JP4798693B2 - Yttria ceramic parts for plasma processing apparatus and method for manufacturing the same - Google Patents

Yttria ceramic parts for plasma processing apparatus and method for manufacturing the same Download PDF

Info

Publication number
JP4798693B2
JP4798693B2 JP2005163378A JP2005163378A JP4798693B2 JP 4798693 B2 JP4798693 B2 JP 4798693B2 JP 2005163378 A JP2005163378 A JP 2005163378A JP 2005163378 A JP2005163378 A JP 2005163378A JP 4798693 B2 JP4798693 B2 JP 4798693B2
Authority
JP
Japan
Prior art keywords
yttria
processing apparatus
plasma processing
raw material
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005163378A
Other languages
Japanese (ja)
Other versions
JP2006021990A (en
Inventor
征隆 村田
敬司 森田
俊爾 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2005163378A priority Critical patent/JP4798693B2/en
Publication of JP2006021990A publication Critical patent/JP2006021990A/en
Application granted granted Critical
Publication of JP4798693B2 publication Critical patent/JP4798693B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、半導体の製造に使用されるプラズマ処理装置のフォーカスリング、サセプター、クランプリング等として用いられるイットリア(酸化イットリウム:Y23)セラミックス部品及びその製造方法に関する。 The present invention relates to a yttria (yttrium oxide: Y 2 O 3 ) ceramic part used as a focus ring, a susceptor, a clamp ring or the like of a plasma processing apparatus used for manufacturing a semiconductor and a method for manufacturing the same.

従来、この種のプラズマ処理装置用イットリアセラミックス部品としては、腐食ガスまたはそのプラズマを用いるウエハ処理プロセスにおいてウエハを保持するウエハ保持具であって、少なくともウエハ接触面が、金属微量成分の含有量が、重量基準で、Si:200ppm以下、Al:100ppm以下、Na、K、Ti、Cr、Fe、Niの総量:200ppm以下であり、かつ表面粗さがRaで0.5μm以下の酸化イットリウム焼結体で構成されているウエハ保持具が知られている(特許文献1参照)。   Conventionally, this type of yttria ceramic component for a plasma processing apparatus is a wafer holder for holding a wafer in a wafer processing process using a corrosive gas or plasma thereof, and at least the wafer contact surface has a trace amount of metal content. Sintered yttrium oxide with Si: 200 ppm or less, Al: 100 ppm or less, total amount of Na, K, Ti, Cr, Fe, Ni: 200 ppm or less and surface roughness Ra of 0.5 μm or less A wafer holder composed of a body is known (see Patent Document 1).

上記ウエハ保持具は、所定の原料粉末をポリエチレンポット中に、イオン交換水、有機分散剤、有機バインダーおよび鉄芯入りナイロンボールとともに装入して24時間混合し、得られたスラリーをスプレードライヤーで乾燥し顆粒を作成して顆粒をCIP成形後、所定温度で焼成して、円盤状の焼結体を作製し、しかる後に、円盤状焼結体の上面を鏡面研磨して製造されている。   The wafer holder is prepared by charging predetermined raw material powder into a polyethylene pot together with ion-exchanged water, an organic dispersant, an organic binder and a nylon ball containing iron core for 24 hours and mixing the resulting slurry with a spray dryer. The granules are dried, and the granules are CIP-molded. Then, the granules are fired at a predetermined temperature to produce a disk-shaped sintered body, and then the upper surface of the disk-shaped sintered body is mirror-polished.

上述したウエハ保持具は、半導体製造工程等に用いられるハロゲン含有ガスプラズマ等の腐食雰囲気に対する耐食性が高く、金属による汚染が生じ難いと共に、パーティクルが生じ難い、というものである。   The wafer holder described above has high corrosion resistance against a corrosive atmosphere such as a halogen-containing gas plasma used in a semiconductor manufacturing process and the like, and is less likely to be contaminated with metal and less likely to generate particles.

しかし、従来のプラズマ処理装置用イットリアセラミックス部品及びその製造方法では、プラズマ処理装置で使用する場合、例えば、フッ素系、塩素系ガスを導入してプラズマを発生させ、シリコンウエーハをエッチングする際、高い耐プラズマ性を有すると共に、金属による汚染が生じ難い利点があるものの、イットリアセラミックス部品からダストが発生し、処理すべきシリコンウエーハに付着してパーティクル汚染を生じる不具合がある。   However, in the conventional yttria ceramic parts for plasma processing apparatus and the manufacturing method thereof, when used in the plasma processing apparatus, for example, when fluorine or chlorine gas is introduced to generate plasma and the silicon wafer is etched, it is expensive. In addition to being resistant to plasma and having the advantage that metal contamination is less likely to occur, dust is generated from the yttria ceramic parts and has the disadvantage of causing particle contamination by adhering to the silicon wafer to be processed.

イットリアセラミックス部品に微量の金属成分が含有していると、微量の金属成分は、イットリア結晶の結晶粒界に偏析し易い。
このような微量の金属成分を含有するイットリアセラミックス部品をプラズマ雰囲気に曝すと、金属成分は、プラズマ雰囲気においてイットリア結晶よりも腐食され易いため、結晶粒界から腐食が進行していく。そして、表面付近のイットリア結晶の粒界が腐食すると、イットリア結晶が脱落し、ダストとしてシリコンウエーハに付着するものである。
特開2002−255647号公報
If the yttria ceramic component contains a trace amount of a metal component, the trace amount of the metal component tends to segregate at the grain boundary of the yttria crystal.
When yttria ceramic parts containing such a small amount of metal components are exposed to a plasma atmosphere, the metal components are more easily corroded than yttria crystals in the plasma atmosphere, and therefore corrosion proceeds from the crystal grain boundaries. When the grain boundary of the yttria crystal near the surface is corroded, the yttria crystal falls off and adheres to the silicon wafer as dust.
JP 2002-255647 A

本発明は、ダストの発生を抑制して、処理すべき半導体のパーティクル汚染を格段に低減し得るプラズマ処理装置用イットリアセラミックス部品及びその製造方法の提供を課題とする。   It is an object of the present invention to provide an yttria ceramic component for a plasma processing apparatus and a method for manufacturing the same that can suppress the generation of dust and significantly reduce particle contamination of a semiconductor to be processed.

本発明のプラズマ処理装置用イットリアセラミックス部品は、純度が99.9wt%以上のイットリア原料を用いて焼成された焼結体であり、かつ、結晶粒径の分布がD10:3〜10μm、D90:13〜30μmであり、金属微量成分の含有量が重量基準でSi:100ppm以下、Ca:20ppm以下であることを特徴とする。
ここで、D10、D90とは、任意のイットリアの結晶粒子100個における結晶粒径の小さい方から10番目、90番目ということである。
The yttria ceramic component for a plasma processing apparatus of the present invention is a sintered body fired by using a yttria raw material having a purity of 99.9 wt% or more, and has a crystal grain size distribution of D10: 3 to 10 μm, D90: It is 13-30 micrometers , Content of a metal trace component is Si: 100 ppm or less and Ca: 20 ppm or less on the basis of weight .
Here, D10 and D90 are the 10th and 90th from the smallest crystal grain size in 100 arbitrary yttria crystal grains.

前記イットリアセラミックス部品は、さらに、結晶粒径の分布がD50:10〜15μmであることが好ましい。
ここで、D50とは、上記と同様に、任意のイットリアの結晶粒子100個における結晶粒径の小さい方から50番目ということである。
The yttria ceramic part preferably further has a crystal grain size distribution of D50: 10 to 15 μm.
Here, D50 is the 50th from the smallest crystal grain size in 100 arbitrary yttria crystal grains, as described above.

一方、嵩密度は、4.90g/cm3以上であることが好ましい。 On the other hand, the bulk density is preferably 4.90 g / cm 3 or more.

又、本発明のプラズマ処理装置用イットリアセラミックス部品の製造方法は、純度が99.9wt%以上、一次粒子径がD50:0.01〜1μmのイットリア原料を造粒して成形し、成形体を大気中で仮焼した後、仮焼体を水素ガス雰囲気において1700〜1850℃の温度で焼成することを特徴とする。   In addition, the method for producing yttria ceramic parts for a plasma processing apparatus of the present invention comprises forming and molding a yttria raw material having a purity of 99.9 wt% or more and a primary particle diameter of D50: 0.01 to 1 μm. After calcining in the air, the calcined body is fired at a temperature of 1700 to 1850 ° C. in a hydrogen gas atmosphere.

本発明のプラズマ処理装置用イットリアセラミックス部品及びその製造方法によれば、プラズマ雰囲気におけるイットリアセラミックスの侵食は結晶粒界から進むが、イットリア結晶粒子が大きくなることにより、その結晶粒界の長さが長くなり、結晶粒子の脱落が少なくなるので、ダストの発生を大幅に抑制して、処理すべき半導体のパーティクル汚染を格段に低減することができる。   According to the yttria ceramic component for plasma processing apparatus of the present invention and the manufacturing method thereof, the erosion of yttria ceramics in the plasma atmosphere proceeds from the crystal grain boundary. Since it becomes longer and crystal grains fall off, generation of dust can be greatly suppressed, and particle contamination of the semiconductor to be processed can be significantly reduced.

イットリア原料の純度が、99.9wt%未満であると、目的とする4.90g/cm3以上の嵩密度が得られない。
イットリア原料の純度は、99.95wt%以上がより好ましい。
If the purity of the yttria raw material is less than 99.9 wt%, the target bulk density of 4.90 g / cm 3 or more cannot be obtained.
The purity of the yttria raw material is more preferably 99.95 wt% or more.

イットリアの結晶粒界のD10が、3μm未満であると、プラズマ処理装置内での使用中にダストが発生し易い。一方、10μmを超えると、強度が低下する。
イットリアの結晶粒径のD10は、5〜7μmがより好ましい。
又、イットリアの結晶粒径のD90が、13μm未満であると、プラズマ処理装置内で使用中にダストが発生し易い。一方、30μmを超えると、イットリアセラミックスの強度が低下する。
イットリアの結晶粒径のD90は、15〜25μmがより好ましい。
When D10 of the grain boundary of yttria is less than 3 μm, dust is likely to be generated during use in the plasma processing apparatus. On the other hand, when it exceeds 10 μm, the strength decreases.
As for D10 of the crystal grain diameter of yttria, 5-7 micrometers is more preferable.
In addition, when D90 of the yttria crystal grain size is less than 13 μm, dust is easily generated during use in the plasma processing apparatus. On the other hand, when it exceeds 30 μm, the strength of the yttria ceramics decreases.
D90 of the yttria crystal grain size is more preferably 15 to 25 μm.

一方、嵩密度が、4.90g/cm3未満であると、焼結体内の残留気泡が多く、プラズマ処理装置内での使用中、例えば、半導体をエッチングする際に、残留気泡に起因する結晶粒界からのエッチングが起こり易く、ダストの発生の原因となる。
嵩密度は、4.95g/cm3以上がより好ましい。
On the other hand, if the bulk density is less than 4.90 g / cm 3 , there are many residual bubbles in the sintered body, and crystals that are caused by the residual bubbles during use in the plasma processing apparatus, for example, when etching a semiconductor. Etching from the grain boundary is likely to occur, causing dust generation.
The bulk density is more preferably 4.95 g / cm 3 or more.

又、金属微量成分の含有量は、重量基準でSi(シリコン)が100ppmを超え、かつ、Ca(カルシウム)が20ppmを超えると、プラズマ処理装置内での使用中、例えば、半導体をエッチングする際に、不純物に起因するダストが発生し易くなる。
金属微量成分の含有量は、重量基準でSi:50ppm以下、Ca:10ppm以下がより好ましい。
In addition, when the content of the metal trace component exceeds 100 ppm for Si (silicon) and exceeds 20 ppm for Ca (calcium) on a weight basis, for example, when etching a semiconductor during use in a plasma processing apparatus. In addition, dust due to impurities is likely to be generated.
As for content of a metal trace component, Si: 50 ppm or less and Ca: 10 ppm or less are more preferable on a weight basis.

又、イットリア原料の一次粒子径のD50が0.01μm未満であると、製造する際に取り扱いが困難になる、焼成時の収縮量が安定しない、等の不具合が生じる。一方、1μmを超えると、目的とする4.90g/cm3以上の嵩密度が得られない。
イットリア原料の一次粒子径のD50は、0.3〜0.8μmがより好ましい。
Further, when the primary particle diameter D50 of the yttria raw material is less than 0.01 μm, problems such as difficulty in handling during manufacture and unstable shrinkage during firing occur. On the other hand, if it exceeds 1 μm, the target bulk density of 4.90 g / cm 3 or more cannot be obtained.
The primary particle diameter D50 of the yttria raw material is more preferably 0.3 to 0.8 μm.

イットリア原料の造粒は、スプレードライヤーにより行うことが好ましい。   The yttria raw material is preferably granulated with a spray dryer.

成形は、CIP(冷間静水圧プレス)により行うことが好ましい。   Molding is preferably performed by CIP (cold isostatic pressing).

成形体の仮焼温度は、800〜1200℃が好ましい。
成形体の仮焼温度が、800℃未満であると、脱脂が不十分であったり、その後の取扱に耐えられる強度が得られない。一方、1200℃を超えると、大気からの汚染が多くなり、仮焼体の純度が低下する。
The calcining temperature of the molded body is preferably 800 to 1200 ° C.
When the calcining temperature of the molded body is less than 800 ° C., degreasing is insufficient or the strength to withstand subsequent handling cannot be obtained. On the other hand, when it exceeds 1200 ° C., contamination from the air increases, and the purity of the calcined body is lowered.

仮焼体の焼成温度が、1700℃未満であると、目的とする4.90g/cm3以上の嵩密度が得られない。一方、1850℃を超えると、焼結体の強度が低下する。
仮焼体の焼成温度は、1750〜1820℃がより好ましい。
When the calcining temperature of the calcined body is lower than 1700 ° C., the target bulk density of 4.90 g / cm 3 or more cannot be obtained. On the other hand, when the temperature exceeds 1850 ° C., the strength of the sintered body decreases.
The firing temperature of the calcined body is more preferably 1750 to 1820 ° C.

以下、本発明を実施例に基づきさらに具体的に説明するが、本発明は下記の実施例により制限されるものではない。
[実施例1]
先ず、純度が99.9wt%のイットリア原料を粉砕して一次粒子径のD50が0.7μmのイットリア原料粉末を得、このイットリア原料粉末に2wt%のバインダー成分(PVA:ポリビニルアルコール)を添加し、スプレードライヤーにより造粒した後、造粒粉をCIPによって1500kgf/cm2の圧力で成形して成形体を得た。
次に、成形体を大気中において900℃の温度で仮焼(脱脂)した後、仮焼体を水素ガス(H2)雰囲気において1800℃の温度で焼成して焼結体とした(表1参照)。
EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not restrict | limited by the following Example.
[Example 1]
First, a yttria raw material having a purity of 99.9 wt% is pulverized to obtain an yttria raw material powder having a primary particle diameter D50 of 0.7 μm, and a binder component (PVA: polyvinyl alcohol) of 2 wt% is added to the yttria raw material powder. After granulating with a spray dryer, the granulated powder was molded with CIP at a pressure of 1500 kgf / cm 2 to obtain a molded body.
Next, after calcining (degreasing) the molded body in the atmosphere at a temperature of 900 ° C., the calcined body was fired at a temperature of 1800 ° C. in a hydrogen gas (H 2 ) atmosphere to obtain a sintered body (Table 1). reference).

得られた焼結体(イットリアセラミックス)の結晶粒をマイクロスコープで観察し、結晶粒径の分布を測定(任意の100個の結晶粒の粒径を測定)したところ、D10:7μm、D50:10μm、D90:15μmであった(表1参照)。
又、焼結体の嵩密度は、4.97g/cm3であり、かつ、その含有金属は、Si:25ppm、Ca:5ppmであった(表1参照)。
When the crystal grains of the obtained sintered body (yttria ceramics) were observed with a microscope and the distribution of crystal grain size was measured (the grain size of any 100 crystal grains was measured), D10: 7 μm, D50: 10 μm and D90: 15 μm (see Table 1).
The bulk density of the sintered body was 4.97 g / cm 3 , and the contained metals were Si: 25 ppm and Ca: 5 ppm (see Table 1).

次いで、上記焼結体を用いてフォーカスリング(イットリアセラミックス部品)を作製し、このフォーカスリングを使用して直径200mmのシリコンウエーハのプラズマ処理を行った場合のシリコンウエーハ上のダスト数は、2個であった(表1参照)。   Next, a focus ring (yttria ceramic part) is manufactured using the sintered body, and the number of dusts on the silicon wafer is 2 when the focus ring is used to perform a plasma treatment on a silicon wafer having a diameter of 200 mm. (See Table 1).

[実施例2]
実施例1と同様にして成形体を得た後、成形体を大気中において900℃の温度で仮焼(脱脂)した後、仮焼体を水素ガス(H2)雰囲気において1810℃の温度で焼成して焼結体とした(表1参照)。
[Example 2]
After obtaining a molded body in the same manner as in Example 1, the molded body was calcined (degreasing) at a temperature of 900 ° C. in the atmosphere, and then the calcined body was heated at a temperature of 1810 ° C. in a hydrogen gas (H 2 ) atmosphere. Firing was made into a sintered body (see Table 1).

得られた焼結体(イットリアセラミックス)の結晶粒をマイクロスコープで観察し、結晶粒径の分布を測定(任意の100個の結晶粒の粒径を測定)したところ、D10:7μm、D50:15μm、D90:25μmであった(表1参照)。
又、焼結体の嵩密度は、4.98g/cm3であり、かつ、その含有金属は、Si:25ppm、Ca:5ppmであった(表1参照)。
When the crystal grains of the obtained sintered body (yttria ceramics) were observed with a microscope and the distribution of crystal grain size was measured (the grain size of any 100 crystal grains was measured), D10: 7 μm, D50: 15 μm and D90: 25 μm (see Table 1).
The bulk density of the sintered body was 4.98 g / cm 3 , and the contained metals were Si: 25 ppm and Ca: 5 ppm (see Table 1).

次いで、上記焼結体を用いてフォーカスリング(イットリアセラミックス部品)を作製し、このフォーカスリングを使用して直径200mmのシリコンウエーハのプラズマ処理を行った場合のシリコンウエーハ上のダスト数は、1個であった(表1参照)。   Next, a focus ring (yttria ceramic part) is produced using the sintered body, and the number of dusts on the silicon wafer is 1 when a silicon wafer having a diameter of 200 mm is subjected to plasma treatment using the focus ring. (See Table 1).

[比較例1]
純度が99.9wt%のイットリア原料を粉砕して一次粒子径のD50が1.0μmのイットリア原料粉末を得、このイットリア原料粉末を用いる他は実施例と同一条件で焼結体を製造した(表1参照)。
[Comparative Example 1]
An yttria raw material having a purity of 99.9 wt% was pulverized to obtain an yttria raw material powder having a primary particle diameter D50 of 1.0 μm, and a sintered body was produced under the same conditions as in the examples except that this yttria raw material powder was used ( (See Table 1).

得られた焼結体は、嵩密度が4.85g/cm3であると共に、その結晶粒径の分布を実施例と同様にして測定したところ、D10:2μm、D50:4μm、D90:6μmであった(表1参照)。 The obtained sintered body had a bulk density of 4.85 g / cm 3 , and its crystal grain size distribution was measured in the same manner as in the example. As a result, D10: 2 μm, D50: 4 μm, D90: 6 μm. (See Table 1).

次に、上記焼結体を用いてフォーカスリングを作製し、このフォーカスリングを使用して直径200mmのシリコンウエーハのプラズマ処理を行った場合のシリコンウエーハ上のダスト数は、15個であった(表1参照)。

































Next, a focus ring was produced using the sintered body, and the number of dusts on the silicon wafer was 15 when the silicon wafer having a diameter of 200 mm was subjected to plasma treatment using the focus ring ( (See Table 1).

































Figure 0004798693
Figure 0004798693

[比較例2]
実施例と同様にして仮焼体を得た後、仮焼体を大気中において1700℃の温度で焼成して焼結体とした(表1参照)。
[Comparative Example 2]
After obtaining a calcined body in the same manner as in the examples, the calcined body was fired at 1700 ° C. in the atmosphere to obtain a sintered body (see Table 1).

得られた焼結体は、嵩密度が4.90g/cm3であると共に、その結晶粒径の分布を実施例と同様にして測定したところ、D10:2μm、D50:4μm、D90:7μmであった(表1参照)。 The obtained sintered body had a bulk density of 4.90 g / cm 3 , and its crystal grain size distribution was measured in the same manner as in the example. As a result, D10: 2 μm, D50: 4 μm, D90: 7 μm. (See Table 1).

次に、上記焼結体を用いてフォーカスリングを作製し、このフォーカスリングを使用して直径200mmのシリコンウエーハのプラズマ処理を行った場合のシリコンウエーハ上のダスト数は、25個であった(表1参照)。   Next, a focus ring was produced using the sintered body, and the number of dusts on the silicon wafer was 25 when this focus ring was used to perform plasma treatment on a silicon wafer having a diameter of 200 mm ( (See Table 1).

[比較例3]
先ず、実施例1と同様にしてイットリア原料粉末を得、このイットリア原料粉末に2wt%のバインダー成分(PVA)及び焼結助剤としてのSi成分を重量換算で200ppm(Siとして)を添加した後、実施例と同様にして成形体、仮焼体及び焼結体とした(表1参照)。
[Comparative Example 3]
First, after obtaining yttria raw material powder in the same manner as in Example 1, and adding 2 wt% binder component (PVA) and Si component as a sintering aid to this yttria raw material powder in an amount of 200 ppm (as Si). In the same manner as in Examples, a molded body, a calcined body, and a sintered body were obtained (see Table 1).

得られた焼結体は、嵩密度が4.97g/cm3であると共に、その結晶粒径の分布を実施例と同様にして測定したところ、D10:10μm、D50:16μm、D90:25μmであり、かつ、金属微量成分の含有量は、重量基準でSi:150ppmであった(表1参照)。 The obtained sintered body had a bulk density of 4.97 g / cm 3 , and its crystal grain size distribution was measured in the same manner as in the example. As a result, D10: 10 μm, D50: 16 μm, D90: 25 μm. In addition, the content of the metal trace component was Si: 150 ppm on a weight basis (see Table 1).

次に、上記焼結体を用いてフォーカスリングを作製し、このフォーカスリングを使用して直径200mmのシリコンウエーハのプラズマ処理を行った場合のシリコンウエーハ上のダスト数は、10個であった(表1参照)。   Next, a focus ring was prepared using the sintered body, and the number of dusts on the silicon wafer when the focus ring was used to perform plasma treatment on a silicon wafer having a diameter of 200 mm was 10 ( (See Table 1).

Claims (4)

純度が99.9wt%以上のイットリア原料を用いて焼成された焼結体であり、かつ、結晶粒径の分布がD10:3〜10μm、D90:13〜30μmであり、金属微量成分の含有量が重量基準でSi:100ppm以下、Ca:20ppm以下であることを特徴とするプラズマ処理装置用イットリアセラミックス部品。 It is a sintered body fired by using a yttria raw material with a purity of 99.9 wt% or more, and the distribution of crystal grain size is D10: 3 to 10 μm, D90: 13 to 30 μm, and the content of metal trace components Is a yttria ceramic part for a plasma processing apparatus , wherein Si is 100 ppm or less and Ca is 20 ppm or less on a weight basis . 結晶粒径の分布がD50:10〜15μmであることを特徴とする請求項1記載のプラズマ処理装置用イットリアセラミックス部品。   2. The yttria ceramic part for a plasma processing apparatus according to claim 1, wherein the distribution of the crystal grain size is D50: 10 to 15 [mu] m. 嵩密度が4.90g/cm以上であることを特徴とする請求項1又は請求項2記載のプラズマ処理装置用イットリアセラミックス部品。 The yttria ceramic part for a plasma processing apparatus according to claim 1 or 2, wherein a bulk density is 4.90 g / cm 3 or more. 請求項1〜3のいずれか1項に記載のプラズマ処理装置用イットリアセラミックス部品を製造する方法であって、
純度が99.9wt%以上、一次粒子径がD50:0.30.8μmのイットリア原料を造粒して成形し、成形体を大気中で仮焼した後、仮焼体を水素ガス雰囲気において1700〜1850℃の温度で焼成することを特徴とするプラズマ処理装置用イットリアセラミックス部品の製造方法。
A method for producing the yttria ceramic part for a plasma processing apparatus according to any one of claims 1 to 3,
A yttria raw material having a purity of 99.9 wt% or more and a primary particle diameter of D50: 0.3 to 0.8 μm is granulated and molded, and the molded body is calcined in the atmosphere. A method for producing a yttria ceramic component for a plasma processing apparatus, comprising firing at a temperature of 1700 to 1850 ° C. in an atmosphere.
JP2005163378A 2004-06-07 2005-06-03 Yttria ceramic parts for plasma processing apparatus and method for manufacturing the same Active JP4798693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005163378A JP4798693B2 (en) 2004-06-07 2005-06-03 Yttria ceramic parts for plasma processing apparatus and method for manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004168106 2004-06-07
JP2004168106 2004-06-07
JP2005163378A JP4798693B2 (en) 2004-06-07 2005-06-03 Yttria ceramic parts for plasma processing apparatus and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2006021990A JP2006021990A (en) 2006-01-26
JP4798693B2 true JP4798693B2 (en) 2011-10-19

Family

ID=35795537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005163378A Active JP4798693B2 (en) 2004-06-07 2005-06-03 Yttria ceramic parts for plasma processing apparatus and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4798693B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063070A (en) * 2005-08-31 2007-03-15 Toshiba Ceramics Co Ltd Method for manufacturing plasma-resistant yttria sintered compact
US7964818B2 (en) 2006-10-30 2011-06-21 Applied Materials, Inc. Method and apparatus for photomask etching
US7919722B2 (en) * 2006-10-30 2011-04-05 Applied Materials, Inc. Method for fabricating plasma reactor parts
EP2123615A4 (en) 2007-01-17 2012-05-09 Toto Ltd Ceramic member and corrosion-resistant member
JP2009215149A (en) * 2008-02-14 2009-09-24 Sumitomo Chemical Co Ltd Sintered body and thermoelectric conversion material
US10655224B2 (en) * 2016-12-20 2020-05-19 Lam Research Corporation Conical wafer centering and holding device for semiconductor processing

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4755492A (en) * 1986-10-06 1988-07-05 General Electric Company Yttrium oxide ceramic body
JPH04164810A (en) * 1990-10-26 1992-06-10 Shin Etsu Chem Co Ltd Production of rare earth element oxide
JPH06211573A (en) * 1993-01-18 1994-08-02 Kurosaki Refract Co Ltd Production of transparent y2o3 sintered compact
JP2002068838A (en) * 2000-08-23 2002-03-08 Toshiba Ceramics Co Ltd Plasma resistant member and method for manufacturing the same
JP2002255647A (en) * 2001-02-27 2002-09-11 Nihon Ceratec Co Ltd Yttrium oxide sintered body and wafer holding tool
JP4033451B2 (en) * 2001-07-05 2008-01-16 神島化学工業株式会社 Translucent rare earth oxide sintered body and method for producing the same
JP2004269350A (en) * 2003-02-17 2004-09-30 Toshiba Ceramics Co Ltd Yttrium oxide (y2o3) sintered compact and method of manufacturing the same
DE112004001391B4 (en) * 2003-07-29 2014-07-17 Kyocera Corp. Corrosion resistant component and method for producing the same and a component for a semiconductor or liquid crystal generating equipment

Also Published As

Publication number Publication date
JP2006021990A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
JP5466831B2 (en) Yttria sintered body and member for plasma process equipment
JP4987238B2 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and aluminum nitride sintered body manufacturing method
JP2000001362A (en) Corrosion resistant ceramic material
JP4798693B2 (en) Yttria ceramic parts for plasma processing apparatus and method for manufacturing the same
JP2009068067A (en) Plasma resistant ceramics sprayed coating
KR20230012573A (en) Ceramic sintered body containing magnesium aluminate spinel
JP2010083729A (en) Alumina-based sintered compact excellent in corrosion resistance, heat shock resistance, and durability
JP2006069843A (en) Ceramic member for semiconductor manufacturing apparatus
JP2010064937A (en) Ceramic for plasma treatment apparatuses
JP4570195B2 (en) BORON CARBIDE BONDED BODY, ITS MANUFACTURING METHOD, AND PLASMA RESISTANT MEMBER
JP2010077017A (en) Corrosion-resistant member and method for production thereof
TWI385138B (en) Ceramic components and corrosion resistance components
JP2009234877A (en) Member used for plasma processing apparatus
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
JP3769416B2 (en) Components for plasma processing equipment
JP2007223828A (en) Yttria ceramic sintered compact and method of manufacturing the same
JP2008007350A (en) Yttria ceramic sintered compact
JP2007326744A (en) Plasma resistant ceramic member
TWI650301B (en) Magnesium oxide ceramic film, element for semiconductor manufacturing device, and method for producing magnesium oxide ceramic film
JP4376881B2 (en) Yttria ceramic sintered body and manufacturing method thereof
JP3732966B2 (en) Corrosion resistant material
JP2008195973A (en) Ceramics for plasma treatment system, and its manufacturing method
JP4771374B2 (en) Yttria ceramic fired body
JP2000247728A (en) Alumina ceramic sintered compact having excellent corrosion resistance
JP4651145B2 (en) Corrosion resistant ceramics

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110729

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4798693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350