JP2002255647A - Yttrium oxide sintered body and wafer holding tool - Google Patents

Yttrium oxide sintered body and wafer holding tool

Info

Publication number
JP2002255647A
JP2002255647A JP2001051338A JP2001051338A JP2002255647A JP 2002255647 A JP2002255647 A JP 2002255647A JP 2001051338 A JP2001051338 A JP 2001051338A JP 2001051338 A JP2001051338 A JP 2001051338A JP 2002255647 A JP2002255647 A JP 2002255647A
Authority
JP
Japan
Prior art keywords
wafer
yttrium oxide
sintered body
ppm
oxide sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001051338A
Other languages
Japanese (ja)
Inventor
Hiromichi Otaki
浩通 大滝
Eiichi Uchino
栄一 内野
Yukio Kishi
幸男 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd, Taiheiyo Cement Corp filed Critical Nihon Ceratec Co Ltd
Priority to JP2001051338A priority Critical patent/JP2002255647A/en
Publication of JP2002255647A publication Critical patent/JP2002255647A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a yttrium oxide sintered body which has high corrosion resistance to corrosive atmospheres such as halogen-containing gas plasma used for a semiconductor production process or the like, and in which contamination caused by metal is hard to occur, and a wafer holding tool in which particles are hard to occur in addition to those characteristics. SOLUTION: The yttrium oxide sintered body contains metallic trace components of, by weight, <=200 ppm Si, <=100 ppm Al, and Na, K, Ti, Cr, Fe and Ni by <=200 ppm in total. The wafer holding tool holding a wafer in a wafer treatment process using corrosive gas or the plasma thereof consists of the yttrium oxide sintered body. The surface roughness at least of the contact face with the wafer is controlled to <=0.5 μm in terms of Ra.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製造工程等
に好適な高耐食性材料である酸化イットリウム焼結体、
およびそれを用いたウエハ保持具に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a yttrium oxide sintered body which is a highly corrosion-resistant material suitable for a semiconductor manufacturing process and the like.
And a wafer holder using the same.

【0002】[0002]

【従来の技術】半導体製造工程においては、ウエハエッ
チングに代表される化学的腐食性の高い環境下での処理
が存在し、このような処理に用いられるベルジャー、チ
ャンバー、サセプター、クランプリング、フォーカスリ
ング等の部材には、石英ガラスや高純度アルミナ焼結体
が多用されている。最近では耐食性に優れたガーネット
型Y−Al化合物もこれら部材への採用が
検討されている。
2. Description of the Related Art In a semiconductor manufacturing process, there is a process under a highly corrosive environment typified by wafer etching, and a bell jar, a chamber, a susceptor, a clamp ring, and a focus ring used for such a process. Quartz glass and high-purity alumina sintered bodies are frequently used for such members. Garnet Y 2 O 3 -Al 2 O 3 compound excellent in corrosion resistance has recently has also been studied adopted to these members.

【0003】しかしながら、近時、半導体の集積度向上
や生産性向上のため、より高密度プラズマでのエッチン
グ条件が求められてきており、従来用いられている石英
ガラスではプラズマによる腐食速度が著しく大きく部材
の寿命が短いという問題がある。また、高純度アルミナ
焼結体は石英ガラスよりは耐食性が高いもののデバイス
へのAl成分汚染をもたらし、信頼性の観点から問題と
なるおそれがある。ガーネット型Y−Al
化合物はさらに耐食性が優れるもののAlを構成成分と
しているため、やはりAl成分汚染をもたらす。特に、
ウエハに直接接触するクランプリング等のウエハ保持具
においてこのような傾向が顕著である。また、ウエハ保
持具の場合にはウエハに直接接触するため、パーティク
ル発生の問題もある。
However, recently, in order to improve the degree of integration and the productivity of semiconductors, etching conditions with higher density plasma have been required, and the corrosion rate by plasma has been remarkably high in the conventionally used quartz glass. There is a problem that the life of the member is short. Further, although the high-purity alumina sintered body has higher corrosion resistance than quartz glass, it causes Al component contamination to the device, and may pose a problem from the viewpoint of reliability. Garnet Y 2 O 3 -Al 2 O 3
Although the compound is more excellent in corrosion resistance, it contains Al as a constituent component, so that it also causes Al component contamination. In particular,
Such a tendency is remarkable in a wafer holder such as a clamp ring which directly contacts the wafer. In the case of a wafer holder, there is also a problem of generation of particles since the wafer holder comes into direct contact with the wafer.

【0004】一方、Alによる汚染が生じない耐食材料
として酸化イットリウムが検討されている。しかしなが
ら、従来の酸化イットリウム焼結体では、必ずしも満足
な耐食性が得られておらず、また汚染の問題が生じるこ
ともあるのが現状である。
[0004] On the other hand, yttrium oxide has been studied as a corrosion resistant material which does not cause contamination by Al. However, at present, satisfactory corrosion resistance is not always obtained with a conventional yttrium oxide sintered body, and a problem of contamination sometimes occurs.

【0005】[0005]

【発明が解決しようとする課題】本発明はかかる事情に
鑑みてなされたものであって、半導体製造工程等に用い
られるハロゲン含有ガスプラズマ等の腐食雰囲気に対す
る耐食性が高く、金属による汚染が生じ難い酸化イット
リウム焼結体、およびこれらの特性に加え、パーティク
ルが生じ難いウエハ保持具を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has high corrosion resistance to a corrosive atmosphere such as a halogen-containing gas plasma used in a semiconductor manufacturing process and the like, and is unlikely to cause metal contamination. An object of the present invention is to provide a yttrium oxide sintered body and a wafer holder in which particles are hardly generated in addition to these characteristics.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく検討を重ねた結果、不純物として存在する
特定の金属成分を特定の範囲に制限することにより、ハ
ロゲン含有ガスプラズマ等の腐食雰囲気に対して優れた
耐食性を有し、しかもデバイスの汚染が実質的に生じな
い酸化イットリウム焼結体が得られることを見出した。
また、このような酸化イットリウムで構成され、しかも
ウエハ接触面の表面粗さを特定の範囲に規定してウエハ
保持具を構成することにより、腐食雰囲気に対して優れ
た耐食性を有し、しかもデバイスの汚染が実質的に生じ
ず、さらにパーティクルの発生が少ないウエハ保持具が
得られることを見出した。
Means for Solving the Problems As a result of repeated studies to solve the above-mentioned problems, the present inventors have limited the specific metal component present as an impurity to a specific range, so that a halogen-containing gas plasma or the like can be obtained. It has been found that a yttrium oxide sintered body having excellent corrosion resistance against a corrosive atmosphere and substantially not causing device contamination can be obtained.
In addition, by forming the wafer holder with such a yttrium oxide and defining the surface roughness of the wafer contact surface in a specific range, the device has excellent corrosion resistance to a corrosive atmosphere, and has a device It has been found that a wafer holder having substantially no contamination and having less particles is obtained.

【0007】本発明はこのような知見に基づいて完成さ
れたものであり、第1発明として、金属微量成分の含有
量が、重量基準で、Si:200ppm以下、Al:1
00ppm以下、Na、K、Ti、Cr、Fe、Niの
総量:200ppm以下であることを特徴とする酸化イ
ットリウム焼結体を提供する。
The present invention has been completed on the basis of such findings. As a first invention, the content of a trace metal component is 200 ppm or less of Si and 1: 1 of Al by weight.
Provided is a yttrium oxide sintered body characterized by being at most 00 ppm and the total amount of Na, K, Ti, Cr, Fe and Ni: at most 200 ppm.

【0008】また、第2発明として、腐食ガスまたはそ
のプラズマを用いるウエハ処理プロセスにおいてウエハ
を保持するウエハ保持具であって、少なくともウエハ接
触面が、金属微量成分の含有量が、重量基準で、Si:
200ppm以下、Al:100ppm以下、Na、
K、Ti、Cr、Fe、Niの総量:200ppm以下
であり、かつ表面粗さがRaで0.5μm以下の酸化イ
ットリウム焼結体で構成されていることを特徴とするウ
エハ保持具を提供する。
According to a second aspect of the present invention, there is provided a wafer holder for holding a wafer in a wafer processing process using a corrosive gas or its plasma, wherein at least the wafer contact surface has a metal trace component content of, Si:
200 ppm or less, Al: 100 ppm or less, Na,
Provided is a wafer holder, wherein the total amount of K, Ti, Cr, Fe, and Ni is 200 ppm or less and the surface roughness is made of an yttrium oxide sintered body having a surface roughness Ra of 0.5 μm or less. .

【0009】[0009]

【発明の実施の形態】以下、本発明について具体的に説
明する。本発明に係る酸化イットリウムは、金属微量成
分の含有量が、重量基準で、Si:200ppm以下、
Al:100ppm以下、Na、K、Ti、Cr、F
e、Niの総量:200ppm以下である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described specifically. In the yttrium oxide according to the present invention, the content of a trace metal component is, on a weight basis, Si: 200 ppm or less,
Al: 100 ppm or less, Na, K, Ti, Cr, F
e, total amount of Ni: not more than 200 ppm.

【0010】不純物として酸化イットリウム焼結体に含
有される微量金属成分は、主として粒界層に凝縮され、
プラズマ等の腐食環境下においては、これらの微量成分
の腐食速度が酸化イットリウムよりも大きいため、これ
ら微量成分の腐食が先に進行し、粒界成分が飛散すると
ともに粒界成分の腐食消失によりマトリックス部の酸化
イットリウム粒子の脱落も生じる。このようなことを引
き起こす微量成分としては、Si、Na、K、Ti、C
r、Fe、Niがあるが、これら微量成分のうちSiを
200ppm以下、Na、K、Ti、Cr、Fe、Ni
の総量を200ppm以下と規制することにより、この
ような粒界における微量成分の腐食に伴う粒界成分の飛
散量を大幅に低下させることができ、マトリックス部の
粒子脱落による腐食損傷をも低下させることが可能とな
る。
[0010] Trace metal components contained in the yttrium oxide sintered body as impurities are mainly condensed in the grain boundary layer,
In a corrosive environment such as plasma, the corrosion rate of these trace components is higher than that of yttrium oxide. Some of the yttrium oxide particles fall off. The trace components which cause such a thing include Si, Na, K, Ti, C
r, Fe, and Ni, among these trace components, 200 ppm or less of Si, Na, K, Ti, Cr, Fe, Ni
Is regulated to 200 ppm or less, it is possible to greatly reduce the amount of scattering of the grain boundary components due to the corrosion of the trace components at such grain boundaries, and also to reduce the corrosion damage due to the falling off of the particles in the matrix portion. It becomes possible.

【0011】一方、酸化イットリウム焼結体中にAlが
含まれている場合には、その量が微量であってもウエハ
に付着してデバイスに悪影響を及ぼすおそれがある。し
かし、その量が100ppmであれば、Alはウエハに
ほとんど付着せずデバイスに対する悪影響は実質的に生
じない。
On the other hand, when Al is contained in the yttrium oxide sintered body, even a small amount thereof may adhere to the wafer and adversely affect the device. However, if the amount is 100 ppm, Al hardly adheres to the wafer and substantially no adverse effect on the device occurs.

【0012】したがって、本発明の酸化イットリウム焼
結体は、ウエハと直接接触する部材に有効であり、ウエ
ハ保持具として好適なものとなる。
Therefore, the yttrium oxide sintered body of the present invention is effective for a member which comes into direct contact with a wafer, and is suitable as a wafer holder.

【0013】微量金属元素を上記範囲にするためには、
原料粉末の製造工程から混入する不純物を極力抑制する
とともに、成形および焼結の際に上記微量金属元素が混
入しないように治具や炉を厳密に管理する等の対策を講
じる。
In order to keep the trace metal element within the above range,
Implementing measures such as minimizing impurities mixed from the raw material powder manufacturing process and strictly managing jigs and furnaces so that the trace metal elements do not mix during molding and sintering.

【0014】ウエハ保持具は、腐食ガスまたはそのプラ
ズマを用いるウエハ処理プロセスにおいてウエハを保持
するものであり、少なくともウエハ接触面を上記酸化イ
ットリウム焼結体で構成するが、それに加え、ウエハの
接触面の表面粗さをRaで0.5μm以下とする。
The wafer holder holds the wafer in a wafer processing process using a corrosive gas or its plasma. At least the wafer contact surface is made of the above-described yttrium oxide sintered body. Has a surface roughness of 0.5 μm or less in Ra.

【0015】表面粗さがRaで0.5μmを超える場合
には、ウエハの接触損傷によるパーティクルが多くなる
ため、ウエハ保持具としては好ましくない。Raが0.
5μm以下であればウエハが接触することによるパーテ
ィクルの発生を実質的に問題のない値とすることが可能
である。
If the surface roughness exceeds 0.5 μm in Ra, the number of particles due to wafer contact damage increases, which is not preferable as a wafer holder. Ra is 0.
When the thickness is 5 μm or less, the generation of particles due to the contact of the wafer can be set to a value having substantially no problem.

【0016】次に、図1および図2を参照して、ウエハ
保持具の一例について説明する。図1はウエハ保持具の
一例を示す平面図、図2はステージに載置されたウエハ
をウエハ保持具で保持している状態を示す垂直断面図で
ある。ウエハ保持具1は、本体2と、本体2から内側へ
突出して設けられ、ウエハ4をステージ5に保持する保
持部3とを備えている。保持部3は、図2に示すよう
に、ウエハ4に接触する接触部3aを有しており、少な
くともこの接触部3aが、本発明の酸化イットリウム焼
結体で構成され、かつ表面粗さがRaで0.5μm以下
である。この場合に、接触部3aを含む保持部3の一部
が酸化イットリウム焼結体で構成されていてもよいし、
保持部3全体が酸化イットリウム焼結体で構成されてい
てもよいし、ウエハ保持具1全体が酸化イットリウム焼
結体で構成されていてもよい。
Next, an example of the wafer holder will be described with reference to FIGS. FIG. 1 is a plan view showing an example of a wafer holder, and FIG. 2 is a vertical sectional view showing a state where a wafer mounted on a stage is held by the wafer holder. The wafer holder 1 includes a main body 2 and a holding portion 3 provided to protrude inward from the main body 2 and holding the wafer 4 on the stage 5. As shown in FIG. 2, the holding portion 3 has a contact portion 3a that comes into contact with the wafer 4, and at least the contact portion 3a is made of the yttrium oxide sintered body of the present invention and has a surface roughness. Ra is 0.5 μm or less. In this case, a part of the holding portion 3 including the contact portion 3a may be made of a yttrium oxide sintered body,
The entire holding section 3 may be made of a yttrium oxide sintered body, or the entire wafer holder 1 may be made of a yttrium oxide sintered body.

【0017】このウエハ保持具1によりウエハ4を保持
する場合には、ステージ5の上方の待機位置から、エア
シリンダ等の図示しない適宜の駆動機構によりウエハ保
持具1を下降させ、ウエハ4の周囲を上から押さえつけ
る。なお、ウエハ保持具としては図示した構成に限るも
のではない。
When the wafer 4 is held by the wafer holder 1, the wafer holder 1 is lowered from a standby position above the stage 5 by an appropriate drive mechanism (not shown) such as an air cylinder. Press from above. The configuration of the wafer holder is not limited to the illustrated one.

【0018】[0018]

【実施例】以下、本発明の実施例について説明する。所
定の原料粉末をポリエチレンポット中に、イオン交換
水、有機分散剤、有機バインダーおよび鉄芯入りナイロ
ンボールとともに装入し、24時間混合した。得られた
スラリーをスプレードライヤーで乾燥し顆粒を作成し
た。顆粒をCIP成形後、所定温度で焼成して、円盤状
の焼結体を作製した。この円盤状焼結体の上面を鏡面研
磨し評価用試料とした。また、焼結体の微量成分をグロ
ー放電質量分析法(GD/MS)により分析した。
Embodiments of the present invention will be described below. A predetermined raw material powder was charged into a polyethylene pot together with ion-exchanged water, an organic dispersant, an organic binder and a nylon ball containing an iron core, and mixed for 24 hours. The obtained slurry was dried with a spray drier to prepare granules. After the CIP molding, the granules were fired at a predetermined temperature to produce a disc-shaped sintered body. The upper surface of the disc-shaped sintered body was mirror-polished to obtain a sample for evaluation. Further, trace components of the sintered body were analyzed by glow discharge mass spectrometry (GD / MS).

【0019】評価用試料は図3に示すようにチャンバー
内にセットし、プラズマガスとしてCF+20%O
をチャンバー内に導入し、イオン衝撃強エネルギー10
0eVでシリコンウエハとともにプラズマ処理した。処
理後のウエハに対して全反射蛍光X線を用いて不純物分
析を行った。また、試料の耐食性はプラズマによるエッ
チング速度を測定することにより評価した。この際のエ
ッチング速度は、同様にして作製した研磨試料の表面の
一部をマスク処理してプラズマ処理を行い、プラズマ処
理前後の腐食深さを測定し、プラズマ暴露時間で除する
ことにより算出した。これらの結果を表1に示す。
A sample for evaluation was set in a chamber as shown in FIG. 3, and CF 4 + 20% O 2 was used as a plasma gas.
Is introduced into the chamber, and the ion impact strong energy 10
Plasma treatment was performed together with the silicon wafer at 0 eV. Impurity analysis was performed on the processed wafer using total reflection X-ray fluorescence. The corrosion resistance of the sample was evaluated by measuring the etching rate by plasma. The etching rate at this time was calculated by performing a plasma treatment by masking a part of the surface of the polished sample similarly prepared, measuring the corrosion depth before and after the plasma treatment, and dividing by the plasma exposure time. . Table 1 shows the results.

【0020】[0020]

【表1】 [Table 1]

【0021】表1に示すように、本発明の範囲内である
酸化イットリウム焼結体であるNo.1〜3ではウエハ
においてAl成分は未検出であり、エッチング速度はサ
ファイアの1/2〜1/3程度と優れていた。No.4
は微量金属成分のうちSiが200ppmを超えた比較
例であり、ウエハにおいてAl成分は未検出であるが、
エッチング速度が若干高く、粒界成分の飛散による酸化
イットリウム粒子の脱落が見られた。また、No.5は
微量金属成分のうちAlが100ppmを超えた比較例
であり、エッチング速度はサファイアの1/2程度であ
ったが、ウエハにおいてAl成分が若干検出された。N
o.6は微量金属成分のうち、Na、K、Ti、Cr、
Fe、Niの総量が200ppmを超えた比較例であ
り、ウエハにおいてAl成分は未検出であるが、エッチ
ング速度が若干高く、粒界成分の飛散による酸化イット
リウム粒子の脱落が見られた。No.7,8は構成材料
がイットリウム・アルミニウム・ガーネット(YAG)
である比較例であり、エッチング速度はサファイアの1
/3と耐食性に優れているが、Alがマトリックス成分
として含まれているため、ウエハにおいてAl成分の検
出量が高かった。No.9は構成材料がサファイアであ
る比較例であり、マトリックス成分がAlであるため、
ウエハにおいてAl検出量が極めて高かった。No.1
0は構成材料がSiOである比較例であり、ウエハに
おいてAl成分は未検出であったが、エッチング速度が
著しく大きく、耐食性に劣っていた。
As shown in Table 1, the yttrium oxide sintered body No. 1 which is within the scope of the present invention. In Nos. 1 to 3, the Al component was not detected in the wafer, and the etching rate was as excellent as about 1/2 to 1/3 that of sapphire. No. 4
Is a comparative example in which Si exceeds 200 ppm in the trace metal component, and the Al component is not detected in the wafer,
The etching rate was slightly higher, and yttrium oxide particles fell off due to scattering of grain boundary components. In addition, No. Sample No. 5 is a comparative example in which Al of the trace metal component exceeded 100 ppm, and the etching rate was about 1/2 of that of sapphire, but the Al component was slightly detected in the wafer. N
o. 6 is a trace metal component among Na, K, Ti, Cr,
This is a comparative example in which the total amount of Fe and Ni exceeded 200 ppm. Although the Al component was not detected in the wafer, the etching rate was slightly higher, and the yttrium oxide particles dropped off due to the scattering of the grain boundary component. No. 7 and 8 are made of Yttrium Aluminum Garnet (YAG)
In this comparative example, the etching rate was 1 for sapphire.
/ 3, which is excellent in corrosion resistance, but since Al is contained as a matrix component, the detected amount of Al component in the wafer was high. No. 9 is a comparative example in which the constituent material is sapphire, and the matrix component is Al,
The amount of detected Al in the wafer was extremely high. No. 1
0 is a comparative example in which the constituent material was SiO 2 , and the Al component was not detected in the wafer, but the etching rate was remarkably large and the corrosion resistance was poor.

【0022】次に、上記No.2に使用した原料粉末を
ポリエチレンポット中に、イオン交換水、有機分散剤、
有機バインダーおよび鉄芯入りナイロンボールとともに
装入し、24時間混合した。得られたスラリーをスプレ
ードライヤーで乾燥し顆粒を作成した。顆粒をCIP成
形後、所定温度で焼成し、研磨加工することにより、ウ
エハとの接触部の表面粗さを変化させた図1に示す構造
の4つのウエハ保持具を作製した。
Next, the above No. The raw material powder used in 2 was charged in a polyethylene pot with ion-exchanged water,
It was charged together with an organic binder and a nylon ball containing an iron core, and mixed for 24 hours. The obtained slurry was dried with a spray drier to prepare granules. After granulating the granules by CIP, the granules were baked at a predetermined temperature and polished to produce four wafer holders having the structure shown in FIG. 1 in which the surface roughness of the contact portion with the wafer was changed.

【0023】チャンバー内でこれらのウエハ保持具によ
りウエハを保持し、プラズマガスとしてCF+20%
をチャンバー内に導入し、イオン衝撃強エネルギー
100eVでシリコンウエハとともにプラズマ処理し、
ウエハ上に飛散したパーティクル数を計測した。その結
果を表2に示す。なお、表2において発生パーティクル
の評価はNo.12のパーティクル発生数に対する比で
示している。
The wafer is held in the chamber by these wafer holders, and CF 4 + 20% is used as a plasma gas.
The O 2 is introduced into the chamber, and a plasma treatment with a silicon wafer by ion impact strength energy 100 eV,
The number of particles scattered on the wafer was measured. Table 2 shows the results. In Table 2, the evaluation of the generated particles was No. 12 is shown as a ratio to the number of generated particles.

【0024】[0024]

【表2】 [Table 2]

【0025】表2に示すように、表面粗さがRaで0.
5μm以下のNo.11〜13ではパーティクル発生数
の比が0.8〜1.1であったのに対し、表面粗さRa
で0.5μmを超えたNo.14はパーティクル発生数
の比が1.5と増加した。
As shown in Table 2, when the surface roughness is Ra of 0.
No. 5 μm or less. 11 to 13, the ratio of the number of generated particles was 0.8 to 1.1, whereas the surface roughness Ra
No. exceeding 0.5 μm. In No. 14, the ratio of the number of generated particles increased to 1.5.

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば、
所定の金属微量成分を所定の範囲に規制することによ
り、半導体製造工程等に用いられるハロゲン含有ガスプ
ラズマ等の腐食雰囲気に対する耐食性が高く、金属によ
る汚染が生じ難い酸化イットリウム焼結体を得ることが
できる。また、このような酸化イットリウム焼結体によ
ってウエハ保持具を構成し、ウエハとの接触部の表面粗
さをRaで0.5μm以下とすることにより、これらの
特性に加え、パーティクルが生じ難いウエハ保持具を得
ることができる。
As described above, according to the present invention,
By regulating the predetermined metal trace component to a predetermined range, it is possible to obtain a yttrium oxide sintered body having high corrosion resistance against a corrosive atmosphere such as a halogen-containing gas plasma used in a semiconductor manufacturing process or the like and hardly causing metal contamination. it can. In addition, by forming a wafer holder with such a yttrium oxide sintered body and setting the surface roughness of the contact portion with the wafer to 0.5 μm or less in Ra, in addition to these characteristics, the wafer that hardly generates particles can be obtained. A holder can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のウエハ保持具の一例を示す平面図。FIG. 1 is a plan view showing an example of a wafer holder of the present invention.

【図2】ステージに載置されたウエハをウエハ保持具で
保持している状態を示す垂直断面図。
FIG. 2 is a vertical sectional view showing a state in which a wafer mounted on a stage is held by a wafer holder.

【図3】実施例における評価用試料をチャンバー内にセ
ットした状態を示す平面図。
FIG. 3 is a plan view showing a state in which a sample for evaluation in an embodiment is set in a chamber.

【符号の説明】[Explanation of symbols]

1……ウエハ保持具 2……本体 3……保持部 3a……接触部 4……ウエハ 5……ステージ DESCRIPTION OF SYMBOLS 1 ... Wafer holder 2 ... Main body 3 ... Holder 3a ... Contact part 4 ... Wafer 5 ... Stage

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内野 栄一 宮城県仙台市泉区明通三丁目5番 株式会 社日本セラテック本社工場内 (72)発明者 岸 幸男 宮城県仙台市泉区明通三丁目5番 株式会 社日本セラテック本社工場内 Fターム(参考) 4K030 CA12 DA04 GA02 KA46 LA15 5F004 AA14 AA15 BA00 BB18 BB29 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Eiichi Uchino 3-5 Meido, Izumi-ku, Sendai City, Miyagi Prefecture Inside of Japan Ceratech Co., Ltd. No. 5 F-term in the Japan Ceratech headquarters factory (reference) 4K030 CA12 DA04 GA02 KA46 LA15 5F004 AA14 AA15 BA00 BB18 BB29

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属微量成分の含有量が、重量基準で、
Si:200ppm以下、Al:100ppm以下、N
a、K、Ti、Cr、Fe、Niの総量:200ppm
以下であることを特徴とする酸化イットリウム焼結体。
Claims: 1. The content of a trace metal component is, on a weight basis,
Si: 200 ppm or less, Al: 100 ppm or less, N
a, total amount of K, Ti, Cr, Fe, Ni: 200 ppm
A yttrium oxide sintered body characterized by the following.
【請求項2】 腐食ガスまたはそのプラズマを用いるウ
エハ処理プロセスにおいてウエハを保持するウエハ保持
具であって、少なくともウエハ接触面が、金属微量成分
の含有量が、重量基準で、Si:200ppm以下、A
l:100ppm以下、Na、K、Ti、Cr、Fe、
Niの総量:200ppm以下であり、かつ表面粗さが
Raで0.5μm以下の酸化イットリウム焼結体で構成
されていることを特徴とするウエハ保持具。
2. A wafer holder for holding a wafer in a wafer processing process using a corrosive gas or its plasma, wherein at least the wafer contact surface has a metal trace component content of 200 ppm or less of Si by weight, A
l: 100 ppm or less, Na, K, Ti, Cr, Fe,
A wafer holder characterized by being composed of a yttrium oxide sintered body having a total amount of Ni of 200 ppm or less and a surface roughness Ra of 0.5 μm or less.
JP2001051338A 2001-02-27 2001-02-27 Yttrium oxide sintered body and wafer holding tool Pending JP2002255647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001051338A JP2002255647A (en) 2001-02-27 2001-02-27 Yttrium oxide sintered body and wafer holding tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001051338A JP2002255647A (en) 2001-02-27 2001-02-27 Yttrium oxide sintered body and wafer holding tool

Publications (1)

Publication Number Publication Date
JP2002255647A true JP2002255647A (en) 2002-09-11

Family

ID=18912136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001051338A Pending JP2002255647A (en) 2001-02-27 2001-02-27 Yttrium oxide sintered body and wafer holding tool

Country Status (1)

Country Link
JP (1) JP2002255647A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005335991A (en) * 2004-05-25 2005-12-08 Kyocera Corp Corrosion resistant member, method of manufacturing the same, and member for semiconductor/liquid crystal manufacturing apparatus
JP2006021990A (en) * 2004-06-07 2006-01-26 Toshiba Ceramics Co Ltd Yttria ceramic component for use in plasma treatment device and its manufacturing method
JP2006100705A (en) * 2004-09-30 2006-04-13 Hitachi High-Technologies Corp Method for cleaning semiconductor manufacturing device
JPWO2005009919A1 (en) * 2003-07-29 2006-09-07 京セラ株式会社 Y2O3-sintered sintered body, corrosion-resistant member, manufacturing method thereof, and member for semiconductor / liquid crystal manufacturing apparatus
WO2007010831A1 (en) * 2005-07-15 2007-01-25 Toto Ltd. Sintered yttria, anticorrosion member and process for producing the same
CN100381390C (en) * 2003-07-29 2008-04-16 科发伦材料株式会社 Plasma resistant structural parts
JP2008098660A (en) * 2007-12-03 2008-04-24 Hitachi High-Technologies Corp Plasma processing apparatus
EP1921053A1 (en) * 2006-10-30 2008-05-14 Applied Materials, Inc. Method for preparing yttria parts and plasma reactor parts comprising yttria
US7375046B2 (en) 2005-02-15 2008-05-20 Ngk Insulators, Ltd. Yttria sintered body, ceramic member using yttria sintered body, and manufacturing method of yttria sintered body
US7442450B2 (en) 2005-08-19 2008-10-28 Ngk Insulators, Ltd. Yttria sintered body, electrostatic chuck, and manufacturing method of yttria sintered body
JP2008260651A (en) * 2007-04-11 2008-10-30 Nitsukatoo:Kk Y2o3-based sintered compact
US7582367B2 (en) 2004-09-30 2009-09-01 Ngk Insulators, Ltd. Ceramic member and manufacturing method for the same
KR100917292B1 (en) 2007-04-27 2009-09-11 어플라이드 머티어리얼스, 인코포레이티드 Apparatus and method which reduce the erosion rate of surfaces exposed to halogen-containing plasmas
JP2010042967A (en) * 2008-08-18 2010-02-25 Ngk Insulators Ltd Ceramic member, method for manufacturing the same, and electrostatic chuck
JP2010195682A (en) * 2010-04-26 2010-09-09 Kyocera Corp Corrosion resistant member, method for manufacturing the same and member for semiconductor/liquid crystal manufacturing apparatus
US7799719B2 (en) 2007-01-17 2010-09-21 Toto Ltd. Ceramic member and corrosion-resisting member
US7964818B2 (en) 2006-10-30 2011-06-21 Applied Materials, Inc. Method and apparatus for photomask etching
US8233678B2 (en) 2007-08-14 2012-07-31 Sony Corporation Imaging apparatus, imaging method and computer program for detecting a facial expression from a normalized face image
KR20120124485A (en) 2010-02-09 2012-11-13 스미토모 오사카 세멘토 가부시키가이샤 Sintered objects and processes for producing same
US10622194B2 (en) 2007-04-27 2020-04-14 Applied Materials, Inc. Bulk sintered solid solution ceramic which exhibits fracture toughness and halogen plasma resistance
US10840113B2 (en) 2007-04-27 2020-11-17 Applied Materials, Inc. Method of forming a coated article and semiconductor chamber apparatus from yttrium oxide and zirconium oxide
JP7283026B1 (en) * 2022-02-24 2023-05-30 日本イットリウム株式会社 Materials for sintered bodies and sintered bodies
WO2023162290A1 (en) * 2022-02-24 2023-08-31 日本イットリウム株式会社 Material for sintered body, and sintered body

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005009919A1 (en) * 2003-07-29 2006-09-07 京セラ株式会社 Y2O3-sintered sintered body, corrosion-resistant member, manufacturing method thereof, and member for semiconductor / liquid crystal manufacturing apparatus
CN100381390C (en) * 2003-07-29 2008-04-16 科发伦材料株式会社 Plasma resistant structural parts
KR101196297B1 (en) * 2003-07-29 2012-11-06 쿄세라 코포레이션 Y2o3 sintered body, corrosion resistant member and method for producing same, and member for semiconductor/liquid crystal producing apparatus
US7932202B2 (en) 2003-07-29 2011-04-26 Kyocera Corporation Y2O3 sintered body and corrosion resistant member for semiconductor/liquid crystal producing apparatus
JP4679366B2 (en) * 2003-07-29 2011-04-27 京セラ株式会社 Y2O3 sintered body, corrosion-resistant member, method for producing the same, and member for semiconductor / liquid crystal production apparatus
JP2005335991A (en) * 2004-05-25 2005-12-08 Kyocera Corp Corrosion resistant member, method of manufacturing the same, and member for semiconductor/liquid crystal manufacturing apparatus
JP2006021990A (en) * 2004-06-07 2006-01-26 Toshiba Ceramics Co Ltd Yttria ceramic component for use in plasma treatment device and its manufacturing method
JP2006100705A (en) * 2004-09-30 2006-04-13 Hitachi High-Technologies Corp Method for cleaning semiconductor manufacturing device
JP4558431B2 (en) * 2004-09-30 2010-10-06 株式会社日立ハイテクノロジーズ Cleaning method for semiconductor manufacturing equipment
US7582367B2 (en) 2004-09-30 2009-09-01 Ngk Insulators, Ltd. Ceramic member and manufacturing method for the same
US7375046B2 (en) 2005-02-15 2008-05-20 Ngk Insulators, Ltd. Yttria sintered body, ceramic member using yttria sintered body, and manufacturing method of yttria sintered body
WO2007010831A1 (en) * 2005-07-15 2007-01-25 Toto Ltd. Sintered yttria, anticorrosion member and process for producing the same
US7566675B2 (en) 2005-07-15 2009-07-28 Toto Ltd. Corrosion-resistant material manufacturing method
KR100920104B1 (en) * 2005-07-15 2009-10-01 토토 가부시키가이샤 Sintered yttria, anticorrosion member and process for producing the same
US7407904B2 (en) 2005-07-15 2008-08-05 Toto Ltd. Yttria sintered body and corrosion-resistant material, and manufacturing method
US7442450B2 (en) 2005-08-19 2008-10-28 Ngk Insulators, Ltd. Yttria sintered body, electrostatic chuck, and manufacturing method of yttria sintered body
US7964818B2 (en) 2006-10-30 2011-06-21 Applied Materials, Inc. Method and apparatus for photomask etching
EP1921053A1 (en) * 2006-10-30 2008-05-14 Applied Materials, Inc. Method for preparing yttria parts and plasma reactor parts comprising yttria
US7919722B2 (en) 2006-10-30 2011-04-05 Applied Materials, Inc. Method for fabricating plasma reactor parts
US7799719B2 (en) 2007-01-17 2010-09-21 Toto Ltd. Ceramic member and corrosion-resisting member
JP2008260651A (en) * 2007-04-11 2008-10-30 Nitsukatoo:Kk Y2o3-based sintered compact
US10622194B2 (en) 2007-04-27 2020-04-14 Applied Materials, Inc. Bulk sintered solid solution ceramic which exhibits fracture toughness and halogen plasma resistance
US10840112B2 (en) 2007-04-27 2020-11-17 Applied Materials, Inc. Coated article and semiconductor chamber apparatus formed from yttrium oxide and zirconium oxide
US10847386B2 (en) 2007-04-27 2020-11-24 Applied Materials, Inc. Method of forming a bulk article and semiconductor chamber apparatus from yttrium oxide and zirconium oxide
KR100917292B1 (en) 2007-04-27 2009-09-11 어플라이드 머티어리얼스, 인코포레이티드 Apparatus and method which reduce the erosion rate of surfaces exposed to halogen-containing plasmas
US11373882B2 (en) 2007-04-27 2022-06-28 Applied Materials, Inc. Coated article and semiconductor chamber apparatus formed from yttrium oxide and zirconium oxide
US10840113B2 (en) 2007-04-27 2020-11-17 Applied Materials, Inc. Method of forming a coated article and semiconductor chamber apparatus from yttrium oxide and zirconium oxide
US8233678B2 (en) 2007-08-14 2012-07-31 Sony Corporation Imaging apparatus, imaging method and computer program for detecting a facial expression from a normalized face image
JP2008098660A (en) * 2007-12-03 2008-04-24 Hitachi High-Technologies Corp Plasma processing apparatus
JP2010042967A (en) * 2008-08-18 2010-02-25 Ngk Insulators Ltd Ceramic member, method for manufacturing the same, and electrostatic chuck
US9403722B2 (en) 2010-02-09 2016-08-02 Sumitomo Osaka Cement Co., Ltd. Sintered objects and processes for producing same
KR20120124485A (en) 2010-02-09 2012-11-13 스미토모 오사카 세멘토 가부시키가이샤 Sintered objects and processes for producing same
JP2010195682A (en) * 2010-04-26 2010-09-09 Kyocera Corp Corrosion resistant member, method for manufacturing the same and member for semiconductor/liquid crystal manufacturing apparatus
JP7283026B1 (en) * 2022-02-24 2023-05-30 日本イットリウム株式会社 Materials for sintered bodies and sintered bodies
WO2023162290A1 (en) * 2022-02-24 2023-08-31 日本イットリウム株式会社 Material for sintered body, and sintered body

Similar Documents

Publication Publication Date Title
JP2002255647A (en) Yttrium oxide sintered body and wafer holding tool
US6383964B1 (en) Ceramic member resistant to halogen-plasma corrosion
TWI279397B (en) Erosion resistant process chamber components
JP5865916B2 (en) Gas nozzle, plasma apparatus using the same, and method for manufacturing gas nozzle
Gavrilov et al. Silica and magnesia dopant distributions in alumina by high‐resolution scanning secondary ion mass spectrometry
US7932202B2 (en) Y2O3 sintered body and corrosion resistant member for semiconductor/liquid crystal producing apparatus
JP2003146751A (en) Plasma-resistant member and method of producing the same
US6794047B2 (en) Rare earth-containing oxide member
JP4683783B2 (en) Method for manufacturing plasma-resistant member for semiconductor manufacturing apparatus
JPH05217946A (en) Alumina bell jar
JP4798693B2 (en) Yttria ceramic parts for plasma processing apparatus and method for manufacturing the same
JP3323945B2 (en) Dummy wafer
JP2001179080A (en) Member for treating substrate contaminated with metallic substance at low degree
JP4903322B2 (en) Yttrium oxide material
JPH11310451A (en) Alumina ceramics material excellent in plasma corrosion resistance and its production
JPH10279349A (en) Alumina ceramic excellent in plasma resistance
JP2001151559A (en) Corrosion-resistant member
JP6158129B2 (en) Oxide sintered body and sputtering target
JP3145518B2 (en) Surface high-purity ceramics and manufacturing method thereof
CN109072417B (en) Sputtering target and method for producing same
TWI798859B (en) Clamping jig, manufacturing method of clamping jig, and cleaning apparatus
JP2000313655A (en) High-density magnesium oxide-based sintered compact and its production, and member for plasma treatment apparatus
JP7343707B2 (en) sample holder
JP4651145B2 (en) Corrosion resistant ceramics
JPH11278944A (en) Silicon nitride corrosion resistant member and its production