JP2002362966A - Ceramic material - Google Patents

Ceramic material

Info

Publication number
JP2002362966A
JP2002362966A JP2001173431A JP2001173431A JP2002362966A JP 2002362966 A JP2002362966 A JP 2002362966A JP 2001173431 A JP2001173431 A JP 2001173431A JP 2001173431 A JP2001173431 A JP 2001173431A JP 2002362966 A JP2002362966 A JP 2002362966A
Authority
JP
Japan
Prior art keywords
halogen
ceramic material
oxide
thermal conductivity
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001173431A
Other languages
Japanese (ja)
Inventor
Makoto Sakamaki
誠 酒巻
Kazusuke Minamizawa
一右 南澤
Keisuke Sato
敬輔 佐藤
Yukio Kishi
幸男 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd, Taiheiyo Cement Corp filed Critical Nihon Ceratec Co Ltd
Priority to JP2001173431A priority Critical patent/JP2002362966A/en
Publication of JP2002362966A publication Critical patent/JP2002362966A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ceramic material with excellent corrosion resistance to gaseous halogen and halogen plasma, further with high thermal conductivity and with excellent thermal shock characteristics. SOLUTION: The ceramic material contains >=5 wt.% and <=95 wt.% magnesium oxide and the balance is composed of an oxide or a compound oxide containing a rare earth element.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ハロゲン系ガスや
ハロゲン系プラズマ環境下での耐性が高く、半導体製造
装置等に好適に用いられるセラミックス材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic material having a high resistance under a halogen-based gas or a halogen-based plasma environment and suitably used for a semiconductor manufacturing apparatus and the like.

【0002】[0002]

【従来の技術】半導体製造工程においては、化学的腐蝕
性の高い環境下で用いられる部材は数多い。例えば、ベ
ルジャー、チャンバー、ドーム、サセプター、クランプ
リング、フォーカスリング等は、腐蝕性の高いハロゲン
系ガスによるドライエッチング工程において使用され
る。このような腐蝕性環境下で用いられる材料として
は、シリカ・石英(SiO)、アルミナ(Al
)が多く用いられてきたが、ハロゲン系ガスやハ
ロゲン系プラズマ環境下での耐蝕性は十分とは言えない
ことから、これらに代わる高耐蝕性材料としてイットリ
ア(Y)やYAG(イットリウムアルミニウムガ
ーネット)に代表される希土類元素を含む酸化物や複合
酸化物を用いることが提案されている。
2. Description of the Related Art In a semiconductor manufacturing process, there are many members used in a highly corrosive environment. For example, a bell jar, a chamber, a dome, a susceptor, a clamp ring, a focus ring, and the like are used in a dry etching process using a highly corrosive halogen-based gas. Materials used in such a corrosive environment include silica / quartz (SiO 2 ) and alumina (Al
2 O 3) has been the widely used but, because it can not be said corrosion resistance is sufficient under the halogen gas or halogen-based plasma environment, high corrosion-resistant material as yttria in place of these (Y 2 O 3) Ya It has been proposed to use an oxide or composite oxide containing a rare earth element represented by YAG (yttrium aluminum garnet).

【0003】[0003]

【発明が解決しようとする課題】しかし、YAG等の希
土類元素を含む複合酸化物やY単体は、熱伝導率
が10W/m・K程度と小さくかつ熱膨張が大きいため
に、使用時の熱衝撃による破損が懸念されていた。
However, a composite oxide containing a rare earth element such as YAG or Y 2 O 3 alone has a small thermal conductivity of about 10 W / m · K and a large thermal expansion. There was concern about damage due to thermal shock.

【0004】本発明はこのような事情に鑑みてなされた
ものであり、ハロゲン系ガスやハロゲン系プラズマに対
する耐蝕性を良好に維持しつつ、しかも、熱伝導率が高
く、熱衝撃特性に優れたセラミックス材料を提供するこ
とを目的とする。
The present invention has been made in view of such circumstances, and has a high thermal conductivity and excellent thermal shock characteristics while maintaining good corrosion resistance to halogen-based gas and halogen-based plasma. An object is to provide a ceramic material.

【0005】[0005]

【課題を解決するための手段】すなわち、本発明によれ
ば、酸化マグネシウムを5重量%以上95重量%以下含
み、残部が希土類元素を含む酸化物または複合酸化物か
らなるセラミックス材料、が提供される。
That is, according to the present invention, there is provided a ceramic material containing magnesium oxide in an amount of 5% by weight or more and 95% by weight or less, with the balance being an oxide or a composite oxide containing a rare earth element. You.

【0006】このような本発明のセラミックス材料は、
緻密に焼結することが容易であり、ハロゲン系プラズマ
環境下でのエッチング速度が15nm/分以下と優れた
耐蝕性を示すとともに、室温での熱伝導率が15W/m
・K以上と従来のYやYAGの10W/m・Kよ
り1.5倍以上大きいことから熱衝撃特性にも優れる。
そのため、半導体製造装置等のハロゲン系ガスやハロゲ
ン系プラズマ雰囲気を用いる装置のこれらの環境下で用
いる部材として好適に用いられる。
[0006] Such a ceramic material of the present invention comprises:
It is easy to densely sinter, exhibits excellent corrosion resistance at an etching rate of 15 nm / min or less in a halogen-based plasma environment, and has a thermal conductivity of 15 W / m at room temperature.
Excellent in thermal shock properties because it is at least K and 1.5 times or more larger than 10 W / m · K of conventional Y 2 O 3 or YAG.
Therefore, it is suitably used as a member used under such an environment in an apparatus using a halogen-based gas or a halogen-based plasma atmosphere, such as a semiconductor manufacturing apparatus.

【0007】[0007]

【発明の実施の形態】本発明のセラミックス材料は、酸
化マグネシウム(MgO)を5重量%以上95重量%以
下含み、残部が希土類元素を含む酸化物または複合酸化
物からなる。MgOが5重量%未満であると熱伝導率が
小さく、十分な耐熱衝撃性を得ることができないという
問題がある。一方、MgOが95重量%超の場合には、
焼結体が十分に緻密化しないために、プラズマが空孔等
に集中しやすくなるため、フッ素(F)ガスや塩素
(Cl)ガス等のハロゲン系ガスやハロゲン系プラズ
マに対して十分な耐蝕性を得ることができないという問
題がある。希土類元素を含む酸化物または複合酸化物
は、5重量%以上が含まれることで耐蝕性の向上や保持
が可能となる。より好ましいMgOの含有量は20重量
%以上80重量%以下である。
BEST MODE FOR CARRYING OUT THE INVENTION The ceramic material of the present invention comprises an oxide or a composite oxide containing magnesium oxide (MgO) in an amount of 5% by weight to 95% by weight and a balance containing a rare earth element. If the content of MgO is less than 5% by weight, there is a problem that the thermal conductivity is small and sufficient thermal shock resistance cannot be obtained. On the other hand, when MgO exceeds 95% by weight,
For the sintered body is not sufficiently densified, since the plasma tends to concentrate in the pores, etc., fluorine (F 2) gas or chlorine (Cl 2) sufficient for halogen gas or halogen-based plasma such as a gas There is a problem that high corrosion resistance cannot be obtained. When the oxide or composite oxide containing a rare earth element is contained in an amount of 5% by weight or more, the corrosion resistance can be improved or maintained. A more preferred content of MgO is 20% by weight or more and 80% by weight or less.

【0008】希土類元素を含む酸化物または複合酸化物
は、室温〜1000℃の温度域で安定な形態であればよ
く、具体的には、イットリア(Y)やイットリウ
ム(Y)とアルミニウム(Al)を含む複合酸化物(Y
AG、YAM(イットリウムアルミニウムモノクリニッ
ク)、YAP(イットリウムアルミニウムペロブスカイ
ト))を挙げることができる。
The oxide or composite oxide containing a rare earth element may be in a stable form in a temperature range from room temperature to 1000 ° C. Specifically, yttria (Y 2 O 3 ), yttrium (Y) and aluminum Complex oxide containing (Al) (Y
AG, YAM (yttrium aluminum monoclinic) and YAP (yttrium aluminum perovskite).

【0009】5重量%以上95重量%以下のMgOとY
またはYAG等の希土類元素を含む酸化物または
複合酸化物とからなる本発明に係るセラミックス材料
は、緻密に焼結することが容易であり、後述する実施例
にも示すように、ハロゲン系プラズマ環境下でのエッチ
ング速度が15nm/分以下という優れた耐蝕性を示
す。また、室温での熱伝導率が15W/m・K以上とい
う大きな熱伝導率を有し、熱衝撃特性にも優れる。な
お、ここでエッチング速度はFガスプラズマとCl
ガスプラズマのそれぞれの環境下での浸食深さから求め
られた値であり、熱伝導率は室温においてレーザフラッ
シュ法により測定した値である。
5% to 95% by weight of MgO and Y
2O3Or an oxide containing a rare earth element such as YAG or
A ceramic material according to the present invention comprising a composite oxide
Is easy to sinter densely,
As shown in the figure, etching in a halogen-based plasma environment
Excellent corrosion resistance with a running speed of 15 nm / min or less
You. It has a thermal conductivity of 15 W / m · K or more at room temperature.
It has high thermal conductivity and excellent thermal shock characteristics. What
Here, the etching rate is F2Gas plasma and Cl 2
Obtained from the erosion depth of gas plasma in each environment
The thermal conductivity is measured at room temperature by laser flash.
This is a value measured by the Schott method.

【0010】[0010]

【実施例】以下、本発明を実施例によりさらに詳細に説
明する。純度が99.9%以上のY、Al
、MgOの粉末を用いて、表1に示す各試料の組
成となるように各試料毎に合計200gを秤量し、ポリ
エチレンポット中にそれぞれの粉末とメタノール200
g、鉄芯入りナイロンボール250gを入れて、16時
間混合処理した。こうして得られたスラリーをロータリ
ーエバポレータで減圧乾燥した後に、得られた粉末を#
100のナイロンメッシュでメッシュパスし、成形用粉
末とした。
The present invention will be described in more detail with reference to the following examples. Y 2 O 3 , Al with a purity of 99.9% or more
Using powders of 2 O 3 and MgO, a total of 200 g was weighed for each sample so as to have the composition of each sample shown in Table 1, and each powder and methanol 200 were placed in a polyethylene pot.
g, and 250 g of nylon balls containing an iron core, and mixed for 16 hours. After the slurry thus obtained was dried under reduced pressure by a rotary evaporator, the obtained powder was
The mixture was mesh-passed with a nylon mesh of 100 to obtain a molding powder.

【0011】成形用粉末を直径15mmφ、厚さ6mm
にプレス成形した後、冷間静水圧プレス処理して成形体
を得た。作製した成形体は、大気炉を用い1600℃で
それぞれ3時間焼成した。得られた焼結体の熱伝導率
は、室温においてレーザフラッシュ法を用いて測定し
た。また、焼成体の片面を鏡面研磨してその一部をポリ
イミド樹脂でマスキングし、並行平板型のRIEプラズ
マエッチング装置を用いて、四フッ化炭素(CF)+
酸素(O)プラズマ(流量50sccm、CF:O
=40:10)と三塩化ホウ素(BCl)+酸素
(O)プラズマ(流量50sccm、BCl:O
=40:10)によりエッチング試験をそれぞれ行っ
た。エッチング試験後に試験試料のエッチングされた露
出部分の高さを先にポリイミド樹脂でマスキングした部
分の高さと比較することにより、その浸食深さを調べ、
エッチング速度を算出した。
The molding powder is 15 mm in diameter and 6 mm in thickness.
, And then subjected to cold isostatic pressing to obtain a molded body. The formed compact was fired at 1600 ° C. for 3 hours using an air furnace. The thermal conductivity of the obtained sintered body was measured at room temperature using a laser flash method. Further, one side of the fired body is mirror-polished, a part of which is masked with a polyimide resin, and carbon tetrafluoride (CF 4 ) +
Oxygen (O 2 ) plasma (flow rate 50 sccm, CF 4 : O
2 = 40: 10) and boron trichloride (BCl 3 ) + oxygen (O 2 ) plasma (flow rate 50 sccm, BCl 3 : O 2)
= 40: 10), respectively. By comparing the height of the exposed portion of the test sample after the etching test with the height of the portion previously masked with the polyimide resin, the erosion depth is examined,
The etching rate was calculated.

【0012】試験結果を表1に併記する。比較例1と比
較例3はともにMgO含有量が3重量%と少なく、その
ためにエッチング速度が、1〜2nm/分と小さく耐蝕
性が良好であるが、熱伝導率が8〜11W/m・Kと小
さいために、十分な熱衝撃特性を得ることができない。
これに対し、比較例2と比較例4はともにMgO含有量
が98重量%と多いために熱伝導率が59〜60W/m
・Kと大きく、良好な熱衝撃特性が期待できるが、エッ
チング速度が19〜31nm/分と大きく、十分な耐蝕
性が得られていないことがわかる。
The test results are shown in Table 1. Comparative Example 1 and Comparative Example 3 both have a low MgO content of 3% by weight, so that the etching rate is as small as 1 to 2 nm / min and the corrosion resistance is good, but the thermal conductivity is 8 to 11 W / m ·. Since K is small, sufficient thermal shock characteristics cannot be obtained.
On the other hand, in both Comparative Examples 2 and 4, the thermal conductivity was 59 to 60 W / m since the MgO content was as large as 98% by weight.
・ K is large and good thermal shock characteristics can be expected, but it can be seen that the etching rate is as large as 19 to 31 nm / min and sufficient corrosion resistance is not obtained.

【0013】実施例1〜6は、MgOとYからな
るセラミックスであるが、エッチング速度が1〜12n
m/分と小さく良好な耐蝕性が得られていると同時に、
熱伝導率も16〜47W/m・Kと15W/m・K以上
が確保され、高熱伝導を示した。また、実施例7〜12
は、MgOとYAGからなるセラミックスであるが、エ
ッチング速度が2〜12nm/分、熱伝導率が17〜4
6W/m・Kと、実施例1〜6と同等の特性が得られ
た。このように、本発明の組成条件を満足するセラミッ
クス材料は、耐蝕性に優れ、かつ、熱伝導率が大きく熱
衝撃特性に優れることが確認された。
Examples 1 to 6 are ceramics made of MgO and Y 2 O 3 , but have an etching rate of 1 to 12 n.
m / min and good corrosion resistance is obtained.
The thermal conductivity was 16 to 47 W / m · K and 15 W / m · K or more, and showed high heat conductivity. Examples 7 to 12
Is a ceramic made of MgO and YAG, and has an etching rate of 2 to 12 nm / min and a thermal conductivity of 17 to 4
6 W / m · K, the same characteristics as in Examples 1 to 6 were obtained. As described above, it was confirmed that the ceramic material satisfying the composition conditions of the present invention had excellent corrosion resistance, high thermal conductivity, and excellent thermal shock characteristics.

【0014】[0014]

【表1】 [Table 1]

【0015】なお、上記実施例は、希土類酸化物または
複合酸化物としてY、YAGを用いた場合につい
て示したが、希土類酸化物または複合酸化物はイットリ
ア化合物に限定されず、例えば、酸化エルビウム(Er
)、酸化イッテルビウム(Yb)、酸化ジ
スプロシウム(Dy)等を挙げることができる。
また、プラズマ化されていないハロゲン系ガスの雰囲気
はハロゲン系ガスプラズマ雰囲気よりも腐蝕性は小さい
と考えられることから、上記実施例の結果から本発明の
セラミックス材料は、プラズマ化されていないハロゲン
系ガス雰囲気においても、良好な耐蝕性を有するものと
判断される。
In the above embodiment, the case where Y 2 O 3 or YAG is used as the rare earth oxide or the composite oxide is shown. However, the rare earth oxide or the composite oxide is not limited to the yttria compound. Erbium oxide (Er
2 O 3 ), ytterbium oxide (Yb 2 O 3 ), dysprosium oxide (Dy 2 O 3 ), and the like.
Further, since the atmosphere of the halogen-based gas not converted into plasma is considered to be less corrosive than the plasma atmosphere of the halogen-based gas, the ceramic material of the present invention shows that the halogen-based gas not converted into plasma is Even in a gas atmosphere, it is determined to have good corrosion resistance.

【0016】[0016]

【発明の効果】上述の通り、本発明のセラミック材料に
よれば、ハロゲン系ガスやハロゲン系プラズマに対する
耐蝕性が良好であり、また熱伝導率が大きく熱衝撃特性
に優れることから、半導体製造装置等の部材として用い
ることが可能となる。これにより、使用部品の交換頻度
が低減され、それに伴うメンテナンスコストが低減され
る。また、腐蝕した成分による処理雰囲気への汚染が抑
制されることから、処理特性も向上するという種々の効
果が得られる。
As described above, according to the ceramic material of the present invention, the corrosion resistance to a halogen-based gas or a halogen-based plasma is good, and the thermal conductivity is large and the thermal shock characteristics are excellent. And so on. As a result, the replacement frequency of the used parts is reduced, and the accompanying maintenance cost is reduced. In addition, since contamination of the processing atmosphere by the corroded components is suppressed, various effects of improving the processing characteristics can be obtained.

フロントページの続き (72)発明者 南澤 一右 宮城県仙台市泉区明通三丁目5番 株式会 社日本セラテック本社工場内 (72)発明者 佐藤 敬輔 宮城県仙台市泉区明通三丁目5番 株式会 社日本セラテック本社工場内 (72)発明者 岸 幸男 宮城県仙台市泉区明通三丁目5番 株式会 社日本セラテック本社工場内 Fターム(参考) 4G030 AA07 AA12 AA36 BA21 BA23 BA33 GA19 4G031 AA03 AA08 AA29 BA21 BA23 BA26 GA06 Continuing from the front page (72) Inventor, Kazuyoshi Minamizawa 3--5, Ametsu, Izumi-ku, Sendai-shi, Miyagi Japan Inside the Ceratech headquarters and factory in Japan (72) Inventor Keisuke Sato 3-chome, Akari, Izumi-ku, Sendai, Miyagi No. 5 Inside the Japan Ceratec headquarters and factory (72) Yukio Kishi Inventor 3-Chome, Izumi-ku, Sendai-shi, Miyagi 5th F-term inside the Japan Ceratech headquarters and factory 4G030 AA07 AA12 AA36 BA21 BA23 BA33 GA19 4G031 AA03 AA08 AA29 BA21 BA23 BA26 GA06

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸化マグネシウムを5重量%以上95重
量%以下含み、残部が希土類元素を含む酸化物または複
合酸化物からなるセラミックス材料。
1. A ceramic material containing magnesium oxide in an amount of 5% by weight or more and 95% by weight or less, with the balance being an oxide or composite oxide containing a rare earth element.
【請求項2】 ハロゲン系プラズマ環境下でのエッチン
グ速度が15nm/分以下であり、室温での熱伝導率が
15W/m・K以上あることを特徴とする請求項1に記
載のセラミックス材料。
2. The ceramic material according to claim 1, wherein the etching rate in a halogen-based plasma environment is 15 nm / min or less, and the thermal conductivity at room temperature is 15 W / m · K or more.
JP2001173431A 2001-06-08 2001-06-08 Ceramic material Pending JP2002362966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001173431A JP2002362966A (en) 2001-06-08 2001-06-08 Ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001173431A JP2002362966A (en) 2001-06-08 2001-06-08 Ceramic material

Publications (1)

Publication Number Publication Date
JP2002362966A true JP2002362966A (en) 2002-12-18

Family

ID=19014885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001173431A Pending JP2002362966A (en) 2001-06-08 2001-06-08 Ceramic material

Country Status (1)

Country Link
JP (1) JP2002362966A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005009919A1 (en) * 2003-07-29 2005-02-03 Kyocera Corporation Y2o3 sintered body, corrosion resistant member and method for producing same, and member for semiconductor/liquid crystal producing apparatus
WO2010113993A1 (en) 2009-04-01 2010-10-07 三井化学株式会社 Process for producing olefin
WO2011122377A1 (en) * 2010-03-30 2011-10-06 日本碍子株式会社 Corrosion-resistant member for a semiconductor manufacturing device, and manufacturing method therefor
WO2011122376A1 (en) * 2010-03-30 2011-10-06 日本碍子株式会社 Corrosion-resistant member for a semiconductor manufacturing device, and manufacturing method therefor
KR20130118239A (en) 2012-04-19 2013-10-29 니혼텅스텐 가부시키가이샤 Composite ceramics and a component member for semiconductor manufacturing apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419606A (en) * 1987-07-14 1989-01-23 Asahi Glass Co Ltd Insulation base plate
JP2000313656A (en) * 1999-04-28 2000-11-14 Taiheiyo Cement Corp Corrosionproof ceramic material and corrosionproof member
JP2000313655A (en) * 1999-04-28 2000-11-14 Kyocera Corp High-density magnesium oxide-based sintered compact and its production, and member for plasma treatment apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419606A (en) * 1987-07-14 1989-01-23 Asahi Glass Co Ltd Insulation base plate
JP2000313656A (en) * 1999-04-28 2000-11-14 Taiheiyo Cement Corp Corrosionproof ceramic material and corrosionproof member
JP2000313655A (en) * 1999-04-28 2000-11-14 Kyocera Corp High-density magnesium oxide-based sintered compact and its production, and member for plasma treatment apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005009919A1 (en) * 2003-07-29 2005-02-03 Kyocera Corporation Y2o3 sintered body, corrosion resistant member and method for producing same, and member for semiconductor/liquid crystal producing apparatus
JPWO2005009919A1 (en) * 2003-07-29 2006-09-07 京セラ株式会社 Y2O3-sintered sintered body, corrosion-resistant member, manufacturing method thereof, and member for semiconductor / liquid crystal manufacturing apparatus
US7932202B2 (en) 2003-07-29 2011-04-26 Kyocera Corporation Y2O3 sintered body and corrosion resistant member for semiconductor/liquid crystal producing apparatus
JP4679366B2 (en) * 2003-07-29 2011-04-27 京セラ株式会社 Y2O3 sintered body, corrosion-resistant member, method for producing the same, and member for semiconductor / liquid crystal production apparatus
KR101196297B1 (en) * 2003-07-29 2012-11-06 쿄세라 코포레이션 Y2o3 sintered body, corrosion resistant member and method for producing same, and member for semiconductor/liquid crystal producing apparatus
WO2010113993A1 (en) 2009-04-01 2010-10-07 三井化学株式会社 Process for producing olefin
WO2011122376A1 (en) * 2010-03-30 2011-10-06 日本碍子株式会社 Corrosion-resistant member for a semiconductor manufacturing device, and manufacturing method therefor
WO2011122377A1 (en) * 2010-03-30 2011-10-06 日本碍子株式会社 Corrosion-resistant member for a semiconductor manufacturing device, and manufacturing method therefor
US8679998B2 (en) 2010-03-30 2014-03-25 Ngk Insulators, Ltd. Corrosion-resistant member for semiconductor manufacturing apparatus and method for manufacturing the same
US8685313B2 (en) 2010-03-30 2014-04-01 Ngk Insulators, Ltd. Corrosion-resistant member for semiconductor manufacturing apparatus and method for manufacturing the same
KR20130118239A (en) 2012-04-19 2013-10-29 니혼텅스텐 가부시키가이샤 Composite ceramics and a component member for semiconductor manufacturing apparatus
JP2013224226A (en) * 2012-04-19 2013-10-31 Nippon Tungsten Co Ltd Composite ceramic, and constituting member of semiconductor manufacturing apparatus
US9079800B2 (en) 2012-04-19 2015-07-14 Nippon Tungsten Co., Ltd Composite ceramic body, and component member for semiconductor manufacturing apparatus

Similar Documents

Publication Publication Date Title
JP5819816B2 (en) Corrosion resistant member for semiconductor manufacturing equipment and method for manufacturing the same
TWI695822B (en) Method and apparatus which reduce the erosion rate of surfaces exposed to halogen-containing plasmas
KR101340147B1 (en) Aluminum-nitride-based composite material, method for manufacturing the same, and member for a semiconductor manufacturing apparatus
JP3619330B2 (en) Components for plasma process equipment
JP2000001362A (en) Corrosion resistant ceramic material
US20190157115A1 (en) Method of forming a coated article and semiconductor chamber apparatus from yttrium oxide and zirconium oxide
JP2002356387A (en) Plasma proof member
JP4683783B2 (en) Method for manufacturing plasma-resistant member for semiconductor manufacturing apparatus
JP2002249379A (en) Aluminum nitride sintered compact and member for device for manufacturing of semiconductor
US20020155940A1 (en) Corrosion-resistive ceramic materials, method of producing the same, and members for semiconductor manufacturing
JP2002362966A (en) Ceramic material
JP3904874B2 (en) Components for semiconductor manufacturing equipment
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
JP2009234877A (en) Member used for plasma processing apparatus
TWI499574B (en) A corrosion resistant material for a semiconductor manufacturing apparatus and fabricated method thereof
US6749930B2 (en) Corrosion-resistive members
JP4480951B2 (en) Corrosion resistant material
JP2002097075A (en) Ceramic material
JP2001151559A (en) Corrosion-resistant member
JP4889155B2 (en) High-strength alumina sintered body having free machinability and corrosion-resistant member using the same
JP2001181024A (en) Ceramic member
JP2000313655A (en) High-density magnesium oxide-based sintered compact and its production, and member for plasma treatment apparatus
JP2001031466A (en) Corrosion-resistant ceramic member
KR102618403B1 (en) Ceramics material, method for manufacturing the same, and member for semiconductor manufacturing apparatus
JPH03252367A (en) Compound sintered aluminum nitride compact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110824