JP4283925B2 - Corrosion resistant material - Google Patents

Corrosion resistant material Download PDF

Info

Publication number
JP4283925B2
JP4283925B2 JP01847199A JP1847199A JP4283925B2 JP 4283925 B2 JP4283925 B2 JP 4283925B2 JP 01847199 A JP01847199 A JP 01847199A JP 1847199 A JP1847199 A JP 1847199A JP 4283925 B2 JP4283925 B2 JP 4283925B2
Authority
JP
Japan
Prior art keywords
fluoride
corrosion
plasma
corrosive gas
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01847199A
Other languages
Japanese (ja)
Other versions
JP2000219574A (en
Inventor
保 原田
洋一 白川
則和 指田
昇 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP01847199A priority Critical patent/JP4283925B2/en
Publication of JP2000219574A publication Critical patent/JP2000219574A/en
Application granted granted Critical
Publication of JP4283925B2 publication Critical patent/JP4283925B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、腐蝕ガスあるいはそれらのプラズマに対して、高い耐蝕性を有する耐蝕性部材に関する。
【0002】
【従来の技術】
現在、半導体メモリーの急激な高集積化により、エッチング、不純物拡散、イオン注入工程の繰り返し回数の増加や、細密化によるプラズマの高集積化など半導体製造装置内の環境は、以前と比較して苛酷なものとなっている。特にドライプロセスやプラズマコーティングなど、プラズマの利用が急速に進んでいる。
【0003】
その中で、パターンの焼き付けのために行われるドライエッチングでは、弗素系腐蝕ガスがその反応性の高さから利用されており、製造装置を構成する部材には、このような活性なガスに対する耐蝕性が要求される。
【0004】
従来、製造装置を構成する部品として石英ガラスが使用されてきたが、石英ガラスは、CF等の弗素系腐蝕ガスからプラズマによって分解して発生したラジカルFがSiと反応して腐蝕され消耗が激しく、苛酷なエッチング環境ではその寿命が極めて短いものになっている。そこで、従来用いられてきた石英ガラスに代わりアルミナ等のセラミックス部材が用いられている。
【0005】
【発明が解決しようとする課題】
従来半導体製造装置内のプラズマエッチング工程で使用されているアルミナ部材は、石英ガラスと比較すると耐蝕性に優れてはいるものの、それでもCF等の弗素系腐蝕ガスと反応し、表面の結晶粒子が脱落して装置内を汚染するという問題を生じさせている。
【0006】
つまり、半導体製造におけるエッチング工程等で使用される部材は、CF等の弗素系腐蝕ガスあるいはそれらのプラズマとの反応を抑え、表面の粒子の脱落を少なくしなければならないが、未だそのような部材は得られていない。
【0007】
本発明はかかる事情に鑑みてなされたものであって、腐蝕ガスあるいはそれらのプラズマ、特に弗素系の腐蝕ガスあるいはそれらのプラズマに対して、高い耐蝕性を有する耐蝕性部材を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意検討した結果、腐蝕ガス特に弗素系腐蝕性ガスとの反応性が低いという点から、気孔率が2%以下の緻密で気孔の少ない弗化物セラミックスを用いることにより腐蝕ガスあるいはそれらのプラズマとの反応を抑え、表面の粒子の脱落を少なくできることを見出した。つまり、耐蝕性を必要とする部分に用いられる部材として、従来のアルミナと比較してCF等の腐蝕ガスに反応による表面の侵食速度が遅い弗化物セラミックスを少なくとも腐蝕ガスあるいはそれらのプラズマに露呈される部位に用いることにより、腐蝕ガス中でのプラズマエッチングにおいて、優れた耐蝕性を発揮することを見出した。
【0011】
本発明はこのような知見に基づいてなされたものであり、半導体製造装置内において、腐蝕ガスあるいはそれらのプラズマの雰囲気で用いられる耐蝕部材であって、基体と、その表面で少なくとも腐蝕ガスあるいは腐蝕ガスのプラズマに露呈される面に設けられた溶射で得られた耐蝕層とを有し、前記耐蝕層は、気孔率が2%以下である緻密質の弗化物セラミックスで構成され、前記弗化物セラミックスがCaF、MgFから選択される少なくとも一種であることを特徴とする耐蝕性部材を提供するものである。
【0012】
記基体は、金属またはセラミックスが好ましい。
【0013】
本発明の耐食性部材が適用される前記半導体製造装置としては、エッチング工程で用いられるものが好適である
【0014】
【発明の実施の形態】
以下、本発明について具体的に説明する。
本発明の耐蝕性部材は、腐蝕ガスあるいはそれらのプラズマの雰囲気で用いられ、少なくともその腐蝕ガスあるいはそれらのプラズマに露呈される部位が、気孔率2%以下である緻密質の弗化物セラミックスで構成される。
【0015】
この場合に、耐蝕部材の全部が弗化物セラミックスであってもよいし、腐蝕ガスあるいはそのプラズマに露呈される表面部分のみが弗化物セラミックスであってもよい。このような弗化物セラミックスとしては、CaF、MgF、YF、AlF、CeFから選択される少なくとも一種を主体とするものを挙げることができる。弗化物セラミックスは緻密なものであればその形態は問わないが、典型的には焼結体で構成することができる。弗化物セラミックス焼結体を他の部材に接合することにより、腐蝕ガスあるいはそのプラズマに露呈される表面部分のみを弗化物焼結体とすることができる。
【0016】
この弗化物セラミックス焼結体としては、弗化物から実質的になる主相と、主相を構成する弗化物よりも融点が低い弗化物から実質的になり、主に前記主相の粒界に存在する副相とからなるものであることが好ましい。
【0017】
この場合に、副相として存在する、主相を構成する弗化物よりも融点が低い弗化物は、主に主相の粒界に存在して焼結助剤として機能し、焼結体の緻密化に寄与する。この副相の存在により緻密化が促進される結果、常圧焼結でも十分に緻密化する。したがって、形状の制限がなく緻密な焼結体を得ることができる。また、主相および副相のいずれもが、腐蝕ガスとの反応性が低い弗化物で構成されているため、耐蝕性が極めて高い。なお、主相および副相は、弗化物の他、微量の不純物や添加物は含まれていてもよい。
【0018】
ここで、主相を構成する弗化物としては、CaF、MgF、YFから選択される少なくとも一種を用いることが好ましい。これは、これらの弗化物に毒性がなく、以下に述べるLiF等を添加して焼結した場合に、最も焼結性が優れているからである。主相を構成する弗化物として、他に、AlF、SrF、BaF、CeF等を用いることもできる。
【0019】
また、副相を構成する弗化物としては、LiFが好ましい。これは、LiFの融点が842℃と、CaF(融点:1373℃)やMgF(融点:1260℃)やYF(融点:1152℃)と比較してかなり低く、焼結助剤としての効果が大きいからである。副相を構成する弗化物として、他に、NaF等を用いることもできる。
【0020】
このように、副相は主に焼結助剤としての機能を果たすものであり、その量は焼結体全体の0.5〜5mol%が好ましい。0.5mol%未満であると焼結を促進する効果が小さく、5mol%を超えると副相を構成する弗化物、例えばLiFが粒界に偏析して粒界相を形成し、機械的特性の劣化、特に高温強度の低下をもたらすからである。
【0021】
また、弗化物セラミックス焼結体の密度は、相対密度で99%以上であることが好ましい。このような緻密な焼結体とすることにより、腐蝕ガスに対する耐蝕性、耐プラズマ性を一層高いものとすることができる。
【0022】
本発明の耐蝕性部材としては、基体と、その表面で少なくとも腐蝕ガスあるいはそれらのプラズマに露呈される面に設けられた気孔率が2%以下である緻密質の弗化物セラミックスからなる膜状の耐蝕層とで構成することができる。この耐蝕層は緻密な膜状体であれば、どのようなものであっても良いが、溶射または蒸着により得られる膜であることが好ましい。蒸着には、スパッタ、真空蒸着、イオンプレーティング等が含まれる。また、基体としてはセラミックス、金属等を用いることができる。さらに、耐蝕層を構成する弗化物セラミックスとしては、CaF、MgF、YF、AlF、CeFから選択される少なくとも一種を主体とするものを用いることが好ましい。前記耐蝕層は、耐久性の観点から、その厚さが100μm以上が好ましく、さらに、200μm以上であれば一層好ましい。その厚さが100μm未満であると、プラズマ等により短期間のうちに損耗してしまうことがあり好ましくない。また、厚すぎてもコストが上昇してまうため、500μm以下であることが好ましい。
【0023】
上述した耐蝕性部材は、半導体デバイスを製造する際のエッチング工程等で用いられる腐蝕ガスやプラズマに露呈される部材として好適である。このような分野で用いられる腐蝕ガスとしてはCF、SF、CHFなどの弗素系ガスが用いられ、これらの使用に際しては、典型的にはこれらのガス雰囲気に高周波電力を印加したりマイクロ波等を導入することによりプラズマ化されるが、本発明の耐蝕性部材は、このような雰囲気下において十分な耐蝕性を有する。
【0024】
次に、上述した本発明の耐蝕性部材の製造方法を例示する。
耐蝕性部材の全部が弗化物セラミックスであって、弗化物セラミックスが焼結体の場合には、常法に従って、粉末を成形し焼結することにより得られる。弗化物の焼結体として、弗化物から実質的になる主相と、主相を構成する弗化物よりも融点が低い弗化物から実質的になり、主に前記主相の粒界に存在する副相からなる焼結体を用いる場合には、主相となる弗化物原料例えばCaF、MgF、YF等の粉末を用い、副相となる弗化物原料、例えばLiF粉末を0.5〜5mol%添加して湿式混合し、成形したものを550〜1050℃で常圧焼結することが好ましい。原料粉末としては、平均粒径が2μm以下のものが好ましい。さらに、得られた常温焼結体をAr雰囲気で温度500〜1000℃、圧力1000〜1800kg/cmの条件でHIP法にて処理することにより、相対密度100%の高密度を有する弗化物セラミックス焼結体の耐蝕性部材を得ることができる。
【0025】
一方、弗化物セラミックスが膜状の耐蝕層を構成する場合には、弗化物原料例えばCaF、MgF、YF、AlF、CeF等の粉末を使用して、基体となるAl、AlN、ZrO等のセラミックス、またはSUS304、Cu、Al、Al合金等の金属の表面に例えば従来の溶射または蒸着にて膜を形成することが好ましい。この方法によれば、これらの表面に気孔率が2%以下の緻密で気孔の少ない弗化物セラミックスの膜を有する耐蝕性部材を容易に得ることができる。この際に、上述したような100〜500μmの範囲の膜厚を得る観点からは、成膜方法として溶射を用いることがより好ましい。
【0026】
上述したように、これらの方法で得られた気孔率が2%以下である緻密質の弗化物セラミックス焼結体または表面が弗化物セラミックスの膜で構成される耐蝕性部材は、従来、半導体製造装置内で用いられる腐蝕ガスやプラズマに露呈される部分に用いられた石英やアルミナに比べて表面の侵食速度が遅く、半導体製造装置内を汚染しない耐蝕性部材として有効である。
【0027】
【実施例】
以下、本発明の実施例について説明する。
参考例1〜19)
純度98%のCaF(関東化学製、試薬1級)、MgF(関東化学製、試薬1級)、YF(関東化学製、試薬1級)粉末を、ボールミルを用いて64時間粉砕して、平均粒径を1.6μmとした。その後、これら粉末にLiF(試薬1級)粉末を0.5〜5mol%添加し、エタノール中で64時間、湿式混合を行った。このようにして得られた混合粉末を、一軸加圧により75MPaで1分間、および冷間静水圧成型法により150MPaで1分間の条件で成形した。このようにして得られた成形体について、550〜900℃で1時間の条件で常圧焼結を行った。この常圧焼結体の密度をアルキメデス法により測定した結果、常圧焼結体の相対密度は90%以上であった。
【0028】
その後、上記常圧焼結体を、圧力媒体をArとして、550〜900℃の最高温度で、圧力1800kg/cmで1時間HIP法により処理し、このHIP焼結体を作製した。そのようにして得られた焼結体をアルキメデス法で測定した。その結果、表に示さないが、相対密度が100%の高密度を有する弗化物セラミックス焼結体が得られたことが確認された。
【0029】
このようにして得られた弗化物セラミックス焼結体を、周波数が2.45GHzで出力が800Wの平行平板電極型プラズマエッチング装置を用いて、CFとOの体積比が4:1である雰囲気で約40分間プラズマエッチングを行った。
【0030】
そして、エッチング前後の重量変化を測定することにより、エッチングレートを算出した。その結果を製造条件とともに表1に示す。表1に示すように、これら実施例のエッチングレートは0.9〜2.9μm/hrであり、高い耐蝕性を有する弗化物セラミックス焼結体が得られることが確認された。また、気孔率を測定した結果、表1に示すように気孔率が0.1〜0.9%であることから、緻密性が極めて優れていることも確認された。
【0031】
【表1】

Figure 0004283925
【0032】
実施例1〜4、参考例20〜22
CaF、MgF、YF、AlF、CeF(森田化学製、平均粒径10μm)を溶射被膜材とし、プラスト処理して表面を10〜50mmの粗さにした50×50×10mmのSUS304、Al、ZrO、を基体として用いた。この基体上に、上記の溶射被膜材を、メテコ社製のプラズマ溶射装置9MBにより、大気雰囲気で電圧150ボルト、電流90アンペア、粉末供給量10g/minの条件にてプラズマ溶射して、200〜300μmの厚さで気孔率が1〜2%の溶射被膜を形成した。
【0033】
このようにして得られた弗化物セラミックスの被膜部材について、実施例1〜19と同様の方法でプラスマエッチングを行い、エッチング前後の重量変化を測定し、エッチングレートを算出した。その結果、表2に示すようにエッチングレートは2.1〜3.3μm/hrであり、高い耐蝕性を有する弗化物セラミックスの膜が得られたことが確認された。また、気孔率を測定した結果、表2に示すように気孔率が1.7〜2.0%であることから、緻密性が優れていることも確認された。
【0034】
【表2】
Figure 0004283925
【0035】
参考例23〜26
MgF、CaF、YF(森田化学製、平均粒径10μm)を蒸着被膜材とし、50×50×10mmのSUS304、Alを基板として用い、この基板上に、真空蒸着装置を用いて、真空度1×10−4torrでWバスケットヒーターによる真空蒸着を行って、2〜3μmの厚さで蒸着被膜を形成した。
【0036】
このようにして得られた弗化物セラミックスの被膜部材について、前述の実施例と同様の方法でプラスマエッチングを行い、エッチング前後の重量変化を測定し、エッチングレートを算出した。その結果、表3に示すようにエッチングレートは1.7〜2.0μm/hrであり、高い耐蝕性を有する弗化物セラミックスの膜が得られたことが確認された。
【0037】
【表3】
Figure 0004283925
【0038】
(比較例1〜2)
石英ガラスおよびAl(日本セラテック製)について、実施例1〜19と同様の方法でプラズマエッチングを行い、エッチング前後の重量変化を測定し、エッチングレートを算出した。その結果、表4に示すように石英ガラスのエッチングレートは10.2μm/hrであり、また、Alのエッチングレートは5.1μm/hrとなり、焼結体の耐蝕性が劣っていることが確認された。
【0039】
【表4】
Figure 0004283925
【0040】
【発明の効果】
以上説明したように、本発明によれば、少なくとも腐蝕ガスあるいはそのプラズマに露呈される部位が、気孔率2%以下である緻密質の弗化物セラミックスによって構成されるので、従来半導体製造装置内で使用されていた石英ガラスおよびアルミナに比べて、CFガスとの反応による表面の侵食速度が遅く、耐蝕性に極めて優れている。したがって、エッチング、不純物拡散、イオン注入工程などの腐蝕性雰囲気で用いられる半導体製造装置を構成する部材に極めて好適に使用することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a corrosion-resistant member having high corrosion resistance against a corrosive gas or plasma thereof.
[0002]
[Prior art]
Currently, the environment in semiconductor manufacturing equipment, such as the increase in the number of repetitions of etching, impurity diffusion, and ion implantation processes due to the rapid integration of semiconductor memories and the high integration of plasma due to miniaturization, is more severe than before. It has become a thing. In particular, the use of plasma is rapidly progressing in dry processes and plasma coating.
[0003]
Among them, in dry etching performed for pattern baking, a fluorine-based corrosive gas is used because of its high reactivity, and the members constituting the manufacturing apparatus are resistant to such active gas. Sex is required.
[0004]
Conventionally, quartz glass has been used as a component of a manufacturing apparatus. However, quartz glass is consumed by radical F generated by decomposition by plasma from a fluorine-based corrosive gas such as CF 4 , reacting with Si, and is consumed. In a harsh and harsh etching environment, its lifetime is extremely short. Therefore, ceramic members such as alumina are used instead of the conventionally used quartz glass.
[0005]
[Problems to be solved by the invention]
Although the alumina member used in the plasma etching process in the conventional semiconductor manufacturing apparatus is superior in corrosion resistance compared to quartz glass, it still reacts with a fluorine-based corrosive gas such as CF 4 and the surface crystal particles are This causes a problem of dropping and contaminating the inside of the apparatus.
[0006]
That is, a member used in an etching process or the like in semiconductor manufacturing must suppress the reaction with a fluorine-based corrosive gas such as CF 4 or their plasma and reduce the dropout of surface particles. The member is not obtained.
[0007]
The present invention has been made in view of such circumstances, and an object thereof is to provide a corrosion-resistant member having high corrosion resistance against a corrosive gas or a plasma thereof, in particular, a fluorine-based corrosive gas or a plasma thereof. And
[0008]
[Means for Solving the Problems]
As a result of diligent studies to solve the above-mentioned problems, the present inventors have found that fluoride ceramics having a porosity of 2% or less and low porosity are low in reactivity with a corrosive gas, particularly a fluorine-based corrosive gas. It has been found that the reaction of the corrosive gases or their plasma can be suppressed by using the, and the dropout of the surface particles can be reduced. In other words, as a material used in parts that require corrosion resistance, fluoride ceramics whose surface erosion rate is slow due to reaction with a corrosive gas such as CF 4 compared to conventional alumina is exposed to at least the corrosive gas or their plasma. It has been found that by using it in a portion to be applied, excellent corrosion resistance is exhibited in plasma etching in a corrosive gas.
[0011]
The present invention has been made on the basis of such knowledge, and is a corrosion-resistant member used in a semiconductor manufacturing apparatus in an atmosphere of a corrosive gas or a plasma thereof. The base and the surface thereof are at least a corrosive gas or a corrosive material. A corrosion-resistant layer obtained by thermal spraying provided on a surface exposed to gas plasma, wherein the corrosion-resistant layer is made of a dense fluoride ceramic having a porosity of 2% or less, and the fluoride The present invention provides a corrosion-resistant member characterized in that the ceramic is at least one selected from CaF 2 and MgF 2 .
[0012]
Before Symbol substrate, metal or ceramics is not preferred.
[0013]
The semiconductor manufacturing apparatus to which the corrosion-resistant member of the present invention is applied is preferably one used in an etching process.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described.
The corrosion-resistant member of the present invention is used in an atmosphere of a corrosive gas or their plasma, and is composed of a dense fluoride ceramic having a porosity of 2% or less at least at a portion exposed to the corrosive gas or their plasma. Is done.
[0015]
In this case, all of the corrosion-resistant member may be fluoride ceramics, or only the surface portion exposed to the corrosive gas or its plasma may be fluoride ceramics. Examples of such fluoride ceramics include those mainly composed of at least one selected from CaF 2 , MgF 2 , YF 3 , AlF 3 , and CeF 3 . The form of fluoride ceramics is not particularly limited as long as it is dense, but can typically be composed of a sintered body. By bonding the fluoride ceramic sintered body to another member, only the surface portion exposed to the corrosive gas or its plasma can be made the fluoride sintered body.
[0016]
This fluoride ceramic sintered body is substantially composed of a main phase substantially composed of fluoride and a fluoride having a melting point lower than that of the fluoride constituting the main phase, and mainly at the grain boundary of the main phase. It is preferable that it consists of the subphase which exists.
[0017]
In this case, the fluoride existing as a secondary phase and having a melting point lower than that of the fluoride constituting the main phase is mainly present at the grain boundary of the main phase and functions as a sintering aid. Contributes to As a result of the promotion of densification by the presence of this subphase, the sub-phase is sufficiently densified even under normal pressure sintering. Therefore, it is possible to obtain a dense sintered body without limitation of the shape. Further, since both the main phase and the subphase are made of fluoride having low reactivity with the corrosive gas, the corrosion resistance is extremely high. In addition, the main phase and the subphase may contain a trace amount of impurities and additives in addition to fluoride.
[0018]
Here, it is preferable to use at least one selected from CaF 2 , MgF 2 and YF 3 as the fluoride constituting the main phase. This is because these fluorides are not toxic and have the highest sinterability when sintered by adding LiF or the like described below. In addition, AlF 3 , SrF 2 , BaF 2 , CeF 3 and the like can also be used as the fluoride constituting the main phase.
[0019]
Further, LiF is preferable as the fluoride constituting the subphase. This is because the melting point of LiF is 842 ° C., which is considerably lower than that of CaF 2 (melting point: 1373 ° C.), MgF 2 (melting point: 1260 ° C.) and YF 3 (melting point: 1152 ° C.). This is because the effect is great. In addition, NaF or the like can also be used as the fluoride constituting the subphase.
[0020]
Thus, the subphase mainly functions as a sintering aid, and the amount thereof is preferably 0.5 to 5 mol% of the entire sintered body. If the amount is less than 0.5 mol%, the effect of promoting sintering is small, and if it exceeds 5 mol%, a fluoride constituting the subphase, for example, LiF segregates at the grain boundary to form a grain boundary phase, and the mechanical properties are reduced. This is because the deterioration, particularly the high temperature strength is reduced.
[0021]
The density of the fluoride ceramic sintered body is preferably 99% or more in terms of relative density. By using such a dense sintered body, the corrosion resistance against the corrosive gas and the plasma resistance can be further enhanced.
[0022]
The corrosion-resistant member of the present invention is a film-like film made of a dense fluoride ceramic having a porosity of 2% or less provided on the surface of the substrate and at least the surface exposed to the corrosive gas or plasma thereof. It can be composed of a corrosion resistant layer. The corrosion-resistant layer may be any film as long as it is a dense film, but is preferably a film obtained by thermal spraying or vapor deposition. Deposition includes sputtering, vacuum deposition, ion plating, and the like. Moreover, ceramics, metals, etc. can be used as the substrate. Further, it is preferable to use a ceramic mainly comprising at least one selected from CaF 2 , MgF 2 , YF 3 , AlF 3 , and CeF 3 as the fluoride ceramic constituting the corrosion resistant layer. From the viewpoint of durability, the corrosion resistant layer preferably has a thickness of 100 μm or more, and more preferably 200 μm or more. If the thickness is less than 100 μm, it may be worn out in a short period of time due to plasma or the like. Moreover, since it will raise cost even if it is too thick, it is preferable that it is 500 micrometers or less.
[0023]
The corrosion-resistant member described above is suitable as a member exposed to a corrosive gas or plasma used in an etching process or the like when manufacturing a semiconductor device. As a corrosive gas used in such a field, a fluorine-based gas such as CF 4 , SF 6 , or CHF 3 is used. In using these gases, typically, a high-frequency power is applied to these gas atmospheres or a micro gas is used. Although it is turned into plasma by introducing waves or the like, the corrosion-resistant member of the present invention has sufficient corrosion resistance in such an atmosphere.
[0024]
Next, the manufacturing method of the corrosion-resistant member of this invention mentioned above is illustrated.
In the case where all of the corrosion-resistant members are fluoride ceramics and the fluoride ceramics is a sintered body, it is obtained by molding and sintering the powder according to a conventional method. As a sintered body of fluoride, it consists essentially of a main phase composed of fluoride and a fluoride having a melting point lower than that of the fluoride constituting the main phase, and exists mainly at the grain boundaries of the main phase. In the case of using a sintered body comprising a subphase, a fluoride raw material serving as a main phase, for example, CaF 2 , MgF 2 , YF 3 or the like powder is used, and a fluoride raw material serving as a subphase, such as LiF powder, is 0.5%. It is preferable to add ~ 5 mol%, wet mix, and form the molded article at 550 to 1050 ° C under atmospheric pressure sintering. The raw material powder preferably has an average particle size of 2 μm or less. Furthermore, the obtained normal temperature sintered body is treated by the HIP method in an Ar atmosphere at a temperature of 500 to 1000 ° C. and a pressure of 1000 to 1800 kg / cm 2 , thereby obtaining a fluoride ceramic having a high density of 100% relative density. A corrosion-resistant member of a sintered body can be obtained.
[0025]
On the other hand, when fluoride ceramics constitutes a film-like corrosion-resistant layer, fluoride raw materials such as CaF 2 , MgF 2 , YF 3 , AlF 3 , CeF 3, etc. are used to form a base Al 2 O 3. Preferably, a film is formed on the surface of a ceramic such as AlN or ZrO 2 or a metal such as SUS304, Cu, Al, or an Al alloy by conventional thermal spraying or vapor deposition. According to this method, it is possible to easily obtain a corrosion-resistant member having a fluoride ceramic film with a small porosity of 2% or less on these surfaces. At this time, from the viewpoint of obtaining a film thickness in the range of 100 to 500 μm as described above, it is more preferable to use thermal spraying as a film forming method.
[0026]
As described above, a dense fluoride ceramic sintered body having a porosity of 2% or less obtained by these methods or a corrosion-resistant member having a surface composed of a fluoride ceramic film has been conventionally used in semiconductor manufacturing. It is effective as a corrosion-resistant member that does not contaminate the inside of the semiconductor manufacturing apparatus because the surface erosion rate is lower than that of quartz or alumina used in the portion exposed to the corrosive gas or plasma used in the apparatus.
[0027]
【Example】
Examples of the present invention will be described below.
( Reference Examples 1-19)
98% pure CaF 2 (Kanto Chemical Co., reagent grade 1), MgF 2 (Kanto Chemical Co., reagent grade 1), YF 3 (Kanto Chemical Co., reagent grade 1) powder was pulverized for 64 hours using a ball mill. The average particle size was 1.6 μm. Thereafter, 0.5 to 5 mol% of LiF (reagent grade 1) powder was added to these powders, and wet mixing was performed in ethanol for 64 hours. The mixed powder thus obtained was molded under the conditions of uniaxial pressing at 75 MPa for 1 minute and cold isostatic pressing at 150 MPa for 1 minute. The molded body thus obtained was subjected to atmospheric pressure sintering at 550 to 900 ° C. for 1 hour. As a result of measuring the density of this atmospheric pressure sintered body by the Archimedes method, the relative density of the atmospheric pressure sintered body was 90% or more.
[0028]
Thereafter, the pressureless sintering body, a pressure medium as Ar, at a maximum temperature of 550 to 900 ° C., treated with 1 hour HIP process at a pressure 1800 kg / cm 2, to prepare the HIP sintered bodies. The sintered body thus obtained was measured by the Archimedes method. As a result, although not shown in the table, it was confirmed that a fluoride ceramic sintered body having a relative density of 100% was obtained.
[0029]
The fluoride ceramic sintered body thus obtained has a volume ratio of CF 4 and O 2 of 4: 1 using a parallel plate electrode type plasma etching apparatus having a frequency of 2.45 GHz and an output of 800 W. Plasma etching was performed for about 40 minutes in an atmosphere.
[0030]
And the etching rate was computed by measuring the weight change before and behind etching. The results are shown in Table 1 together with the manufacturing conditions. As shown in Table 1, the etching rate of these examples was 0.9 to 2.9 μm / hr, and it was confirmed that a fluoride ceramic sintered body having high corrosion resistance was obtained. Moreover, as a result of measuring the porosity, as shown in Table 1, the porosity was 0.1 to 0.9%, and it was confirmed that the denseness was extremely excellent.
[0031]
[Table 1]
Figure 0004283925
[0032]
( Examples 1-4, Reference Examples 20-22 )
CaF 2 , MgF 2 , YF 3 , AlF 3 , CeF 3 (Morita Chemical Co., Ltd., average particle size 10 μm) was used as a thermal spray coating material, and the surface was roughened to 10 to 50 mm by plasting to 50 × 50 × 10 mm SUS304, Al 2 O 3 , ZrO 2 was used as a substrate. On this substrate, the above-mentioned sprayed coating material is plasma sprayed under the conditions of a voltage of 150 volts, a current of 90 amps, and a powder supply amount of 10 g / min in an air atmosphere by a plasma spraying apparatus 9MB manufactured by Meteco Co., Ltd. A sprayed coating having a thickness of 300 μm and a porosity of 1 to 2% was formed.
[0033]
The thus obtained fluoride ceramic coating member was subjected to plasma etching in the same manner as in Examples 1 to 19, the weight change before and after etching was measured, and the etching rate was calculated. As a result, as shown in Table 2, the etching rate was 2.1 to 3.3 μm / hr, and it was confirmed that a fluoride ceramic film having high corrosion resistance was obtained. Moreover, as a result of measuring the porosity, as shown in Table 2, since the porosity was 1.7 to 2.0%, it was confirmed that the denseness was excellent.
[0034]
[Table 2]
Figure 0004283925
[0035]
( Reference Examples 23 to 26 )
MgF 2 , CaF 2 , YF 3 (Morita Chemical Co., Ltd., average particle size 10 μm) is used as a vapor deposition coating material, 50 × 50 × 10 mm SUS304, Al 2 O 3 is used as a substrate, and a vacuum vapor deposition apparatus is formed on this substrate. Then, vacuum deposition was performed with a W basket heater at a vacuum degree of 1 × 10 −4 torr to form a deposited film with a thickness of 2 to 3 μm.
[0036]
The thus obtained fluoride ceramic coating member was subjected to plasma etching in the same manner as in the previous example, the change in weight before and after etching was measured, and the etching rate was calculated. As a result, as shown in Table 3, the etching rate was 1.7 to 2.0 μm / hr, and it was confirmed that a fluoride ceramic film having high corrosion resistance was obtained.
[0037]
[Table 3]
Figure 0004283925
[0038]
(Comparative Examples 1-2)
For quartz glass and Al 2 O 3 (manufactured by Nippon Ceratech), plasma etching was performed in the same manner as in Examples 1 to 19, the change in weight before and after etching was measured, and the etching rate was calculated. As a result, as shown in Table 4, the etching rate of quartz glass is 10.2 μm / hr, and the etching rate of Al 2 O 3 is 5.1 μm / hr, so that the sintered body has poor corrosion resistance. It was confirmed.
[0039]
[Table 4]
Figure 0004283925
[0040]
【The invention's effect】
As described above, according to the present invention, at least the portion exposed to the corrosive gas or the plasma thereof is constituted by dense fluoride ceramics having a porosity of 2% or less. Compared to quartz glass and alumina that have been used, the surface erosion rate due to the reaction with CF 4 gas is slow, and the corrosion resistance is extremely excellent. Therefore, it can be used very suitably for a member constituting a semiconductor manufacturing apparatus used in a corrosive atmosphere such as etching, impurity diffusion, and ion implantation process.

Claims (3)

半導体製造装置内において、腐蝕ガスあるいはそれらのプラズマの雰囲気で用いられる耐蝕部材であって、基体と、その表面で少なくとも腐蝕ガスあるいは腐蝕ガスのプラズマに露呈される面に設けられた溶射で得られた耐蝕層とを有し、前記耐蝕層は、気孔率が2%以下である緻密質の弗化物セラミックスで構成され、前記弗化物セラミックスがCaF、MgFから選択される少なくとも一種であることを特徴とする耐蝕性部材。In a semiconductor manufacturing apparatus, a corrosion-resistant member used in an atmosphere of a corrosive gas or plasma thereof, obtained by thermal spraying provided on a substrate and at least a surface exposed to the corrosive gas or corrosive gas plasma on the surface thereof. The corrosion-resistant layer is made of dense fluoride ceramics having a porosity of 2% or less, and the fluoride ceramics is at least one selected from CaF 2 and MgF 2 Corrosion-resistant member characterized by 前記基体は、金属またはセラミックスからなることを特徴とする請求項に記載の耐蝕性部材。The corrosion-resistant member according to claim 1 , wherein the base is made of metal or ceramics. 前記半導体製造装置はエッチング工程で用いられるものであることを特徴とする請求項1または請求項2に記載の耐蝕性部材。The corrosion-resistant member according to claim 1, wherein the semiconductor manufacturing apparatus is used in an etching process.
JP01847199A 1999-01-27 1999-01-27 Corrosion resistant material Expired - Fee Related JP4283925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01847199A JP4283925B2 (en) 1999-01-27 1999-01-27 Corrosion resistant material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01847199A JP4283925B2 (en) 1999-01-27 1999-01-27 Corrosion resistant material

Publications (2)

Publication Number Publication Date
JP2000219574A JP2000219574A (en) 2000-08-08
JP4283925B2 true JP4283925B2 (en) 2009-06-24

Family

ID=11972568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01847199A Expired - Fee Related JP4283925B2 (en) 1999-01-27 1999-01-27 Corrosion resistant material

Country Status (1)

Country Link
JP (1) JP4283925B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10443125B2 (en) 2017-05-10 2019-10-15 Applied Materials, Inc. Flourination process to create sacrificial oxy-flouride layer
US11572617B2 (en) 2016-05-03 2023-02-07 Applied Materials, Inc. Protective metal oxy-fluoride coatings

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010062209A (en) * 1999-12-10 2001-07-07 히가시 데쓰로 Processing apparatus with a chamber having therein a high-etching resistant sprayed film
JP2002037683A (en) * 2000-07-24 2002-02-06 Toshiba Ceramics Co Ltd Plasma resistant element and its manufacturing method
JP2002252209A (en) * 2001-02-22 2002-09-06 Tokyo Electron Ltd Plasma etching apparatus
JP2002293630A (en) * 2001-03-29 2002-10-09 Toshiba Ceramics Co Ltd Plasma resistant member and method of producing the same
JP4585260B2 (en) * 2004-09-30 2010-11-24 株式会社東芝 Semiconductor manufacturing equipment parts and semiconductor manufacturing equipment
JP2007063070A (en) * 2005-08-31 2007-03-15 Toshiba Ceramics Co Ltd Method for manufacturing plasma-resistant yttria sintered compact
JP4512603B2 (en) * 2007-02-26 2010-07-28 トーカロ株式会社 Halogen gas resistant semiconductor processing equipment components
JP5185213B2 (en) * 2009-06-16 2013-04-17 株式会社大興製作所 Method for producing plasma-resistant fluoride sintered body
JP5711511B2 (en) * 2010-12-09 2015-04-30 株式会社大興製作所 CaF2-MgF2 binary sintered body and method for producing plasma-resistant fluoride sintered body
TWI535660B (en) * 2011-05-27 2016-06-01 尼康股份有限公司 CaF 2 Polycrystalline, focusing ring, plasma processing device and CaF 2 Polymorphic manufacturing method
JP6034156B2 (en) 2011-12-05 2016-11-30 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
JP5521184B2 (en) * 2012-01-17 2014-06-11 トーカロ株式会社 Method for producing fluoride spray coating coated member
JP2016065302A (en) * 2014-09-17 2016-04-28 東京エレクトロン株式会社 Component for plasma treatment apparatus and manufacturing method of the component
US9789335B2 (en) * 2014-09-24 2017-10-17 Techno Eye Corporation MgF2—CaF2 binary system sintered body for radiation moderator and method for producing the same
JP5911036B1 (en) 2014-11-21 2016-04-27 日本イットリウム株式会社 Sintered body
US10777330B2 (en) * 2014-12-26 2020-09-15 Techno Eye Corporation MgF2 system fluoride sintered body for radiation moderator and method for producing the same
JP6578106B2 (en) * 2015-02-24 2019-09-18 株式会社フジミインコーポレーテッド Thermal spray powder
JPWO2021065327A1 (en) * 2019-10-04 2021-04-08
EP4119696A4 (en) * 2020-03-11 2023-11-01 Resonac Corporation Corrosion-resistant member
JP2022092436A (en) 2020-12-10 2022-06-22 トーカロ株式会社 Flame spray material, flame spray coating, formation method of flame spray coating, and component of plasma etching apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11572617B2 (en) 2016-05-03 2023-02-07 Applied Materials, Inc. Protective metal oxy-fluoride coatings
US10443125B2 (en) 2017-05-10 2019-10-15 Applied Materials, Inc. Flourination process to create sacrificial oxy-flouride layer
US10563303B2 (en) 2017-05-10 2020-02-18 Applied Materials, Inc. Metal oxy-flouride films based on oxidation of metal flourides

Also Published As

Publication number Publication date
JP2000219574A (en) 2000-08-08

Similar Documents

Publication Publication Date Title
JP4283925B2 (en) Corrosion resistant material
US11667577B2 (en) Y2O3—ZrO2 erosion resistant material for chamber components in plasma environments
JP5819816B2 (en) Corrosion resistant member for semiconductor manufacturing equipment and method for manufacturing the same
US6783875B2 (en) Halogen gas plasma-resistive members and method for producing the same, laminates, and corrosion-resistant members
US6933254B2 (en) Plasma-resistant articles and production method thereof
KR102266655B1 (en) The method of producing thermal spray coating using the yittrium powder and the yittrium coating produced by the mothod
KR102266656B1 (en) Yittrium granular powder for thermal spray and thermal spray coating produced using the same
US9404171B2 (en) Rare earth oxide-containing sprayed plate and making method
JPWO2018052129A1 (en) Thermal spray material
US6670294B2 (en) Corrosion-resistive ceramic materials and members for semiconductor manufacturing
CN115261762B (en) Material for thermal spraying
JP4368021B2 (en) Corrosion resistant ceramic material
JP4429742B2 (en) Sintered body and manufacturing method thereof
JP2001240482A (en) Plasma resistance material, high-frequency transmission material, and plasma equipment
KR20090101245A (en) Ceramic member and corrosion-resistant member
JP2000302553A (en) Corrosion resistant fluoride based combined ceramics sintered compact
JP2000313656A (en) Corrosionproof ceramic material and corrosionproof member
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
JP2007081218A (en) Member for vacuum device
JP2004059397A (en) Plasma resistant member
TW201927724A (en) Material for thermal spray, thermal spray coating using the same and manufacture methods thereof
JP2000169953A (en) Corrosion resistant member
JP2002068864A (en) Plasma resistant member and method of manufacturing for the same
JP4651145B2 (en) Corrosion resistant ceramics
JPH11292648A (en) Boron nitride-aluminum nitride laminate and its use

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080724

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees