JP2000313656A - Corrosionproof ceramic material and corrosionproof member - Google Patents

Corrosionproof ceramic material and corrosionproof member

Info

Publication number
JP2000313656A
JP2000313656A JP11121119A JP12111999A JP2000313656A JP 2000313656 A JP2000313656 A JP 2000313656A JP 11121119 A JP11121119 A JP 11121119A JP 12111999 A JP12111999 A JP 12111999A JP 2000313656 A JP2000313656 A JP 2000313656A
Authority
JP
Japan
Prior art keywords
mgo
ceramic material
plasma
zro
zro2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11121119A
Other languages
Japanese (ja)
Inventor
Noboru Miyata
昇 宮田
Masahito Iguchi
真仁 井口
Tomoyuki Ogura
知之 小倉
Yoichi Shirakawa
洋一 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP11121119A priority Critical patent/JP2000313656A/en
Publication of JP2000313656A publication Critical patent/JP2000313656A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a ceramic material or member consisting substantially of MgO, Al2O3 and ZrO2 and/or Y2O3 with each specified compositional ratio MgO/Al2O3 and ZrO2 and/or Y2O3 content, having excellent mechanical properties and high corrosionproofness against corrosive gases such as halogen-based ones and plasma. SOLUTION: This corrosionproof ceramic material or member consists of such a ceramic as to be composed substantially of MgO, Al2O3 and ZrO2 and/or Y2O3, be 0.67-2.33 in the compositional weight ratio MgO/Al2O3 and contain a total of 1-10 wt.% of ZrO2 and/or Y2O3. It is preferable that this ceramic material or member is designed to be <=3 wt.% in impurity content and <=1% in porosity so as to enable high-purity members to be treated and also prevent the properties of the surface of this material or member from deterioration. This ceramic material or member, owing to its constitution of MgO+MgAl2O4 and incorporation of each appropriate amount of ZrO2 and/or Y2O3, attains high corrosionproofness and excellent mechanical properties, and can be used in atmospheres of corrosive gases or corrosive gas plasma, in particular of halogen-based corrosive gases represented by fluorine-based ones or plasma thereof.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プラズマ処理装置
や半導体・液晶製造用プラズマ装置内の内壁材や治具等
として好適な耐蝕性セラミックス材料および耐蝕性部材
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a corrosion-resistant ceramic material and a corrosion-resistant member suitable as an inner wall material, a jig and the like in a plasma processing apparatus and a plasma apparatus for producing semiconductors and liquid crystals.

【0002】[0002]

【従来の技術】現在、半導体メモリーの急激な高集積化
により、エッチング、不純物拡散、イオン注入工程の繰
り返し回数の増加や、細密化によるプラズマの高出力化
など半導体製造装置内の環境は、以前と比較して苛酷な
ものとなっている。その結果、耐高温性、耐蝕性に優れ
たセラミックスが半導体製造装置内の部材として多くの
プロセスで用いられている。その中で、パターン形成の
ために行われるドライエッチングでは、ハロゲン系ガス
がプラズマにより活性化されて使用されるため、装置を
構成する部材には活性ガスに対する耐蝕性が要求され
る。
2. Description of the Related Art At present, the environment in a semiconductor manufacturing apparatus has been increased due to the rapid increase in the integration of semiconductor memories, the increase in the number of repetitions of etching, impurity diffusion, and ion implantation processes, and the increase in plasma output due to miniaturization. It is severe compared to. As a result, ceramics excellent in high temperature resistance and corrosion resistance are used in many processes as members in semiconductor manufacturing equipment. Among them, in dry etching performed for forming a pattern, a halogen-based gas is activated by plasma and used, so that members constituting the apparatus are required to have corrosion resistance to the active gas.

【0003】従来より、被処理物以外のこれらプラズマ
に晒される部分には、一般にガラスや石英等のSiO
を主成分とする材料、およびアルミナや窒化アルミニウ
ム等が多用されている。
Conventionally, portions exposed to the plasma other than the object to be processed are generally made of SiO 2 such as glass or quartz.
A material mainly composed of, for example, alumina and aluminum nitride is frequently used.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来から用い
られているガラスや石英等のSiOを主成分とする材
料では、プラズマに対する耐蝕性が十分ではなく、特に
ハロゲン系ガスのプラズマ中では、部材そのものがエッ
チングされてしまい、表面性状が変化したり、局所的エ
ッチングにより、尖孔が生じたりする不都合があった。
However, conventionally used materials containing SiO 2 as a main component, such as glass and quartz, do not have sufficient corrosion resistance to plasma. The members themselves were etched, and the surface properties changed, and there were inconveniences such as the formation of sharp holes due to local etching.

【0005】また、アルミナや窒化アルミニウム等で
は、上記SiOを主成分とするものと比較してハロゲ
ンのプラズマに対してはより安定であるが、高温中でプ
ラズマに晒された場合、腐食反応が進行し、これらの表
面から結晶粒子が脱粒し、パーティクルが発生しやすく
なるといった問題点があった。
Alumina, aluminum nitride and the like are more stable against halogen plasma than those containing SiO 2 as a main component, but when exposed to plasma at a high temperature, a corrosion reaction occurs. Progress, crystal grains are shed from these surfaces, and particles are easily generated.

【0006】さらに、半導体製造装置用の部材には、耐
蝕性のみならず強度に代表される機械的特性が良好であ
ることが要求される場合もある。
Further, there are cases where members for semiconductor manufacturing equipment are required to have good mechanical properties typified by not only corrosion resistance but also strength.

【0007】本発明はかかる事情に鑑みてなされたもの
であって、腐食性ガスおよびプラズマ、特にフッ素系に
代表されるハロゲン系の腐蝕性ガスおよびプラズマに対
して高い耐蝕性を有する耐蝕性セラミックス材料および
耐蝕性部材を提供することを目的とする。また、高い耐
蝕性に加えて良好な機械的特性を有する耐蝕性セラミッ
クス材料および耐蝕性部材を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and has been made in view of the above circumstances. Corrosion-resistant ceramics having high corrosion resistance to corrosive gases and plasmas, particularly halogen-based corrosive gases and plasmas represented by fluorine-based gases. An object is to provide a material and a corrosion-resistant member. Another object of the present invention is to provide a corrosion-resistant ceramic material and a corrosion-resistant member having good mechanical properties in addition to high corrosion resistance.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意検討した結果、MgOとAl
ZrOおよび/またはYとから実質的になるセ
ラミックス材料において、MgO/Al組成比お
よびZrOおよび/またはYの含有量を適当な
範囲に制御することにより、腐食性ガスおよび腐食性ガ
スのプラズマ、特にフッ素系に代表されるハロゲン系の
腐蝕性ガスおよびそれらのプラズマに対して高い耐蝕性
を有すること、およびZrOを添加した場合には良好
な機械的特性を有することを見出し、本発明を完成する
に至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, a ceramic material substantially composed of MgO, Al 2 O 3 , ZrO 2 and / or Y 2 O 3 has been obtained. By controlling the composition ratio of MgO / Al 2 O 3 and the content of ZrO 2 and / or Y 2 O 3 in appropriate ranges, corrosive gas and plasma of corrosive gas, particularly fluorine-based The inventors have found that they have high corrosion resistance to halogen-based corrosive gases and their plasmas, and that they have good mechanical properties when ZrO 2 is added, and have completed the present invention.

【0009】すなわち、本発明は、MgOとAl
とZrOおよび/またはYとから実質的にな
り、MgOとAlとの組成比が重量比で0.67
〜2.33の範囲であり、ZrOおよび/またはY
を合計1〜10重量%含有することを特徴とする耐
蝕性セラミックス材料を提供するものである。
[0009] That is, the present invention relates to MgO and Al 2 O 3
And ZrO 2 and / or Y 2 O 3 , and the composition ratio of MgO to Al 2 O 3 is 0.67 by weight.
~ 2.33, ZrO 2 and / or Y 2
An object of the present invention is to provide a corrosion-resistant ceramic material containing O 3 in a total amount of 1 to 10% by weight.

【0010】この場合に、不純物成分が合計で3重量%
以下であり、かつ気孔率が1%以下であることが好まし
い。
In this case, the total amount of the impurity components is 3% by weight.
Or less, and the porosity is preferably 1% or less.

【0011】また、本発明は、腐蝕ガスあるいは腐蝕ガ
スのプラズマの雰囲気で用いられる耐蝕性部材であっ
て、少なくとも腐蝕ガスあるいは腐蝕ガスのプラズマに
露呈される部位が、MgOとAlとZrOおよ
び/またはYとから実質的になり、MgOとAl
との組成比が重量比で0.67〜2.33の範囲
であり、ZrOおよび/またはYを合計1〜1
0重量%含有するセラミックスによって構成されること
を特徴とする耐蝕性部材を提供するものである。
The present invention also relates to a corrosion-resistant member used in an atmosphere of a corrosive gas or a plasma of a corrosive gas, wherein at least a portion exposed to the corrosive gas or the plasma of the corrosive gas contains MgO and Al 2 O 3 . Consisting essentially of ZrO 2 and / or Y 2 O 3 and containing MgO and Al
The composition ratio with 2 O 3 is in the range of 0.67 to 2.33 by weight ratio, and ZrO 2 and / or Y 2 O 3 are added in a total of 1 to 1
An object of the present invention is to provide a corrosion-resistant member comprising a ceramic containing 0% by weight.

【0012】[0012]

【発明の実施の形態】以下、本発明について具体的に説
明する。本発明では上述のように、MgOとAl
とZrOおよび/またはYとでセラミックス材
料を構成するものであるが、この中で主要となる成分
は、MgOとAlである。これらは複合化するこ
とによりスピネルを構成する。スピネルは、通常、Mg
Alで表され、理論比はMgOとAlがモ
ル比1:1、重量比で28.6:71.4で結合した化
合物のことである。MgOとAlの組成比率をそ
れぞれ変化させた場合、理論比では、MgAl
晶のみ存在し、これよりMgOが過剰であればMgO+
MgAl の2相の結晶構造となり、Al
過剰であればAl+MgAlの2相の結晶
構造となるが、本発明では理論比よりもMgOを増加さ
せてMgO+MgAlの2相となるようにMgO
/Alの組成比を規定する。そして、本発明では
さらにZrOおよび/またはYを含有させる。
これにより、特に優れた耐蝕性が得られ、または優れた
耐蝕性に加えて優れた機械的特性が得られる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be specifically described.
I will tell. In the present invention, as described above, MgO and Al2O3
And ZrO2And / or Y2O3And ceramic material
Ingredients that make up the ingredients
Is MgO and Al2O3It is. These can be complex
This constitutes a spinel. Spinel is usually Mg
Al2O4And the theoretical ratio is MgO and Al2O3But
At a ratio of 1: 1 and a weight ratio of 28.6: 71.4.
It is a compound. MgO and Al2O3The composition ratio of
When each is changed, the theoretical ratio is MgAl2O4Conclusion
If only MgO is present and MgO is excessive, MgO +
MgAl2O 4Has a two-phase crystal structure of2O3But
Al in excess2O3+ MgAl2O4Two-phase crystal of
In the present invention, MgO is increased more than the theoretical ratio.
Let MgO + MgAl2O4MgO to form two phases
/ Al2O3Is specified. And in the present invention
Further ZrO2And / or Y2O3Is contained.
This results in particularly good corrosion resistance or excellent
Excellent mechanical properties are obtained in addition to corrosion resistance.

【0013】具体的には、MgOとAlとをスピ
ネル組成よりも上記所定の範囲でMgOを過剰にした比
率で配合することにより、MgAl結晶のみの場
合やAl+MgAlの2相の場合よりも耐
蝕性が良好になり、さらにZrOおよびYを所
定量含有させることにより、一層優れた耐蝕性が得られ
るとともに、良好な機械的特性が得られる。また、Mg
OおよびAlにZrOを単独で添加した場合に
は、MgO+MgAlの優れた耐蝕性に良好な機
械的特性が付加される。また、MgOおよびAl
にYを単独で添加した場合には、MgO+MgA
よりもさらに優れた耐蝕性が得られる。
More specifically, by mixing MgO and Al 2 O 3 in a ratio in which MgO is excessive in the above-mentioned predetermined range from the spinel composition, only MgAl 2 O 4 crystals or Al 2 O 3 + MgAl 2 O 4, the corrosion resistance is better than that of the two phases, and by adding a predetermined amount of ZrO 2 and Y 2 O 3 , more excellent corrosion resistance is obtained and good mechanical properties are obtained. can get. In addition, Mg
When ZrO 2 is added alone to O and Al 2 O 3 , good mechanical properties are added to the excellent corrosion resistance of MgO + MgAl 2 O 4 . Also, MgO and Al 2 O 3
When Y 2 O 3 alone is added to MgO + MgA
even better corrosion resistance than l 2 O 4 is obtained.

【0014】本発明において、MgOとAlとの
組成比が重量比で0.67〜2.33の範囲としたの
は、0.67未満ではMgOが過剰であってもその量が
少なく、また2.33を超えると過剰なMgOの量が多
すぎ、いずれの場合もフッ素系に代表されるハロゲン系
腐食性ガスおよびハロゲン系プラズマに対する耐蝕性が
低下するからである。
In the present invention, the weight ratio of the composition ratio of MgO and Al 2 O 3 is in the range of 0.67 to 2.33. If the content is less than 2.33 and the amount of excess MgO is too large, the corrosion resistance to halogen-based corrosive gas typified by fluorine and halogen-based plasma is reduced in any case.

【0015】また、本発明においてZrOおよび/ま
たはYを合計1〜10重量%の範囲で含有させる
のは、その含有量が1重量%未満ではこれら特性の向上
を図ることができず、また10重量%を超えて添加して
もさらなる特性の向上が見られないからである。
In the present invention, ZrO 2 and / or Y 2 O 3 are contained in a total amount of 1 to 10% by weight, because if the content is less than 1% by weight, these characteristics can be improved. This is because no further improvement in properties is observed even when the content exceeds 10% by weight.

【0016】実際にMgO/Alの重量比で0.
67〜2.33に規定し、さらにZrOおよび/また
はYを1〜10重量%の範囲で含有させたセラミ
ックス材料にて試料を作成し、これらの試料について平
行平板電極型プラズマエッチング装置を用いてCF
の混合ガス雰囲気でプラズマエッチングを行ったと
ころ、本発明組成のセラミックス材料を用いることによ
り、エッチング速度が遅く、ハロゲン系プラズマに対し
て、高い耐蝕性を有していることが確認された。
Actually, the weight ratio of MgO / Al 2 O 3 is 0.1.
Samples were prepared from a ceramic material specified in 67 to 2.33 and further containing ZrO 2 and / or Y 2 O 3 in a range of 1 to 10% by weight, and these samples were subjected to parallel plate electrode type plasma etching. When plasma etching was performed in a mixed gas atmosphere of CF 4 and O 2 using an apparatus, the etching rate was low and the ceramic material of the present invention had a low etching rate and had high corrosion resistance to halogen-based plasma. It was confirmed that.

【0017】本発明においては、不純物成分が合計で3
重量%以下であり、かつ気孔率が1%以下であることが
好ましい。通常、半導体製造装置では、不純物による汚
染が問題とされ、純度95%以上の高純度の部材が要求
されるため、本発明において不純物成分の好ましい範囲
として合計で3重量%以下とした。このような不純物成
分としては、SiO、CaO、NaO、Fe
等が挙げられる。さらに、好ましい範囲として気孔率を
1%以下としたのは、焼結体中に気孔が存在し、その気
孔が表面に現れた場合、その部分で腐食反応が著しく起
こり、表面状態の劣化が激しくなるおそれがあるからで
ある。すなわち、気孔率を1%以下に規定することによ
り、気孔部の腐食による表面性状の劣化を有効に防止す
ることが可能となる。
In the present invention, the total of the impurity components is 3
% By weight and a porosity of 1% or less. Usually, in a semiconductor manufacturing apparatus, contamination by impurities is a problem, and a high-purity member having a purity of 95% or more is required. Therefore, in the present invention, a preferable range of the impurity component is 3% by weight or less in total. Such impurity components include SiO 2 , CaO, Na 2 O, Fe 2 O 3
And the like. Further, the porosity is preferably set to 1% or less as a preferable range because, when porosity is present in the sintered body and the porosity appears on the surface, a corrosive reaction occurs remarkably in that portion, and the surface state is greatly deteriorated. This is because there is a possibility of becoming. That is, by setting the porosity to 1% or less, it is possible to effectively prevent deterioration of the surface properties due to corrosion of the pores.

【0018】本発明のセラミックス材料は、特にフッ素
系腐食ガスおよびフッ素系プラズマに対して、高い耐蝕
性を有している。フッ素系ガスとしてはCFの他にS
、CHFなどがあり、これらのガス雰囲気にマイ
クロ波等を導入するとこれらのガスがプラズマ化され
る。
The ceramic material of the present invention has high corrosion resistance especially to fluorine-based corrosive gas and fluorine-based plasma. In addition to S as the fluorine-based gas CF 4
There are F 6 , CHF 3 and the like, and when a microwave or the like is introduced into the gas atmosphere, these gases are turned into plasma.

【0019】本発明のセラミックス材料の製造方法は、
緻密な組織を持つものを製造することができれば、どの
ような方法でも構わない。例えば、従来の方法によって
原料粉末を目的の組成になるように混合後、成形、焼結
した焼結体、あるいはセラミックス、金属等の基材表面
に溶射やスパッタ等により成膜したものであっても良
い。
The method for producing a ceramic material of the present invention comprises:
Any method can be used as long as it can produce a material having a fine structure. For example, a raw material powder is mixed by a conventional method so as to have a desired composition, and then molded and sintered, or a film formed by spraying or sputtering on a substrate surface of a ceramic, metal, or the like. Is also good.

【0020】本発明の耐食性部材は、上記のようなフッ
化物系に代表されるハロゲン系等の腐蝕ガスあるいは腐
蝕ガスのプラズマ中で用いられるものであり、以上のよ
うなセラミックス材料を少なくとも腐蝕ガスあるいは腐
蝕ガスのプラズマに露呈される部位に適用したものであ
る。すなわち、部材全部が上記セラミックス材料であっ
てもよいし、腐蝕ガスあるいは腐蝕ガスのプラズマに露
呈される部位のみに用いてもよい。部材全体を本発明の
セラミックス材料で構成する場合には、典型的には焼結
体で構成される。また、腐蝕ガスあるいは腐蝕ガスのプ
ラズマに露呈される部位のみが本発明のセラミックス材
料である場合には、適当な基材の表面に溶射やスパッタ
等により成膜することが好ましい。
The corrosion-resistant member of the present invention is used in a corrosive gas such as a halogen-based gas represented by the above-mentioned fluoride or a plasma of a corrosive gas. Alternatively, it is applied to a portion exposed to a plasma of a corrosive gas. That is, the entire member may be made of the above-described ceramic material, or may be used only for the portion exposed to the corrosive gas or the plasma of the corrosive gas. When the entire member is made of the ceramic material of the present invention, it is typically made of a sintered body. When only the portion exposed to the corrosive gas or the corrosive gas plasma is the ceramic material of the present invention, it is preferable to form a film on the surface of an appropriate substrate by thermal spraying or sputtering.

【0021】[0021]

【実施例】以下、比較例と対比しつつ本発明の実施例に
ついて説明する。純度99%のMgAl粉末およ
び純度99.9%のMgO粉末と純度99.9%のZr
粉末および/または純度99.9%のY粉末
を所定の組成比になるように調合して、ボールミルを用
いてエタノール中72時間粉砕して混合粉末を得た。こ
の混合粉末を一軸加圧で50MPa、1分間、冷間静水
圧成形法で150MPa、1分間かけて成形した。
Hereinafter, examples of the present invention will be described in comparison with comparative examples. 99% pure MgAl 2 O 4 powder and 99.9% pure MgO powder and 99.9% pure Zr
O 2 powder and / or Y 2 O 3 powder having a purity of 99.9% were prepared so as to have a predetermined composition ratio, and ground in ethanol using a ball mill for 72 hours to obtain a mixed powder. The mixed powder was formed by uniaxial pressing at 50 MPa for 1 minute and cold isostatic pressing at 150 MPa for 1 minute.

【0022】成形体を1500〜1650℃で1〜6時
間、大気炉を用いて焼結し、焼結体を作製した。さら
に、一部の焼結体については、その後、圧力媒体をAr
として、1400℃の最高温度で、圧力1800kg/
cmで1時間HIP処理し、相対密度が100%の焼
結体を作製した(実施例1〜7)。その際の条件を表1
に記載する。
The compact was sintered at 1500 to 1650 ° C. for 1 to 6 hours using an atmospheric furnace to produce a sintered body. Further, for some sintered bodies, the pressure medium is then changed to Ar
At a maximum temperature of 1400 ° C. and a pressure of 1800 kg /
HIP treatment was performed at 1 cm 2 for 1 hour to produce a sintered body having a relative density of 100% (Examples 1 to 7). Table 1 shows the conditions at that time.
It describes in.

【0023】比較のため、ZrO粉末およびY
粉末を用いずに純度99%のMgAl粉末および
純度99.9%のMgO粉末のみを所定の組成比になる
ように調合して、上記方法と同様の方法で粉末作成、成
形、および焼結を行い、一部の焼結体については同様の
方法でHIP処理を行って焼結体を作製した(比較例1
〜5)。また、Y粉末を本発明で規定する量より
も少ない量で配合して、同様に粉末作成、成形、および
焼結を行って焼結体を作成した(比較例6)。これらの
条件についても表1に記載する。
For comparison, ZrO 2 powder and Y 2 O 3
Without using powder, only MgAl 2 O 4 powder having a purity of 99% and MgO powder having a purity of 99.9% were prepared so as to have a predetermined composition ratio, and the powder was prepared, formed, and formed in the same manner as described above. Sintering was performed, and a portion of the sintered body was subjected to HIP processing in the same manner to produce a sintered body (Comparative Example 1).
~ 5). Further, a Y 2 O 3 powder was blended in an amount smaller than the amount specified in the present invention, and powder preparation, molding, and sintering were similarly performed to prepare a sintered body (Comparative Example 6). Table 1 also shows these conditions.

【0024】このようにして得られた焼結体の密度をア
ルキメデス法で測定し、気孔率を求めた結果、表1に示
すように、これら焼結体の気孔率が0〜0.05%であ
り、いずれも緻密質であることが確認された。
The densities of the thus obtained sintered bodies were measured by the Archimedes method, and the porosity was determined. As shown in Table 1, the porosity of these sintered bodies was 0 to 0.05%. All were confirmed to be dense.

【0025】その後、これらセラミックス焼結体を、出
力1000Wの平行平板電極型プラズマエッチング装置
を用いて、CFとOの体積比が4:1の雰囲気で約
120分間プラズマエッチングを行った。そして、焼結
体のエッチング前後の重量変化を測定することにより、
エッチングレートを算出した。その結果を表1に示す。
また、石英ガラス(比較例7)のエッチングレートも併
せて表1に示す。
Thereafter, these ceramic sintered bodies were subjected to plasma etching for about 120 minutes in an atmosphere in which the volume ratio of CF 4 and O 2 was 4: 1 using a parallel plate electrode type plasma etching apparatus with an output of 1000 W. And by measuring the weight change before and after etching of the sintered body,
The etching rate was calculated. Table 1 shows the results.
Table 1 also shows the etching rate of quartz glass (Comparative Example 7).

【0026】[0026]

【表1】 [Table 1]

【0027】表1より、本発明範囲の実施例1〜7は、
比較例1〜7に比べてエッチングレートが低く、CF
ガスを含むプラズマによる侵食速度が遅いこと、すなわ
ち、CFガスを含むプラズマに対し高い耐蝕性を示す
ことが確認された。また、ZrOを添加したもの(実
施例1,3,4,5)は、特に曲げ強度が良好になるこ
とが確認された。
According to Table 1, Examples 1 to 7 within the scope of the present invention are as follows.
The etching rate is lower than that of Comparative Examples 1 to 7, and CF 4
It was confirmed that the erosion rate by the plasma containing the gas was low, that is, it showed high corrosion resistance to the plasma containing the CF 4 gas. In addition, it was confirmed that those to which ZrO 2 was added (Examples 1, 3, 4, and 5) had particularly good bending strength.

【0028】[0028]

【発明の効果】本発明によれば、MgOとAl
ZrOおよび/またはYとから実質的になり、
MgOとAlとの組成比が重量比で0.67〜
2.33の範囲であり、ZrOおよび/またはY
を合計1〜10重量%含有することにより、腐食性ガ
スおよび腐食性ガスのプラズマ、特にフッ素系に代表さ
れるハロゲン系の腐蝕性ガスおよびそれらのプラズマに
対して高い耐蝕性を有するセラミックス材料が得ること
ができ、ZrOを添加した場合には、これに加えて良
好な機械的特性を有するセラミック材料を得ることがで
きる。
According to the present invention, it consists essentially of MgO, Al 2 O 3 , ZrO 2 and / or Y 2 O 3 ,
The composition ratio of MgO and Al 2 O 3 is 0.67 to 0.65 by weight.
2.33, ZrO 2 and / or Y 2 O
3 containing a total of 1 to 10% by weight, thereby providing a corrosive gas and a corrosive gas plasma, particularly a halogen-based corrosive gas represented by a fluorine-based gas, and a ceramic material having high corrosion resistance to such plasma. When ZrO 2 is added, a ceramic material having good mechanical properties can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小倉 知之 東京都江東区清澄一丁目2番23号 太平洋 セメント株式会社研究本部内 (72)発明者 白川 洋一 東京都江東区清澄一丁目2番23号 太平洋 セメント株式会社研究本部内 Fターム(参考) 4G030 AA07 AA12 AA17 AA36 BA01 BA33 HA12 5F004 AA15 AA16 BA04 BB14 BB29 DA00 DA01 DA16 DA18 DA26 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Tomoyuki Ogura, Inventor, 1-2-2 Kiyosumi, Koto-ku, Tokyo Inside the Research Unit of Pacific Cement Co., Ltd. (72) Yoichi Shirakawa 1-2-23, Kiyosumi, Koto-ku, Tokyo Taiheiyo Cement Co., Ltd. Research Division F-term (reference) 4G030 AA07 AA12 AA17 AA36 BA01 BA33 HA12 5F004 AA15 AA16 BA04 BB14 BB29 DA00 DA01 DA16 DA18 DA26

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 MgOとAlとZrOおよび/
またはYとから実質的になり、MgOとAl
との組成比が重量比で0.67〜2.33の範囲であ
り、ZrOおよび/またはYを合計1〜10重
量%含有することを特徴とする耐蝕性セラミックス材
料。
1. The method of claim 1, wherein MgO, Al 2 O 3 , ZrO 2 and / or
Or substantially consisting of Y 2 O 3 , MgO and Al 2 O
It ranges composition ratio in a weight ratio of from 0.67 to 2.33 with 3, corrosion resistant ceramic material characterized by containing ZrO 2 and / or Y 2 O 3 Total 1 to 10 wt%.
【請求項2】 不純物成分が合計で3重量%以下であ
り、かつ気孔率が1%以下であることを特徴とする請求
項1に記載の耐蝕性セラミックス材料。
2. The corrosion-resistant ceramic material according to claim 1, wherein the impurity component is 3% by weight or less in total and the porosity is 1% or less.
【請求項3】 腐蝕ガスあるいは腐蝕ガスのプラズマの
雰囲気で用いられる耐蝕性部材であって、少なくとも腐
蝕ガスあるいは腐蝕ガスのプラズマに露呈される部位
が、MgOとAlとZrOおよび/またはY
とから実質的になり、MgOとAlとの組成
比が重量比で0.67〜2.33の範囲であり、ZrO
および/またはYを合計1〜10重量%含有す
るセラミックスによって構成されることを特徴とする耐
蝕性部材。
3. A corrosion-resistant member used in an atmosphere of corrosive gas or corrosive gas plasma, wherein at least a portion exposed to the corrosive gas or corrosive gas plasma is made of MgO, Al 2 O 3 , ZrO 2 and / or ZrO 2. Or Y 2
Substantially becomes a O 3 Prefecture, the composition ratio of MgO and Al 2 O 3 is in the range of 0.67 to 2.33 in weight ratio, ZrO
A corrosion-resistant member comprising a ceramic containing 2 and / or Y 2 O 3 in a total amount of 1 to 10% by weight.
JP11121119A 1999-04-28 1999-04-28 Corrosionproof ceramic material and corrosionproof member Pending JP2000313656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11121119A JP2000313656A (en) 1999-04-28 1999-04-28 Corrosionproof ceramic material and corrosionproof member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11121119A JP2000313656A (en) 1999-04-28 1999-04-28 Corrosionproof ceramic material and corrosionproof member

Publications (1)

Publication Number Publication Date
JP2000313656A true JP2000313656A (en) 2000-11-14

Family

ID=14803364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11121119A Pending JP2000313656A (en) 1999-04-28 1999-04-28 Corrosionproof ceramic material and corrosionproof member

Country Status (1)

Country Link
JP (1) JP2000313656A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002362966A (en) * 2001-06-08 2002-12-18 Nihon Ceratec Co Ltd Ceramic material
KR100429058B1 (en) * 2000-04-18 2004-04-29 니뽄 가이시 가부시키가이샤 Halogen gas plasma-resistive members and method for producing the same, laminates, and corrosion-resistant members
CN100453502C (en) * 2002-02-07 2009-01-21 郑州振中电熔锆业有限公司 Production method of electric melting magnesium-aluminium-zirconium synthetic material
JP2009132584A (en) * 2007-11-30 2009-06-18 Taiheiyo Cement Corp Ceramic sintered compact and electrostatic chuck using the same
JP2010018853A (en) * 2008-07-11 2010-01-28 Taiheiyo Cement Corp Thermally sprayed ceramic film and corrosion-resistant member using the same
US7833401B2 (en) 2002-01-08 2010-11-16 Applied Materials, Inc. Electroplating an yttrium-containing coating on a chamber component
KR20130118239A (en) 2012-04-19 2013-10-29 니혼텅스텐 가부시키가이샤 Composite ceramics and a component member for semiconductor manufacturing apparatus
WO2020045432A1 (en) * 2018-08-29 2020-03-05 京セラ株式会社 Electrostatic chuck and method for manufacturing electrostatic chuck
US11008653B2 (en) 2016-07-15 2021-05-18 Applied Materials, Inc. Multi-layer coating with diffusion barrier layer and erosion resistant layer

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100429058B1 (en) * 2000-04-18 2004-04-29 니뽄 가이시 가부시키가이샤 Halogen gas plasma-resistive members and method for producing the same, laminates, and corrosion-resistant members
JP2002362966A (en) * 2001-06-08 2002-12-18 Nihon Ceratec Co Ltd Ceramic material
US9012030B2 (en) 2002-01-08 2015-04-21 Applied Materials, Inc. Process chamber component having yttrium—aluminum coating
US7833401B2 (en) 2002-01-08 2010-11-16 Applied Materials, Inc. Electroplating an yttrium-containing coating on a chamber component
US8110086B2 (en) 2002-01-08 2012-02-07 Applied Materials, Inc. Method of manufacturing a process chamber component having yttrium-aluminum coating
US8114525B2 (en) 2002-01-08 2012-02-14 Applied Materials, Inc. Process chamber component having electroplated yttrium containing coating
CN100453502C (en) * 2002-02-07 2009-01-21 郑州振中电熔锆业有限公司 Production method of electric melting magnesium-aluminium-zirconium synthetic material
JP2009132584A (en) * 2007-11-30 2009-06-18 Taiheiyo Cement Corp Ceramic sintered compact and electrostatic chuck using the same
JP2010018853A (en) * 2008-07-11 2010-01-28 Taiheiyo Cement Corp Thermally sprayed ceramic film and corrosion-resistant member using the same
KR20130118239A (en) 2012-04-19 2013-10-29 니혼텅스텐 가부시키가이샤 Composite ceramics and a component member for semiconductor manufacturing apparatus
JP2013224226A (en) * 2012-04-19 2013-10-31 Nippon Tungsten Co Ltd Composite ceramic, and constituting member of semiconductor manufacturing apparatus
US9079800B2 (en) 2012-04-19 2015-07-14 Nippon Tungsten Co., Ltd Composite ceramic body, and component member for semiconductor manufacturing apparatus
US11008653B2 (en) 2016-07-15 2021-05-18 Applied Materials, Inc. Multi-layer coating with diffusion barrier layer and erosion resistant layer
WO2020045432A1 (en) * 2018-08-29 2020-03-05 京セラ株式会社 Electrostatic chuck and method for manufacturing electrostatic chuck
JPWO2020045432A1 (en) * 2018-08-29 2021-08-26 京セラ株式会社 Manufacturing method of electrostatic chuck and electrostatic chuck
JP7124093B2 (en) 2018-08-29 2022-08-23 京セラ株式会社 Electrostatic chuck and method for manufacturing electrostatic chuck

Similar Documents

Publication Publication Date Title
JP3619330B2 (en) Components for plasma process equipment
KR101428646B1 (en) Apparatus and method which reduce the erosion rate of surfaces exposed to halogen-containing plasmas
JP2000001362A (en) Corrosion resistant ceramic material
JP4548887B2 (en) Corrosion-resistant ceramic member and manufacturing method thereof
JP4283925B2 (en) Corrosion resistant material
KR20120134128A (en) Corrosion-resistant member for a semiconductor manufacturing device, and manufacturing method therefor
JP3527839B2 (en) Components for semiconductor device manufacturing equipment
JP2007045700A (en) Yttria sintered compact, anticorrosion member and process for producing the same
JP2003048792A (en) Plasma resistant member for semiconductor manufacturing apparatus and method of manufacturing the same
JP2000313656A (en) Corrosionproof ceramic material and corrosionproof member
JP5577287B2 (en) Magnesium fluoride sintered body, manufacturing method thereof, and member for semiconductor manufacturing apparatus
JP4368021B2 (en) Corrosion resistant ceramic material
KR20030043700A (en) Aluminium nitride ceramics, members for use in a system for producing semiconductors, and corrosion resistant members
KR20100031463A (en) Ceramics for plasma treatment apparatus
JP3706488B2 (en) Corrosion-resistant ceramic material
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
JP3659435B2 (en) Corrosion resistant member, plasma processing apparatus, semiconductor manufacturing apparatus, liquid crystal manufacturing apparatus, and discharge vessel.
JP3241350B2 (en) Conductive ceramics and method for producing the same
JP2000302553A (en) Corrosion resistant fluoride based combined ceramics sintered compact
JP4480951B2 (en) Corrosion resistant material
JP4733819B2 (en) Method of forming corrosion-resistant ceramic sprayed coating
JP3732966B2 (en) Corrosion resistant material
JPH11278944A (en) Silicon nitride corrosion resistant member and its production
JP2002362966A (en) Ceramic material
JP2002255634A (en) Free cutting high strength alumina sintered compact and corrosion resistant member using the sintered compact