WO2016006531A1 - Fused-cast alumina-zirconia-silica refractory, glass melting furnace, and method for producing glass plate - Google Patents

Fused-cast alumina-zirconia-silica refractory, glass melting furnace, and method for producing glass plate Download PDF

Info

Publication number
WO2016006531A1
WO2016006531A1 PCT/JP2015/069156 JP2015069156W WO2016006531A1 WO 2016006531 A1 WO2016006531 A1 WO 2016006531A1 JP 2015069156 W JP2015069156 W JP 2015069156W WO 2016006531 A1 WO2016006531 A1 WO 2016006531A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconia
glass
alumina
refractory
sio
Prior art date
Application number
PCT/JP2015/069156
Other languages
French (fr)
Japanese (ja)
Inventor
小川 修平
戸村 信雄
泰夫 篠崎
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2016006531A1 publication Critical patent/WO2016006531A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/43Use of materials for furnace walls, e.g. fire-bricks
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • C04B35/657Processes involving a melting step for manufacturing refractories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs

Definitions

  • the present invention relates to an alumina / zirconia / silica fused cast refractory, a glass melting furnace, and a method for producing a glass plate, and particularly as a stone of badelite crystal in contact with molten glass in a temperature range of 1450 ° C. or lower.
  • the present invention relates to an alumina / zirconia / silica fusion cast refractory capable of suppressing outflow, a glass melting furnace, and a method for producing a glass plate.
  • the molten cast refractory is usually obtained by pouring hot water in which a refractory raw material having a predetermined composition is completely melted in an electric furnace into a mold having a predetermined shape, and cooling and re-solidifying to normal temperature.
  • the molten cast refractory obtained in this way is widely known as a highly erodible refractory that is completely different from the structure and manufacturing method of the fired and unfired bonded refractory.
  • the molten cast refractory obtained by the present invention is generally produced by casting a refractory raw material melted in an electric furnace into a desired shape, it will be described as a molten cast refractory hereinafter.
  • the molten cast refractory in the present specification includes those that are solidified in the furnace after melting, and the molten cast refractory obtained by pulverizing the molten refractory is useful as an aggregate of the bonded refractory. .
  • alumina or zirconia molten cast refractories used in conventional glass melting furnaces there are mainly fused cast refractories of high alumina, alumina / zirconia / silica, and high zirconia.
  • high-alumina melt-cast refractories have high erosion resistance against glass, do not cause defects such as bubbles and cords in glass, are stable against alkali vapor, and deform under load. There is nothing to do. However, since the content of alumina, which is lower in erosion resistance than zirconia, is larger, the erosion resistance is lower than in other molten cast refractories.
  • the alumina / zirconia / silica fused cast refractory contains a relatively large amount of zirconia as disclosed in, for example, Patent Document 1, and has a high erosion resistance against molten glass.
  • Patent Document 1 a high zirconia molten cast refractory containing 90% or more of ZrO 2 has also been proposed as described in Patent Document 2, and a molten cast refractory containing a large amount of zirconia is molten glass or scattered raw refractory. It has very high erosion resistance with respect to the batch, and is sufficiently satisfactory in terms of erosion resistance when used in a portion in direct contact with molten glass.
  • refractories containing a relatively large amount of zirconia are preferably used for glass melting kilns because they are particularly excellent in erosion resistance.
  • Typical refractory is a high zirconia fused cast refractories containing alumina-zirconia-silica fusion cast refractories containing ZrO 2 33% to 41% and a ZrO 2 80% to 95%.
  • high zirconia fused cast refractories with high zirconia content and high erosion resistance have high erosion resistance to glass and low probability of causing glass defects. It came to be used for.
  • high zirconia melt cast refractories have a very high ZrO 2 content, so such refractories are expensive and costly during production.
  • alumina, zirconia, and siliceous molten cast refractories have been used most widely over decades because they have good erosion resistance and low manufacturing costs, and are mainly in contact with molten glass. It is also used for the zones to be used and for the superstructure of the glass melting furnace.
  • This alumina / zirconia / silica fused cast refractory generally consists of about 80-85% crystals and 15-20% matrix glass phase filling the crystal gaps.
  • the crystal phase is composed of corundum crystals, which are trigonal crystals of alumina, and badelite crystals, which are monoclinic crystals of zirconia.
  • the composition thereof is, for example, 45.8% to 52% of alumina / zirconia / silica fused cast refractories such as ZB1681, ZB1691, ZB1711 (above, trade name, manufactured by AGC Ceramics Co., Ltd.) currently available on the market.
  • Al 2 O 3 33% to 41% ZrO 2 , 12% to 13.5% SiO 2 , and 1% to 1.9% Na 2 O.
  • the matrix glass is an amorphous glass phase having no specific crystal structure mainly composed of silica.
  • zirconia has a transformation transition due to monoclinic and tetragonal phase transitions at around 1150 ° C. when the temperature is raised and around 1000 ° C. when the temperature is lowered, and exhibits rapid contraction and expansion.
  • the matrix glass phase acts as a cushion between crystals, and absorbs stress due to transformation expansion due to the transition from tetragonal to monoclinic zirconia in the production of fused refractories of alumina, zirconia, and siliceous. Therefore, it plays an important role for producing an ingot without cracks.
  • Alumina / zirconia / silica fused cast refractories that suppress the occurrence of stone defects include alumina / zirconia / Al 2 O 3 / SiO 2 ratio of 1 or less in Patent Document 3 containing 62% or more of ZrO 2.
  • Siliceous fused cast refractories have been proposed. In the said refractory material, it is possible to suppress the cracking of the refractory material that occurs during production, and to reduce the wear rate and the amount of stone generated on the glass.
  • Patent Document 3 the alumina / zirconia / silica fused cast refractory of Patent Document 3 is expensive because of its high ZrO 2 content, and it is difficult to use it widely as a general-purpose glass melting refractory.
  • Patent Document 4 in the production of alumina / zirconia / silica fused cast refractories, by adding an oxidant such as tin oxide and sodium nitrate to the refractory raw material, the number of bubbles foamed upon contact with glass Low-alumina / zirconia / siliceous fusion cast refractories have been proposed.
  • alumina / zirconia / silica fused cast refractories it is easy to generate stones when bubbles come into contact with the remaining bedderite layer, so the generation of bubbles on the surface of the refractory is suppressed. There is a possibility that the amount of stone generated can be suppressed in the refractory to be tried.
  • JP 62-065981 A Japanese Patent Laid-Open No. 3-028175 Japanese Patent Laid-Open No. 48-032408 Japanese Patent Laid-Open No. 10-072264
  • the present invention solves the problems of the prior art described above, suppresses the generation of stone in the glass, and also has high erosion resistance against the glass, and is suitable as a refractory for a glass manufacturing apparatus.
  • An object of the present invention is to provide an alumina / zirconia / silica fused cast refractory and a glass melting furnace using the same.
  • the inventors of the present invention are alumina / zirconia / siliceous fusion cast refractories containing Al 2 O 3 , ZrO 2 , SiO 2 and Na 2 O as essential components, and the content of the above essential components It was found that the above-mentioned problems could be solved by blending so as to be a predetermined amount, and the present invention was completed.
  • [5] The alumina / zirconia / silica fused cast refractory according to any one of [1] to [4], further containing 0.1 to 3.0% of a total amount of K 2 O and Li 2 O.
  • [6] The alumina / zirconia / silica fusion cast refractory according to any one of [1] to [5], further containing CaO in an amount of 0.1% to 2.0%.
  • [7] The alumina / zirconia / silica fusion cast refractory according to any one of [1] to [6], wherein ZrO 2 / (Al 2 O 3 + ZrO 2 ) ⁇ 0.39.
  • a glass melting furnace comprising the alumina / zirconia / siliceous fusion cast refractory according to any one of [1] to [8].
  • a method for producing a glass plate comprising: heating a glass raw material in the glass melting furnace according to [9] or [10] to obtain molten glass, and forming the molten glass into a plate shape.
  • the occurrence of stones in the glass at the time of melting the glass is suppressed, and the glass has a high erosion resistance.
  • An alumina / zirconia / siliceous fusion cast refractory suitable as a product can be provided.
  • the glass melting furnace of the present invention since the generation of stones in the molten glass is suppressed and the glass has high erosion resistance, the glass can be stably melted, and the quality is improved. Good glass products can be manufactured with good yield.
  • the generation of stones in the molten glass is suppressed, the glass can be stably melted, and a glass having a good quality can be produced with a high yield.
  • the alumina / zirconia / silica fusion cast refractory according to one embodiment of the present invention contains Al 2 O 3 , ZrO 2 , SiO 2 and Na 2 O as essential components, and the content of these essential components Is characterized in that it is blended so as to have a predetermined amount.
  • the molten cast refractory may be referred to as a refractory or an ingot.
  • a nepheline layer is formed on the back side of the remaining beddelite layer.
  • a nepheline layer may be formed on the surface side of the remaining badelite layer.
  • Non-Patent Document 1 does not specify whether it is crystalline or glassy, but it is described that a nepheline layer is formed on the surface of the alumina / zirconia / silica fused cast refractory after use.
  • a nepheline crystal is a tridymite-based silica derivative compound having a stoichiometric composition of NaAlSiO 4 , and is known to undergo a crystal transition to a cristobalite-based carnegiaite crystal in a high-temperature field exceeding 1254 ° C. Further, as described in Non-Patent Document 2, nepheline crystals maintain their crystal structures in a wide range of compositions, and the crystal transition temperature and melting point to carnegite crystals change. The crystal transition temperature and melting point are greatly affected by the composition.
  • nepheline layer means a nepheline crystal represented by a stoichiometric composition of NaAlSiO 4 , a carnegiaite crystal that is a high-temperature form of nepheline, and a composition range in which the crystal structure is maintained. It includes all crystals and glass containing these crystals by melting (hereinafter also referred to as nepheline glass).
  • the carnegite crystal is a crystal that is generated when the nepheline crystal undergoes a crystal transition in a high temperature field.
  • the melting point of nepheline crystal or carnegite crystal varies greatly with the composition as described above. For example, as the content of SiO 2 increases, the melting point of nepheline crystal or carnegite crystal decreases.
  • the nepheline crystal composition of Na 2 Al 2 Si 3 O 10 starts to partially melt at around 1120 ° C. and around 1330 ° C. Then it melts completely. Further, the melting point is further lowered by including impurities such as CaO, K 2 O, Fe 2 O 3 in this crystal composition.
  • nepheline-like glass means a glass rich in Na 2 O and Al 2 O 3 , and is not limited to a glass represented by the composition of NaAlSiO 4 , for example, K 2 O, CaO, MgO, etc.
  • the impurities may be included.
  • This nepheline glass is known to have a very high viscosity as compared with ordinary soda lime glass.
  • the above-mentioned nepheline layer is composed of Na 2 O contained in the soda lime glass and Al 2 O 3 eluted from the refractory in the vicinity of the surface of the refractory.
  • the present inventors have studied to use this nepheline layer positively to suppress stones.
  • the nepheline layer is actively generated to the vicinity of the surface layer of the refractory during use of the refractory, and the condition where the residual beddelite is protected by the nepheline layer and the stone is prevented from falling off is completed. did.
  • nepheline or carnegiaite crystals can be generated near the surface of the refractory during use of the refractory, the outflow of badelite as a stone is physically suppressed.
  • the melting point of the nepheline crystal or the carnegite crystal varies greatly with the composition, so depending on the composition formed near the surface of the refractory and the operating temperature of the refractory, it is not always possible to use the It may not exist, and may exist as a molten highly viscous nepheline glass. However, even when a highly viscous nepheline glass is produced, the viscosity of the glass is so high that it is possible to suppress the fall of the stone.
  • the alumina / zirconia / silica fusion cast refractory according to an embodiment of the present invention is a vitreous layer of a nepheline layer made of glass or a highly viscous glass, and actively uses the refractory in the vicinity of the surface layer of the refractory. And the remaining beddelite layer is protected by this nepheline layer, so that the stone can be prevented from falling off.
  • Al 2 O 3 is an essential component in one embodiment of the present invention.
  • Alumina constitutes a corundum crystal, and this corundum crystal has high erosion resistance and does not exhibit abnormal expansion and contraction due to temperature change.
  • alumina is a component having an action of forming a nepheline layer near the surface of the refractory when the refractory comes into contact with the molten glass. Since this nepheline layer acts as a protective layer that suppresses the falling off of the stone, it is possible to suppress the amount of generated stone.
  • the Al 2 O 3 content is 30 to 80%.
  • the content of Al 2 O 3 is 80% or less, the content of ZrO 2 becomes relatively low without being relatively low, and the erosion resistance is good. Moreover, it is difficult to produce mullite and it is easy to obtain an ingot without cracks.
  • the content of Al 2 O 3 is 30% or more, the content of ZrO 2 is relatively high without becoming too high, and in this case as well, it becomes easy to obtain an ingot without cracks.
  • the Al 2 O 3 content is preferably 40 to 75%, more preferably 50% to 70%, and even more preferably 55% to 65%. Unless otherwise indicated, all percentages in the present specification are mass percentages based on oxides.
  • ZrO 2 is a component that constitutes a badelite crystal and enhances the erosion resistance of the refractory to the molten glass, and is an essential component in one embodiment of the present invention.
  • the ZrO 2 content is 15 to 50%.
  • ZrO 2 is preferably contained in a large amount from the viewpoint of improving the erosion resistance. When the content is 15% or more, the erosion resistance is good.
  • the content of ZrO 2 is 50% or less, in the range of the amount of matrix glass described later, expansion and contraction due to the phase transition of zirconia are alleviated, and an ingot without cracks is obtained.
  • the ZrO 2 content is preferably 22 to 45%, more preferably 26% to 41%, and even more preferably 30% to 37%.
  • eutectic zirconia is a small zirconia crystal that precipitates at the eutectic point at the end of cooling during the production of alumina, zirconia, and siliceous refractories by the melting method.
  • primary zirconia is a large zirconia crystal that precipitates in the early stage of cooling. The distinction between the two can be easily distinguished by the size of the crystal by observing with a microscope. Moreover, when observed with a microscope, eutectic zirconia crystals are observed as a collection of fine crystals in corundum grains, and adjacent crystals are oriented in the same direction, but primary zirconia crystals are present.
  • the crystal grain size of the eutectic zirconia crystal is about 1/5 or less of the maximum crystal grain size of the zirconia crystal.
  • SiO 2 is a main component that forms the skeleton of the matrix glass, and is an essential component in one embodiment of the present invention. Its content is 2.0 to 10.5%. If it is 2.0% or more, the absolute amount of the matrix glass increases, and an ingot without cracks is easily obtained, and the obtained ingot exhibits a good structure. Further, if it is 10.5% or less, the content of Al 2 O 3 and ZrO 2 which are relatively crystalline components is increased, the erosion resistance is improved, and the thickness of the residual bedderite is decreased. Reduces stone production.
  • the content of SiO 2 is preferably 3.5 to 8.5%, more preferably 4.5% to 7.5%, and even more preferably 5.0% to 7.0%.
  • Na 2 O exhibits the action of controlling the viscosity of the matrix glass and the action of nephelinizing the matrix glass in the production of the alumina / zirconia / silica fused cast refractory, and is an essential component in one embodiment of the present invention as in the case of alumina. It is.
  • the content of Na 2 O is 0.5 to 10%.
  • a nepheline layer can be formed near the surface of the refractory when the refractory comes into contact with the molten glass. Since this nepheline layer acts as a protective layer that suppresses the falling off of the stone, it is possible to suppress the amount of generated stone.
  • the content of Na 2 O is preferably 0.9 to 5%, more preferably 1.6% to 4.0%, and even more preferably 1.9% to 3.5%.
  • Y 2 O 3 is not an essential component, but Y 2 O 3 has the effect of stabilizing part or all of ZrO 2 into cubic crystals. Therefore, when using a refractory, zirconia is generated when the temperature is increased. The shrinkage and expansion due to the phase transition can be alleviated. For this reason, at the time of refractory use, it becomes possible to suppress the opening of the joint between refractories, and it becomes possible to improve erosion resistance and to suppress the amount of stone formation.
  • the content of Y 2 O 3 is preferably 0.8 to 5.0%.
  • the content of Y 2 O 3 is preferably 1.0 to 4.0%, more preferably 1.3 to 3.0%, further preferably 1.5 to 2.7%, and 1.7 to 2%. .4% is particularly preferred.
  • Y 2 O 3 may be used in combination with a component containing at least one member of the group consisting of CeO 2 , MgO, Sc 2 O 3 and V 2 O 5 , or may be replaced by a combination of these components alone or in combination. May be.
  • K 2 O and Li 2 O are not essential components, but are components that have an effect of adjusting the viscosity of the matrix glass and the high-temperature viscosity of the nepheline layer. These K 2 O and Li 2 O are preferably contained in a total content of 0.1% to 3.0%. K 2 O and Li 2 O in the total amount the production of low-viscosity matrix glass and 3.0% or less can be suppressed.
  • CaO is not an essential component, but is a component that exhibits an effect of adjusting the viscosity of the matrix glass and the high temperature viscosity of the nepheline layer.
  • This CaO is preferably contained in the range of 0.1% to 2.0%. When the total amount of CaO is 2.0% or less, the formation of low-viscosity matrix glass is suppressed. Further, the zirconia crystals are not dissolved, and the erosion resistance of the product is improved.
  • the total amount of essential components of Al 2 O 3 + ZrO 2 + SiO 2 + Na 2 O contained in the refractory is 85% or more. To do. This is because if the refractory contains too many other components, the content of Al 2 O 3 and ZrO 2 decreases, the erosion resistance to the glass decreases, and the amount of stone generated increases. It is because it will do.
  • the total amount of Al 2 O 3 + ZrO 2 + SiO 2 + Na 2 O is preferably 90% or more, more preferably 95% or more, further preferably 98% or more, and 99% The above is particularly preferable.
  • the content of Al 2 O 3 , ZrO 2 , SiO 2 , and Na 2 O in the refractory is set within a predetermined range, and further, the relationship between the amounts of these components is set as a predetermined relationship.
  • an alumina / zirconia / silica fused cast refractory material that suppresses the generation of stones and has high erosion resistance to glass can be obtained.
  • Na 2 O is an essential component, the content of Al 2 O 3 and Na 2 O with respect to SiO 2, Al 2 O 3 / SiO 2 ⁇ 6.5 respectively, Na 2 O / The reason for limiting to the range of SiO 2 ⁇ 0.25 will be described in more detail.
  • the nepheline crystal is a compound having a stoichiometric composition of NaAlSiO 4 .
  • nepheline crystals and carnegite crystals are actively produced in the vicinity of the surface of the refractory. It is necessary to positively supply Al 2 O 3 not contained in the refractory from the inside. That is, as the Al 2 O 3 content in the refractory is increased, a nepheline layer is more likely to be generated near the surface layer of the refractory.
  • a nepheline layer can be generated near the surface of the refractory and the amount of generated stones can be suppressed depends on the amount of zirconia contained in the refractory, the ZrO 2 / (ZrO 2 + Al 2 O 3 ) ratio, and Na 2 O / SiO. Also affected by 2 ratios. However, the inclusion of Al 2 O 3 in the range of Al 2 O 3 / SiO 2 ⁇ 6.5 has a particularly large influence. Under such conditions, a protective layer made of a nepheline layer is placed near the refractory surface layer. It can be formed effectively, and the generation amount of stone can be suppressed.
  • the content of Al 2 O 3 with respect to SiO 2 in the alumina-zirconia-silica fusion cast refractories is Al 2 O 3 / SiO 2 ⁇ 6.5.
  • the content ratio is preferably Al 2 O 3 / SiO 2 ⁇ 8.0, more preferably Al 2 O 3 / SiO 2 ⁇ 9.0, and further preferably Al 2 O 3 / SiO 2 ⁇ 10.0.
  • the nepheline crystal has a melting point of 1526 ° C. ⁇ 2 ° C. in the case of the stoichiometric composition as described above, but the composition of nepheline generated in the vicinity of the surface of the refractory by contact with glass is the stoichiometric composition. a low compositional a content of Na 2 O than, the melting point is greatly reduced in such nepheline crystals.
  • a conventional alumina / zirconia / silica fusion cast refractory it starts to partially melt at approximately 1100 ° C. to 1400 ° C., depending on the use environment.
  • the melting point of nepheline is low, the heat resistance of the refractory is lowered, and the protective effect of the nepheline layer is reduced.
  • nepheline layer having a high Na 2 O content in the vicinity of the refractory surface layer, it becomes possible to suppress the generation amount of stones to a higher temperature range.
  • the nepheline layer is generated by supplying Na 2 O from molten soda lime glass, but the Na 2 O content in the refractory is increased as in the present invention, and Na 2 O is also added from the refractory side. Is supplied, the melting point of the nepheline layer formed near the surface of the refractory is improved (increased).
  • the melting point of the nepheline layer to be generated is affected by the amount of zirconia, the ratio of ZrO 2 / (ZrO 2 + Al 2 O 3 ), the ratio of Al 2 O 3 / SiO 2, and the like.
  • the inclusion of Na 2 O in the range of Na 2 O / SiO 2 ⁇ 0.25 has a particularly great influence.
  • a protective layer composed of a nepheline layer can be formed into a refractory to a higher temperature range. It can be formed in the vicinity of the surface layer, and the generation amount of stone can be suppressed.
  • nepheline is partially generated in the matrix glass having a high Na 2 O concentration in the range of 0.25 ⁇ Na 2 O / SiO 2 ⁇ 0.40, and 0.40 In the range of ⁇ Na 2 O / SiO 2 , the matrix glass becomes substantially all nepheline.
  • the content of Na 2 O with respect to SiO 2 in the alumina-zirconia-silica fusion cast refractories are Na 2 O / SiO 2 ⁇ 0.25 .
  • Na 2 O / SiO 2 ⁇ 0.29 is preferable, Na 2 O / SiO 2 ⁇ 0.35 is more preferable, and Na 2 O / SiO 2 ⁇ 0.40 is still more preferable.
  • a blending amount it is possible to obtain an alumina / zirconia / silica fused cast refractory that suppresses the generation of stones in the glass and also has high erosion resistance against the glass.
  • nepheline quality content of Na 2 O with respect to content and SiO 2 to Al 2 O 3 with respect to SiO 2 is higher up hotter zone
  • a protective layer consisting of layers can be formed near the surface of the refractory and it is possible to reduce the amount of stones generated, but on the other hand, the cause is not clear, but cracks in the ingot tend to occur easily It is in.
  • the content ratio of Al 2 O 3 with respect to SiO 2 in the alumina / zirconia / silica fusion cast refractory according to one embodiment of the present invention is preferably Al 2 O 3 / SiO 2 ⁇ 25.
  • Al 2 O 3 / SiO 2 ⁇ 20 is more preferable, Al 2 O 3 / SiO 2 ⁇ 15 is more preferable, and Al 2 O 3 / SiO 2 ⁇ 12 is particularly preferable.
  • the content of Na 2 O with respect to SiO 2 in the alumina-zirconia-silica fusion cast refractories is preferably Na 2 O / SiO 2 ⁇ 3 .
  • Na 2 O / SiO 2 ⁇ 2 is more preferable, Na 2 O / SiO 2 ⁇ 1 is more preferable, and Na 2 O / SiO 2 ⁇ 0.5 is particularly preferable.
  • the alumina / zirconia / siliceous fusion cast refractory according to an embodiment of the present invention may include hafnium oxide HfO 2 naturally present in a zirconia source.
  • the content of the refractory of the present invention is 5% or less, and generally 2% or less.
  • ZrO 2 means zirconia and trace amounts of hafnium oxide contained therein.
  • the other components are not particularly limited as long as they do not impair the characteristics of the alumina / zirconia / silica fusion cast refractory according to one embodiment of the present invention, and the alumina / zirconia / silica fusion
  • the well-known component used for a cast refractory is mentioned.
  • examples of other components include oxides such as SnO 2 , ZnO, CuO, MnO 2 , Cr 2 O 3 , P 2 O 5 , Sb 2 O 5 , As 2 O 5 , and Yb 2 O 3 . When these components are contained, the total amount is preferably 10% or less, preferably 3% or less, and more preferably 1% or less.
  • the amount of stone generated is affected by the Al 2 O 3 / SiO 2 ratio, Na 2 O / SiO 2 ratio, ZrO 2 content, etc.
  • zirconia and The ratio of zirconia to alumina is preferably ZrO 2 / (Al 2 O 3 + ZrO 2 ) ⁇ 0.39. This is because primary crystal zirconia is not continuous with crystal particles, and primary crystal zirconia is more likely to fall out as stone than eutectic zirconia. This is because the amount of primary zirconia produced can be reduced. Further, it is preferable that 0.33 ⁇ ZrO 2 / (Al 2 O 3 + ZrO 2).
  • Alumina-zirconia-silica melt cast refractory according to an embodiment of the present invention is a component present in the starting material used or produced during the manufacture of the product, i.e. halogens such as fluorine, chlorine, Magnesium, boron, titanium, and iron may be contained as impurities, but these impurities are preferable because they reduce the erosion resistance.
  • halogens such as fluorine, chlorine, Magnesium, boron, titanium, and iron may be contained as impurities, but these impurities are preferable because they reduce the erosion resistance.
  • impurity means an unavoidable composition that is inevitably incorporated in the starting material or due to the reaction of these compositions.
  • iron or titanium oxides are harmful and their content must be limited to the traces incorporated into the starting material as impurities.
  • the mass of Fe 2 O 3 + TiO 2 is preferably 1% or less, and more preferably less than 0.5%.
  • the alumina / zirconia / silica fusion cast refractory is configured to contain such a predetermined amount of components, for example, when immersed in soda lime glass at 1300 ° C.
  • a protective layer composed of a nepheline layer can be formed in the vicinity of the surface layer of the refractory, and the amount of stone generated can be suppressed.
  • the amount of stone generated is determined by directly observing the amount of stone falling from the surface of the refractory by observing the cross section of the refractory with an optical microscope (Nikon Corporation, ECLIPSE LV100) after performing an erosion test. Can be evaluated.
  • the amount of generated stone is evaluated by a sample in which a predetermined shear rate is given after immersion in glass at 1300 ° C. for 20 days (480 hours). This result is compared with the result of the same test in the alumina / zirconia / silica fusion cast refractory (AGC Ceramics Co., Ltd., trade name: ZB-1691) that is widely used in glass manufacturing equipment. % Or less refractory is preferred.
  • the generation amount of stone is more preferably 80% or less, further preferably 70% or less, and particularly preferably 60% or less.
  • the shape, size, and mass of the alumina / zirconia / silica fusion cast refractory according to an embodiment of the present invention are not limited.
  • it may be in the form of a slab having a thickness of 100 mm or less.
  • the block or slab forms part of a glass melting furnace or constitutes a wall or hearth. At this time, if the block or slab is disposed in a region in contact with the molten glass or in contact with the gas released from the molten glass, the effect of suppressing the generation of stone as described above is preferable. .
  • the alumina / zirconia / silica fusion cast refractory according to an embodiment of the present invention is, for example, alumina / zirconia widely used in a glass manufacturing apparatus when the amount of generated stone is tested as described above. ⁇ Compared to siliceous molten cast refractory (manufactured by AGC Ceramics, trade name: ZB-1691), the amount of generated stone is 90% or less, and the erosion rate for glass is 115% or less (the relative erosion amount is 115). (Synonymous with the following).
  • the erosion resistance is determined by, for example, immersing the glass at 1300 ° C.
  • erosion resistance is preferably a refractory having a relative erosion amount with ZB-1691 of 115 or less, more preferably 105 or less, and even more preferably 95 or less.
  • the protective layer made of a nepheline layer is difficult to form near the surface of the refractory in an environment where the convection speed of the glass is very high. Therefore, depending on the environment of use, it is difficult to generate a protective layer consisting of a nepheline layer near the refractory surface layer in the flux line where strong convection called Marangonin convection occurs, which improves erosion resistance. The contribution is limited. Therefore, the erosion resistance of the flux line is basically strongly influenced by the zirconia content.
  • the use of the alumina / zirconia / silica fusion cast refractory of the present invention makes it possible to sufficiently generate a protective layer composed of a nepheline layer up to the vicinity of the refractory surface layer. Therefore, the amount of generated stones can be effectively reduced.
  • the alumina / zirconia / silica fusion cast refractory according to an embodiment of the present invention is obtained by mixing homogeneously powder raw materials so as to have the above-mentioned blending ratio, melting the mixture in an arc electric furnace, and converting the molten raw material into graphite. It is manufactured by pouring into a mold and cooling.
  • This refractory is expensive because it takes a large amount of energy when melted, but the structure of the ZrO 2 crystal is dense and the size of the crystal is large. Therefore, the refractory has better corrosion resistance stability than the sintered refractory.
  • the heating at the time of melting is performed by bringing a graphite electrode and raw material powder into contact with each other and energizing the electrode.
  • the thus obtained alumina / zirconia / silica fusion cast refractory according to one embodiment of the present invention exhibits excellent erosion resistance against molten glass, and is used when producing glass products such as plate glass. It is suitable for furnace materials for glass melting kilns.
  • a glass melting furnace comprises the above-described alumina / zirconia / silica melting cast refractory according to an embodiment of the present invention. If it is a glass melting furnace equipped with the above-described alumina / zirconia / siliceous molten cast refractory according to one embodiment of the present invention, the generation of stones in the molten glass is suppressed, and the glass has a high erosion resistance. Therefore, the glass can be stably melted, and a glass product with good quality can be manufactured with a high yield.
  • the above-described alumina / zirconia / siliceous fusion cast refractory according to one embodiment of the present invention is preferably used in a place where it comes into contact with glass.
  • a glass melting kiln according to an embodiment of the present invention is the above-described alumina / zirconia / silica molten cast refractory according to an embodiment of the present invention. You may arrange
  • a gas containing Na or K is generated from molten glass or glass melting.
  • the refractory is a glass melting kiln made of quartz brick, the refractory is lowered in melting point and easily deformed by these gases.
  • it is a glass melting kiln using an alumina / zirconia / siliceous fusion cast refractory according to an embodiment of the present invention, it contains high heat-resistant ZrO 2 and has an Al 2 O 3 / SiO 2 ratio of Since it is difficult to be deformed due to a small number of matrix glass portions that are high and easily melted, even if it is disposed in a region that is in contact with gas released by melting glass, it can have high heat resistance.
  • the manufacturing method of the glass plate which concerns on one Embodiment of this invention heats a glass raw material in the glass melting furnace which concerns on one Embodiment of this invention mentioned above, obtains molten glass, and shape
  • the raw material prepared so as to have the composition of the obtained glass plate is charged into the glass melting furnace according to the embodiment of the present invention, preferably Heat to about 1400-1650 ° C. to obtain molten glass.
  • Etc. may be used SO 3 and SnO 2 as a fining agent to the raw material. Bubbles can be removed from the glass by using a fining agent. Further, a defoaming method using reduced pressure may be applied.
  • the molten glass is formed into a plate shape by a fusion method, a float method, a press molding method, or the like.
  • molten glass is flowed over molten metal and formed into a plate shape.
  • the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not construed as being limited to these descriptions.
  • the refractory of the present invention is not limited to a specific shape or dimension, and is not limited to application to a glass melting furnace.
  • Example 1 to Example 42 ZrO 2 raw materials such as desiliconized zirconia and zircon sand, Al 2 O 3 raw materials such as Bayer alumina, SiO 2 raw materials such as silica sand, Na 2 O, Y 2 O 3 , Li 2 O, K 2 O, CaO, MgO, A batch mixture in which raw materials such as Cr 2 O 3 , P 2 O 5 , and B 2 O 5 were adjusted to a predetermined amount was charged into a 500 KVA single-phase arc electric furnace and completely melted at a melting temperature of around 1900 ° C. did.
  • the hot water obtained by melting is poured into a mold made of sand surrounded by a heat insulating material made of siliceous hollow spheres or Bayer alumina around an inner volume of 130 mm x 160 mm x 350 mm, and cast to room temperature. Chilled.
  • melting is a so-called long arc method in which the electrode is lifted from the molten metal surface. For example, oxygen is blown in the middle of melting to keep the melt in an oxidized state as much as possible. I got a thing.
  • Tables 1 to 5 show the chemical analysis values (unit: mass%) and various properties of the obtained molten cast refractories.
  • Examples 1-27 are examples, and examples 28-42 are comparative examples.
  • Examples 28 and 29 are alumina, zirconia, and siliceous fused cast refractories widely used in glass production apparatuses (manufactured by AGC Ceramics, trade names: ZB1691 and ZB1711).
  • ZrO 2 , SiO 2 , and Al 2 O 3 are quantitative analysis values determined by a wavelength dispersive X-ray fluorescence analyzer (manufactured by Rigaku Corporation, apparatus name: ZSX Primus II).
  • the other components are quantitative analysis values determined by a high-frequency inductively coupled plasma emission spectrometer (manufactured by Seiko Instruments Inc., apparatus name: SPS 1100).
  • SPS 1100 high-frequency inductively coupled plasma emission spectrometer
  • the quantification of each component is not limited to this analysis method, and can be carried out by other quantitative analysis methods.
  • the obtained molten cast refractories all had (A) corundum crystal, (B) badelite crystal, and (C) matrix glass and / or nepheline crystal as a basic structure.
  • the type and presence of the crystal is determined by cutting the molten cast refractory after manufacture and cutting the cut surface with SEM-EDX (Scanning Electron Microscope-Energy Dispersive X-ray Detector, manufactured by Hitachi High-Technologies Corporation, product name: S-3000H ), And the crystal structure was analyzed by XRD (X-ray Diffraction, manufactured by Rigaku Corporation, trade name: RINT-TTRIII).
  • the presence or absence of cracks on the appearance of the manufactured molten cast refractory was evaluated as follows. First, visually inspect the presence or absence of cracks. For refractories with cracks, grind the surface of the refractory to a depth of 10 mm on each surface, cut the resulting refractory from the center, and observe the cut surface. The crack length was evaluated. When the crack length in the refractory after grinding becomes 10 mm or less, the crack at the time of manufacture is “small”, and when the crack length exceeds 10 mm and is 50 mm or less, the crack at the time of manufacture is “medium”. When the crack length exceeded 50 mm, the crack at the time of manufacture was classified as “large”.
  • the stone formation characteristics of the manufactured molten cast refractories were evaluated as follows.
  • a test piece of 15 mm ⁇ 25 mm ⁇ 50 mm (length ⁇ width ⁇ length) was cut out from the refractory and immersed in soda lime glass (Asahi Glass Co., Ltd., trade name: Clear FL) at 1300 ° C. for 480 hours in an air atmosphere. Thereafter, the test piece was drawn upward at a shear rate of 0.8 / s, held for 5 minutes, and then cooled at a rate of 300 ° C./Hr. After cooling, the test piece covered with glass was cut in half from the center, the cross-section was observed with an optical microscope, and the number of stones that fell from the refractory surface layer to the glass side was counted.
  • the erosion resistance was evaluated as follows. A 15 mm x 25 mm x 50 mm (length x width x length) test piece was cut from the refractory and immersed in soda lime glass (Asahi Glass Co., Ltd., trade name: Clear-FL) at 1300 ° C in air for 480 hours. Thereafter, the amount of erosion was measured to examine the erosion resistance.
  • soda lime glass Asahi Glass Co., Ltd., trade name: Clear-FL
  • Stone formation amount and erosion resistance are known alumina / zirconia / silica fusion cast refractories widely used in glass manufacturing equipment in the temperature range of 1300 ° C. (trade name: ZB-1691, manufactured by AGC Ceramics)
  • the stone generation amount of this ZB-1691 (Example 28) or the maximum erosion depth of the erosion part after the erosion test was taken as 100, and the relative stone generation amount and erosion amount were shown.
  • the amount of generated stone is small, but if the amount of generated relative to ZB-1691 is 90 or less, the stone generation characteristics are sufficiently improved than before, which is satisfactory.
  • the amount of erosion is small, but in recent years, for example, by placing another alumina, zirconia, siliceous fused cast refractory outside the alumina, zirconia, siliceous fused cast refractory used in the kiln, Since it is possible to extend the life of the melting furnace, the erosion resistance is not necessarily high. Therefore, practically, the erosion resistance is satisfactory when the relative erosion amount with ZB-1691 is 115 or less.
  • Examples 28 and 29 are alumina / zirconia / siliceous fused cast refractories having a known composition, and are refractories having a small composition of Al 2 O 3 / SiO 2 and Na 2 O / SiO 2 . Although the erosion resistance to the glass is almost the same as in Examples 1 to 27, the amount of stones generated is large due to the lack of the formation component of the nepheline layer.
  • Example 30 is an alumina / zirconia / silica fused cast refractory with a reduced Na 2 O / SiO 2 composition, and the erosion resistance to glass is almost the same as in Examples 1 to 27, but a nepheline layer is formed. Due to the lack of ingredients, the amount of stone generated is large.
  • Example 31 is alumina-zirconia-silica fusion cast refractory composition with a reduced content of ZrO 2, very corrosion resistance against glass to ZrO 2 content is small as compared with Examples 1-27 Low.
  • Example 32 is alumina-zirconia-silica fusion cast refractory compositions that many ZrO 2 content is high in corrosion resistance to glass, is very large cracks during production for ZrO 2 content is high .
  • Examples 33 and 34 are alumina / zirconia / silica fusion cast refractories with a reduced SiO 2 content, and although the amount of stones generated is small, cracks during production are very large due to the low SiO 2 content. .
  • Example 35 is an alumina / zirconia / silica fusion cast refractory having a composition with an increased SiO 2 content. Since the SiO 2 content is large, the erosion resistance is low and the amount of generated stones is large.
  • Example 36 is an alumina / zirconia / siliceous fusion cast refractory with a reduced Na 2 O content, has low erosion resistance, a large amount of stones, and very large cracks during production.
  • Example 37 is an alumina / zirconia / siliceous fusion cast refractory having a composition with an increased Na 2 O content. Since the amount of generated stone is large and the content of Na 2 O is large, the erosion resistance is very high. Low.
  • Example 38 is an alumina / zirconia / siliceous fused cast refractory having a composition with a high Al 2 O 3 content. Although the amount of stones generated is small, cracks during production are very large.
  • Examples 39 and 40 are alumina / zirconia / silica fused cast refractories with a reduced Al 2 O 3 content, which have high erosion resistance but a large amount of stones generated, resulting in very high cracks during production. Big.
  • Examples 41 and 42 are alumina / zirconia / silica fused cast refractories having a composition with an essential component content of less than 85%, because the contents of Al 2 O 3 and ZrO 2 in the refractories are small. , Low erosion resistance to glass and a large amount of stones.
  • Examples 1 to 27, which are examples of the present invention, are alumina / zirconia / silica fused cast refractories containing a predetermined amount of components. Compared with Examples 28 to 42, the amount of generated stones and corrosion resistance And the manufacturing characteristics are good results. More specifically, compared to conventional alumina / zirconia / silica fused cast refractories, the amount of stone produced is small, and the erosion resistance is at a level that is practically satisfactory, and there are no cracks during production. Even if there is, it is less than medium.
  • Example 2 Example 5, Example 6, Examples 8-12, Example 14, Example 16, Examples 18-24, and Examples 25-27 are relatively large in Al 2 O 3 / SiO 2 and Na 2 O / SiO 2.
  • Alumina / zirconia / siliceous fusion cast refractory having the composition described above, and the amount of stone produced is small. In addition, it has good corrosion resistance, and cracks during production are also moderate or less.
  • Example 5, Example 14, Example 14 and Example 19 have a particularly small amount of stone because ZrO 2 / (Al 2 O 3 + ZrO 2 ) is in a more preferable range.
  • Examples 1 and 17 are alumina / zirconia / silica fused cast refractories having a composition in which Al 2 O 3 / SiO 2 is relatively small within the scope of the present invention, and the effect of suppressing generation of stone is maintained. It has good corrosion resistance and few manufacturing cracks.
  • Example 3 is an alumina / zirconia / silica fused cast refractory having a composition in which Na 2 O / SiO 2 is relatively small within the scope of the present invention, the effect of suppressing the occurrence of stones is maintained, and the corrosion resistance is high. Good and few manufacturing cracks.
  • Examples 4 and 15 are large Al 2 O 3 / SiO 2 and Na 2 O / SiO 2 alumina / zirconia / silica fusion cast refractories, with large ZrO 2 / (Al 2 O 3 + ZrO 2 ). However, the effect of suppressing the generation of stones is maintained, the corrosion resistance is good, and there are few manufacturing cracks.
  • Example 7 is an alumina / zirconia / silica fused cast refractory having a composition in which Al 2 O 3 / SiO 2 and Na 2 O / SiO 2 are relatively small within the scope of the present invention, and suppresses the occurrence of stones. Is maintained, corrosion resistance is good, and there are few manufacturing cracks.
  • Example 13 is an alumina / zirconia / siliceous fusion cast refractory having a composition in which Al 2 O 3 / SiO 2 is relatively small within the scope of the present invention. Is good and there are few manufacturing cracks.
  • the melting kiln comprising the alumina / zirconia / siliceous molten cast refractory of Examples 1 to 27, the generation of stones in the molten glass is suppressed.
  • the glass since the glass has high erosion resistance, the glass can be stably melted, and a glass product with good quality can be manufactured with high yield.
  • the alumina / zirconia / siliceous fusion cast refractory of the present invention suppresses the occurrence of stones in the glass, and also has high erosion resistance against the glass, it can be easily manufactured with high productivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)

Abstract

This invention provides a fused-cast alumina-zirconia-silica refractory that both suppresses the occurrence of stones in a glass and has high glass corrosion resistance. The fused-cast alumina-zirconia-silica refractory contains, as essential components, AI2O3, ZrO2, SiO2, and Na2O, wherein, in mass percent on an oxide basis, Al2O3: 30-80%, ZrO2: 15-50%, SiO2: 2.0-10.5%, and Na2O: 0.5-10% are contained. In this fused-cast alumina-zirconia-silica refractory, Al2O3/SiO2≥6.5, Na2O/SiO2≥0.25, and the total amount of the essential components is 85% or more.

Description

アルミナ・ジルコニア・シリカ質溶融鋳造耐火物、ガラス溶融窯、およびガラス板の製造方法Alumina / zirconia / silica fusion cast refractory, glass melting furnace, and method for producing glass plate
 本発明は、アルミナ・ジルコニア・シリカ質溶融鋳造耐火物、ガラス溶融窯、およびガラス板の製造方法に係り、特に1450℃以下の温度域での溶融ガラスとの接触において、バデライト結晶のストーンとしての流出を抑制可能なアルミナ・ジルコニア・シリカ質溶融鋳造耐火物、ガラス溶融窯、およびガラス板の製造方法に関する。 The present invention relates to an alumina / zirconia / silica fused cast refractory, a glass melting furnace, and a method for producing a glass plate, and particularly as a stone of badelite crystal in contact with molten glass in a temperature range of 1450 ° C. or lower. The present invention relates to an alumina / zirconia / silica fusion cast refractory capable of suppressing outflow, a glass melting furnace, and a method for producing a glass plate.
 溶融鋳造耐火物は、通常、所定配合の耐火物原料を電気炉にて完全に溶融した湯を所定形状の鋳型に流し込み保温しながら常温まで冷却、再固化することにより得られるものである。このようにして得られる溶融鋳造耐火物は、焼成、不焼成の結合耐火物とは組織、製法とも全く異なる、耐侵食性の高い耐火物として広く知られている。 The molten cast refractory is usually obtained by pouring hot water in which a refractory raw material having a predetermined composition is completely melted in an electric furnace into a mold having a predetermined shape, and cooling and re-solidifying to normal temperature. The molten cast refractory obtained in this way is widely known as a highly erodible refractory that is completely different from the structure and manufacturing method of the fired and unfired bonded refractory.
 本発明により得られる溶融鋳造耐火物は、このように一般的には電気炉で溶融した耐火物原料を所望形状に鋳込んで造られるものであるため、以下溶融鋳造耐火物として説明する。しかしながら、本明細書における溶融鋳造耐火物は、溶融後炉内でそのまま固化したものも含み、これを粉砕して得られた溶融鋳造耐火物は結合耐火物の骨材としても有用なものである。 Since the molten cast refractory obtained by the present invention is generally produced by casting a refractory raw material melted in an electric furnace into a desired shape, it will be described as a molten cast refractory hereinafter. However, the molten cast refractory in the present specification includes those that are solidified in the furnace after melting, and the molten cast refractory obtained by pulverizing the molten refractory is useful as an aggregate of the bonded refractory. .
 従来のガラス溶融窯に使用されているアルミナまたはジルコニア質溶融鋳造耐火物としては、主に、高アルミナ質、アルミナ・ジルコニア・シリカ質、高ジルコニア質、の溶融鋳造耐火物がある。 As the alumina or zirconia molten cast refractories used in conventional glass melting furnaces, there are mainly fused cast refractories of high alumina, alumina / zirconia / silica, and high zirconia.
 ところで、高アルミナ質の溶融鋳造耐火物は、ガラスに対して侵食抵抗が大きく、またガラスに泡、コード等の欠陥を生じさせない特徴を持ち、アルカリ蒸気に対しても安定で、荷重下でも変形することがない。しかし、ジルコニアよりも耐侵食性の低いアルミナの含有量が多いために他の溶融鋳造耐火物と比較して耐侵食性が低い。 By the way, high-alumina melt-cast refractories have high erosion resistance against glass, do not cause defects such as bubbles and cords in glass, are stable against alkali vapor, and deform under load. There is nothing to do. However, since the content of alumina, which is lower in erosion resistance than zirconia, is larger, the erosion resistance is lower than in other molten cast refractories.
 これに対して、アルミナ・ジルコニア・シリカ質溶融鋳造耐火物は、例えば特許文献1に開示されているように、ジルコニアを比較的多く含んでいて、溶融ガラスに対して耐侵食性が大きい。さらに、ZrOを90%以上含む高ジルコニア質の溶融鋳造耐火物も特許文献2に記載のように提案されており、ジルコニアを多量に含有している溶融鋳造耐火物は溶融ガラスや飛散した生バッチに対して非常に耐侵食性が大きく、溶融ガラスと直接接触する部分での使用において耐侵食性の点で十分満足のできるものである。 On the other hand, the alumina / zirconia / silica fused cast refractory contains a relatively large amount of zirconia as disclosed in, for example, Patent Document 1, and has a high erosion resistance against molten glass. Furthermore, a high zirconia molten cast refractory containing 90% or more of ZrO 2 has also been proposed as described in Patent Document 2, and a molten cast refractory containing a large amount of zirconia is molten glass or scattered raw refractory. It has very high erosion resistance with respect to the batch, and is sufficiently satisfactory in terms of erosion resistance when used in a portion in direct contact with molten glass.
 このような溶融鋳造耐火物の中で、ガラス溶融窯には、特に耐侵食性が優れていることから、ジルコニアを相対的に多く含有する耐火物が好んで使用される。その典型的な耐火物は、ZrOを33%乃至41%含有するアルミナ・ジルコニア・シリカ質溶融鋳造耐火物およびZrOを80%乃至95%含有する高ジルコニア質溶融鋳造耐火物である。 Among such molten cast refractories, refractories containing a relatively large amount of zirconia are preferably used for glass melting kilns because they are particularly excellent in erosion resistance. Typical refractory is a high zirconia fused cast refractories containing alumina-zirconia-silica fusion cast refractories containing ZrO 2 33% to 41% and a ZrO 2 80% to 95%.
 なかでも、耐侵食性の高いジルコニア含有量が多い高ジルコニア質溶融鋳造耐火物は、ガラスに対する耐侵食性が高く、ガラス欠点を引き起こす確率が低いため、近年、特に高品位なガラスの溶融のために用いられるようになった。しかし、高ジルコニア質溶融鋳造耐火物は、ZrO含有量が極めて多いため、そのような耐火物は高価なものとなり、製造時にコストが嵩む。 Among them, high zirconia fused cast refractories with high zirconia content and high erosion resistance have high erosion resistance to glass and low probability of causing glass defects. It came to be used for. However, high zirconia melt cast refractories have a very high ZrO 2 content, so such refractories are expensive and costly during production.
 これに対し、アルミナ・ジルコニア・シリカ質溶融鋳造耐火物は、耐侵食性も良好で、製造コストも抑制できることから、数十年に渡って最も広汎に使用されており、主に溶融ガラスに接触するゾーンに対して、およびガラス溶融窯の上部構造に対しても利用されている。 In contrast, alumina, zirconia, and siliceous molten cast refractories have been used most widely over decades because they have good erosion resistance and low manufacturing costs, and are mainly in contact with molten glass. It is also used for the zones to be used and for the superstructure of the glass melting furnace.
 このアルミナ・ジルコニア・シリカ質溶融鋳造耐火物は、一般的には約80~85%の結晶とその結晶間隙を埋めている15~20%のマトリックスガラス相からなる。結晶相は、アルミナの三方晶系の結晶であるコランダム結晶とジルコニアの単斜晶系の結晶であるバデライト結晶とからなる。その組成は、例えば現在市販されている、ZB1681、ZB1691、ZB1711(以上、AGCセラミックス株式会社製、商品名)等のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物は、45.8%から52%のAl、33%から41%のZrO、12%から13.5%のSiO、および1%から1.9%のNaOを含んでいる。 This alumina / zirconia / silica fused cast refractory generally consists of about 80-85% crystals and 15-20% matrix glass phase filling the crystal gaps. The crystal phase is composed of corundum crystals, which are trigonal crystals of alumina, and badelite crystals, which are monoclinic crystals of zirconia. The composition thereof is, for example, 45.8% to 52% of alumina / zirconia / silica fused cast refractories such as ZB1681, ZB1691, ZB1711 (above, trade name, manufactured by AGC Ceramics Co., Ltd.) currently available on the market. Al 2 O 3 , 33% to 41% ZrO 2 , 12% to 13.5% SiO 2 , and 1% to 1.9% Na 2 O.
 ここで、マトリックスガラスとは、シリカを主成分とする特定の結晶構造を持たない、無定型のガラス相のことである。ジルコニアは、よく知られているように、昇温時の1150℃付近と、降温時の1000℃付近に、単斜晶と正方晶の相転移による変態転移があり、急激な収縮、膨張を示す。マトリックスガラス相は、結晶間のクッションのような役割を果たし、アルミナ・ジルコニア・シリカ質溶融鋳造耐火物を製造する際のジルコニアの正方晶から単斜晶の転移による変態膨張による応力を吸収することにより、鋳塊を亀裂なく製造するための重要な役割を果たす。 Here, the matrix glass is an amorphous glass phase having no specific crystal structure mainly composed of silica. As is well known, zirconia has a transformation transition due to monoclinic and tetragonal phase transitions at around 1150 ° C. when the temperature is raised and around 1000 ° C. when the temperature is lowered, and exhibits rapid contraction and expansion. . The matrix glass phase acts as a cushion between crystals, and absorbs stress due to transformation expansion due to the transition from tetragonal to monoclinic zirconia in the production of fused refractories of alumina, zirconia, and siliceous. Therefore, it plays an important role for producing an ingot without cracks.
 しかし、このマトリックスガラス相は、コランダム結晶とバデライト結晶を取り囲むように存在しているため、コランダム結晶とバデライト結晶は連続的に繋がっておらず、そのためガラスとの接触部に用いられた場合にはバデライト結晶がガラス中に流出し、ストーン欠点を生じさせてしまう問題がある。コランダム結晶よりもバデライト結晶が特異的に流出する原因としては、ガラスと接触することでコランダム結晶がバデライト結晶よりも速く溶解し、バデライト結晶だけが耐火物表面に残存した脆弱な層が形成されるためである。 However, since this matrix glass phase exists so as to surround the corundum crystal and the baderite crystal, the corundum crystal and the baderite crystal are not continuously connected, and therefore when used in a contact portion with the glass, There is a problem that the badelite crystals flow into the glass and cause stone defects. The reason for the specific outflow of badelite crystals than corundum crystals is that when contacted with glass, the corundum crystals dissolve faster than the badelite crystals, forming a fragile layer in which only the badelite crystals remain on the refractory surface. Because.
 このバデライト残存層中のバデライト粒子の多くはガラス中に浮遊した状態で耐火物表面に存在しているため、溶融ガラスの対流の変化や溶融ガラス中の泡との接触などの外力が加わることでストーンとしてガラス中に流出してしまう。 Since most of the beddelite particles in the remaining layer of this bedrite are present in the surface of the refractory in a suspended state in the glass, external forces such as changes in the convection of the molten glass and contact with bubbles in the molten glass are applied. It flows out into the glass as a stone.
 このようなアルミナ・ジルコニア・シリカ質溶融鋳造耐火物においては、上記のバデライト残存層が形成されるという耐火物の特性上、アルミナ・ジルコニア・シリカ質溶融鋳造耐火物からのストーンの流出を抑制することは大変困難である。 In such an alumina / zirconia / silica fusion cast refractory, the above-mentioned badelite residual layer is formed, so that the outflow of stone from the alumina / zirconia / silica fusion cast refractory is suppressed. That is very difficult.
 また、近年、特に高品質なガラスが求められるようになり、欠点の抑制に対する要求はますます高まっており、そのため、アルミナ・ジルコニア・シリカ質溶融鋳造耐火物においても、耐火物の耐侵食性を少々犠牲にしてでもストーンの流出を抑制できる耐火物が求められている。 In recent years, particularly high-quality glass has been demanded, and the demand for suppression of defects has been increasing. Therefore, even in alumina / zirconia / silica fused cast refractories, the erosion resistance of refractories has been increased. There is a need for a refractory that can control the outflow of stone at the expense of a little.
 ストーン欠点の発生を抑制したアルミナ・ジルコニア・シリカ質溶融鋳造耐火物としては、特許文献3にZrOを62%以上含有させAl/SiO比を1以下とさせたアルミナ・ジルコニア・シリカ質溶融鋳造耐火物が提案されている。当該耐火物では、製造時に発生する耐火物の亀裂を抑制し、ガラスに対する損耗速度とストーンの発生量を小さくすることを可能としている。 Alumina / zirconia / silica fused cast refractories that suppress the occurrence of stone defects include alumina / zirconia / Al 2 O 3 / SiO 2 ratio of 1 or less in Patent Document 3 containing 62% or more of ZrO 2. Siliceous fused cast refractories have been proposed. In the said refractory material, it is possible to suppress the cracking of the refractory material that occurs during production, and to reduce the wear rate and the amount of stone generated on the glass.
 しかし、特許文献3のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物では、ZrOの含有量が高いために高価であり、汎用的なガラス溶解用耐火物として広く用いることは難しい。 However, the alumina / zirconia / silica fused cast refractory of Patent Document 3 is expensive because of its high ZrO 2 content, and it is difficult to use it widely as a general-purpose glass melting refractory.
 また、特許文献4においては、アルミナ・ジルコニア・シリカ質溶融鋳造耐火物の製造に際し、耐火物原料中に酸化スズ、硝酸ナトリウム等の酸化剤を添加させることで、ガラスと接触時に発泡する泡数の少ないアルミナ・ジルコニア・シリカ質溶融鋳造耐火物が提案されている。当該特許文献に記載されてはいないが、アルミナ・ジルコニア・シリカ質溶融鋳造耐火物においては、バデライト残存層に泡が接触するとストーンが発生しやすくなるため、耐火物表面での泡の発生を抑制しようとする当該耐火物ではストーンの発生量を抑制できる可能性がある。 In addition, in Patent Document 4, in the production of alumina / zirconia / silica fused cast refractories, by adding an oxidant such as tin oxide and sodium nitrate to the refractory raw material, the number of bubbles foamed upon contact with glass Low-alumina / zirconia / siliceous fusion cast refractories have been proposed. Although not described in the patent document, in the case of alumina / zirconia / silica fused cast refractories, it is easy to generate stones when bubbles come into contact with the remaining bedderite layer, so the generation of bubbles on the surface of the refractory is suppressed. There is a possibility that the amount of stone generated can be suppressed in the refractory to be tried.
 しかし、特許文献4のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物では、バデライト残存層の形成はこれまでと同様に避けられず、ガラスの対流の変化や溶融ガラス中の泡との接触などの外力が加わることでストーンがガラス中に流出してしまうと考えられる。 However, in the alumina / zirconia / silica fusion cast refractory of Patent Document 4, the formation of the remaining bedderite layer is inevitable as before, and external forces such as changes in convection of glass and contact with bubbles in the molten glass are not avoided. It is thought that stone flows out into the glass by adding.
特開昭62-065981号公報JP 62-065981 A 特開平3-028175号公報Japanese Patent Laid-Open No. 3-028175 特開昭48-032408号公報Japanese Patent Laid-Open No. 48-032408 特開平10-072264号公報Japanese Patent Laid-Open No. 10-072264
 本発明は、上記した従来技術が抱える課題を解決して、ガラス中へのストーンの発生を抑制し、かつ、ガラスに対する高い耐侵食性を併せて有し、ガラス製造装置用の耐火物として好適なアルミナ・ジルコニア・シリカ質溶融鋳造耐火物およびそれを用いたガラス溶融窯の提供を目的とする。 The present invention solves the problems of the prior art described above, suppresses the generation of stone in the glass, and also has high erosion resistance against the glass, and is suitable as a refractory for a glass manufacturing apparatus. An object of the present invention is to provide an alumina / zirconia / silica fused cast refractory and a glass melting furnace using the same.
 本発明者らは、鋭意検討した結果、必須成分としてAl、ZrO、SiOおよびNaOを含むアルミナ・ジルコニア・シリカ質溶融鋳造耐火物であって、上記必須成分の含有量を所定の量になるように配合することで、上記課題を解決し得ることを見出し、本発明を完成した。 As a result of intensive studies, the inventors of the present invention are alumina / zirconia / siliceous fusion cast refractories containing Al 2 O 3 , ZrO 2 , SiO 2 and Na 2 O as essential components, and the content of the above essential components It was found that the above-mentioned problems could be solved by blending so as to be a predetermined amount, and the present invention was completed.
 [1]必須成分としてAl、ZrO、SiOおよびNaOを含むアルミナ・ジルコニア・シリカ質溶融鋳造耐火物であって、酸化物基準の質量パーセンテージで、Al:30%~80%、ZrO:15%~50%、SiO:2.0%~10.5%、NaO:0.5%~10%、を含有し、かつAl/SiO≧6.5、NaO/SiO≧0.25、であり、前記必須成分の合量が85%以上であることを特徴とするアルミナ・ジルコニア・シリカ質溶融鋳造耐火物。
 [2]Al/SiO≦25.0である[1]に記載のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物。
 [3]NaO/SiO≦3である[1]または[2]に記載のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物。
 [4]Yを0.8~5.0%さらに含む[1]乃至[3]のいずれかに記載のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物。
 [5]KOおよびLiOを合量で0.1~3.0%さらに含む[1]乃至[4]のいずれかに記載のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物。
 [6]CaOを0.1%~2.0%さらに含む[1]乃至[5]のいずれかに記載のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物。
 [7]ZrO/(Al+ZrO)≦0.39である[1]乃至[6]のいずれかに記載のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物。
 [8]0.33≦ZrO/(Al+ZrO)である[1]乃至[7]のいずれかに記載のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物。
 [9][1]乃至[8]のいずれかに記載のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物を具備してなることを特徴とするガラス溶融窯。
 [10]前記アルミナ・ジルコニア・シリカ質溶融鋳造耐火物が、溶融ガラスおよびガラスを溶融することにより放出されたガスの少なくとも一方に接触する領域内に配置される[9]に記載のガラス溶融窯。
 [11][9]または[10]に記載のガラス溶融窯においてガラス原料を加熱して溶融ガラスを得て、前記溶融ガラスを板状に成形することを特徴とするガラス板の製造方法。
[1] Alumina / zirconia / siliceous fusion cast refractory containing Al 2 O 3 , ZrO 2 , SiO 2 and Na 2 O as essential components, and having a mass percentage based on oxide, Al 2 O 3 : 30 % To 80%, ZrO 2 : 15% to 50%, SiO 2 : 2.0% to 10.5%, Na 2 O: 0.5% to 10%, and Al 2 O 3 / SiO 2 2 ≧ 6.5, Na 2 O / SiO 2 ≧ 0.25, and the total amount of the essential components is 85% or more, and is an alumina / zirconia / siliceous fused cast refractory.
[2] The alumina / zirconia / silica fusion cast refractory according to [1], wherein Al 2 O 3 / SiO 2 ≦ 25.0.
[3] The alumina / zirconia / silica fusion cast refractory according to [1] or [2], wherein Na 2 O / SiO 2 ≦ 3.
[4] The alumina / zirconia / silica fusion cast refractory according to any one of [1] to [3], further comprising 0.8 to 5.0% of Y 2 O 3 .
[5] The alumina / zirconia / silica fused cast refractory according to any one of [1] to [4], further containing 0.1 to 3.0% of a total amount of K 2 O and Li 2 O.
[6] The alumina / zirconia / silica fusion cast refractory according to any one of [1] to [5], further containing CaO in an amount of 0.1% to 2.0%.
[7] The alumina / zirconia / silica fusion cast refractory according to any one of [1] to [6], wherein ZrO 2 / (Al 2 O 3 + ZrO 2 ) ≦ 0.39.
[8] The alumina / zirconia / siliceous molten cast refractory according to any one of [1] to [7], wherein 0.33 ≦ ZrO 2 / (Al 2 O 3 + ZrO 2 ).
[9] A glass melting furnace comprising the alumina / zirconia / siliceous fusion cast refractory according to any one of [1] to [8].
[10] The glass melting furnace according to [9], wherein the alumina / zirconia / silica fusion cast refractory is disposed in a region in contact with at least one of molten glass and gas released by melting the glass. .
[11] A method for producing a glass plate, comprising: heating a glass raw material in the glass melting furnace according to [9] or [10] to obtain molten glass, and forming the molten glass into a plate shape.
 本発明のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物によれば、ガラス溶融時におけるガラス中へのストーンの発生を抑制し、かつ、ガラスに対する高い耐侵食性を有し、ガラス製造装置用の耐火物として好適なアルミナ・ジルコニア・シリカ質溶融鋳造耐火物を提供できる。 According to the alumina / zirconia / silica fusion cast refractory of the present invention, the occurrence of stones in the glass at the time of melting the glass is suppressed, and the glass has a high erosion resistance. An alumina / zirconia / siliceous fusion cast refractory suitable as a product can be provided.
 また、本発明のガラス溶融窯によれば、溶融ガラス中へのストーンの発生を抑制し、かつ、ガラスに対する高い耐侵食性を有するため、ガラスの溶融を安定して行うことができ、品質の良好なガラス製品を歩留まり良く製造できる。 In addition, according to the glass melting furnace of the present invention, since the generation of stones in the molten glass is suppressed and the glass has high erosion resistance, the glass can be stably melted, and the quality is improved. Good glass products can be manufactured with good yield.
 また、本発明のガラスの製造方法によれば、溶融ガラス中へのストーンの発生が抑制され、ガラスの溶融を安定して行うことができ、品質の良好なガラスを歩留まり良く製造できる。 Further, according to the method for producing glass of the present invention, the generation of stones in the molten glass is suppressed, the glass can be stably melted, and a glass having a good quality can be produced with a high yield.
 以下、本発明の一実施形態について詳細に説明する。
 上記のとおり、本発明の一実施形態に係るアルミナ・ジルコニア・シリカ質溶融鋳造耐火物は、必須成分としてAl、ZrO、SiOおよびNaOを含み、これら必須成分の含有量が、所定の量になるように配合された点に特徴を有するものである。なお、本明細書において、溶融鋳造耐火物を、耐火物または鋳塊と表記することがある。
Hereinafter, an embodiment of the present invention will be described in detail.
As described above, the alumina / zirconia / silica fusion cast refractory according to one embodiment of the present invention contains Al 2 O 3 , ZrO 2 , SiO 2 and Na 2 O as essential components, and the content of these essential components Is characterized in that it is blended so as to have a predetermined amount. In the present specification, the molten cast refractory may be referred to as a refractory or an ingot.
 従来のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物に、溶融したソーダライムガラスが接触すると、上述の通り、耐火物表層にはコランダム結晶が溶解したバデライト残存層が形成され、このバデライト残存層がストーンの発生源となる。 When the molten soda lime glass comes into contact with the conventional alumina / zirconia / silica fused cast refractory, as described above, a vaderite residual layer in which the corundum crystals are dissolved is formed on the surface of the refractory, and this residual caderite is the stone. It becomes the source of
 また、アルミナ・ジルコニア・シリカ質溶融鋳造耐火物に、溶融したソーダライムガラスが接触すると、使用環境により左右されるが、例えば1300℃程度の低温域でガラス溶融窯の壁面に使用された耐火物においては、バデライト残存層の背面側にネフェリン質層が形成される。また、例えば1300℃程度の低温域でガラスの対流速度が非常に小さい静的な環境場においては、バデライト残存層の表面側にネフェリン質層が形成されることがある。非特許文献1には、結晶かガラス質かは明記されていないが、使用後のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物の表面にネフェリン質層が形成されていることが記されている。 In addition, when molten soda-lime glass comes into contact with alumina, zirconia, or siliceous molten cast refractory, it depends on the environment of use. For example, the refractory used on the wall of the glass melting furnace in a low temperature range of about 1300 ° C. In, a nepheline layer is formed on the back side of the remaining beddelite layer. Further, in a static environmental field where the convection velocity of the glass is very low in a low temperature range of about 1300 ° C., for example, a nepheline layer may be formed on the surface side of the remaining badelite layer. Non-Patent Document 1 does not specify whether it is crystalline or glassy, but it is described that a nepheline layer is formed on the surface of the alumina / zirconia / silica fused cast refractory after use.
 ネフェリン結晶は、化学量論組成はNaAlSiOのトリジマイト系のシリカ誘導体化合物であり、1254℃を超える高温場においてはクリストバライト系のカーネギアイト結晶へと結晶転移することが知られている。また、非特許文献2に記されるように、ネフェリン結晶は幅広い組成においてその結晶構造が維持され、カーネギアイト結晶への結晶転移温度と融点が変化していく。この結晶転移温度と融点は組成により大きく影響を受ける。 A nepheline crystal is a tridymite-based silica derivative compound having a stoichiometric composition of NaAlSiO 4 , and is known to undergo a crystal transition to a cristobalite-based carnegiaite crystal in a high-temperature field exceeding 1254 ° C. Further, as described in Non-Patent Document 2, nepheline crystals maintain their crystal structures in a wide range of compositions, and the crystal transition temperature and melting point to carnegite crystals change. The crystal transition temperature and melting point are greatly affected by the composition.
 ここで、本明細書において「ネフェリン質層」との用語は、NaAlSiOの化学量論組成で表わされるネフェリン結晶、ネフェリンの高温形態であるカーネギアイト結晶、それらの結晶構造が維持される組成範囲の結晶全てと、さらに、これらの結晶を溶融して含有するガラス(以下、ネフェリン質なガラスということもある。)を含むものである。なお、カーネギアイト結晶は、ネフェリン結晶が高温場で結晶転移した際に生じる結晶である。 Here, in this specification, the term “nepheline layer” means a nepheline crystal represented by a stoichiometric composition of NaAlSiO 4 , a carnegiaite crystal that is a high-temperature form of nepheline, and a composition range in which the crystal structure is maintained. It includes all crystals and glass containing these crystals by melting (hereinafter also referred to as nepheline glass). The carnegite crystal is a crystal that is generated when the nepheline crystal undergoes a crystal transition in a high temperature field.
 なお、ネフェリン結晶またはカーネギアイト結晶の融点は、上述のように組成とともに大きく変化する。例えば、SiOの含有量が多くなるほどネフェリン結晶またはカーネギアイト結晶の融点は低下し、例えば、NaAlSi10のネフェリン結晶組成では1120℃前後で部分的に溶融し始め、1330℃前後では完全に溶融する。また、この結晶組成に、例えばCaO、KO、Fe等の不純物を含有することでさらに融点は低下する。 Note that the melting point of nepheline crystal or carnegite crystal varies greatly with the composition as described above. For example, as the content of SiO 2 increases, the melting point of nepheline crystal or carnegite crystal decreases. For example, the nepheline crystal composition of Na 2 Al 2 Si 3 O 10 starts to partially melt at around 1120 ° C. and around 1330 ° C. Then it melts completely. Further, the melting point is further lowered by including impurities such as CaO, K 2 O, Fe 2 O 3 in this crystal composition.
 「ネフェリン質なガラス」との用語は、NaO、Alに富むガラスを意味しており、NaAlSiOの組成で表わされるガラスに限定されず、例えばKO、CaO、MgO等の不純物を含んでいてもよい。このネフェリン質なガラスは、通常のソーダライムガラスと比較し非常に高粘性であることが知られている。 The term “nepheline-like glass” means a glass rich in Na 2 O and Al 2 O 3 , and is not limited to a glass represented by the composition of NaAlSiO 4 , for example, K 2 O, CaO, MgO, etc. The impurities may be included. This nepheline glass is known to have a very high viscosity as compared with ordinary soda lime glass.
 上記のネフェリン質層は、アルミナ・ジルコニア・シリカ質溶融鋳造耐火物にソーダライムガラスが接触すると、ソーダライムガラスに含まれるNaOと耐火物から溶出するAlが耐火物の表面近傍で濃縮されることで生成するが、本発明者らはこのネフェリン質層を積極的に利用しストーンの抑制に利用することを検討した。 When the soda lime glass comes into contact with the alumina / zirconia / silica fused cast refractory, the above-mentioned nepheline layer is composed of Na 2 O contained in the soda lime glass and Al 2 O 3 eluted from the refractory in the vicinity of the surface of the refractory. However, the present inventors have studied to use this nepheline layer positively to suppress stones.
 すなわち、ネフェリン質層を、耐火物の使用中において耐火物の表層近傍まで積極的に生成させ、バデライト残存層をネフェリン質層で保護し、ストーンの脱落を抑制する条件を見出し、本発明を完成した。 That is, the nepheline layer is actively generated to the vicinity of the surface layer of the refractory during use of the refractory, and the condition where the residual beddelite is protected by the nepheline layer and the stone is prevented from falling off is completed. did.
 耐火物使用中に耐火物表面近傍にネフェリンまたはカーネギアイト結晶を生成させることが出来れば、バデライトがストーンとして流出することは物理的に抑制される。このとき、上述のように、ネフェリン結晶またはカーネギアイト結晶の融点は組成とともに大きく変化するため、耐火物表面近傍に生成する組成と耐火物の使用温度によっては、耐火物の使用中には必ずしも結晶として存在しておらず、溶融した高粘性なネフェリン質なガラスとして存在する場合もある。しかしながら高粘性なネフェリン質のガラスを生成させた場合においても、その粘性が非常に高いために、ストーンの落下を抑制することが可能となる。 If nepheline or carnegiaite crystals can be generated near the surface of the refractory during use of the refractory, the outflow of badelite as a stone is physically suppressed. At this time, as described above, the melting point of the nepheline crystal or the carnegite crystal varies greatly with the composition, so depending on the composition formed near the surface of the refractory and the operating temperature of the refractory, it is not always possible to use the It may not exist, and may exist as a molten highly viscous nepheline glass. However, even when a highly viscous nepheline glass is produced, the viscosity of the glass is so high that it is possible to suppress the fall of the stone.
 すなわち、本発明の一実施形態に係るアルミナ・ジルコニア・シリカ質溶融鋳造耐火物は、結晶状態または高粘性なガラスからなるネフェリン質層を、耐火物の使用中において積極的に耐火物の表層近傍まで生成させ、バデライト残存層をこのネフェリン質層で保護し、ストーンの脱落を抑制可能としたものである。 That is, the alumina / zirconia / silica fusion cast refractory according to an embodiment of the present invention is a vitreous layer of a nepheline layer made of glass or a highly viscous glass, and actively uses the refractory in the vicinity of the surface layer of the refractory. And the remaining beddelite layer is protected by this nepheline layer, so that the stone can be prevented from falling off.
 以下、本発明の一実施形態に係るアルミナ・ジルコニア・シリカ質溶融鋳造耐火物の各組成について詳細に説明する。
 Alは本発明の一実施形態において必須成分である。アルミナはコランダム結晶を構成し、このコランダム結晶は高い耐侵食性を示し、かつ温度変化に伴う異常な膨張、収縮を示さない特性を有する。これら特徴に加え、アルミナは、耐火物が溶融ガラスに接触した際に、耐火物表面近傍にネフェリン質層を形成させる作用をもつ成分である。このネフェリン質層はストーンの脱落を抑制する保護層として働くため、ストーンの発生量を抑制させることが可能となる。
Hereinafter, each composition of the alumina / zirconia / siliceous fusion cast refractory according to an embodiment of the present invention will be described in detail.
Al 2 O 3 is an essential component in one embodiment of the present invention. Alumina constitutes a corundum crystal, and this corundum crystal has high erosion resistance and does not exhibit abnormal expansion and contraction due to temperature change. In addition to these characteristics, alumina is a component having an action of forming a nepheline layer near the surface of the refractory when the refractory comes into contact with the molten glass. Since this nepheline layer acts as a protective layer that suppresses the falling off of the stone, it is possible to suppress the amount of generated stone.
 このAlの含有量は30~80%である。Alの含有量が80%以下であると相対的にZrOの含有量が低くなり過ぎず適量となり耐侵食性が良好となる。また、ムライトが生成しにくく、亀裂のない鋳塊を得ることが容易である。Alの含有量が30%以上であると、相対的にZrOの含有量が高くなりすぎず適量となり、この場合も亀裂の無い鋳塊を得ることが容易となる。このAlの含有量は40~75%が好ましく、50%~70%がより好ましく、55%~65%がさらに好ましい。なお、別途に示されていなければ、本願の明細書における全てのパーセンテージは酸化物に基づいた質量パーセンテージである。 The Al 2 O 3 content is 30 to 80%. When the content of Al 2 O 3 is 80% or less, the content of ZrO 2 becomes relatively low without being relatively low, and the erosion resistance is good. Moreover, it is difficult to produce mullite and it is easy to obtain an ingot without cracks. When the content of Al 2 O 3 is 30% or more, the content of ZrO 2 is relatively high without becoming too high, and in this case as well, it becomes easy to obtain an ingot without cracks. The Al 2 O 3 content is preferably 40 to 75%, more preferably 50% to 70%, and even more preferably 55% to 65%. Unless otherwise indicated, all percentages in the present specification are mass percentages based on oxides.
 ZrOは、バデライト結晶を構成し、耐火物の溶融ガラスに対する耐侵食性を高める成分であり、本発明の一実施形態において必須成分である。 ZrO 2 is a component that constitutes a badelite crystal and enhances the erosion resistance of the refractory to the molten glass, and is an essential component in one embodiment of the present invention.
 このZrOの含有量は15~50%である。ZrOは耐侵食性を向上させるという点からは多く含まれるほうが好ましく、その含有量が15%以上であると耐侵食性が良好となる。ZrOの含有量が50%以下であると、後述のマトリックスガラス量の範囲においては、ジルコニアの相転移による膨張および収縮が緩和され、亀裂のない鋳塊が得られる。また、アルミナ含有量に対するZrOの含有量が増大すると初晶ジルコニアが生成しやすく、ストーン生成量が増加しやすい傾向がある。このZrOの含有量は22~45%が好ましく、26%~41%がより好ましく、30%~37%がさらに好ましい。 The ZrO 2 content is 15 to 50%. ZrO 2 is preferably contained in a large amount from the viewpoint of improving the erosion resistance. When the content is 15% or more, the erosion resistance is good. When the content of ZrO 2 is 50% or less, in the range of the amount of matrix glass described later, expansion and contraction due to the phase transition of zirconia are alleviated, and an ingot without cracks is obtained. Moreover, when the content of ZrO 2 with respect to the alumina content increases, primary zirconia tends to be generated, and the amount of stone generated tends to increase. The ZrO 2 content is preferably 22 to 45%, more preferably 26% to 41%, and even more preferably 30% to 37%.
 ここで、共晶ジルコニアとは、溶融法によるアルミナ・ジルコニア・シリカ質耐火物の製造時において、冷却末期に共晶点で析出する小さなジルコニア結晶のことである。これに対して、初晶ジルコニアとは、その冷却初期に析出する大きなジルコニア結晶のことである。この両者の区別は、顕微鏡で観察することでその結晶の大きさによって容易に識別できる。しかも、顕微鏡で観察した場合、共晶ジルコニア結晶はコランダムの結晶粒中に微細な結晶の集合体として観察され、近接する結晶どうしが同じ方向に配向して存在する特徴があるが、初晶ジルコニア結晶の場合には近接する結晶間にはほとんど方向性がない。また、共晶ジルコニア結晶は微細なジルコニア結晶が連なってコランダム中に生成するのに対し、初晶ジルコニアは結晶粒子同士の連なりはほとんど無い。さらに、結晶粒径で表現すれば、ジルコニア結晶の最大結晶粒径に対して共晶ジルコニア結晶の結晶粒径は約1/5以下の大きさである。 Here, eutectic zirconia is a small zirconia crystal that precipitates at the eutectic point at the end of cooling during the production of alumina, zirconia, and siliceous refractories by the melting method. On the other hand, primary zirconia is a large zirconia crystal that precipitates in the early stage of cooling. The distinction between the two can be easily distinguished by the size of the crystal by observing with a microscope. Moreover, when observed with a microscope, eutectic zirconia crystals are observed as a collection of fine crystals in corundum grains, and adjacent crystals are oriented in the same direction, but primary zirconia crystals are present. In the case of crystals, there is almost no directivity between adjacent crystals. In addition, eutectic zirconia crystals are formed in corundum with a series of fine zirconia crystals, whereas primary crystal zirconia has almost no connection between crystal grains. Furthermore, in terms of the crystal grain size, the crystal grain size of the eutectic zirconia crystal is about 1/5 or less of the maximum crystal grain size of the zirconia crystal.
 SiOは、マトリックスガラスの骨格を形成する主成分であり、本発明の一実施形態において必須成分である。その含有量は2.0~10.5%である。2.0%以上であると、マトリックスガラスの絶対量が多くなり、亀裂のない鋳塊が得られ易く、得られた鋳塊が良好な組織を呈する。また、10.5%以下であると、相対的に結晶成分であるAl、ZrOの含有量が増え、耐侵食性が向上するとともに、バデライト残存層の厚みが減少し、結果としてストーン生成量が減少する。このSiOの含有量は3.5~8.5%が好ましく、4.5%~7.5%がより好ましく、5.0%~7.0%がさらに好ましい。 SiO 2 is a main component that forms the skeleton of the matrix glass, and is an essential component in one embodiment of the present invention. Its content is 2.0 to 10.5%. If it is 2.0% or more, the absolute amount of the matrix glass increases, and an ingot without cracks is easily obtained, and the obtained ingot exhibits a good structure. Further, if it is 10.5% or less, the content of Al 2 O 3 and ZrO 2 which are relatively crystalline components is increased, the erosion resistance is improved, and the thickness of the residual bedderite is decreased. Reduces stone production. The content of SiO 2 is preferably 3.5 to 8.5%, more preferably 4.5% to 7.5%, and even more preferably 5.0% to 7.0%.
 NaOは、アルミナ・ジルコニア・シリカ質溶融鋳造耐火物の製造に際し、マトリックスガラスの粘性を制御する作用とマトリックスガラスをネフェリン化させる作用を示し、アルミナ同様に本発明の一実施形態において必須成分である。 Na 2 O exhibits the action of controlling the viscosity of the matrix glass and the action of nephelinizing the matrix glass in the production of the alumina / zirconia / silica fused cast refractory, and is an essential component in one embodiment of the present invention as in the case of alumina. It is.
 本発明においてNaOの含有量は0.5~10%である。上記の含有量を満たす範囲でNaOを含有させることによって、耐火物が溶融ガラスに接触した際に、耐火物表面近傍にネフェリン質層を形成させることが可能となる。このネフェリン質層はストーンの脱落を抑制する保護層として働くため、ストーンの発生量を抑制させることが可能となる。 In the present invention, the content of Na 2 O is 0.5 to 10%. By including Na 2 O in a range that satisfies the above content, a nepheline layer can be formed near the surface of the refractory when the refractory comes into contact with the molten glass. Since this nepheline layer acts as a protective layer that suppresses the falling off of the stone, it is possible to suppress the amount of generated stone.
 NaOの含有量が10%以下であると、相対的にコランダム結晶およびジルコニア結晶の含有量が増加するため、耐侵食性が良好となる。また0.5%以上であると、ガラスに浸漬した際に耐火物表面近傍に生成するネフェリン質層の融点が高くなり、ストーンの落下を抑制するための保護層としての効果が大きくなる。また、ムライトの生成が抑制され、亀裂のない鋳塊が得られ易い。NaOの含有量は0.9~5%が好ましく、1.6%~4.0%がより好ましく、1.9%~3.5%がさらに好ましい。 When the content of Na 2 O is 10% or less, the content of corundum crystals and zirconia crystals is relatively increased, so that the erosion resistance is improved. Moreover, when it is 0.5% or more, the melting point of the nepheline layer formed in the vicinity of the refractory surface when immersed in glass is increased, and the effect as a protective layer for suppressing the fall of the stone is increased. Moreover, the production | generation of a mullite is suppressed and an ingot without a crack is easy to be obtained. The content of Na 2 O is preferably 0.9 to 5%, more preferably 1.6% to 4.0%, and even more preferably 1.9% to 3.5%.
 Yは必須成分ではないが、YはZrOの一部もしくは全部を立方晶に安定化させる作用を示すため、耐火物使用時には、温度を上昇させた際に発生するジルコニアの相転移による収縮と膨張を緩和できる。このため、耐火物使用時において、耐火物間の目地の開きを抑制することが可能となり、耐侵食性の向上とストーン生成量を抑制することが可能となる。 Y 2 O 3 is not an essential component, but Y 2 O 3 has the effect of stabilizing part or all of ZrO 2 into cubic crystals. Therefore, when using a refractory, zirconia is generated when the temperature is increased. The shrinkage and expansion due to the phase transition can be alleviated. For this reason, at the time of refractory use, it becomes possible to suppress the opening of the joint between refractories, and it becomes possible to improve erosion resistance and to suppress the amount of stone formation.
 Y≧0.8%では上記ジルコニアの相転移による膨張および収縮の緩和効果が大きくなり、Y≦5%ではYの含有量が少ないために安価であり、汎用的なガラス溶解用耐火物として広く用い易い。Yの含有量は0.8~5.0%であることが好ましい。また、Yの含有量は1.0~4.0%が好ましく、1.3~3.0%がより好ましく、1.5~2.7%がさらに好ましく、1.7~2.4%が特に好ましい。 When Y 2 O 3 ≧ 0.8%, the effect of relaxation of expansion and shrinkage due to the phase transition of the zirconia is increased, and when Y 2 O 3 ≦ 5%, the content of Y 2 O 3 is small, so that the cost is low. It is easy to use widely as a typical glass melting refractory. The content of Y 2 O 3 is preferably 0.8 to 5.0%. The content of Y 2 O 3 is preferably 1.0 to 4.0%, more preferably 1.3 to 3.0%, further preferably 1.5 to 2.7%, and 1.7 to 2%. .4% is particularly preferred.
 Yは、CeO、MgO、ScおよびVからなる群の少なくとも1種を含む成分を併用してもよいし、これら成分を単独でまたは併用したものにより代替されてもよい。 Y 2 O 3 may be used in combination with a component containing at least one member of the group consisting of CeO 2 , MgO, Sc 2 O 3 and V 2 O 5 , or may be replaced by a combination of these components alone or in combination. May be.
 KOおよびLiOは必須成分ではないが、マトリックスガラスの粘性およびネフェリン質層の高温粘性を調整する作用を示す成分である。これらKOおよびLiOは、それら合量で0.1%~3.0%の範囲で含有されるのが好ましい。KOおよびLiOの合量が3.0%以下であると低粘性なマトリックスガラスの生成が抑制される。 K 2 O and Li 2 O are not essential components, but are components that have an effect of adjusting the viscosity of the matrix glass and the high-temperature viscosity of the nepheline layer. These K 2 O and Li 2 O are preferably contained in a total content of 0.1% to 3.0%. K 2 O and Li 2 O in the total amount the production of low-viscosity matrix glass and 3.0% or less can be suppressed.
 CaOは必須成分ではないが、マトリックスガラスの粘性およびネフェリン質層の高温粘性を調整する作用を示す成分である。このCaOは、0.1%~2.0%の範囲で含有されるのが好ましい。CaOの合量が2.0%以下であると低粘性なマトリックスガラスの生成が抑制される。また、ジルコニア結晶が溶解せず、製品の耐侵食性が向上する。 CaO is not an essential component, but is a component that exhibits an effect of adjusting the viscosity of the matrix glass and the high temperature viscosity of the nepheline layer. This CaO is preferably contained in the range of 0.1% to 2.0%. When the total amount of CaO is 2.0% or less, the formation of low-viscosity matrix glass is suppressed. Further, the zirconia crystals are not dissolved, and the erosion resistance of the product is improved.
 本発明の一実施形態に係るアルミナ・ジルコニア・シリカ質溶融鋳造耐火物においては、耐火物中に含有されるAl+ZrO+SiO+NaOの必須成分の合量を85%以上とする。これは、耐火物中に他の成分があまりに多量に含まれてしまうと、AlおよびZrOの含有量が低下し、ガラスに対する耐侵食性が低下するとともに、ストーンの発生量が増大してしまうためである。耐侵食性を良好なものとするには、Al+ZrO+SiO+NaOの合量は、90%以上が好ましく、95%以上がより好ましく、98%以上がさらに好ましく、99%以上が特に好ましい。 In the alumina / zirconia / silica fusion cast refractory according to an embodiment of the present invention, the total amount of essential components of Al 2 O 3 + ZrO 2 + SiO 2 + Na 2 O contained in the refractory is 85% or more. To do. This is because if the refractory contains too many other components, the content of Al 2 O 3 and ZrO 2 decreases, the erosion resistance to the glass decreases, and the amount of stone generated increases. It is because it will do. In order to improve the erosion resistance, the total amount of Al 2 O 3 + ZrO 2 + SiO 2 + Na 2 O is preferably 90% or more, more preferably 95% or more, further preferably 98% or more, and 99% The above is particularly preferable.
 さらに、本発明の一実施形態に係るアルミナ・ジルコニア・シリカ質溶融鋳造耐火物においては、SiOに対するAlおよびNaOの含有割合をAl/SiO≧6.5、NaO/SiO≧0.25とする。 Further, in the alumina-zirconia-silica fusion cast refractory according to an embodiment of the present invention, the content of Al 2 O 3 and Na 2 O with respect to SiO 2 Al 2 O 3 / SiO 2 ≧ 6.5, Na 2 O / SiO 2 ≧ 0.25.
 上記のように、耐火物中におけるAl、ZrO、SiO、NaOの含有量を所定の範囲とし、さらに、これら成分量の関係を所定の関係とすることにより、ガラス中へのストーンの発生を抑制し、かつ、ガラスに対する高い耐侵食性を併せて有するアルミナ・ジルコニア・シリカ質溶融鋳造耐火物が得られる。 As described above, the content of Al 2 O 3 , ZrO 2 , SiO 2 , and Na 2 O in the refractory is set within a predetermined range, and further, the relationship between the amounts of these components is set as a predetermined relationship. Thus, an alumina / zirconia / silica fused cast refractory material that suppresses the generation of stones and has high erosion resistance to glass can be obtained.
 必須成分であるSiO、Al、NaOにおいて、SiOに対するAlおよびNaOの含有割合を、それぞれAl/SiO≧6.5、NaO/SiO≧0.25の範囲に限定した理由を、さらに詳細に説明する。 In SiO 2, Al 2 O 3, Na 2 O is an essential component, the content of Al 2 O 3 and Na 2 O with respect to SiO 2, Al 2 O 3 / SiO 2 ≧ 6.5 respectively, Na 2 O / The reason for limiting to the range of SiO 2 ≧ 0.25 will be described in more detail.
 ネフェリン結晶は、化学量論組成がNaAlSiOの化合物である。耐火物がソーダライムガラスと接触した場合に、耐火物の表面近傍に積極的にネフェリン結晶やカーネギアイト結晶、さらにはこれら結晶の溶融した高粘性なネフェリン質なガラスを生成させるためには、ガラス中に含まれていないAlを耐火物内側から積極的に供給する必要がある。すなわち、耐火物中のAl含有量を増大させるほど、耐火物の表層近傍にネフェリン質層が生成しやすくなる。 The nepheline crystal is a compound having a stoichiometric composition of NaAlSiO 4 . When refractory comes into contact with soda lime glass, nepheline crystals and carnegite crystals are actively produced in the vicinity of the surface of the refractory. It is necessary to positively supply Al 2 O 3 not contained in the refractory from the inside. That is, as the Al 2 O 3 content in the refractory is increased, a nepheline layer is more likely to be generated near the surface layer of the refractory.
 耐火物の表層近傍にネフェリン質層を生成させ、ストーンの発生量を抑制できるかどうかは、耐火物が含有するジルコニア量、ZrO/(ZrO+Al)比、NaO/SiO比などの影響も受ける。ところが、Al/SiO≧6.5の範囲でAlを含有させることが特に影響が大きく、このような条件とすると、ネフェリン質層からなる保護層を耐火物表層近傍に効果的に形成させることができ、ストーンの発生量を抑制することが可能となる。 Whether or not a nepheline layer can be generated near the surface of the refractory and the amount of generated stones can be suppressed depends on the amount of zirconia contained in the refractory, the ZrO 2 / (ZrO 2 + Al 2 O 3 ) ratio, and Na 2 O / SiO. Also affected by 2 ratios. However, the inclusion of Al 2 O 3 in the range of Al 2 O 3 / SiO 2 ≧ 6.5 has a particularly large influence. Under such conditions, a protective layer made of a nepheline layer is placed near the refractory surface layer. It can be formed effectively, and the generation amount of stone can be suppressed.
 以上の点から、アルミナ・ジルコニア・シリカ質溶融鋳造耐火物中におけるSiOに対するAlの含有割合はAl/SiO≧6.5である。この含有割合は、Al/SiO≧8.0が好ましく、Al/SiO≧9.0がより好ましく、Al/SiO≧10.0がさらに好ましい。 In view of the above, the content of Al 2 O 3 with respect to SiO 2 in the alumina-zirconia-silica fusion cast refractories is Al 2 O 3 / SiO 2 ≧ 6.5. The content ratio is preferably Al 2 O 3 / SiO 2 ≧ 8.0, more preferably Al 2 O 3 / SiO 2 ≧ 9.0, and further preferably Al 2 O 3 / SiO 2 ≧ 10.0.
 また、ネフェリン結晶は、上述のように化学量論組成の場合には融点が1526℃±2℃であるが、ガラスと接触することで耐火物表面近傍に生成するネフェリンの組成は化学量論組成よりもNaO含有量の低い組成であり、このようなネフェリン結晶では融点が大きく低下する。従来のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物を用いた場合、使用環境により異なるが、およそ1100℃~1400℃で部分的に溶融し始める。ネフェリンの融点が低いと、耐火物の耐熱性が低下し、ネフェリン質層による保護効果が小さくなる。 In addition, the nepheline crystal has a melting point of 1526 ° C. ± 2 ° C. in the case of the stoichiometric composition as described above, but the composition of nepheline generated in the vicinity of the surface of the refractory by contact with glass is the stoichiometric composition. a low compositional a content of Na 2 O than, the melting point is greatly reduced in such nepheline crystals. When a conventional alumina / zirconia / silica fusion cast refractory is used, it starts to partially melt at approximately 1100 ° C. to 1400 ° C., depending on the use environment. When the melting point of nepheline is low, the heat resistance of the refractory is lowered, and the protective effect of the nepheline layer is reduced.
 したがって、NaO含有量の高いネフェリン質層を耐火物表層近傍に生成させることで、より高温域までストーンの発生量を抑制することが可能となる。ネフェリン質層は、溶融するソーダライムガラスからNaOが供給されることで生成するが、本発明のように耐火物中のNaO含有量を増大させ、耐火物側からもNaOを供給すると、耐火物表層近傍に生成するネフェリン質層の融点が向上(上昇)する。 Therefore, by generating a nepheline layer having a high Na 2 O content in the vicinity of the refractory surface layer, it becomes possible to suppress the generation amount of stones to a higher temperature range. The nepheline layer is generated by supplying Na 2 O from molten soda lime glass, but the Na 2 O content in the refractory is increased as in the present invention, and Na 2 O is also added from the refractory side. Is supplied, the melting point of the nepheline layer formed near the surface of the refractory is improved (increased).
 生成するネフェリン質層の融点はジルコニア量、ZrO/(ZrO+Al)比、Al/SiO比などの影響を受ける。ところが、NaO/SiO≧0.25の範囲でNaOを含有させることが特に影響が大きく、このような条件としておくと、より高温域までネフェリン質層からなる保護層を耐火物表層近傍に形成させることができ、ストーンの発生量を抑制することが可能となる。なお、耐火物製造時においては、0.25≦NaO/SiO<0.40の範囲においては、NaO濃度の高いマトリックスガラス中に部分的にネフェリン質が生成し、0.40≦NaO/SiOの範囲においてはマトリックスガラスが実質的に全てネフェリン質化する。 The melting point of the nepheline layer to be generated is affected by the amount of zirconia, the ratio of ZrO 2 / (ZrO 2 + Al 2 O 3 ), the ratio of Al 2 O 3 / SiO 2, and the like. However, the inclusion of Na 2 O in the range of Na 2 O / SiO 2 ≧ 0.25 has a particularly great influence. When such conditions are used, a protective layer composed of a nepheline layer can be formed into a refractory to a higher temperature range. It can be formed in the vicinity of the surface layer, and the generation amount of stone can be suppressed. In the production of refractory, nepheline is partially generated in the matrix glass having a high Na 2 O concentration in the range of 0.25 ≦ Na 2 O / SiO 2 <0.40, and 0.40 In the range of ≦ Na 2 O / SiO 2 , the matrix glass becomes substantially all nepheline.
 以上の点から、アルミナ・ジルコニア・シリカ質溶融鋳造耐火物中におけるSiOに対するNaOの含有割合はNaO/SiO≧0.25である。NaO/SiO≧0.29が好ましく、NaO/SiO≧0.35がより好ましく、NaO/SiO≧0.40がさらに好ましい。このような配合量としておくと、ガラス中へのストーンの発生を抑制し、かつ、ガラスに対する高い耐侵食性を併せて有するアルミナ・ジルコニア・シリカ質溶融鋳造耐火物が得られる。 In view of the above, the content of Na 2 O with respect to SiO 2 in the alumina-zirconia-silica fusion cast refractories are Na 2 O / SiO 2 ≧ 0.25 . Na 2 O / SiO 2 ≧ 0.29 is preferable, Na 2 O / SiO 2 ≧ 0.35 is more preferable, and Na 2 O / SiO 2 ≧ 0.40 is still more preferable. With such a blending amount, it is possible to obtain an alumina / zirconia / silica fused cast refractory that suppresses the generation of stones in the glass and also has high erosion resistance against the glass.
 本発明の一実施形態に係るアルミナ・ジルコニア・シリカ質溶融鋳造耐火物において、SiOに対するAlの含有割合およびSiOに対するNaOの含有割合は高い方がより高温域までネフェリン質層からなる保護層を耐火物表層近傍に形成させることができ、ストーンの発生量を抑制することが可能となるが、一方で、原因は明らかでないが鋳塊への亀裂の発生は起こりやすい傾向にある。 In the alumina-zirconia-silica fusion cast refractory according to an embodiment of the present invention, nepheline quality content of Na 2 O with respect to content and SiO 2 to Al 2 O 3 with respect to SiO 2 is higher up hotter zone A protective layer consisting of layers can be formed near the surface of the refractory and it is possible to reduce the amount of stones generated, but on the other hand, the cause is not clear, but cracks in the ingot tend to occur easily It is in.
 したがって、本発明の一実施形態に係るアルミナ・ジルコニア・シリカ質溶融鋳造耐火物中におけるSiOに対するAlの含有割合は、Al/SiO≦25が好ましい。Al/SiO≦20がより好ましく、Al/SiO≦15がさらに好ましく、Al/SiO≦12が特に好ましい。 Therefore, the content ratio of Al 2 O 3 with respect to SiO 2 in the alumina / zirconia / silica fusion cast refractory according to one embodiment of the present invention is preferably Al 2 O 3 / SiO 2 ≦ 25. Al 2 O 3 / SiO 2 ≦ 20 is more preferable, Al 2 O 3 / SiO 2 ≦ 15 is more preferable, and Al 2 O 3 / SiO 2 ≦ 12 is particularly preferable.
 また、アルミナ・ジルコニア・シリカ質溶融鋳造耐火物中におけるSiOに対するNaOの含有割合はNaO/SiO≦3が好ましい。NaO/SiO≦2がより好ましく、NaO/SiO≦1がさらに好ましく、NaO/SiO≦0.5が特に好ましい。 Further, the content of Na 2 O with respect to SiO 2 in the alumina-zirconia-silica fusion cast refractories is preferably Na 2 O / SiO 2 ≦ 3 . Na 2 O / SiO 2 ≦ 2 is more preferable, Na 2 O / SiO 2 ≦ 1 is more preferable, and Na 2 O / SiO 2 ≦ 0.5 is particularly preferable.
 本発明の一実施形態に係るアルミナ・ジルコニア・シリカ質溶融鋳造耐火物は、ジルコニア源に自然に存在する酸化ハフニウムHfOを含んでいてもよい。本発明の上記耐火物におけるその含有量は5%以下であり、一般的に2%以下である。従来のように、「ZrO」との用語は、ジルコニアおよびこれらに含まれる微量の酸化ハフニウムを意味している。 The alumina / zirconia / siliceous fusion cast refractory according to an embodiment of the present invention may include hafnium oxide HfO 2 naturally present in a zirconia source. The content of the refractory of the present invention is 5% or less, and generally 2% or less. Conventionally, the term “ZrO 2 ” means zirconia and trace amounts of hafnium oxide contained therein.
 なお、上記の他の成分としては、本発明の一実施形態に係るアルミナ・ジルコニア・シリカ質溶融鋳造耐火物としての特性を損なわないものであれば特に限定されず、アルミナ・ジルコニア・シリカ質溶融鋳造耐火物に使用される公知の成分が挙げられる。他の成分としては、例えば、SnO、ZnO、CuO、MnO、Cr、P、Sb、As、Ybなどの酸化物が挙げられる。これらの成分を含有させる場合、その合量は10%以下が好ましく、3%以下が好ましく、1%以下がさらに好ましい。 The other components are not particularly limited as long as they do not impair the characteristics of the alumina / zirconia / silica fusion cast refractory according to one embodiment of the present invention, and the alumina / zirconia / silica fusion The well-known component used for a cast refractory is mentioned. Examples of other components include oxides such as SnO 2 , ZnO, CuO, MnO 2 , Cr 2 O 3 , P 2 O 5 , Sb 2 O 5 , As 2 O 5 , and Yb 2 O 3 . When these components are contained, the total amount is preferably 10% or less, preferably 3% or less, and more preferably 1% or less.
 また、ストーンの発生量は、Al/SiO比、NaO/SiO比、ZrO含有量などの影響を受けるが、ストーンの発生量をさらに減少させるためには、ジルコニアとアルミナに対するジルコニアの割合はZrO/(Al+ZrO)≦0.39であることが好ましい。これは、初晶ジルコニアは結晶粒子同士が連なっておらず、共晶ジルコニアよりも初晶ジルコニアの方がストーンとして脱落しやすいため、上記のような配合量にすることで、ストーンとして脱落しやすい初晶ジルコニアの生成量を少なくできるためである。また、0.33≦ZrO/(Al+ZrO)であることが好ましい。これは、ZrO/(Al+ZrO)が0.33以上であると、アルミナの初晶の生成量が増大せず、共晶ジルコニアが初晶アルミナの周囲に偏析して生成することがなくなり、バデライト残存層で共晶ジルコニア同士が絡み合いやすくなって、ストーンとして脱落しにくくなるためである。0.35≦ZrO/(Al+ZrO)がより好ましい。 In addition, the amount of stone generated is affected by the Al 2 O 3 / SiO 2 ratio, Na 2 O / SiO 2 ratio, ZrO 2 content, etc. In order to further reduce the amount of stone generated, zirconia and The ratio of zirconia to alumina is preferably ZrO 2 / (Al 2 O 3 + ZrO 2 ) ≦ 0.39. This is because primary crystal zirconia is not continuous with crystal particles, and primary crystal zirconia is more likely to fall out as stone than eutectic zirconia. This is because the amount of primary zirconia produced can be reduced. Further, it is preferable that 0.33 ≦ ZrO 2 / (Al 2 O 3 + ZrO 2). This is because when ZrO 2 / (Al 2 O 3 + ZrO 2 ) is 0.33 or more, the production amount of primary crystals of alumina does not increase, and eutectic zirconia is segregated around primary crystal alumina. This is because the eutectic zirconia is easily entangled in the remaining bedderite layer, and it is difficult to fall off as a stone. 0.35 ≦ ZrO 2 / (Al 2 O 3 + ZrO 2 ) is more preferable.
 本発明の一実施形態に係るアルミナ・ジルコニア・シリカ質溶融鋳造耐火物は、使用する出発材料に存在しているまたは、製品の製造中に生じる構成要素、すなわち、例えばフッ素、塩素等のハロゲン、マグネシウム、硼素、チタン、そして、鉄、を不純物として含んでいてもよいが、これら不純物は耐侵食性を低下させるため少ない方が好ましい。 Alumina-zirconia-silica melt cast refractory according to an embodiment of the present invention is a component present in the starting material used or produced during the manufacture of the product, i.e. halogens such as fluorine, chlorine, Magnesium, boron, titanium, and iron may be contained as impurities, but these impurities are preferable because they reduce the erosion resistance.
 ここで、「不純物」との用語は、開始材料に必然的に取り入れられているかまたはこれらの組成の反応に起因する避けられない組成を意味している。特に、鉄またはチタンの酸化物は有害であり、およびこれらの含有量は不純物として開始材料に取り入れられた微量なものに制限されなければならない。特に、Fe+TiOの質量は1%以下が好ましく、0.5%より小さい方がより好ましい。 Here, the term “impurity” means an unavoidable composition that is inevitably incorporated in the starting material or due to the reaction of these compositions. In particular, iron or titanium oxides are harmful and their content must be limited to the traces incorporated into the starting material as impurities. In particular, the mass of Fe 2 O 3 + TiO 2 is preferably 1% or less, and more preferably less than 0.5%.
 本発明の一実施形態に係るアルミナ・ジルコニア・シリカ質溶融鋳造耐火物は、このような所定量の成分を含有する構成とすることで、例えば1300℃のソーダライムガラス中に浸漬させた場合に、耐火物の表層近傍にネフェリン質層からなる保護層を形成でき、ストーンの発生量を抑制することが可能となる。 When the alumina / zirconia / silica fusion cast refractory according to an embodiment of the present invention is configured to contain such a predetermined amount of components, for example, when immersed in soda lime glass at 1300 ° C. In addition, a protective layer composed of a nepheline layer can be formed in the vicinity of the surface layer of the refractory, and the amount of stone generated can be suppressed.
 ここで、ストーンの発生量は、侵食試験を行った後に耐火物の断面を光学顕微鏡(株式会社ニコン製、ECLIPSE LV100)により観察し、耐火物表面からのストーンの落下量を直接カウントすることで評価できる。本明細書においては、ストーンの発生量を、1300℃のガラスに20日間(480時間)浸漬した後に所定のせん断速度を与えストーンを発生させたサンプルで評価する。この結果を、ガラス製造装置に広く利用されているアルミナ・ジルコニア・シリカ質溶融鋳造耐火物(AGCセラミックス社製、商品名:ZB-1691)における同一試験の結果と比較し、ストーン発生量が90%以下である耐火物を好ましいものとした。ストーンの発生量は80%以下がより好ましく、70%以下がさらに好ましく、60%以下が特に好ましい。 Here, the amount of stone generated is determined by directly observing the amount of stone falling from the surface of the refractory by observing the cross section of the refractory with an optical microscope (Nikon Corporation, ECLIPSE LV100) after performing an erosion test. Can be evaluated. In this specification, the amount of generated stone is evaluated by a sample in which a predetermined shear rate is given after immersion in glass at 1300 ° C. for 20 days (480 hours). This result is compared with the result of the same test in the alumina / zirconia / silica fusion cast refractory (AGC Ceramics Co., Ltd., trade name: ZB-1691) that is widely used in glass manufacturing equipment. % Or less refractory is preferred. The generation amount of stone is more preferably 80% or less, further preferably 70% or less, and particularly preferably 60% or less.
 本発明の一実施形態に係るアルミナ・ジルコニア・シリカ質溶融鋳造耐火物の形状、寸法、質量は限定されない。例えば、厚みが100mm以下のスラブの形態にあってもよい。好ましくは、ブロックまたはスラブは、ガラス溶融窯の一部を形成する、あるいは壁または炉床を構成する。このとき、ブロックまたはスラブが、溶融ガラスとの接触又は溶融ガラスから放出されるガスとの接触する領域内に配置されていると、上記説明のようなストーンの発生を抑制する効果を発揮でき好ましい。 The shape, size, and mass of the alumina / zirconia / silica fusion cast refractory according to an embodiment of the present invention are not limited. For example, it may be in the form of a slab having a thickness of 100 mm or less. Preferably, the block or slab forms part of a glass melting furnace or constitutes a wall or hearth. At this time, if the block or slab is disposed in a region in contact with the molten glass or in contact with the gas released from the molten glass, the effect of suppressing the generation of stone as described above is preferable. .
 本発明の一実施形態に係るアルミナ・ジルコニア・シリカ質溶融鋳造耐火物は、例えば、上記のようにストーンの発生量の試験を行った場合に、ガラス製造装置に広く利用されているアルミナ・ジルコニア・シリカ質溶融鋳造耐火物(AGCセラミックス社製、商品名:ZB-1691)と比較し、ストーン発生量が90%以下であり、かつ、ガラスに対する侵食速度が115%以下(相対侵食量が115以下と同義)であることが好ましい。ここで耐侵食性は、例えば、ストーン発生量の測定と同様に1300℃のガラスに480時間浸漬し、フラックスラインでの最大侵食深さを測定する。この結果を、アルミナ・ジルコニア・シリカ質溶融鋳造耐火物(AGCセラミックス社製、商品名:ZB-1691)における同一試験の結果と比較することにより評価する。すなわち、耐浸食性があるとは、ZB-1691との相対浸食量が115以下である耐火物が好ましく、105以下がより好ましく、95以下がさらに好ましい。 The alumina / zirconia / silica fusion cast refractory according to an embodiment of the present invention is, for example, alumina / zirconia widely used in a glass manufacturing apparatus when the amount of generated stone is tested as described above.・ Compared to siliceous molten cast refractory (manufactured by AGC Ceramics, trade name: ZB-1691), the amount of generated stone is 90% or less, and the erosion rate for glass is 115% or less (the relative erosion amount is 115). (Synonymous with the following). Here, the erosion resistance is determined by, for example, immersing the glass at 1300 ° C. for 480 hours in the same manner as the measurement of the amount of generated stone, and measuring the maximum erosion depth in the flux line. This result is evaluated by comparing with the result of the same test in an alumina / zirconia / silica fusion cast refractory (manufactured by AGC Ceramics, trade name: ZB-1691). That is, erosion resistance is preferably a refractory having a relative erosion amount with ZB-1691 of 115 or less, more preferably 105 or less, and even more preferably 95 or less.
 ネフェリン質層からなる保護層は、ガラスの対流速度が非常に速い環境場においては耐火物の表層近傍には生成しにくい。そのため、使用環境にもよるが、マランゴニン対流と呼ばれる強い対流が発生しているフラックスラインでは、耐火物表層近傍までネフェリン質層からなる保護層を生成させることは難しく、耐侵食性の向上への寄与は限られている。そのため、フラックスラインの耐侵食性は基本的にはジルコニアの含有量の影響を強く受ける。 The protective layer made of a nepheline layer is difficult to form near the surface of the refractory in an environment where the convection speed of the glass is very high. Therefore, depending on the environment of use, it is difficult to generate a protective layer consisting of a nepheline layer near the refractory surface layer in the flux line where strong convection called Marangonin convection occurs, which improves erosion resistance. The contribution is limited. Therefore, the erosion resistance of the flux line is basically strongly influenced by the zirconia content.
 フラックスライン以外の領域においては、本発明のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物を使用することにより、耐火物表層近傍までネフェリン質層からなる保護層を生成させることが十分に可能となる。そのため、ストーンの発生量を効果的に減少させることができる。 In a region other than the flux line, the use of the alumina / zirconia / silica fusion cast refractory of the present invention makes it possible to sufficiently generate a protective layer composed of a nepheline layer up to the vicinity of the refractory surface layer. Therefore, the amount of generated stones can be effectively reduced.
 本発明の一実施形態に係るアルミナ・ジルコニア・シリカ質溶融鋳造耐火物は、上記配合割合となるように粉末原料を均質に混合し、これをアーク電気炉により溶融させて、溶融した原料を黒鉛型に流し込み、冷却して製造される。この耐火物は、溶融時にかかるエネルギーが大きいためコストはかかるが、ZrO結晶の組織が緻密で、結晶の大きさも大きいことから、焼結耐火物よりも耐食安定性に優れたものである。なお、溶融時の加熱は、グラファイト電極と原料粉末を接触させ、電極に通電することにより行われる。このように得られた本発明の一実施形態に係るアルミナ・ジルコニア・シリカ質溶融鋳造耐火物は、溶融ガラスに対して優れた耐侵食性を示し、板ガラス等のガラス製品を製造する際に用いる、ガラス溶融窯用の炉材に適したものである。 The alumina / zirconia / silica fusion cast refractory according to an embodiment of the present invention is obtained by mixing homogeneously powder raw materials so as to have the above-mentioned blending ratio, melting the mixture in an arc electric furnace, and converting the molten raw material into graphite. It is manufactured by pouring into a mold and cooling. This refractory is expensive because it takes a large amount of energy when melted, but the structure of the ZrO 2 crystal is dense and the size of the crystal is large. Therefore, the refractory has better corrosion resistance stability than the sintered refractory. In addition, the heating at the time of melting is performed by bringing a graphite electrode and raw material powder into contact with each other and energizing the electrode. The thus obtained alumina / zirconia / silica fusion cast refractory according to one embodiment of the present invention exhibits excellent erosion resistance against molten glass, and is used when producing glass products such as plate glass. It is suitable for furnace materials for glass melting kilns.
 本発明の一実施形態に係るガラス溶融窯は、上記した本発明の一実施形態に係るアルミナ・ジルコニア・シリカ質溶融鋳造耐火物を具備してなるものである。上記した本発明の一実施形態に係るアルミナ・ジルコニア・シリカ質溶融鋳造耐火物を具備したガラス溶融窯であれば、溶融ガラス中へのストーンの発生を抑制し、かつ、ガラスに対する高い耐侵食性を有するため、ガラスの溶融を安定して行うことができ、品質の良好なガラス製品を歩留まり良く製造できる。上記した本発明の一実施形態に係るアルミナ・ジルコニア・シリカ質溶融鋳造耐火物は、ガラスと接触する箇所に用いることが好ましい。 A glass melting furnace according to an embodiment of the present invention comprises the above-described alumina / zirconia / silica melting cast refractory according to an embodiment of the present invention. If it is a glass melting furnace equipped with the above-described alumina / zirconia / siliceous molten cast refractory according to one embodiment of the present invention, the generation of stones in the molten glass is suppressed, and the glass has a high erosion resistance. Therefore, the glass can be stably melted, and a glass product with good quality can be manufactured with a high yield. The above-described alumina / zirconia / siliceous fusion cast refractory according to one embodiment of the present invention is preferably used in a place where it comes into contact with glass.
 本発明の一実施形態に係るガラス溶融窯は、上記した本発明の一実施形態に係るアルミナ・ジルコニア・シリカ質溶融鋳造耐火物が、溶融ガラスおよびガラスを溶融することにより放出されたガスの少なくとも一方に接触する領域内に配置されていてもよい。本発明の一実施形態に係るアルミナ・ジルコニア・シリカ質溶融鋳造耐火物を用いたガラス溶融窯であれば、溶融ガラス中へのストーンの発生を抑制し、かつ、ガラスに対する高い耐侵食性を有するため、溶融ガラスに接触する領域内に配置されていてもガラスの溶融を安定して行うことができ、品質の良好なガラス製品を歩留まり良く製造できる。また、ガラス溶融窯では、溶融ガラスまたはガラス溶融からNaやKを含むガスが発生する。耐火物が珪石煉瓦であるガラス溶融窯であると、これらのガスによって耐火物が低融点化し変形しやすい。本発明の一実施形態に係るアルミナ・ジルコニア・シリカ質溶融鋳造耐火物を用いたガラス溶融窯であれば、耐熱性の高いZrOを含有しており、かつAl/SiO比が高く、溶融しやすいマトリックスガラス部が少ないことにより変形しにくいため、ガラスを溶融することにより放出されたガスに接触する領域内に配置されていても高い耐熱性を有することができる。 A glass melting kiln according to an embodiment of the present invention is the above-described alumina / zirconia / silica molten cast refractory according to an embodiment of the present invention. You may arrange | position in the area | region which contacts one side. If it is a glass melting kiln using the alumina, zirconia, siliceous molten cast refractory according to one embodiment of the present invention, it suppresses the generation of stones in the molten glass and has high erosion resistance to glass. Therefore, glass can be stably melted even if it is disposed in the region in contact with the molten glass, and a glass product with good quality can be manufactured with a high yield. In a glass melting furnace, a gas containing Na or K is generated from molten glass or glass melting. When the refractory is a glass melting kiln made of quartz brick, the refractory is lowered in melting point and easily deformed by these gases. If it is a glass melting kiln using an alumina / zirconia / siliceous fusion cast refractory according to an embodiment of the present invention, it contains high heat-resistant ZrO 2 and has an Al 2 O 3 / SiO 2 ratio of Since it is difficult to be deformed due to a small number of matrix glass portions that are high and easily melted, even if it is disposed in a region that is in contact with gas released by melting glass, it can have high heat resistance.
 次に、本発明の一実施形態に係るガラス板の製造方法について説明する。
 本発明の一実施形態に係るガラス板の製造方法は、上記した本発明の一実施形態に係るガラス溶融窯においてガラス原料を加熱して溶融ガラスを得て、前記溶融ガラスを板状に成形するものである。
Next, the manufacturing method of the glass plate which concerns on one Embodiment of this invention is demonstrated.
The manufacturing method of the glass plate which concerns on one Embodiment of this invention heats a glass raw material in the glass melting furnace which concerns on one Embodiment of this invention mentioned above, obtains molten glass, and shape | molds the said molten glass in plate shape. Is.
 本発明の一実施形態に係るガラス板の製造方法において、まずは、得られるガラス板の組成となるように調製した原料を上記した本発明の一実施形態に係るガラス溶融窯に投入し、好ましくは1400~1650℃程度に加熱して溶融ガラスを得る。
 原料に清澄剤としてSOやSnOなどを用いてもよい。清澄剤を用いることでガラスから泡を取り除くことができる。また、減圧による脱泡法を適用してもよい。
 次いで、本発明の一実施形態に係るガラス板の製造方法において、フュージョン法、フロート法、プレス成形法などにより、溶融ガラスを板状に成形する。例えばフロート法では、溶融ガラスを溶融金属上に流して板状に成形される。
 本発明の一実施形態に係るガラス板の製造方法において、板状に成形されたガラス板は徐冷することが好ましい。徐冷されたガラス板は所望の形状に切断される。
In the method for producing a glass plate according to an embodiment of the present invention, first, the raw material prepared so as to have the composition of the obtained glass plate is charged into the glass melting furnace according to the embodiment of the present invention, preferably Heat to about 1400-1650 ° C. to obtain molten glass.
Etc. may be used SO 3 and SnO 2 as a fining agent to the raw material. Bubbles can be removed from the glass by using a fining agent. Further, a defoaming method using reduced pressure may be applied.
Next, in the glass plate manufacturing method according to an embodiment of the present invention, the molten glass is formed into a plate shape by a fusion method, a float method, a press molding method, or the like. For example, in the float process, molten glass is flowed over molten metal and formed into a plate shape.
In the manufacturing method of the glass plate which concerns on one Embodiment of this invention, it is preferable to cool slowly the glass plate shape | molded in plate shape. The gradually cooled glass plate is cut into a desired shape.
 本発明の一実施形態に係るガラス板の製造方法によれば、上記した本発明の一実施形態に係るガラス溶融窯においてガラス原料を加熱して溶融ガラスを得るため、溶融ガラス中へのストーンの発生が抑制され、ガラスの溶融を安定して行うことができ、品質の良好なガラスを歩留まり良く製造できる。 According to the manufacturing method of the glass plate which concerns on one Embodiment of this invention, in order to obtain a molten glass by heating a glass raw material in the glass melting furnace which concerns on one embodiment of this invention mentioned above, Generation | occurrence | production is suppressed, glass can be fuse | melted stably and a glass with favorable quality can be manufactured with a sufficient yield.
 以下、本発明を実施例および比較例によって具体的に説明するが、本発明はこれらの記載によって何ら限定して解釈されるものではない。特に、本発明の耐火物は、特定の形状または次元に限定されず、ガラス溶融窯への応用にも限定されない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not construed as being limited to these descriptions. In particular, the refractory of the present invention is not limited to a specific shape or dimension, and is not limited to application to a glass melting furnace.
(例1~例42)
 脱珪ジルコニアやジルコンサンドなどのZrO原料とバイヤーアルミナなどのAl原料と珪砂などのSiO原料とNaO、Y、LiO、KO、CaO、MgO、Cr、P、Bなどの原料となるものを所定量に調整したバッチ混合物を、500KVA単相アーク電気炉に装入し、溶融温度1900℃前後で完全に溶融した。
(Example 1 to Example 42)
ZrO 2 raw materials such as desiliconized zirconia and zircon sand, Al 2 O 3 raw materials such as Bayer alumina, SiO 2 raw materials such as silica sand, Na 2 O, Y 2 O 3 , Li 2 O, K 2 O, CaO, MgO, A batch mixture in which raw materials such as Cr 2 O 3 , P 2 O 5 , and B 2 O 5 were adjusted to a predetermined amount was charged into a 500 KVA single-phase arc electric furnace and completely melted at a melting temperature of around 1900 ° C. did.
 溶融して得られた湯を内容積130mm×160mm×350mmの周囲をシリカ質の中空球やバイヤーアルミナからなる保温材で囲まれた砂で作った鋳型に注入して鋳造し、室温付近まで徐冷した。溶解は従来方法と同様に、電極を湯面からあげるいわゆるロングアーク法で、溶融途中に酸素を吹き込むなどを行い、できるだけ溶融物の酸化状態を保つようにしてアルミナ・ジルコニア・シリカ質溶融鋳造耐火物を得た。 The hot water obtained by melting is poured into a mold made of sand surrounded by a heat insulating material made of siliceous hollow spheres or Bayer alumina around an inner volume of 130 mm x 160 mm x 350 mm, and cast to room temperature. Chilled. In the same way as the conventional method, melting is a so-called long arc method in which the electrode is lifted from the molten metal surface. For example, oxygen is blown in the middle of melting to keep the melt in an oxidized state as much as possible. I got a thing.
 得られた溶融鋳造耐火物の化学分析値(単位:質量%)と諸性質を表1~5に示した。例1~27が実施例であり、例28~42が比較例である。例28、29は、ガラス製造装置に広く利用されているアルミナ・ジルコニア・シリカ質溶融鋳造耐火物(AGCセラミックス社製、商品名;ZB1691およびZB1711)である。 Tables 1 to 5 show the chemical analysis values (unit: mass%) and various properties of the obtained molten cast refractories. Examples 1-27 are examples, and examples 28-42 are comparative examples. Examples 28 and 29 are alumina, zirconia, and siliceous fused cast refractories widely used in glass production apparatuses (manufactured by AGC Ceramics, trade names: ZB1691 and ZB1711).
 なお、溶融鋳造耐火物中の化学組成について、ZrO、SiO、およびAlは波長分散型蛍光X線分析装置(株式会社リガク製、装置名:ZSX PrimusII)により決定した定量分析値であり、その他の成分は高周波誘導結合プラズマ発光分光分析装置(セイコーインスツル社製、装置名:SPS 1100)により決定した定量分析値である。しかし、各成分の定量はこの分析方法に限定されるものではなく、他の定量分析方法によっても実施できる。 Regarding the chemical composition in the molten cast refractory, ZrO 2 , SiO 2 , and Al 2 O 3 are quantitative analysis values determined by a wavelength dispersive X-ray fluorescence analyzer (manufactured by Rigaku Corporation, apparatus name: ZSX Primus II). The other components are quantitative analysis values determined by a high-frequency inductively coupled plasma emission spectrometer (manufactured by Seiko Instruments Inc., apparatus name: SPS 1100). However, the quantification of each component is not limited to this analysis method, and can be carried out by other quantitative analysis methods.
 得られた溶融鋳造耐火物はいずれも(A)コランダム結晶、(B)バデライト結晶ならびに(C)マトリックスガラスおよび/またはネフェリン結晶、を基本組織としていた。結晶の種類、有無は、製造後の溶融鋳造耐火物を切断し、切断面をSEM-EDX(Scanning Electron Microscope-Energy Dispersive X-ray Detector、株式会社日立ハイテクノロジーズ社製、商品名:S-3000H)で断面観察するとともに、XRD(X-ray Diffraction、株式会社リガク製、商品名:RINT-TTRIII)で結晶構造を分析することで確認した。 The obtained molten cast refractories all had (A) corundum crystal, (B) badelite crystal, and (C) matrix glass and / or nepheline crystal as a basic structure. The type and presence of the crystal is determined by cutting the molten cast refractory after manufacture and cutting the cut surface with SEM-EDX (Scanning Electron Microscope-Energy Dispersive X-ray Detector, manufactured by Hitachi High-Technologies Corporation, product name: S-3000H ), And the crystal structure was analyzed by XRD (X-ray Diffraction, manufactured by Rigaku Corporation, trade name: RINT-TTRIII).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 製造した溶融鋳造耐火物の外観上の亀裂の有無について次のように評価した。まず、目視にて亀裂の有無を調べ、亀裂が生じた耐火物については耐火物表面の全面に各面深さ10mmの研削を行い、得られた耐火物を中央から切断し、切断面を観察することで亀裂長さを評価した。研削後の耐火物における亀裂長さが10mm以下となった場合には製造時の亀裂を「小」、亀裂長さが10mmを超え50mm以下となった場合には製造時の亀裂を「中」、亀裂長さが50mmを超える場合には製造時の亀裂を「大」と分類した。 The presence or absence of cracks on the appearance of the manufactured molten cast refractory was evaluated as follows. First, visually inspect the presence or absence of cracks. For refractories with cracks, grind the surface of the refractory to a depth of 10 mm on each surface, cut the resulting refractory from the center, and observe the cut surface. The crack length was evaluated. When the crack length in the refractory after grinding becomes 10 mm or less, the crack at the time of manufacture is “small”, and when the crack length exceeds 10 mm and is 50 mm or less, the crack at the time of manufacture is “medium”. When the crack length exceeded 50 mm, the crack at the time of manufacture was classified as “large”.
 製造時の亀裂がない場合、耐火物の製造に問題は生じない。また、製造時の亀裂が中以下であれば、必要な耐火物寸法よりわずかに大きい鋳塊を製造し、表面に軽度の研削を行うだけで良いので耐火物の製造は容易である。一方で、製造時の亀裂が大であると、必要な耐火物寸法に対して非常に大きな耐火物(鋳塊)を製造した上で、重度の研削や切断が必要となるため、その耐火物の製造は原価が非常に高くなり現実的でない。 If there is no crack at the time of production, there will be no problem in the production of refractories. Moreover, if the crack at the time of manufacture is below the inside, manufacture of a refractory is easy since it is only necessary to manufacture an ingot slightly larger than the required refractory size and to perform light grinding on the surface. On the other hand, if the crack at the time of manufacture is large, it is necessary to manufacture a very large refractory (ingot) with respect to the required refractory dimensions, and then severe grinding or cutting is required. The cost of manufacturing is very unrealistic.
 また、製造した溶融鋳造耐火物のストーン生成特性は次のように評価した。耐火物から15mm×25mm×50mm(縦×横×長さ)の試験片を切り出し、ソーダライムガラス(旭硝子株式会社製、商品名:クリアーFL)に、大気雰囲気中1300℃で480時間浸漬させ、その後、0.8/sのせん断速度で試験片を上方へ引き抜き、5分間保持した後に300℃/Hrの速度で冷却した。冷却後、ガラスで覆われた試験片を中央から半裁し、光学顕微鏡で断面観察を行い、耐火物表層からガラス側へ脱落したストーン数をカウントした。 In addition, the stone formation characteristics of the manufactured molten cast refractories were evaluated as follows. A test piece of 15 mm × 25 mm × 50 mm (length × width × length) was cut out from the refractory and immersed in soda lime glass (Asahi Glass Co., Ltd., trade name: Clear FL) at 1300 ° C. for 480 hours in an air atmosphere. Thereafter, the test piece was drawn upward at a shear rate of 0.8 / s, held for 5 minutes, and then cooled at a rate of 300 ° C./Hr. After cooling, the test piece covered with glass was cut in half from the center, the cross-section was observed with an optical microscope, and the number of stones that fell from the refractory surface layer to the glass side was counted.
 また、耐侵食性については次のようにして評価した。耐火物から15mm×25mm×50mm(縦×横×長さ)の試験片を切り取り、ソーダライムガラス(旭硝子株式会社製、商品名:クリア―FL)に、大気雰囲気中1300℃で480時間浸漬させ、その後、侵食量を測定し、耐侵食性を調べた。 Also, the erosion resistance was evaluated as follows. A 15 mm x 25 mm x 50 mm (length x width x length) test piece was cut from the refractory and immersed in soda lime glass (Asahi Glass Co., Ltd., trade name: Clear-FL) at 1300 ° C in air for 480 hours. Thereafter, the amount of erosion was measured to examine the erosion resistance.
 ストーン生成量と耐浸食性は、1300℃の温度域において、ガラス製造装置に広く利用されている公知のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物(AGCセラミックス社製、商品名:ZB-1691)の例28と比較し、このZB-1691(例28)のストーン生成量、または、浸食試験後の浸食部の最大浸食深さを100として、相対的なストーン生成量、浸食量を示した。 Stone formation amount and erosion resistance are known alumina / zirconia / silica fusion cast refractories widely used in glass manufacturing equipment in the temperature range of 1300 ° C. (trade name: ZB-1691, manufactured by AGC Ceramics) In comparison with Example 28, the stone generation amount of this ZB-1691 (Example 28) or the maximum erosion depth of the erosion part after the erosion test was taken as 100, and the relative stone generation amount and erosion amount were shown.
 ストーン生成量は少ない方が好ましいが、ZB-1691との相対発生量が90以下であればストーン生成特性がこれまでよりも十分に改善されており、満足できるものである。 It is preferable that the amount of generated stone is small, but if the amount of generated relative to ZB-1691 is 90 or less, the stone generation characteristics are sufficiently improved than before, which is satisfactory.
 侵食量は少ない方が好ましいが、近年では、窯で使用されるアルミナ・ジルコニア・シリカ質溶融鋳造耐火物の外側に、例えば別のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物を設置することでガラス溶融窯の寿命を延長することが可能となるため、耐侵食性は必ずしも高い必要はない。したがって、実用上、ZB-1691との相対侵食量が115以下の時に耐侵食性は満足できる。 It is preferable that the amount of erosion is small, but in recent years, for example, by placing another alumina, zirconia, siliceous fused cast refractory outside the alumina, zirconia, siliceous fused cast refractory used in the kiln, Since it is possible to extend the life of the melting furnace, the erosion resistance is not necessarily high. Therefore, practically, the erosion resistance is satisfactory when the relative erosion amount with ZB-1691 is 115 or less.
 例28、例29は、公知組成のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物であり、Al/SiOおよびNaO/SiOが小さい組成の耐火物である。該ガラスに対する耐侵食性は例1~27とほぼ同等であるが、ネフェリン質層の生成成分が不足しているために、ストーンの発生量が多い。 Examples 28 and 29 are alumina / zirconia / siliceous fused cast refractories having a known composition, and are refractories having a small composition of Al 2 O 3 / SiO 2 and Na 2 O / SiO 2 . Although the erosion resistance to the glass is almost the same as in Examples 1 to 27, the amount of stones generated is large due to the lack of the formation component of the nepheline layer.
 例30は、NaO/SiOを小さくした組成のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物であり、ガラスに対する耐侵食性が例1~27とほぼ同等であるが、ネフェリン質層の生成成分が不足しているために、ストーンの発生量が多い。 Example 30 is an alumina / zirconia / silica fused cast refractory with a reduced Na 2 O / SiO 2 composition, and the erosion resistance to glass is almost the same as in Examples 1 to 27, but a nepheline layer is formed. Due to the lack of ingredients, the amount of stone generated is large.
 例31は、ZrO含有量を少なくした組成のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物であり、ZrO含有量が少ないためにガラスに対する耐侵食性が例1~27と比較して非常に低い。 Example 31 is alumina-zirconia-silica fusion cast refractory composition with a reduced content of ZrO 2, very corrosion resistance against glass to ZrO 2 content is small as compared with Examples 1-27 Low.
 例32は、ZrO含有量を多くした組成のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物であり、ガラスに対する耐侵食性は高いが、ZrO含有量が多いため製造時の亀裂が非常に大きい。 Example 32 is alumina-zirconia-silica fusion cast refractory compositions that many ZrO 2 content is high in corrosion resistance to glass, is very large cracks during production for ZrO 2 content is high .
 例33、34は、SiO含有量を少なくした組成のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物であり、ストーン発生量は少ないが、SiO含有量が少ないため製造時の亀裂が非常に大きい。 Examples 33 and 34 are alumina / zirconia / silica fusion cast refractories with a reduced SiO 2 content, and although the amount of stones generated is small, cracks during production are very large due to the low SiO 2 content. .
 例35は、SiO含有量を多くした組成のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物であり、SiO含有量が多いために耐侵食性は低く、ストーンの発生量が多い。 Example 35 is an alumina / zirconia / silica fusion cast refractory having a composition with an increased SiO 2 content. Since the SiO 2 content is large, the erosion resistance is low and the amount of generated stones is large.
 例36は、NaO含有量を少なくした組成のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物であり、耐侵食性は低く、ストーンの発生量が多く、製造時の亀裂が非常に大きい。 Example 36 is an alumina / zirconia / siliceous fusion cast refractory with a reduced Na 2 O content, has low erosion resistance, a large amount of stones, and very large cracks during production.
 例37は、NaO含有量を多くした組成のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物であり、ストーンの発生量が多く、NaOの含有量が多いために耐侵食性は非常に低い。 Example 37 is an alumina / zirconia / siliceous fusion cast refractory having a composition with an increased Na 2 O content. Since the amount of generated stone is large and the content of Na 2 O is large, the erosion resistance is very high. Low.
 例38は、Al含有量を多くした組成のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物であり、ストーンの発生量は少ないが、製造時の亀裂が非常に大きい。 Example 38 is an alumina / zirconia / siliceous fused cast refractory having a composition with a high Al 2 O 3 content. Although the amount of stones generated is small, cracks during production are very large.
 例39、40は、Al含有量を少なくした組成のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物であり、耐侵食性は高いが、ストーンの発生量が多く、製造時の亀裂が非常に大きい。 Examples 39 and 40 are alumina / zirconia / silica fused cast refractories with a reduced Al 2 O 3 content, which have high erosion resistance but a large amount of stones generated, resulting in very high cracks during production. Big.
 例41、42は、必須成分の含有量を85%未満とした組成のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物であり、耐火物中のAlおよびZrOの含有量が少ないために、ガラスに対する耐侵食性が低く、ストーンの発生量が多い。 Examples 41 and 42 are alumina / zirconia / silica fused cast refractories having a composition with an essential component content of less than 85%, because the contents of Al 2 O 3 and ZrO 2 in the refractories are small. , Low erosion resistance to glass and a large amount of stones.
 一方、本発明の実施例である例1~27は、所定量の成分を含有するアルミナ・ジルコニア・シリカ質溶融鋳造耐火物であり、例28~42と比較し、ストーン発生量、耐侵食性および製造特性が良好な結果となっている。より具体的には、従来のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物と比較し、ストーンの生成量が少なく、耐侵食性が実用上満足できるレベルであり、製造時の亀裂がないか、亀裂があっても中以下である。 On the other hand, Examples 1 to 27, which are examples of the present invention, are alumina / zirconia / silica fused cast refractories containing a predetermined amount of components. Compared with Examples 28 to 42, the amount of generated stones and corrosion resistance And the manufacturing characteristics are good results. More specifically, compared to conventional alumina / zirconia / silica fused cast refractories, the amount of stone produced is small, and the erosion resistance is at a level that is practically satisfactory, and there are no cracks during production. Even if there is, it is less than medium.
 例2、例5、例6、例8~12、例14、例16、例18~24、および例25~27は、Al/SiOおよびNaO/SiOを比較的大きくした組成のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物であり、ストーンの生成量が少ない。また、良好な耐食性を有し、製造時の亀裂も中以下である。中でも例5、例6、例14および例19はZrO/(Al+ZrO)がより好ましい範囲にあるため、ストーンの生成量が特に少ない。 Example 2, Example 5, Example 6, Examples 8-12, Example 14, Example 16, Examples 18-24, and Examples 25-27 are relatively large in Al 2 O 3 / SiO 2 and Na 2 O / SiO 2. Alumina / zirconia / siliceous fusion cast refractory having the composition described above, and the amount of stone produced is small. In addition, it has good corrosion resistance, and cracks during production are also moderate or less. In particular, Example 5, Example 14, Example 14 and Example 19 have a particularly small amount of stone because ZrO 2 / (Al 2 O 3 + ZrO 2 ) is in a more preferable range.
 例1、および例17は、Al/SiOを本発明の範囲内において比較的小さくした組成のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物であり、ストーンの発生の抑制効果は維持されており、耐食性が良好で、製造亀裂も少ない。 Examples 1 and 17 are alumina / zirconia / silica fused cast refractories having a composition in which Al 2 O 3 / SiO 2 is relatively small within the scope of the present invention, and the effect of suppressing generation of stone is maintained. It has good corrosion resistance and few manufacturing cracks.
 例3は、NaO/SiOを本発明の範囲内において比較的小さくした組成のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物であり、ストーンの発生の抑制効果は維持されており、耐食性が良好で、製造亀裂も少ない。 Example 3 is an alumina / zirconia / silica fused cast refractory having a composition in which Na 2 O / SiO 2 is relatively small within the scope of the present invention, the effect of suppressing the occurrence of stones is maintained, and the corrosion resistance is high. Good and few manufacturing cracks.
 例4、および例15は、Al/SiOおよびNaO/SiOの大きいアルミナ・ジルコニア・シリカ質溶融鋳造耐火物であり、ZrO/(Al+ZrO)が大きいが、ストーンの発生の抑制効果は維持されており、耐食性が良好で、製造亀裂も少ない。 Examples 4 and 15 are large Al 2 O 3 / SiO 2 and Na 2 O / SiO 2 alumina / zirconia / silica fusion cast refractories, with large ZrO 2 / (Al 2 O 3 + ZrO 2 ). However, the effect of suppressing the generation of stones is maintained, the corrosion resistance is good, and there are few manufacturing cracks.
 例7は、Al/SiOおよびNaO/SiOを本発明の範囲内において比較的小さくした組成のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物であり、ストーンの発生の抑制効果は維持されており、耐食性が良好で、製造亀裂も少ない。 Example 7 is an alumina / zirconia / silica fused cast refractory having a composition in which Al 2 O 3 / SiO 2 and Na 2 O / SiO 2 are relatively small within the scope of the present invention, and suppresses the occurrence of stones. Is maintained, corrosion resistance is good, and there are few manufacturing cracks.
 例13は、Al/SiOを本発明の範囲内において比較的小さくした組成のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物であり、ストーンの発生の抑制効果は維持されており、耐食性が良好で、製造亀裂も少ない。 Example 13 is an alumina / zirconia / siliceous fusion cast refractory having a composition in which Al 2 O 3 / SiO 2 is relatively small within the scope of the present invention. Is good and there are few manufacturing cracks.
 例1~27のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物を具備してなる溶融窯は、溶融ガラス中へのストーンの発生が抑制される。また、ガラスに対する高い耐侵食性を有するため、ガラスの溶融を安定して行うことができ、品質の良好なガラス製品を歩留まり良く製造できる。 In the melting kiln comprising the alumina / zirconia / siliceous molten cast refractory of Examples 1 to 27, the generation of stones in the molten glass is suppressed. In addition, since the glass has high erosion resistance, the glass can be stably melted, and a glass product with good quality can be manufactured with high yield.
 本発明のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物は、ガラス中へのストーンの発生を抑制し、かつ、ガラスに対する高い耐侵食性を併せて有し、高い生産性で容易に製造できるため、ガラス溶融窯用の耐火物として好適である。 Since the alumina / zirconia / siliceous fusion cast refractory of the present invention suppresses the occurrence of stones in the glass, and also has high erosion resistance against the glass, it can be easily manufactured with high productivity. Suitable as a refractory for a glass melting furnace.

Claims (11)

  1.  必須成分としてAl、ZrO、SiOおよびNaOを含むアルミナ・ジルコニア・シリカ質溶融鋳造耐火物であって、酸化物基準の質量パーセンテージで
      Al:30%~80%、
      ZrO:15%~50%、
      SiO:2.0%~10.5%、
      NaO:0.5%~10%、
    を含有し、かつ
      Al/SiO≧6.5、
      NaO/SiO≧0.25、
    であり、
     前記必須成分の合量が85%以上であることを特徴とするアルミナ・ジルコニア・シリカ質溶融鋳造耐火物。
    Alumina / zirconia / siliceous fusion cast refractory containing Al 2 O 3 , ZrO 2 , SiO 2 and Na 2 O as essential components, wherein Al 2 O 3 : 30% to 80% in mass percentage based on oxide ,
    ZrO 2 : 15% to 50%,
    SiO 2 : 2.0% to 10.5%,
    Na 2 O: 0.5% to 10%,
    And Al 2 O 3 / SiO 2 ≧ 6.5,
    Na 2 O / SiO 2 ≧ 0.25,
    And
    Alumina / zirconia / silica fused cast refractory, wherein the total amount of the essential components is 85% or more.
  2.  Al/SiO≦25.0である請求項1に記載のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物。 The alumina / zirconia / siliceous fused cast refractory according to claim 1, wherein Al 2 O 3 / SiO 2 ≦ 25.0.
  3.  NaO/SiO≦3である請求項1または2に記載のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物。 3. The alumina / zirconia / silica fused cast refractory according to claim 1 or 2, wherein Na 2 O / SiO 2 ≦ 3.
  4.  Yを0.8~5.0%さらに含む請求項1乃至3のいずれか1項に記載のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物。 4. The alumina / zirconia / siliceous fusion cast refractory according to claim 1, further comprising 0.8 to 5.0% of Y 2 O 3 .
  5.  KOおよびLiOを合量で0.1~3.0%さらに含む請求項1乃至4のいずれか1項に記載のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物。 The alumina / zirconia / silica fused cast refractory according to any one of claims 1 to 4, further comprising a total amount of K 2 O and Li 2 O of 0.1 to 3.0%.
  6.  CaOを0.1%~2.0%さらに含む請求項1乃至5のいずれか1項に記載のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物。 6. The alumina / zirconia / silica fusion cast refractory according to claim 1, further comprising CaO in an amount of 0.1% to 2.0%.
  7.  ZrO/(Al+ZrO)≦0.39である請求項1乃至6のいずれか1項に記載のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物。 The alumina / zirconia / siliceous molten cast refractory according to claim 1, wherein ZrO 2 / (Al 2 O 3 + ZrO 2 ) ≦ 0.39.
  8.  0.33≦ZrO/(Al+ZrO)である請求項1乃至7のいずれか1項に記載のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物。 The alumina / zirconia / siliceous molten cast refractory according to claim 1, wherein 0.33 ≦ ZrO 2 / (Al 2 O 3 + ZrO 2 ).
  9.  請求項1乃至8のいずれか1項に記載のアルミナ・ジルコニア・シリカ質溶融鋳造耐火物を具備してなることを特徴とするガラス溶融窯。 A glass melting furnace comprising the alumina / zirconia / siliceous fusion cast refractory according to any one of claims 1 to 8.
  10.  前記アルミナ・ジルコニア・シリカ質溶融鋳造耐火物が、溶融ガラスおよびガラスを溶融することにより放出されたガスの少なくとも一方に接触する領域内に配置される請求項9に記載のガラス溶融窯。 10. The glass melting furnace according to claim 9, wherein the alumina / zirconia / silica molten cast refractory is disposed in a region in contact with at least one of molten glass and a gas released by melting the glass.
  11.  請求項9または10に記載のガラス溶融窯においてガラス原料を加熱して溶融ガラスを得て、
     前記溶融ガラスを板状に成形することを特徴とするガラス板の製造方法。
    A glass raw material is heated in the glass melting furnace according to claim 9 or 10 to obtain a molten glass,
    A method for producing a glass plate, comprising molding the molten glass into a plate shape.
PCT/JP2015/069156 2014-07-09 2015-07-02 Fused-cast alumina-zirconia-silica refractory, glass melting furnace, and method for producing glass plate WO2016006531A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014141313 2014-07-09
JP2014-141313 2014-07-09

Publications (1)

Publication Number Publication Date
WO2016006531A1 true WO2016006531A1 (en) 2016-01-14

Family

ID=55064167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069156 WO2016006531A1 (en) 2014-07-09 2015-07-02 Fused-cast alumina-zirconia-silica refractory, glass melting furnace, and method for producing glass plate

Country Status (1)

Country Link
WO (1) WO2016006531A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019115466A1 (en) 2017-12-11 2019-06-20 Saint-Gobain Centre De Recherches Et D'etudes Europeen Method for identifying the class of electrofused azs refractories generating "stones" in a glass product
CN112236401A (en) * 2018-04-10 2021-01-15 法商圣高拜欧洲实验及研究中心 Heat insulation gap brick
WO2023182007A1 (en) * 2022-03-25 2023-09-28 サンゴバン・ティーエム株式会社 High-zirconia electro-fused cast refractory material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1072264A (en) * 1996-08-30 1998-03-17 Asahi Glass Co Ltd Production of alumina-zirconia-silica fused refractory
JPH10101439A (en) * 1996-10-01 1998-04-21 Asahi Glass Co Ltd Alumina-zirconia-silica-based melt-cast refractory
JPH11343174A (en) * 1998-02-26 1999-12-14 Asahi Glass Co Ltd Alumina-zirconia-silica fused refractory and glass melting kiln using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1072264A (en) * 1996-08-30 1998-03-17 Asahi Glass Co Ltd Production of alumina-zirconia-silica fused refractory
JPH10101439A (en) * 1996-10-01 1998-04-21 Asahi Glass Co Ltd Alumina-zirconia-silica-based melt-cast refractory
JPH11343174A (en) * 1998-02-26 1999-12-14 Asahi Glass Co Ltd Alumina-zirconia-silica fused refractory and glass melting kiln using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019115466A1 (en) 2017-12-11 2019-06-20 Saint-Gobain Centre De Recherches Et D'etudes Europeen Method for identifying the class of electrofused azs refractories generating "stones" in a glass product
CN112236401A (en) * 2018-04-10 2021-01-15 法商圣高拜欧洲实验及研究中心 Heat insulation gap brick
CN112236401B (en) * 2018-04-10 2023-02-17 法商圣高拜欧洲实验及研究中心 Heat insulation gap brick
WO2023182007A1 (en) * 2022-03-25 2023-09-28 サンゴバン・ティーエム株式会社 High-zirconia electro-fused cast refractory material

Similar Documents

Publication Publication Date Title
JP4465191B2 (en) Melt cast refractory products with high zirconia content
US8563453B2 (en) High zirconia fused cast refractory
US8642492B2 (en) High zirconia fused cast refractory
RU2527947C2 (en) Fireproof block for glass-melting furnace
US8765620B2 (en) Refractory product having high zirconia content
JP7168577B2 (en) Alumina/Zirconia/Silica Fused Casting Refractory and Glass Melting Kiln
US8563454B2 (en) Refractory product with high zirconia content
US9242903B2 (en) High zirconia fused cast refractory
WO2016013384A1 (en) Alumina-zirconia-silica fused-cast refractory, glass melting furnace, and method for producing glass plate
JP4944610B2 (en) Green component for manufacturing sintered refractory products with improved bubble generation behavior
KR20140043140A (en) Refractory block and glass-melting furnace
JP6140687B2 (en) High zirconia electroformed refractory
KR20070070058A (en) High-zirconia casting refractory material
WO2016006531A1 (en) Fused-cast alumina-zirconia-silica refractory, glass melting furnace, and method for producing glass plate
WO2017115698A1 (en) Alumina-zirconia-silica refractory, glass melting furnace, and method for manufacturing plate glass
WO2016068111A1 (en) Alumina-zirconia-silica fused-cast refractory material, glass furnace, and method for producing sheet glass
CN107438583B (en) Refractory block and glass melting furnace
CN109467447B (en) High zirconia electrocast refractory and process for producing the same
JP7099898B2 (en) High zirconia electroformed refractory and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15819631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15819631

Country of ref document: EP

Kind code of ref document: A1