JP2000313655A - High-density magnesium oxide-based sintered compact and its production, and member for plasma treatment apparatus - Google Patents

High-density magnesium oxide-based sintered compact and its production, and member for plasma treatment apparatus

Info

Publication number
JP2000313655A
JP2000313655A JP11121338A JP12133899A JP2000313655A JP 2000313655 A JP2000313655 A JP 2000313655A JP 11121338 A JP11121338 A JP 11121338A JP 12133899 A JP12133899 A JP 12133899A JP 2000313655 A JP2000313655 A JP 2000313655A
Authority
JP
Japan
Prior art keywords
rare earth
earth element
magnesium oxide
oxide
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11121338A
Other languages
Japanese (ja)
Other versions
JP3769416B2 (en
Inventor
Hitoshi Matsunosako
等 松之迫
Yumiko Ito
裕見子 伊東
Hidemi Matsumoto
秀美 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP12133899A priority Critical patent/JP3769416B2/en
Publication of JP2000313655A publication Critical patent/JP2000313655A/en
Application granted granted Critical
Publication of JP3769416B2 publication Critical patent/JP3769416B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject sintered compact with high corrosion resistance, suitable as a member for plasma treatment apparatuses capable of suppressing particle generation. SOLUTION: This high-density magnesium oxide-based sintered compact is such one as to consist mainly of magnesium oxide, contain 0.1-20 wt.%, on an oxide basis, of at least one kind of rare earth element selected from Yb, Er and Lu, contain <=100 ppm, on a metal basis, of a total of metallic elements other than magnesium and the rare earth element(s), be <=10 μm in the mean size of each of the magnesium oxide crystal grains, and be >=99% in relative density. Furthermore, in this sintered compact, there exists the rare earth metal(s) oxide crystal phase in the grain boundary phase.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特にフッ素系及び
塩素系腐食性ガス或いはフッ素系・塩素系プラズマに対
して高い耐食性を有し、パーティクルやコンタミネーシ
ョンの発生が少ない、半導体製造装置用部材、特にプラ
ズマプロセスにおけるフォーカスリング、クランプリン
グ、ベルジャー、ドーム等としての使用に好適な高密度
酸化マグネシウム質焼結体およびその製造方法、並びに
それを用いたプラズマ処理装置用部材に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a member for a semiconductor manufacturing apparatus which has high corrosion resistance especially to fluorine-based and chlorine-based corrosive gas or fluorine-based / chlorine-based plasma, and generates few particles and contamination. More particularly, the present invention relates to a high-density magnesium oxide sintered body suitable for use as a focus ring, a clamp ring, a bell jar, a dome, and the like in a plasma process, a method for manufacturing the same, and a member for a plasma processing apparatus using the same.

【0002】[0002]

【従来の技術】半導体素子や液晶などの高集積回路形成
に使用されるドライプロセスやプラズマコーティング等
プラズマの利用は近年急速に進んでいる。半導体におけ
るプラズマプロセスとしては、フッ素系等のハロゲン系
腐食ガスがその反応性の高さから、気相成長、エッチン
グやクリーニングに利用されている。
2. Description of the Related Art In recent years, the use of plasma, such as a dry process and plasma coating, used for forming highly integrated circuits such as semiconductor elements and liquid crystals has been rapidly progressing. As a plasma process in a semiconductor, a halogen-based corrosive gas such as a fluorine-based gas is used for vapor phase growth, etching and cleaning due to its high reactivity.

【0003】これら腐食性ガスに接触する部材は、高い
耐食性とともに非処理物を汚染したりパーティクルの原
因となる不純物を極力含有しないことが要求される。従
来から被処理物以外のこれらプラズマに接触する部材
は、一般にガラスや石英などのSiO2 を主成分とする
材料や、ステンレス、モネル等の金属が多用されてい
る。
[0003] The members which come into contact with these corrosive gases are required to have high corrosion resistance and contain as little impurities as possible which contaminate non-processed materials or cause particles. Conventionally, materials other than the object to be processed that come into contact with the plasma are generally made of a material mainly composed of SiO 2 such as glass or quartz, or a metal such as stainless steel or Monel.

【0004】また、半導体製造時のウェハを支持固定す
るサセプタ材として、アルミナ焼結体、サファイア、A
lNの焼結体、又はこれらをCVD法等により表面被覆
したものが耐食性に優れることから使用されている。ま
た、グラファイト、窒化硼素をコーティングしたヒータ
等も使用されている。これら材料に対して、素子の集積
度をあげるために高密度プラズマの利用が進み、パーテ
ィクルの発生のないノンパーティクル化が求められてい
る。
Further, as a susceptor material for supporting and fixing a wafer at the time of manufacturing a semiconductor, an alumina sintered body, sapphire, A
A 1N sintered body or one obtained by coating these with a surface by a CVD method or the like is used because of its excellent corrosion resistance. Further, a heater coated with graphite or boron nitride is also used. For these materials, the use of high-density plasma has been promoted in order to increase the degree of integration of elements, and non-particle generation without generation of particles has been demanded.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来から用い
られているガラスや石英ではプラズマ中の耐食性が不充
分で消耗が激しく、特にフッ素あるいは塩素プラズマに
接すると接触面がエッチングされ、表面性状が変化して
エッチングに影響する等の問題が生じていた。
However, conventionally used glass and quartz have insufficient corrosion resistance in plasma and are intensely depleted. In particular, when they come into contact with fluorine or chlorine plasma, the contact surface is etched and the surface properties are reduced. There have been problems such as changes that affect etching.

【0006】また、ステンレスなどの金属を使用した部
材でも耐食性が不充分なため、腐食によって特に半導体
製造においては不良品発生の原因となっていた。アルミ
ナ、窒化アルミニウム、窒化珪素質焼結体やコーティン
グ材は、上記の材料に比較してフッ素系ガスに対して耐
食性に優れるものの、高温でプラズマと接すると腐食が
徐々に進行して焼結体の表面から結晶粒子の脱粒が生じ
たり、プラズマとの反応生成物が析出・剥離してパーテ
ィクル発生の原因になるという問題が起きていた。この
ようなパーティクルの発生は、半導体の高集積化、プロ
セスのさらなるクリーン化が図られる中、イオン衝撃
や、気相反応で生成したごく微細なパーティクルによっ
てメタル配線の断線、パターンの欠陥等による素子特性
の劣化や歩留まりの低下等の不具合を発生する恐れが生
じている。
Further, even members made of metal such as stainless steel have insufficient corrosion resistance, so that corrosion has caused defective products especially in semiconductor manufacturing. Alumina, aluminum nitride, and silicon nitride sintered bodies and coating materials have better corrosion resistance to fluorine-based gases than the above materials, but when they come into contact with plasma at high temperatures, corrosion gradually progresses and the sintered bodies There has been a problem that crystal grains are dislodged from the surface of the substrate, and a reaction product with the plasma is deposited and separated to cause particles. The generation of such particles is due to the ion bombardment, breakage of metal wiring due to extremely fine particles generated by the gas phase reaction, defects in the pattern, etc. as semiconductors become more highly integrated and the process becomes even cleaner. There is a possibility that problems such as deterioration of characteristics and reduction of yield may occur.

【0007】また、先に、本発明者らは、MgOやY3
Al5 12等の周期律表第2a,3a族含有酸化物を主
結晶相とする焼結体は優れた耐食性を有するものの、そ
の結晶粒界がプラズマにより選択的にエッチングされて
しまうという問題に対し、周期律表第2a、3a族、C
r、CoおよびNiのうちの少なくとも1種を主体とす
る化合物により粒界相を構成することによって、粒界相
の腐食の進行を抑制し、材料自体の耐食性を向上するこ
とが可能となることを提案した(特開平10−6755
4号公報)。
First, the present inventors have proposed that MgO and Y 3
A sintered body containing an oxide containing a group 2a or 3a group of the periodic table such as Al 5 O 12 as a main crystal phase has excellent corrosion resistance, but its crystal grain boundaries are selectively etched by plasma. For the 2a and 3a groups of the periodic table, C
By constituting the grain boundary phase with a compound mainly composed of at least one of r, Co and Ni, it is possible to suppress the progress of corrosion of the grain boundary phase and improve the corrosion resistance of the material itself. (Japanese Patent Laid-Open No. 10-6755).
No. 4).

【0008】ところが、かかる提案における酸化マグネ
シウム質焼結体は、粒界相がMgOと添加した酸化物と
が1:1の結晶性化合物を形成しており、その結果、耐
食性が不十分という問題があった。このため、MgOの
緻密化を促進可能でかつMgO質焼結体の粒界相の耐食
性強化に寄与する化合物の検討が必要であった。
However, the magnesium oxide based sintered body in such a proposal has a problem that the grain boundary phase forms a crystalline compound of MgO and the added oxide in a ratio of 1: 1. As a result, the corrosion resistance is insufficient. was there. For this reason, it is necessary to study a compound that can promote the densification of MgO and contribute to the enhancement of the corrosion resistance of the grain boundary phase of the MgO-based sintered body.

【0009】一方、緻密質な酸化マグネシウム焼結体に
ついては、特開平10−130827号公報、特開平1
0−130828号公報、特開平10−158826号
公報等において、相対密度99.0%以上の酸化マグネ
シウム質焼結体からなるターゲット材の製造方法が提案
されている。
On the other hand, a dense magnesium oxide sintered body is disclosed in Japanese Patent Application Laid-Open Nos.
JP-A-130828, JP-A-10-158826, and the like have proposed a method of manufacturing a target material made of a magnesium oxide-based sintered body having a relative density of 99.0% or more.

【0010】しかしながら、これらに記載された焼結体
は、スパッタリングによるMgO成膜用ターゲット材と
しては優れた特性を示すものの、これをプラズマと直接
接触する部材として用いると、結晶粒界を起点とするプ
ラズマによる腐食反応が進行するため、材料自体の耐食
性が不十分であり粒界相の耐プラズマ性に対する強化が
必要であった。
However, although the sintered bodies described therein exhibit excellent characteristics as a target material for forming an MgO film by sputtering, if they are used as a member that comes into direct contact with the plasma, the sintered body will have a starting point at the crystal grain boundary. Since the corrosion reaction by the generated plasma progresses, the corrosion resistance of the material itself is insufficient, and it is necessary to enhance the plasma resistance of the grain boundary phase.

【0011】従って、本発明は、酸化マグネシウム質焼
結体からなり、材料自体のプラズマに対する耐食性が優
れるとともに、コンタミネーションやパーティクルの発
生を抑制した高密度酸化マグネシウム質焼結体及びそれ
を安定して作成するための製造方法、並びにそれを用い
た耐食性に優れたプラズマ処理装置用部材を提供するこ
とを目的とするものである。
Accordingly, the present invention provides a high-density magnesium oxide-based sintered body which is made of a magnesium oxide-based sintered body, has excellent corrosion resistance to the plasma of the material itself, and suppresses the generation of contamination and particles. It is an object of the present invention to provide a manufacturing method for producing the same, and a member for a plasma processing apparatus using the same, which is excellent in corrosion resistance.

【0012】[0012]

【課題を解決するための手段】本発明者らは、半導体の
プラズマプロセスに利用される材料について、フッ素系
及び塩素系腐食ガス・プラズマ、酸素プラズマに対する
耐食性の向上、コンタミネーションやパーティクルの発
生を抑制について検討を行った結果、酸化マグネシウム
を主成分とし、Yb、ErおよびLuから選ばれる少な
くとも1種の希土類元素を酸化物換算で0.1〜20重
量%含有し、Mgと前記希土類元素以外の金属元素の総
量が金属換算で100ppm以下、前記酸化マグネシウ
ムの結晶粒子の平均粒径が10μm以下、相対密度が9
9%以上、かつ粒界相に前記希土類元素の酸化物結晶相
を存在させることによってプラズマに対する高い耐食性
を有するという知見を得、プラズマ処理装置用部材とし
て適していることを見いだした。
Means for Solving the Problems The inventors of the present invention have made an effort to improve the corrosion resistance of fluorine and chlorine-based corrosive gas / plasma and oxygen plasma, and to generate contamination and particles for materials used in the plasma processing of semiconductors. As a result of studying the suppression, it was found that magnesium oxide was the main component, at least one rare earth element selected from Yb, Er and Lu was contained in an amount of 0.1 to 20% by weight in terms of oxide, and Mg and other than the rare earth element were contained. Is 100 ppm or less in terms of metal, the average particle size of the magnesium oxide crystal particles is 10 μm or less, and the relative density is 9 ppm or less.
It has been found that 9% or more and the presence of the oxide crystal phase of the rare earth element in the grain boundary phase has high corrosion resistance to plasma, and has been found to be suitable as a member for a plasma processing apparatus.

【0013】また、上記焼結体は、平均粒径5μm以下
の酸化マグネシウム粉末に対して、平均粒径5μm以下
のYb2 3 、Er2 3 、Lu2 3 から選ばれる少
なくとも1種の希土類元素酸化物を0.1〜20重量%
の割合で添加してなる成形体を、非酸化性雰囲気中ある
いは空気中1400〜1800℃で焼成して相対密度9
9%以上に緻密化し、かつ粒界相に前記希土類元素の酸
化物結晶相を析出させることにより作製される。
[0013] The sintered body may contain at least one selected from the group consisting of Yb 2 O 3 , Er 2 O 3 , and Lu 2 O 3 having an average particle size of 5 μm or less with respect to a magnesium oxide powder having an average particle size of 5 μm or less. 0.1 to 20% by weight of rare earth element oxide
Is fired at 1400 to 1800 ° C. in a non-oxidizing atmosphere or in air to obtain a relative density of 9
It is manufactured by densifying to 9% or more and precipitating the oxide crystal phase of the rare earth element in the grain boundary phase.

【0014】[0014]

【発明の実施の形態】本発明の酸化マグネシウム質焼結
体は、半導体のプラズマプロセスで利用されるフッ素系
及び塩素系等のハロゲン系の腐食ガスまたはプラズマ
や、O2 、Arプラズマに曝されるプラズマ処理装置用
部材として適したものである。
BEST MODE FOR CARRYING OUT THE INVENTION The magnesium oxide sintered body of the present invention is exposed to a halogen-based corrosive gas or plasma such as a fluorine-based or chlorine-based gas used in a semiconductor plasma process, or to O 2 or Ar plasma. It is suitable as a member for a plasma processing apparatus.

【0015】フッ素系ガスとしては、SF6 、CF4
CHF3 、ClF3 、HF等が、また塩素系ガスとして
は、Cl2 、BCl3 、HCl等が挙げられ、これらの
ガスが導入された雰囲気にマイクロ波や高周波等を導入
するとこれらのガスがプラズマ化される。
As the fluorine-based gas, SF 6 , CF 4 ,
CHF 3 , ClF 3 , HF, and the like, and chlorine-based gases include Cl 2 , BCl 3 , HCl, and the like. When microwaves or high-frequency waves are introduced into the atmosphere in which these gases are introduced, these gases are removed. It is turned into plasma.

【0016】本発明の焼結体は、酸化マグネシウムを主
成分としており、粒界相の耐プラズマ性を強化するとい
う観点から、希土類元素の中でも、Yb、ErおよびL
uの群から選ばれる少なくとも1種の希土類元素を酸化
物換算で0.1〜20重量%の割合で含有する。これ
は、前記腐食性ガスやプラズマに対する耐食性の点で、
粒界相を構成する金属酸化物として融点の高い材料を選
択することが望ましく、かかる観点からLu2 3 、Y
2 3 、Er2 3 (2427℃、2355℃、23
44℃)の順で好ましい。他の希土類元素は、酸化物に
おける融点が2300℃よりも低く、耐食性の点で不十
分である。
The sintered body of the present invention contains magnesium oxide as a main component, and among the rare earth elements, Yb, Er and L are selected from the viewpoint of enhancing the plasma resistance of the grain boundary phase.
At least one rare earth element selected from the group u is contained at a ratio of 0.1 to 20% by weight in terms of oxide. This is in terms of corrosion resistance to the corrosive gas and plasma,
It is desirable to select a material having a high melting point as the metal oxide constituting the grain boundary phase, and from such a viewpoint, Lu 2 O 3 , Y
b 2 O 3 , Er 2 O 3 (2427 ° C., 2355 ° C., 23
44 ° C.). Other rare earth elements have an oxide melting point lower than 2300 ° C. and are insufficient in corrosion resistance.

【0017】また、Mgと前記希土類元素以外の金属元
素の総量が金属換算で100ppm以下、望ましくは9
0ppm以下、特に50ppm以下、さらには10pp
m以下に制御することが重要である。上記の金属元素の
総量が金属換算で100ppmより多いと、Mgと前記
希土類元素以外の金属がプラズマと反応し、これにより
エッチングが進行するとともに、その反応物がパーティ
クルの原因となるためである。一次原料中の不純物は焼
成前に昇温真空排気処理することに低減制御する。
Further, the total amount of Mg and metal elements other than the rare earth elements is 100 ppm or less in terms of metal, preferably 9 ppm or less.
0 ppm or less, especially 50 ppm or less, furthermore 10 pp
It is important to control to less than m. If the total amount of the above metal elements is more than 100 ppm in terms of metal, Mg and a metal other than the rare earth element react with the plasma, whereby the etching proceeds, and the reaction product causes particles. Impurities in the primary raw material are controlled to be reduced by elevating the temperature to a vacuum before firing.

【0018】さらに、プラズマに対する耐食性を高める
上では、焼結体の相対密度は99%以上、特に99.5
%以上であることが必要である。これは、焼結体の相対
密度が99%より小さいと、表面の気孔などが多量に存
在するためにプラズマとの接触面積が増加するために耐
食性が低下し、またプラズマ接触面に存在する気孔から
エッチングが進行してしまうためである。
Further, in order to enhance the corrosion resistance to plasma, the relative density of the sintered body is 99% or more, especially 99.5.
%. This is because if the relative density of the sintered body is less than 99%, a large amount of pores and the like on the surface increase the area of contact with the plasma, thereby deteriorating the corrosion resistance and the pores existing on the plasma contact surface. This is because the etching proceeds from the beginning.

【0019】また、焼結体のMgO結晶粒子の平均粒径
は10μm以下、望ましくは5μm以下、特に1μm以
下であることが望ましい。すなわち、この平均粒径が1
0μmより大きいと脱粒等が発生した場合、半導体製造
装置内に及ぼす影響が大きくなるためである。
The average particle size of the MgO crystal particles of the sintered body is 10 μm or less, preferably 5 μm or less, and more preferably 1 μm or less. That is, the average particle size is 1
If the particle size is larger than 0 μm, the influence on the inside of the semiconductor manufacturing apparatus becomes large when the particles are shattered.

【0020】さらに、本発明の焼結体中のMgO主結晶
粒子の粒界には、焼結助剤として前記希土類元素が含ま
れるが、本発明によれば、この粒界相中の希土類元素
は、酸化物結晶相として析出していることが重要であ
る。これは、粒界相がガラス相であると、粒界相の耐食
性が低下し、粒界からエッチングされ、または析出結晶
相がMgOと希土類元素酸化物との複合酸化物結晶相で
ある場合には、希土類元素酸化物単独結晶相よりも耐食
性が低いために粒界が選択的にエッチングされてしまう
ためである。
Furthermore, the rare earth element as a sintering aid is contained in the grain boundaries of the MgO main crystal particles in the sintered body of the present invention. According to the present invention, the rare earth element in this grain boundary phase is It is important that is precipitated as an oxide crystal phase. This is because when the grain boundary phase is a glass phase, the corrosion resistance of the grain boundary phase is reduced, and the grain boundary phase is etched from the grain boundary, or when the precipitated crystal phase is a composite oxide crystal phase of MgO and a rare earth element oxide. This is because grain boundaries are selectively etched due to lower corrosion resistance than the rare-earth element oxide single crystal phase.

【0021】上記のような高い耐食性を有する高密度酸
化マグネシウム質焼結体を作製するために用いる原料粉
末は、酸化マグネシウム粉末については、平均粒径が5
μm以下、望ましくは2μm以下、特に1μm以下の粉
末が望ましい。平均粒径が5μmを超えると焼結性が低
下し緻密化不足となる。なお、酸化マグネシウム粉末
は、気相法または電融法によって作製されたものが使用
できる。
The raw material powder used for producing the high-density magnesium oxide sintered body having high corrosion resistance as described above has a mean particle size of 5% for magnesium oxide powder.
A powder having a size of not more than μm, preferably not more than 2 μm, particularly preferably not more than 1 μm is desirable. If the average particle size exceeds 5 μm, the sinterability is reduced and the densification is insufficient. As the magnesium oxide powder, a powder produced by a gas phase method or an electrofusion method can be used.

【0022】また、Yb2 3 、Er2 3 、Lu2
3 から選ばれる少なくとも1種の希土類元素酸化物粉末
は、平均粒径5μm以下、望ましくは2μm以下を用い
ることが望ましい。5μmを超える粗粒では、表面エネ
ルギーの低下により酸化マグネシウムの焼結に対する寄
与が低下することにより緻密化不足を生じる。
Further, Yb 2 O 3 , Er 2 O 3 , Lu 2 O
It is desirable that at least one rare earth element oxide powder selected from 3 has an average particle size of 5 μm or less, preferably 2 μm or less. In the case of coarse particles exceeding 5 μm, the contribution to the sintering of magnesium oxide is reduced due to a decrease in surface energy, resulting in insufficient densification.

【0023】また、これらの希土類元素酸化物の添加量
としては、酸化マグネシウム粉末に対して0.1〜20
重量、好ましくは0.1〜10重量%、特に0.5〜5
重量%であることが望ましい。添加量が0.1重量%よ
り小さいと焼結促進効果が得られず、また20重量%を
超えると焼成温度が上昇するためMgO粒子の異常粒成
長を招き、MgO結晶粒子の平均粒径を10μm以下に
制御できないためである。
The amount of the rare earth element oxide to be added is 0.1 to 20 with respect to the magnesium oxide powder.
Weight, preferably 0.1 to 10% by weight, especially 0.5 to 5%
% By weight. If the addition amount is less than 0.1% by weight, the sintering promoting effect cannot be obtained, and if it exceeds 20% by weight, the sintering temperature rises, so that abnormal grain growth of MgO particles is caused. This is because it cannot be controlled to 10 μm or less.

【0024】この粉末を用いて所定形状に所望の成形手
段、例えば、金型プレス、冷間静水圧プレス、押し出し
成形等により任意の形状に成形する。この時の成形体
は、相対密度55%以上であることが望ましく、成形体
密度が55%よりも低いと、その後の焼結過程で相対密
度99%以上の緻密体を作製することが困難である。
The powder is formed into a desired shape by a desired forming means, for example, a die press, a cold isostatic press, an extrusion or the like. The compact at this time is desirably 55% or more in relative density. If the density of the compact is lower than 55%, it is difficult to produce a dense body having a relative density of 99% or more in the subsequent sintering process. is there.

【0025】次に、上記のようにして作製した成形体を
相対密度99%以上、特に99.5%以上に焼成する。
相対密度99%以上に緻密化するには、上記の組成から
なる成形体を非酸化性雰囲気中あるいは空気中で焼成す
ることにより得られる。
Next, the formed body produced as described above is fired to a relative density of 99% or more, especially 99.5% or more.
Densification to a relative density of 99% or more can be obtained by firing a molded body having the above composition in a non-oxidizing atmosphere or in air.

【0026】この場合、最適な焼成温度は1400〜1
800℃、好ましくは1450〜1750℃、さらに好
ましくは1500〜1700℃である。1400℃未満
ではでは緻密化不足となり、1800℃よりも高いとM
gO結晶粒子の異常粒成長を招いてしまう。
In this case, the optimum firing temperature is 1400-1.
800 ° C., preferably 1450-1750 ° C., more preferably 1500-1700 ° C. If the temperature is lower than 1400 ° C., the densification becomes insufficient.
This leads to abnormal growth of gO crystal grains.

【0027】上記焼成において、相対密度を向上させる
ためには50kgf/cm2 以上の加圧下でホットプレ
ス焼成することが望ましく、さらに、得られた焼結体に
対して1000気圧以上のN2 、Arガス中にて熱間静
水圧処理を行ってもよい。なお、ホットプレスの場合、
カーボンモールドによって焼結体中にわずかにカーボン
が混入する場合があるがその量は0.5重量%以下であ
れば特に問題ない。
In the above sintering, it is desirable to perform hot press sintering under a pressure of 50 kgf / cm 2 or more in order to improve the relative density. Further, the obtained sintered body is subjected to N 2 , Hot isostatic pressure treatment may be performed in Ar gas. In the case of hot pressing,
Carbon may be slightly mixed into the sintered body due to the carbon mold, but there is no particular problem if the amount is 0.5% by weight or less.

【0028】なお、上記焼結体が低密度で多量の気孔を
有する場合は、それだけガスやプラズマとの接触面積が
増加し消耗が早くなるため、開気孔率0.2%以下であ
ることが望ましい。
When the sintered body has a low density and a large number of pores, the contact area with the gas or plasma is increased and the consumption is accelerated. Therefore, the open porosity is preferably 0.2% or less. desirable.

【0029】得られた焼結体に対し、適宜研削加工を施
し、所定の寸法の製品形状に仕上げる。この時、耐食性
を高める上では、前記腐食性ガスあるいはそのプラズマ
と接触する焼結体表面の表面粗さ(Ra)が、1μm以
下、特に0.5μm以下、さらには0.1μm以下であ
ることが望ましい。
The obtained sintered body is appropriately ground to finish it into a product having a predetermined size. At this time, in order to enhance the corrosion resistance, the surface roughness (Ra) of the surface of the sintered body that comes into contact with the corrosive gas or the plasma thereof is 1 μm or less, particularly 0.5 μm or less, and further 0.1 μm or less. Is desirable.

【0030】[0030]

【実施例】表1に示すような、平均粒径、純度の異なる
複数種のMgO原料粉末および希土類元素酸化物を用い
て焼結体を作製し、物性を評価した。焼結体の作製方法
は、まず超純水を溶媒としてボールミルにて原料粉末を
湿式解砕し、有機バインダーとしてポリビニルアルコー
ルを用いてスラリーを作製した。湿式解砕時のメディア
としては高純度イミドボールを用いた。このスラリーを
スプレードライにて造粒した原料粉体を0.8ton/
cm2 の荷重で金型プレスにて成形し、500℃、空気
中にて脱脂した。
EXAMPLES As shown in Table 1, sintered bodies were prepared using a plurality of types of MgO raw material powders having different average particle diameters and purity and rare earth element oxides, and physical properties were evaluated. First, a raw material powder was wet-crushed in a ball mill using ultrapure water as a solvent, and a slurry was prepared using polyvinyl alcohol as an organic binder. A high-purity imide ball was used as a medium for wet disintegration. The raw material powder obtained by granulating this slurry by spray drying is 0.8 ton /
It was molded by a mold press under a load of cm 2 and degreased in air at 500 ° C.

【0031】このようにして作製した脱脂体を、純化を
目的として1200℃にて真空排気処理を施した後、1
420〜2000℃の温度範囲で表1に示す条件で、空
気または真空中で焼成し、得られた酸化マグネシウム質
焼結体について各種特性を測定した。
The degreased body thus produced is subjected to a vacuum exhaust treatment at 1200 ° C. for the purpose of purification.
Under the conditions shown in Table 1 in a temperature range of 420 to 2000 ° C., firing was performed in air or vacuum, and various characteristics of the obtained magnesium oxide-based sintered body were measured.

【0032】また、比較例として、純度99.9%のM
gOの焼結体(試料No.1)を準備した。また、SiO
2 、Al2 3 について、表1に示す温度で焼成し同様
に焼結体を作製した(試料No.22、23)。
As a comparative example, M with a purity of 99.9% was used.
A sintered body of gO (sample No. 1) was prepared. In addition, SiO
2 and Al 2 O 3 were fired at the temperatures shown in Table 1 to produce sintered bodies in the same manner (Sample Nos. 22 and 23).

【0033】特性評価として、焼結体密度は、嵩密度を
アルキメデス法にて測定し、理論密度との相対的な密度
を算出した。焼結体中のSi以外の金属量は、Na、
K、Ca、Al、Fe、Ni、Crの各元素をICP分
析により定量し、その総量を記載した。また、MgO結
晶粒子の平均粒径についてはインターセプト法によって
算出し、粒界結晶相についてはX線回折測定によって同
定した。結果は表1に示した。
For the evaluation of the characteristics, the sintered body density was determined by measuring the bulk density by the Archimedes method and calculating the relative density to the theoretical density. The amount of metal other than Si in the sintered body is Na,
Each element of K, Ca, Al, Fe, Ni, and Cr was quantified by ICP analysis, and the total amount was described. The average particle size of MgO crystal particles was calculated by the intercept method, and the grain boundary crystal phase was identified by X-ray diffraction measurement. The results are shown in Table 1.

【0034】焼結体の耐プラズマ性については、RIE
(反応性イオンエッチング)装置にて以下の2つのテス
ト方法で評価し、その結果を表2に示した。
Regarding the plasma resistance of the sintered body, RIE
(Reactive Ion Etching) The following two test methods were used to evaluate with a device, and the results are shown in Table 2.

【0035】(1)焼結体に対して、表面を表面粗さ
(Ra)が0.1μm以下となるように鏡面加工した直
径22cmの円盤状の評価試料を作製し、RIEプラズ
マエッチング装置にて、BCl3 +Cl2 ガスを導入
し、高周波にてプラズマを発生させ、室温で塩素プラズ
マ照射テストをおこなった。装置内圧力は10Paに保
持し、13.56MHz、1kWの高周波を利用した。
エッチングレートはテスト前後の重量変化を基に算出し
た。パーティクルの有無は、プラズマ照射後の円盤上に
8インチのSiウェハを載せたのち、ウェハの接触面の
凹凸をレーザー散乱によって検出し、パーティクルカウ
ンタにて0.3μm以上のパーティクル個数を計測し
た。
(1) A disk-shaped evaluation sample having a diameter of 22 cm was prepared by polishing the surface of the sintered body so that the surface had a surface roughness (Ra) of 0.1 μm or less. Then, BCl 3 + Cl 2 gas was introduced, plasma was generated at a high frequency, and a chlorine plasma irradiation test was performed at room temperature. The pressure in the apparatus was maintained at 10 Pa, and a high frequency of 13.56 MHz and 1 kW was used.
The etching rate was calculated based on the weight change before and after the test. The presence / absence of particles was determined by placing an 8-inch Si wafer on a disk after plasma irradiation, detecting the unevenness of the contact surface of the wafer by laser scattering, and counting the number of particles of 0.3 μm or more with a particle counter.

【0036】(2)評価法(1)と同様にして作製した
評価試料に対して、RIEプラズマエッチング装置内に
てCF4 +CHF3 +Arのプラズマに室温で曝し、エ
ッチングレートとパーティクルの有無を調査した。エッ
チング条件は圧力10Pa、13.56MHzの高周波
を導入してプラズマを発生させRF出力1KW、プラズ
マ照射時間3時間とした。他は評価法(1)と同様であ
る。テスト結果を表2に示す。
(2) Evaluation method The evaluation sample prepared in the same manner as in (1) was exposed to CF 4 + CHF 3 + Ar plasma at room temperature in an RIE plasma etching apparatus, and the etching rate and the presence or absence of particles were investigated. did. The etching conditions were such that a plasma was generated by introducing a high frequency of 13.56 MHz at a pressure of 10 Pa and an RF output of 1 KW and a plasma irradiation time of 3 hours. Others are the same as the evaluation method (1). Table 2 shows the test results.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】表1および表2の結果によれば、試料No.
1、2は、Yb2 3 添加量が少なく、相対密度を99
%以上に緻密化できないために、耐食性が低下するとと
もに脱粒によって30個以上のパーティクルが発生し、
使用に耐えない。また、試料No.7は逆に、Yb2 3
添加量が20重量%よりも多く、焼結性が低下し、15
50℃では緻密化できなかった。試料No.8で焼成温度
を2000℃に高め緻密化させた試料では、MgO結晶
粒子の異常粒成長により、耐食性は良好な結果を示すも
のの脱粒によるパーティクルが多数発生した。
According to the results of Tables 1 and 2, the sample No.
Nos. 1 and 2 have a small amount of added Yb 2 O 3 and a relative density of
%, The corrosion resistance is reduced and more than 30 particles are generated by threshing.
Does not stand use. In Sample No.7 is the reverse, Yb 2 O 3
When the amount added is more than 20% by weight, the sinterability decreases,
At 50 ° C., densification was not possible. In the sample No. 8 in which the sintering temperature was increased to 2000 ° C. and densification was performed, the corrosion resistance was excellent due to abnormal grain growth of MgO crystal particles, but a large number of particles were generated due to shedding.

【0040】さらに、MgO原料粉末の粒径が5μmを
越える試料No.15およびYb2 3 原料粉末の粒径が
5μmを超える試料No.19では、緻密化できず、耐食
性が低下した。また、アルカリ土類金属および希土類元
素以外の金属元素の総量が金属換算で100ppmより
多い試料No.20は、多量のパーティクルの発生が認め
られた。また試料No.21では、希土類元素酸化物にY
2 3 を用いており、粒界結晶相がMgO・Y2 3
ら形成されており耐食性が低いものであった。一方、試
料No.22、23のSiO2 、Al2 3 焼結体につい
ては、緻密な焼結体が得られるものの耐食性は不十分で
あった。
Further, in Sample No. 15 in which the particle size of the MgO raw material powder exceeded 5 μm and in Sample No. 19 in which the particle size of the Yb 2 O 3 raw material powder exceeded 5 μm, densification was not possible, and the corrosion resistance was reduced. Sample No. 20 in which the total amount of metal elements other than the alkaline earth metal and the rare earth element was more than 100 ppm in terms of metal, generation of a large amount of particles was observed. In sample No. 21, the rare earth oxide was Y
2 O 3 was used, and the grain boundary crystal phase was formed of MgO.Y 2 O 3, and had low corrosion resistance. On the other hand, for the sintered bodies of SiO 2 and Al 2 O 3 of Samples Nos. 22 and 23, a dense sintered body was obtained, but the corrosion resistance was insufficient.

【0041】本発明による試料No.3〜6、9〜14、
16〜18は、いずれも相対密度99%以上の緻密なM
gO質焼結体であり、希土類元素酸化物としてYb2
3 、Er2 3 、Lu2 3 から選ばれる少なくとも1
種の希土類元素酸化物の添加によって粒界相が希土類元
素単独の酸化物から形成され、耐プラズマ性が強化され
たことから材料自体のプラズマに対する耐食性がMgO
と比較して大幅に向上している。さらに不純物金属総量
が100ppm以下に抑えられ、平均粒径も10μm以
下に抑えられていることにより、不純物金属化合物や反
応生成物の残留、脱粒やプラズマ衝撃による非晶質相の
結晶化に起因するパーティクル発生が抑制でき、テスト
1でエッチングレート45Å/min以下、パーティク
ル発生量30個/8インチウエハの良好な耐食性を示し
た。さらに、テスト2でも25Å/min以下、パーテ
ィクル発生量15個/8インチウエハ以下の優れた耐食
性を示した。
Sample Nos. 3 to 6, 9 to 14,
16 to 18 are dense M having a relative density of 99% or more.
It is a gO type sintered body, and Yb 2 O is used as a rare earth element oxide.
3 , at least one selected from Er 2 O 3 and Lu 2 O 3
The grain boundary phase is formed from the oxide of the rare earth element alone by the addition of the rare earth element oxide, and the plasma resistance of the material itself is enhanced.
It is greatly improved as compared with. Further, since the total amount of the impurity metal is suppressed to 100 ppm or less and the average particle diameter is also suppressed to 10 μm or less, the impurity metal compound and the reaction product are left, and the crystallization of the amorphous phase due to the particle shattering and the plasma impact is caused. The generation of particles was suppressed, and in test 1, an etching rate of 45 ° / min or less, and a good corrosion resistance of a 30-particle / 8-inch wafer with a particle generation of 30 were shown. Test 2 also showed excellent corrosion resistance of 25 ° / min or less and a particle generation of 15/8 inch wafers or less.

【0042】[0042]

【発明の効果】以上詳述したように、本発明によれば、
フッ素系及び塩素系腐食性ガス或いはプラズマに曝され
る部材として所定の特性を有する酸化マグネシウム質焼
結体を使用することにより、高温・高密度のフッ素系及
び塩素系腐食雰囲気に長時間の耐久性を有し、且つコン
タミネーションやパーティクルを発生しないことから、
半導体製造用装置、とりわけプラズマ処理装置の内壁部
材や被処理物を支持する支持体などの治具等の部材とし
て使用することにより、半導体製造の歩留り向上ととも
に高品質の半導体素子を作製することができる。
As described in detail above, according to the present invention,
By using a magnesium oxide sintered body having the specified characteristics as a member exposed to fluorine or chlorine corrosive gas or plasma, it can be used for a long time in a high-temperature, high-density fluorine or chlorine corrosive atmosphere. It has properties and does not generate contamination or particles,
By using it as a jig such as an inner wall member of a semiconductor manufacturing apparatus, in particular, an inner wall member of a plasma processing apparatus or a support for supporting an object to be processed, it is possible to improve a semiconductor manufacturing yield and to manufacture a high-quality semiconductor element. it can.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】酸化マグネシウムを主成分とし、Yb、E
rおよびLuから選ばれる少なくとも1種の希土類元素
を酸化物換算で0.1〜20重量%含有し、マグネシウ
ムと前記希土類元素以外の金属元素の総量が金属換算で
100ppm以下、前記酸化マグネシウムの結晶粒子の
平均粒径が10μm以下、相対密度が99%以上、かつ
粒界相に前記希土類元素の酸化物結晶相が存在すること
を特徴とする高密度酸化マグネシウム質焼結体。
1. The method according to claim 1, wherein the main component is magnesium oxide;
0.1 to 20% by weight of at least one rare earth element selected from the group consisting of r and Lu in terms of oxide; the total amount of magnesium and metal elements other than the rare earth element is not more than 100 ppm in terms of metal; A high-density magnesium oxide sintered body characterized in that the average particle diameter of the particles is 10 μm or less, the relative density is 99% or more, and the rare earth element oxide crystal phase exists in the grain boundary phase.
【請求項2】平均粒径5μm以下の酸化マグネシウム粉
末に対して、平均粒径5μm以下のYb2 3 、Er2
3 、Lu2 3 から選ばれる少なくとも1種の希土類
元素酸化物を0.1〜20重量%の割合で添加してなる
成形体を、非酸化性雰囲気中あるいは空気中にて140
0〜1800℃で焼成して、相対密度99%以上に緻密
化し、かつ粒界相に前記希土類元素の酸化物結晶相を析
出させたことを特徴とする高密度酸化マグネシウム質焼
結体の製造方法。
2. A method according to claim 1, wherein a magnesium oxide powder having an average particle size of 5 μm or less is mixed with Yb 2 O 3 or Er 2 having an average particle size of 5 μm or less.
A molded body obtained by adding at least one rare earth element oxide selected from O 3 and Lu 2 O 3 at a ratio of 0.1 to 20% by weight is added in a non-oxidizing atmosphere or in air.
A high-density magnesium oxide-based sintered body characterized in that it is fired at 0 to 1800 ° C., densified to a relative density of 99% or more, and precipitated an oxide crystal phase of the rare earth element in a grain boundary phase. Method.
【請求項3】少なくともハロゲン系腐食ガスあるいはそ
のプラズマと直接接触する表面を具備し、該表面が酸化
マグネシウムを主成分とし、Yb2 3 、Er2 3
Lu2 3 から選ばれる少なくとも1種の希土類元素酸
化物を0.1〜20重量%含有し、マグネシウムと前記
希土類元素以外の金属元素の総量が金属換算で100p
pm以下、前記酸化マグネシウムの結晶粒子の平均粒径
が10μm以下、相対密度が99%以上、かつ粒界相に
前記希土類元素の酸化物結晶相が存在してなる高密度酸
化マグネシウム質焼結体から成ることを特徴とするプラ
ズマ処理装置用部材。
And a surface which is in direct contact with at least a halogen-based corrosive gas or its plasma, said surface being mainly composed of magnesium oxide, and Yb 2 O 3 , Er 2 O 3 ,
0.1 to 20% by weight of at least one rare earth element oxide selected from Lu 2 O 3 , and the total amount of magnesium and metal elements other than the rare earth element is 100 p
pm or less, the average particle size of the magnesium oxide crystal particles is 10 μm or less, the relative density is 99% or more, and the rare earth element oxide crystal phase is present in the grain boundary phase. A member for a plasma processing apparatus, comprising:
JP12133899A 1999-04-28 1999-04-28 Components for plasma processing equipment Expired - Fee Related JP3769416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12133899A JP3769416B2 (en) 1999-04-28 1999-04-28 Components for plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12133899A JP3769416B2 (en) 1999-04-28 1999-04-28 Components for plasma processing equipment

Publications (2)

Publication Number Publication Date
JP2000313655A true JP2000313655A (en) 2000-11-14
JP3769416B2 JP3769416B2 (en) 2006-04-26

Family

ID=14808794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12133899A Expired - Fee Related JP3769416B2 (en) 1999-04-28 1999-04-28 Components for plasma processing equipment

Country Status (1)

Country Link
JP (1) JP3769416B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002362966A (en) * 2001-06-08 2002-12-18 Nihon Ceratec Co Ltd Ceramic material
JP2007084689A (en) * 2005-09-22 2007-04-05 Tateho Chem Ind Co Ltd Coated magnesium hydroxide, method for producing the same and resin composition containing the same and used for electronic part material
JP2009173502A (en) * 2008-01-28 2009-08-06 Nippon Tungsten Co Ltd POLYCRYSTAL MgO SINTERED COMPACT, METHOD FOR PRODUCING THE SAME, AND MgO TARGET FOR SPUTTERING
WO2019177086A1 (en) * 2018-03-15 2019-09-19 宇部マテリアルズ株式会社 MgO SINTERED BODY AND SPUTTERING TARGET
JPWO2018116688A1 (en) * 2016-12-20 2019-10-24 三井金属鉱業株式会社 Rare earth oxyfluoride sintered body and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002362966A (en) * 2001-06-08 2002-12-18 Nihon Ceratec Co Ltd Ceramic material
JP2007084689A (en) * 2005-09-22 2007-04-05 Tateho Chem Ind Co Ltd Coated magnesium hydroxide, method for producing the same and resin composition containing the same and used for electronic part material
JP2009173502A (en) * 2008-01-28 2009-08-06 Nippon Tungsten Co Ltd POLYCRYSTAL MgO SINTERED COMPACT, METHOD FOR PRODUCING THE SAME, AND MgO TARGET FOR SPUTTERING
JPWO2018116688A1 (en) * 2016-12-20 2019-10-24 三井金属鉱業株式会社 Rare earth oxyfluoride sintered body and method for producing the same
JP6993986B2 (en) 2016-12-20 2022-01-14 三井金属鉱業株式会社 Rare earth oxyfluoride sintered body and its manufacturing method
WO2019177086A1 (en) * 2018-03-15 2019-09-19 宇部マテリアルズ株式会社 MgO SINTERED BODY AND SPUTTERING TARGET

Also Published As

Publication number Publication date
JP3769416B2 (en) 2006-04-26

Similar Documents

Publication Publication Date Title
JP4987238B2 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and aluminum nitride sintered body manufacturing method
JP5466831B2 (en) Yttria sintered body and member for plasma process equipment
JP2003146751A (en) Plasma-resistant member and method of producing the same
JPH1045461A (en) Corrosion resistant member
JP2000001362A (en) Corrosion resistant ceramic material
JP4683783B2 (en) Method for manufacturing plasma-resistant member for semiconductor manufacturing apparatus
JP3527839B2 (en) Components for semiconductor device manufacturing equipment
JP3618048B2 (en) Components for semiconductor manufacturing equipment
JP4798693B2 (en) Yttria ceramic parts for plasma processing apparatus and method for manufacturing the same
JPH11310451A (en) Alumina ceramics material excellent in plasma corrosion resistance and its production
JP3126635B2 (en) Alumina ceramic sintered body
JP3769416B2 (en) Components for plasma processing equipment
JP3706488B2 (en) Corrosion-resistant ceramic material
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
JP2001151559A (en) Corrosion-resistant member
JP4197050B1 (en) Ceramic member and corrosion resistant member
JP4641609B2 (en) Corrosion resistant material
JP3808245B2 (en) Chamber component for semiconductor manufacturing
JP2008056501A (en) Alumina-based sintered compact, member for treating device using the same, treating device and method for treating sample
JP3500278B2 (en) Corrosion resistant materials for semiconductor manufacturing
JP3732966B2 (en) Corrosion resistant material
JP2000239066A (en) Corrosionproof member and its production, and member for plasma treatment device using the same
JP2000247728A (en) Alumina ceramic sintered compact having excellent corrosion resistance
JP4651145B2 (en) Corrosion resistant ceramics
JPH11278944A (en) Silicon nitride corrosion resistant member and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees