zirconia electroformed refractory to produce an electroformed refractory having a thickness of 200 mm × a width of 400 mm × a height of 900 mm (mass: about 400 kg). All the lengths of cracks visible to the naked eye on the surface of this electroformed refractory were measured, and the total lengths were evaluated according to the following criteria.
Excellent: The total crack length is 150 mm or less.
Good: The total crack length is more than 150 mm and 300 mm or less.
Possible: The total crack length is more than 300 mm and 600 mm or less.
Impossible: The total crack length is over 600 mm.

〔残存膨張〕
製造した電鋳耐火物から厚み50mm×幅50mm×高さ50mmの試料を切り出し、800℃と1250℃の間を40回往復させる加熱・冷却を電気炉中で実施した。この際、室温から800℃の間の加熱は毎時160℃にて行い、ここから、800℃到達後直ちに1250℃への加熱を毎時450℃にて行い、1250℃到達後直ちに800℃までの冷却を毎時450℃にて行って1回の熱サイクルとした。その後、上記と同じ操作で、800℃と1250℃とを往復する熱サイクルを40回繰り返した。最終の熱サイクル後は毎時160℃の速度にて800℃から室温まで冷却した。この試験前及び試験後で試料の寸法を測定し、その寸法変化から残存体積膨張率を求めた。このとき得られた残存体積膨張率を、次の基準により評価した。
[Residual expansion]
A sample having a thickness of 50 mm, a width of 50 mm, and a height of 50 mm was cut out from the manufactured electroformed refractory, and heating and cooling were carried out in an electric furnace by reciprocating between 800 ° C. and 1250 ° C. 40 times. At this time, heating between room temperature and 800 ° C. is performed at 160 ° C. per hour, from which heating to 1250 ° C. is performed immediately after reaching 800 ° C. and cooling to 800 ° C. immediately after reaching 1250 ° C. Was performed at 450 ° C. per hour to obtain one heat cycle. Then, in the same operation as above, a thermal cycle reciprocating between 800 ° C. and 1250 ° C. was repeated 40 times. After the final heat cycle, the mixture was cooled from 800 ° C. to room temperature at a rate of 160 ° C. per hour. The size of the sample was measured before and after this test, and the residual volume expansion coefficient was determined from the change in the size. The residual volume expansion coefficient obtained at this time was evaluated according to the following criteria.

優:残存体積膨張率が10%以下である。
良:残存体積膨張率が10%超20%以下である。
可:残存体積膨張率が20%超30%以下である。
不可:残存体積膨張率が30%超である。
Excellent: The residual volume expansion coefficient is 10% or less.
Good: The residual volume expansion coefficient is more than 10% and 20% or less.
Possible: The residual volume expansion coefficient is more than 20% and 30% or less.
Impossible: The residual volume expansion rate is more than 30%.

〔総合判定〕
上記亀裂と残存膨張率の評価結果に応じて、以下の基準で判定した。
優:亀裂、残存体積膨張率が共に優である。
良:亀裂、残存体積膨張率の一方が良で、もう一方が可及び不可ではない。
可:亀裂、残存体積膨張率の一方が可であり、もう一方が不可ではない。
不可:亀裂、残存体積膨張率のいずれかが不可である。
〔Comprehensive judgment〕
According to the evaluation result of the crack and the residual expansion coefficient, the judgment was made according to the following criteria.
Excellent: Both cracks and residual volume expansion rate are excellent.
Good: One of the cracks and the residual volume expansion coefficient is good, and the other is not acceptable or unacceptable.
Possible: One of the crack and the residual volume expansion coefficient is acceptable, and the other is not impossible.
Impossible: Either crack or residual volume expansion rate is impossibility.

上記した試験結果について、表1~表2に併せて示した。また、上記式(1)、式(2)、式(4)の各関係式の数値について、それぞれ残存体積膨張率と亀裂の合計長さとの関係を、図1A~3Bに示した。 The above test results are also shown in Tables 1 and 2. Further, with respect to the numerical values of the relational expressions of the above equations (1), (2) and (4), the relationship between the residual volume expansion coefficient and the total length of cracks is shown in FIGS. 1A to 3B.

表1~2から明らかなように、例1~8の耐食性に優れた高ジルコニア質電鋳耐火物は、製造された鋳塊に生じる亀裂の合計長さが短いため、製造効率を向上できるとともに、大型の鋳造耐火物の製造も可能である。また、この高ジルコニア質電鋳耐火物は、残存体積膨張率が小さく使用時の温度変化に対する割れ耐性が高いため、長寿命な鋳造耐火物とできる。 As is clear from Tables 1 and 2, the high zirconia electroformed refractories having excellent corrosion resistance in Examples 1 to 8 can improve the production efficiency because the total length of cracks generated in the produced ingot is short. It is also possible to manufacture large cast refractory materials. Further, this high zirconia electroformed refractory has a small residual volume expansion coefficient and high crack resistance to temperature changes during use, so that it can be a long-life cast refractory.

さらに、表1~2には、本発明に該当しない高ジルコニア質電鋳耐火物を比較例として示した。 Further, Tables 1 and 2 show high zirconia electroformed refractories not applicable to the present invention as comparative examples.

例9~14の耐火物は、NaO及びKOの含有量が比較的低いため、亀裂の合計長さが非常に長かったり、残存膨張率が高く、製造時に亀裂が生じやすかったり、使用時の温度変化に対する割れ耐性が低かったりする。従って、これらの耐火物は、生産性又は使用寿命に問題が生じるおそれがある。 Since the refractories of Examples 9 to 14 have a relatively low content of Na 2 O and K 2 O, the total length of cracks is very long, the residual expansion coefficient is high, and cracks are likely to occur during manufacturing. The crack resistance to temperature changes during use is low. Therefore, these refractories may cause problems in productivity or service life.

以上の結果より、本発明の高ジルコニア質電鋳耐火物は、ジルコニアの含有量が非常に高いものでありながら生産性に優れ、残存膨張率も低く、かつ、製造時及び使用時のいずれにおいても亀裂発生が抑制された安定した耐火物である。 From the above results, the high zirconia electrocast refractory of the present invention has a very high zirconia content, is excellent in productivity, has a low residual expansion rate, and is manufactured or used. Is a stable refractory with suppressed cracking.

本発明の高ジルコニア質電鋳耐火物は、高い耐食性を有し、製造時や使用時においても亀裂を発生し難く、ガラス溶融炉へ適用した場合でも溶融ガラスを汚染する心配がないため、特にガラス溶融炉の耐火物として好適である。 The highly zirconia refractory refractory of the present invention has high corrosion resistance, is less likely to cause cracks during manufacturing and use, and is not likely to contaminate the molten glass even when applied to a glass melting furnace. It is suitable as a refractory material for glass melting furnaces.

Claims (7)

化学組成として、酸化物基準で、ZrOを96.7~98.5質量%、SiOを0.8~2.7質量%、Alを0.1~0.4質量%、NaOを0~0.2質量%、KOを0.21~1質量%、含有し、Bを実質的に含有せず、
前記NaO及び前記KOの含有量が、次の式(1)
0.175質量%≦CK2O/2+CNa2O≦0.6質量% …(1)
(式中、CK2OはKOの含有量、CNa2OはNaOの含有量、であり、これら含有量はいずれも耐火物中における質量%で表す。)の関係を満たすことを特徴とする高ジルコニア質電鋳耐火物。
As for the chemical composition, based on oxides, ZrO 2 is 96.7 to 98.5% by mass, SiO 2 is 0.8 to 2.7% by mass, and Al 2 O 3 is 0.1 to 0.4% by mass. It contains 0 to 0.2% by mass of Na 2 O, 0.21 to 1% by mass of K 2 O, and substantially no B 2 O 3 .
The content of the Na 2 O and the K 2 O is the following formula (1).
0.175 % by mass ≤ C K2O / 2 + C Na2O ≤0.6 % by mass ... (1)
(In the formula, C K2O is the content of K2O, CNa2O is the content of Na2O , and both of these contents are expressed by mass% in the refractory). High zirconia electric casting refractory.
前記NaO、前記KO及び前記SiOの含有量が、次の式(2)
0.09≦(CK2O/2+CNa2O)/CSiO2≦0.4 …(2)
(式中、CK2OはKOの含有量、CNa2OはNaOの含有量、CSiO2はSiOの含有量であり、これら含有量はいずれも耐火物中における質量%で表す。)の関係を満たす請求項1に記載の高ジルコニア質電鋳耐火物。
The content of the Na 2 O, the K 2 O and the SiO 2 is the following formula (2).
0.09 ≤ (C K2O / 2 + C Na2O ) / C SiO2 ≤ 0.4 ... (2)
(In the formula, C K2O is the content of K2O, CNa2O is the content of Na2O, and CSiO2 is the content of SiO2 , and these contents are all expressed in% by mass in the refractory. ). The high zirconia electrocast refractory according to claim 1.
前記CNa2Oに対する前記CK2Oの比(CK2O/CNa2O)が2以上である請求項1又は2に記載の高ジルコニア質電鋳耐火物。 The high zirconia electroformed refractory according to claim 1 or 2, wherein the ratio of CK2O to C Na2O (C K2O / C Na2O ) is 2 or more. 嵩比重が5.4以上である請求項1乃至3のいずれか1項記載の高ジルコニア質電鋳耐火物。 The high zirconia electroformed refractory according to any one of claims 1 to 3, wherein the bulk specific density is 5.4 or more. 気孔率が1.5%以下である請求項1乃至4のいずれか1項記載の高ジルコニア質電鋳耐火物。 The highly zirconia electroformed refractory according to any one of claims 1 to 4, wherein the porosity is 1.5% or less. その質量が200kg以上である請求項1乃至5のいずれか1項記載の高ジルコニア質電鋳耐火物。 The highly zirconia electroformed refractory according to any one of claims 1 to 5, wherein the mass is 200 kg or more. 耐火物原料を高温で溶解し、鋳型中で冷却して、請求項1~6のいずれか1項に記載の高ジルコニア質電鋳耐火物を製造することを特徴とする高ジルコニア質電鋳耐火物の製造方法。 The high zirconia electric casting refractory according to any one of claims 1 to 6, wherein the refractory raw material is melted at a high temperature and cooled in a mold to produce the high zirconia electric casting refractory. Manufacturing method of goods.
JP2018138361A 2017-09-08 2018-07-24 High zirconia electroformed refractory and its manufacturing method Active JP7099898B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
TW107126673A TW201912610A (en) 2017-09-08 2018-08-01 High-zirconia electrocast refractory and method for manufacturing the same
KR1020180104474A KR20190028309A (en) 2017-09-08 2018-09-03 High-zirconia electrocast refractory and method for manufacturing the same
EP18192492.9A EP3453689B1 (en) 2017-09-08 2018-09-04 High-zirconia electrocast refractory and method for manufacturing the same
CN201811045414.0A CN109467447B (en) 2017-09-08 2018-09-07 High zirconia electrocast refractory and process for producing the same
US16/124,913 US10815155B2 (en) 2017-09-08 2018-09-07 High-zirconia electrocast refractory and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017172924 2017-09-08
JP2017172924 2017-09-08

Publications (2)

Publication Number Publication Date
JP2019048761A JP2019048761A (en) 2019-03-28
JP7099898B2 true JP7099898B2 (en) 2022-07-12

Family

ID=65905426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018138361A Active JP7099898B2 (en) 2017-09-08 2018-07-24 High zirconia electroformed refractory and its manufacturing method

Country Status (3)

Country Link
JP (1) JP7099898B2 (en)
KR (1) KR20190028309A (en)
TW (1) TW201912610A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116472257A (en) * 2020-11-24 2023-07-21 圣戈班Tm股份有限公司 High zirconia electrofusion cast refractory

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010260782A (en) 2009-04-06 2010-11-18 Asahi Glass Co Ltd Highly zirconia-based refractory and melting furnace
WO2012046785A1 (en) 2010-10-06 2012-04-12 旭硝子株式会社 High zirconia refractory product
JP2013514254A (en) 2009-12-16 2013-04-25 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン Refractory with high zirconia content
WO2013151106A1 (en) 2012-04-06 2013-10-10 旭硝子株式会社 High zirconia fused cast refractory
JP2014129199A (en) 2012-12-28 2014-07-10 Agc Ceramics Co Ltd High zirconia electrocast refractory material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6049124B2 (en) 1978-06-19 1985-10-31 ライオン株式会社 Method for drying aluminosilicate slurry
JPS5912619A (en) 1982-07-13 1984-01-23 Nippon Telegr & Teleph Corp <Ntt> Automatic correcting method of analog-digital converter
FR2648455B1 (en) 1989-06-15 1993-04-23 Produits Refractaires MOLTEN REFRACTORY PRODUCTS WITH HIGH ZIRCONIA CONTENT
JP3518560B2 (en) * 1994-08-10 2004-04-12 サンゴバン・ティーエム株式会社 High zirconia molten refractory
FR2897861B1 (en) 2006-02-24 2008-06-13 Saint Gobain Ct Recherches REFRACTORY WITH HIGH RESISTANCE ZIRCONIA CONTENT

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010260782A (en) 2009-04-06 2010-11-18 Asahi Glass Co Ltd Highly zirconia-based refractory and melting furnace
JP2013514254A (en) 2009-12-16 2013-04-25 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン Refractory with high zirconia content
WO2012046785A1 (en) 2010-10-06 2012-04-12 旭硝子株式会社 High zirconia refractory product
WO2013151106A1 (en) 2012-04-06 2013-10-10 旭硝子株式会社 High zirconia fused cast refractory
JP2014129199A (en) 2012-12-28 2014-07-10 Agc Ceramics Co Ltd High zirconia electrocast refractory material

Also Published As

Publication number Publication date
TW201912610A (en) 2019-04-01
JP2019048761A (en) 2019-03-28
KR20190028309A (en) 2019-03-18

Similar Documents

Publication Publication Date Title
JP6002283B2 (en) Refractory with high zirconia content
JP6030953B2 (en) High zirconia electroformed refractory
US8563453B2 (en) High zirconia fused cast refractory
US9242903B2 (en) High zirconia fused cast refractory
KR20120127594A (en) Refractory product having high zirconia content
KR20140112510A (en) Refractory product having a high content of zirconia
WO2016013384A1 (en) Alumina-zirconia-silica fused-cast refractory, glass melting furnace, and method for producing glass plate
JP7168577B2 (en) Alumina/Zirconia/Silica Fused Casting Refractory and Glass Melting Kiln
JP6726198B2 (en) Molten product with high zirconium content
JP6140687B2 (en) High zirconia electroformed refractory
JP7099898B2 (en) High zirconia electroformed refractory and its manufacturing method
CN109467447B (en) High zirconia electrocast refractory and process for producing the same
WO2016006531A1 (en) Fused-cast alumina-zirconia-silica refractory, glass melting furnace, and method for producing glass plate
JP4503339B2 (en) High zirconia electroformed refractories and manufacturing method thereof
WO2023182007A1 (en) High-zirconia electro-fused cast refractory material

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20200914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201109

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210406

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220630

R150 Certificate of patent or registration of utility model

Ref document number: 7099898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150