JP3527839B2 - Components for semiconductor device manufacturing equipment - Google Patents

Components for semiconductor device manufacturing equipment

Info

Publication number
JP3527839B2
JP3527839B2 JP01583298A JP1583298A JP3527839B2 JP 3527839 B2 JP3527839 B2 JP 3527839B2 JP 01583298 A JP01583298 A JP 01583298A JP 1583298 A JP1583298 A JP 1583298A JP 3527839 B2 JP3527839 B2 JP 3527839B2
Authority
JP
Japan
Prior art keywords
plasma
semiconductor device
semiconductor
manufacturing
halogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01583298A
Other languages
Japanese (ja)
Other versions
JPH11214365A (en
Inventor
祥二 高坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP01583298A priority Critical patent/JP3527839B2/en
Publication of JPH11214365A publication Critical patent/JPH11214365A/en
Application granted granted Critical
Publication of JP3527839B2 publication Critical patent/JP3527839B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、特にフッ素系や塩
素系腐食性ガス、或いはフッ素系や塩素系プラスマに直
接曝される半導体製造装置の内壁部材や、被処理物を支
持する支持体などの治具として好適な半導体素子製造装
置用部材に関するものである。
TECHNICAL FIELD The present invention relates to an inner wall member of a semiconductor manufacturing apparatus directly exposed to a fluorine-based or chlorine-based corrosive gas, a fluorine-based or chlorine-based plasma, and a support for supporting an object to be processed. The present invention relates to a semiconductor device manufacturing apparatus member suitable as a jig.

【0002】[0002]

【従来の技術】半導体素子などの高集積回路素子の製造
に使用されるドライプロセスやプラズマコーティング等
プラズマの利用は、近年急速に進んでいる。半導体製造
におけるプラズマプロセスとしては、フッ素系等のハロ
ゲン系腐食ガスがその反応性の高さから、気相成長、エ
ッチングやクリーニングに利用されている。
2. Description of the Related Art The use of plasma such as dry process and plasma coating used in the manufacture of highly integrated circuit devices such as semiconductor devices has been rapidly progressing in recent years. As a plasma process in semiconductor manufacturing, a halogen-based corrosive gas such as a fluorine-based gas is used for vapor phase growth, etching and cleaning because of its high reactivity.

【0003】これら腐食性ガスあるいはそのプラズマに
曝される部材は、高い耐食性が要求される。従来より被
処理物以外のこれらプラズマに接触する部材は、一般に
ガラスや石英などのSiO2 を主成分とする材料や、ス
テンレス、モネルなどの金属が多用されている。
Members exposed to these corrosive gases or their plasmas are required to have high corrosion resistance. Conventionally, for members other than the object to be processed, which come into contact with these plasmas, materials such as glass and quartz having SiO 2 as a main component and metals such as stainless steel and monel are often used.

【0004】また、半導体素子製造時において、Siウ
エハ等を支持固定するサセプタを形成するための材料と
して、アルミナ、サファイヤ、炭化ケイ素などのセラミ
ックスが使用されている。
Further, ceramics such as alumina, sapphire, and silicon carbide are used as a material for forming a susceptor for supporting and fixing a Si wafer or the like when manufacturing a semiconductor element.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来から用い
られているガラスや石英はプラズマ中の耐食性が不十分
で消耗が激しく、特にフッ素或いは塩素系プラズマに接
すると接触面がエッチングされ、表面性状が変化してエ
ッチング条件に影響する等の問題が生じていた。
However, conventionally used glass and quartz have insufficient corrosion resistance in plasma and are highly consumed, and particularly when they come into contact with fluorine or chlorine-based plasma, the contact surface is etched and the surface texture is deteriorated. Change and the etching conditions are affected.

【0006】また、ステンレスなどの金属を使用した部
材で耐食性が不十分なため、腐食によって特に半導体製
造においては不良品発生の原因となっていた。
Further, since members made of metal such as stainless steel have insufficient corrosion resistance, corrosion causes a defective product particularly in semiconductor manufacturing.

【0007】アルミナ、窒化アルミニウム、炭化ケイ素
等のセラミックスは、上記ガラスや金属に比較してフッ
素系ガスに対する耐食性に優れるものの、高温でプラズ
マに曝されると腐食が徐々に進行してセラミックスの表
面から結晶粒子の脱粒が生じ、脱粒した結晶粒子(パー
ティクル)が半導体素子の製造に対して悪影響を及ぼす
といった問題が生じている。
Although ceramics such as alumina, aluminum nitride, and silicon carbide have excellent corrosion resistance to fluorine-containing gas as compared with the above-mentioned glasses and metals, when they are exposed to plasma at a high temperature, corrosion gradually progresses and the surface of the ceramics Therefore, there is a problem in that crystal grains are shattered, and the shattered crystal grains (particles) have an adverse effect on manufacturing of semiconductor elements.

【0008】特に、半導体の高集積化に伴うサブミクロ
ンオーダーの微細配線化と製造プロセスのさらなるクリ
ーン環境化に対して、このようなパーティクルの発生
は、配線パターンの断線や欠陥を招き、素子特性の劣化
や歩留りの低下等の不具合を発生させる等の恐れがあっ
た。
In particular, with respect to finer wiring on the order of submicrons associated with higher integration of semiconductors and a cleaner environment in the manufacturing process, the generation of such particles causes disconnection and defects in the wiring pattern, resulting in device characteristics. There is a risk of causing problems such as deterioration of the product and a decrease in yield.

【0009】本発明は、ハロゲン化ガスやそのプラズマ
に対して優れた耐食性を具備しつつ、腐食の進行によっ
てパーティクルが発生しても、半導体製造に対して悪影
響を及ぼすことのない半導体製造装置用部材を提供する
ことを目的とするものである。
The present invention is for a semiconductor manufacturing apparatus which has excellent corrosion resistance against halogenated gas and its plasma, and does not adversely affect semiconductor manufacturing even if particles are generated due to the progress of corrosion. It is intended to provide a member.

【0010】[0010]

【課題を解決するための手段】本発明者は、フッ素系や
塩素系などのハロゲン化ガス或いはそのプラズマに対し
て優れた耐食性を有するセラミックスであっても、腐食
の進行を完全に防止することは難しく、それによるパー
ティクルの発生も完全には抑制できないとの観点から、
パーティクルが発生した場合においても半導体製造に対
して悪影響を及ぼすことがない耐食性部材について検討
を重ねた結果、これらのガスに対しての耐食性の高いセ
ラミックスの最大結晶粒子径を半導体素子における配線
パターンの線幅よりも小さく、且つ最小線間距離より8
0%以下とすることで、パーティクルによる影響を最小
限にできることを見いだし、本発明に至った。
DISCLOSURE OF THE INVENTION The inventor of the present invention is capable of completely preventing the progress of corrosion even with a ceramic having excellent corrosion resistance to a fluorine-based or chlorine-based halogenated gas or its plasma. Is difficult and the generation of particles due to it is not completely suppressed,
As a result of repeated studies on corrosion-resistant members that do not adversely affect semiconductor manufacturing even when particles are generated, the maximum crystal grain size of ceramics with high corrosion resistance to these gases is determined by the wiring pattern of semiconductor elements. It is smaller than the line width and 8 from the minimum line distance.
It was found that the influence of particles can be minimized by setting the content to 0% or less, and the present invention has been completed.

【0011】即ち、本発明は、半導体ウエハに対してハ
ロゲン系ガス或いはそのプラズマにより処理を施し半導
体素子を製造するための装置内に設置される部材であっ
て、少なくとも前記ハロゲン系ガス或いはそのプラズマ
に曝される表面が、相対密度97%以上、最大結晶粒子
径が前記半導体素子における配線パターンの最小線幅よ
りも小さいく、最小線間距離より80%以下の耐食性セ
ラミックスによって形成されていることを特徴とするも
のであり、特に、セラミックスの最大結晶粒子径が20
0nm以下であること、耐食性セラミックスが、炭化ケ
イ素、窒化ケイ素、窒化アルミニウム、炭化ホウ素、マ
グネシア、アルミナ、スピネル化合物、希土類酸化物お
よびアルミナ−希土類酸化物化合物の群から選ばれる少
なくとも1種を主成分とすることを特徴とする。
That is, the present invention is a member installed in an apparatus for manufacturing a semiconductor device by treating a semiconductor wafer with a halogen-based gas or plasma thereof, and at least the halogen-based gas or plasma thereof. The surface to be exposed to is formed of corrosion-resistant ceramics having a relative density of 97% or more, a maximum crystal grain size smaller than the minimum line width of the wiring pattern in the semiconductor element , and 80% or less than the minimum line distance . In particular, the maximum crystal grain size of ceramics is 20
0 nm or less, the corrosion-resistant ceramics contains at least one selected from the group consisting of silicon carbide, silicon nitride, aluminum nitride, boron carbide, magnesia, alumina, spinel compounds, rare earth oxides and alumina-rare earth oxide compounds. It is characterized by

【0012】また、本発明の半導体素子製造装置用部材
は、半導体ウエハに対してハロゲン系ガス或いはそのプ
ラズマにより処理を施し半導体素子を製造するための装
置内に設置される部材であって、少なくとも前記ハロゲ
ン系ガス或いはそのプラズマに曝される表面が、相対密
度97%以上、最大結晶粒子径が200nm以下の耐食
性セラミックスにより形成されていることを特徴とする
ものである。また、本発明の半導体素子製造装置用部材
の製造方法は、一次粒子径が200nm以下のセラミッ
クス原料粉末を、所定の部材形状に成形した後、最大結
晶粒子径が半導体素子における配線パターンの最小線幅
よりも小さく、最小線間距離より80%以下、相対密度
が97%以上になるように焼成することを特徴とするも
ので、前記セラミックス原料粉末が、ゾルゲル法、気相
合成法又はプラズマ合成法で作製されたことが好まし
The semiconductor element manufacturing apparatus member of the present invention is a member installed in an apparatus for manufacturing a semiconductor element by processing a semiconductor wafer with a halogen-based gas or its plasma, and at least The surface exposed to the halogen-based gas or its plasma is formed of corrosion-resistant ceramics having a relative density of 97% or more and a maximum crystal grain diameter of 200 nm or less. Further, the member for semiconductor device manufacturing apparatus of the present invention
The manufacturing method is for ceramics with a primary particle diameter of 200 nm or less.
After molding the raw material powder into the specified shape,
The minimum grain width of the wiring pattern in a semiconductor device
Smaller than 80% or less than the minimum distance between lines, relative density
Is characterized by firing so that
Therefore, the ceramic raw material powder is sol-gel method, gas phase
It is preferable that it is made by a synthesis method or a plasma synthesis method.
Yes .

【0013】[0013]

【発明の実施の形態】本発明の半導体素子製造装置用部
材は、半導体ウエハに対して配線パターンを形成する際
のハロゲン系ガス或いはそのプラズマによるエッチング
処理や、成膜処理等を施すのに用いられる製造装置に適
用されるものである。
BEST MODE FOR CARRYING OUT THE INVENTION The member for a semiconductor device manufacturing apparatus of the present invention is used for performing an etching process by a halogen-based gas or its plasma when forming a wiring pattern on a semiconductor wafer, a film forming process and the like. It is applied to the manufacturing equipment.

【0014】より具体的には、その製造装置内における
ハロゲン系ガス或いはそのプラズマにその一部あるいは
全部が曝されるような製造装置内の構造部材、例えば、
装置内の内壁、ガスノズル、スペーサーリング、静電チ
ャック等の部材に関するものである。
More specifically, a structural member in the manufacturing apparatus, for example, a part or all of which is exposed to the halogen-based gas in the manufacturing apparatus or the plasma thereof, for example,
The present invention relates to members such as an inner wall of an apparatus, a gas nozzle, a spacer ring, and an electrostatic chuck.

【0015】本発明の部材が曝されるフッ素系または塩
素系等のハロゲン系の腐食ガスまたはプラズマとは、S
6 、CF4 、CHF3 、ClF3 、HF等のフッ素系
ガス、またCl2 、BCl3 、HCl等の塩素系ガスが
挙げられ、これらのガスが導入された雰囲気にマイクロ
波や高周波等を導入してこれらのガスがプラズマ化され
たものである。
The halogen-based corrosive gas or plasma to which the member of the present invention is exposed is fluorine-based or chlorine-based corrosive gas.
Fluorine-based gases such as F 6 , CF 4 , CHF 3 , ClF 3 and HF, and chlorine-based gases such as Cl 2 , BCl 3 and HCl are mentioned. Microwaves, high frequencies, etc. are introduced into the atmosphere into which these gases are introduced. Is introduced to convert these gases into plasma.

【0016】本発明における耐食性部材は、少なくとも
上記のガスあるいはプラズマ曝される表面が、耐食性の
高いセラミックス、具体的には、炭化ケイ素、窒化ケイ
素、窒化アルミニウム、炭化ホウ素、マグネシア、アル
ミナ、スピネル等のマグネシア−アルミナ化合物、イッ
トリア、セリア等の希土類酸化物、イットリウムアルミ
ニウムガーネット(YAG)等のアルミナ−希土類酸化
物化合物を主成分とするセラミックスによって形成され
たものである。
In the corrosion-resistant member of the present invention, at least the surface exposed to the above-mentioned gas or plasma has high corrosion resistance, specifically, silicon carbide, silicon nitride, aluminum nitride, boron carbide, magnesia, alumina, spinel, etc. Of magnesia-alumina compound, rare earth oxides such as yttria and ceria, and alumina-rare earth oxide compounds such as yttrium aluminum garnet (YAG).

【0017】また、本発明によれば、このセラミックス
は、相対密度97%以上、好ましくは98%以上の緻密
体からなることが重要である。これは、前記相対密度が
97%よりも小さいと、セラミックス中に気孔が多くな
り、腐食ガスやプラズマとの接触面積が増加し、消耗が
速くなる、即ち腐食速度が大きくなってしまうためであ
る。
Further, according to the present invention, it is important that the ceramic is a dense body having a relative density of 97% or more, preferably 98% or more. This is because if the relative density is less than 97%, the ceramics will have many pores, the contact area with the corrosive gas or plasma will increase, and the consumption will increase, that is, the corrosion rate will increase. .

【0018】セラミックスの表面の腐食性ガスやそのプ
ラズマによる腐食の進行によって、セラミックス表面か
ら結晶粒子が脱粒する。結晶粒子の脱粒(パーティクル
の発生)は、セラミックスにおける結晶粒子同士を結合
している粒界相の腐食速度が結晶粒子よりも速いため
に、粒界相を失った結晶粒子が脱落する現象であって、
通常、結晶粒子一個単位で脱落する。従って、発生する
パーティクルサイズは、セラミックスの結晶粒子径とほ
ぼ同一か、それよりも若干小さい粒子径からなる。
As the corrosive gas on the surface of the ceramic and its corrosion progress by the plasma, crystal grains are shed from the surface of the ceramic. Crystal grain shedding (generation of particles) is a phenomenon in which the grain boundary phase that binds crystal grains in ceramics has a higher corrosion rate than the crystal grains, so that crystal grains that have lost the grain boundary phase fall out. hand,
Usually, it falls off in units of one crystal grain. Therefore, the generated particle size is substantially the same as or slightly smaller than the crystal particle size of ceramics.

【0019】そこで、本発明によれば、セラミックスに
おける最大結晶粒子径を半導体素子における配線パター
ンの最小線幅よりも小さくすることによって、パーティ
クルが発生し半導体素子の配線パターン上に落ちても、
配線パターンの機能自体への影響を最小限に抑えること
ができ、配線パターンの最小線幅および最小線間距離よ
り80%以下、特に50%以下の最大結晶粒子径である
ことが重要である
Therefore, according to the present invention, by making the maximum crystal grain diameter in ceramics smaller than the minimum line width of the wiring pattern in the semiconductor element, even if particles are generated and fall on the wiring pattern of the semiconductor element,
It is important that the influence of the wiring pattern on the function itself can be minimized, and that the maximum crystal grain diameter is 80% or less, especially 50% or less of the minimum line width and the minimum interline distance of the wiring pattern.

【0020】なお、現在の半導体素子における配線パタ
ーンの線幅は300nm程度が主流であることから、最
大結晶粒子径が200nm以下、好ましくは100nm
以下の微細な結晶粒子からなる場合には、あらゆる半導
体素子製造装置用として適用することが可能となる。
Since the line width of the wiring pattern in the present semiconductor device is about 300 nm, the maximum crystal grain size is 200 nm or less, preferably 100 nm.
When it is composed of the following fine crystal particles, it can be applied to any semiconductor device manufacturing apparatus.

【0021】従って、セラミックスにおける最大結晶粒
子径が、前記半導体素子における配線パターンの最小線
幅よりも大きいと、半導体素子の配線パターンを断線さ
せたり、ショートさせるなどの配線不良を発生させる恐
れが大きくなり、半導体素子の製造の歩留りを低下さ
せ、高コスト化を招いてしまう。
Therefore, if the maximum crystal grain size in the ceramics is larger than the minimum line width of the wiring pattern in the semiconductor element, there is a high possibility that the wiring pattern of the semiconductor element may be broken or short-circuited. As a result, the manufacturing yield of semiconductor elements is reduced, and the cost is increased.

【0022】本発明におけるセラミックスを製造するに
は、主成分となるセラミックス原料粉末として、ゾルゲ
ル法、気相合成法、またはプラズマ合成法で作製された
一次粒子径が200nm以下の微粉末を用いる。そし
て、それらの主成分原料粉末、あるいは適宜焼結助剤等
を添加した混合粉末を所望の成形手段、例えば、金型プ
レス、冷間静水圧プレス、射出成形、押出し成形等によ
り、所定の部材形状に成形した後、相対密度97%以上
にまで焼成して緻密化する。焼成方法としては、用いる
主成分組成によって周知の条件で焼成することができ、
常圧焼成、ホットプレス、雰囲気ガス加圧焼成法、熱間
静水圧焼成法、マイクロ波焼成法などが挙げられる。
To produce the ceramics of the present invention, fine powder having a primary particle diameter of 200 nm or less produced by a sol-gel method, a gas phase synthesis method or a plasma synthesis method is used as a ceramic raw material powder as a main component. Then, the main component raw material powder, or a mixed powder to which a sintering aid or the like is appropriately added is formed into a predetermined member by a desired molding means such as a die press, a cold isostatic press, injection molding, and extrusion molding. After being shaped into a shape, it is densified by firing to a relative density of 97% or more. As a firing method, firing can be performed under known conditions depending on the main component composition used,
Examples include normal pressure firing, hot pressing, atmospheric gas pressure firing method, hot isostatic pressure firing method, and microwave firing method.

【0023】[0023]

【実施例】まず、表1に示す各セラミックスからなる部
材を作製した。MgOセラミックスは、一次粒子径が1
0〜200nmのMgO原料粉末を成形後、大気雰囲気
中で1300℃で焼成したものである。
EXAMPLES First, members made of each ceramic shown in Table 1 were prepared. The primary particle diameter of MgO ceramics is 1
The MgO raw material powder having a particle size of 0 to 200 nm is molded and then fired at 1300 ° C. in the air atmosphere.

【0024】Al2 3 セラミックスは、一次粒子径が
80nmのAl2 3 原料粉末を成形後、1250〜1
500℃で焼成したものである。
The Al 2 O 3 ceramics have a diameter of 1250 to 1250 after forming Al 2 O 3 raw material powder having a primary particle diameter of 80 nm.
It was baked at 500 ° C.

【0025】スピネルセラミックスは、一次粒子径が5
0nmのMgO粉末と、100nmのAl2 3 粉末を
1:1のモル比で混合し、成形後、大気雰囲気中で14
00℃で焼成したものである。
Spinel ceramics have a primary particle size of 5
MgO powder of 0 nm and Al 2 O 3 powder of 100 nm were mixed at a molar ratio of 1: 1 and after molding, the mixture was mixed in an air atmosphere for 14
It was baked at 00 ° C.

【0026】Y2 3 セラミックスは、100nmのY
2 3 原料粉末を成形後、真空中、1800℃で焼成し
たものである。
Y 2 O 3 ceramics have a Y of 100 nm.
2 O 3 raw material powder is molded and then fired at 1800 ° C. in vacuum.

【0027】YAGセラミックスは、80nmのAl2
3 粉末と、100nmのY2 粉末を5:3のモル
比で混合後、成形し、真空中、1800℃、1900℃
で焼成したものである。
YAG ceramics is Al 2 of 80 nm
O 3 powder and Y 2 O 3 powder of 100 nm were mixed at a molar ratio of 5: 3, and then molded, and in vacuum, 1800 ° C., 1900 ° C.
It was baked in.

【0028】各セラミックスからなる部材について、ア
ルキメデス法により相対密度を算出するとともに、セラ
ミックスの最大結晶粒子径を透過型電子顕微鏡写真か
ら、任意の5箇所を観察して最大結晶粒子径を求めた。
The relative density of each ceramic member was calculated by the Archimedes method, and the maximum crystal particle size of the ceramics was determined by observing arbitrary 5 spots from a transmission electron micrograph.

【0029】次に、RIEプラズマエッチング装置に
て、これらの部材をCF(60sccm)+ Ar
(60sccm)のフッ素系プラズマに室温で曝し、エ
ッチング速度、パーティクルの有無とその最大径を調査
した。結果を表1に示す。エッチング条件はいずれも圧
力10Pa、RF出力1kW、プラズマ照射時間6時間
とした。エッチング速度は試験前後の重量変化を基に算
出し、パーティクルの発生の有無は電子顕微鏡にて試料
表面を観察して、表面への粒子の付着の有無を観察し
た。結果は表1に示した。
Next, these members were CF 4 (60 sccm) + Ar in an RIE plasma etching apparatus.
The film was exposed to (60 sccm) fluorine-based plasma at room temperature, and the etching rate, the presence or absence of particles, and the maximum diameter thereof were investigated. The results are shown in Table 1. The etching conditions were a pressure of 10 Pa, an RF output of 1 kW, and a plasma irradiation time of 6 hours. The etching rate was calculated based on the weight change before and after the test, and the presence or absence of particles was observed by observing the sample surface with an electron microscope to observe the presence or absence of particles adhering to the surface. The results are shown in Table 1.

【0030】なお、比較のために、Si単結晶、SiO
2 単結晶(石英)についても同様な評価を行い、結果を
表1に示した。
For comparison, Si single crystal, SiO
The same evaluation was performed for 2 single crystals (quartz), and the results are shown in Table 1.

【0031】また、上記の各セラミックスをプラズマエ
ッチング装置において、内壁の一部に貼り付けて、Si
ウエハに対してプラズマエッチング法によって線幅が2
50nmのアルミニウムからなる微細なパターンを形成
した時の配線の断線の有無を検査した。
Further, in the plasma etching apparatus, each of the above-mentioned ceramics was attached to a part of the inner wall to form Si.
The line width is 2 on the wafer by the plasma etching method.
The presence or absence of disconnection of the wiring when a fine pattern of 50 nm aluminum was formed was inspected.

【0032】[0032]

【表1】 [Table 1]

【0033】表1の結果によれば、Si、SiO2 (石
英)からなる試料No.12、13はいずれもエッチング
速度が速く、消耗が激しかった。セラミックスにおける
最大結晶粒子径が200nmを越える試料No.1、4は
発生したパーティクルが配線パターンより大きく、断線
が生じてしまう。
According to the results shown in Table 1, the samples No. 12 and 13 made of Si and SiO 2 (quartz) had a high etching rate and were consumed greatly. In the samples No. 1 and 4 in which the maximum crystal grain diameter of ceramics exceeds 200 nm, the generated particles are larger than the wiring pattern and disconnection occurs.

【0034】また、試料の相対密度が97%より低い試
料No.7は、エッチング速度が大きく、腐食が進行し、
耐食性が大きく低下した。
Sample No. 7, which has a relative density of less than 97%, has a high etching rate and corrosion progresses.
Corrosion resistance is greatly reduced.

【0035】一方、本発明による部材は、いずれもエッ
チング速度も小さく、耐食性も高く、また、発生したパ
ーティクルの大きさも小さいものであった。
On the other hand, all the members according to the present invention had a low etching rate, a high corrosion resistance, and a small particle size.

【0036】[0036]

【発明の効果】以上詳述した通り、本発明によれば、ハ
ロゲン系腐食性ガス或いはプラズマに曝される部材とし
て、高い耐食性を有し、パーティクルが発生した場合に
おいてもそのパーティクル径が非常に小さいために、半
導体素子の配線パターンに対して悪影響を及ぼすことを
抑制できる結果、半導体素子の製造歩留りを向上させ、
高品質の半導体素子を低コストで製造することができ
る。
As described in detail above, according to the present invention, a member exposed to a halogen-based corrosive gas or plasma has high corrosion resistance, and even if particles are generated, the particle diameter is very high. Since it is small, it is possible to suppress the adverse effect on the wiring pattern of the semiconductor element, and as a result, the manufacturing yield of the semiconductor element is improved,
High quality semiconductor devices can be manufactured at low cost.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 21/3065 C04B 35/00 - 35/22 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01L 21/3065 C04B 35/00-35/22

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体ウエハに対してハロゲン系ガス或い
はそのプラズマにより処理を施し半導体素子を製造する
ための装置内に設置される部材であって、少なくとも前
記ハロゲン系ガス或いはそのプラズマに曝される表面
が、相対密度97%以上、最大結晶粒子径が前記半導体
素子における配線パターンの最小線幅よりも小さく、最
小線間距離より80%以下の耐食性セラミックスによっ
て形成されていることを特徴とする半導体素子製造装置
用部材。
1. A member installed in an apparatus for manufacturing a semiconductor device by treating a semiconductor wafer with a halogen-based gas or plasma thereof, which is exposed to at least the halogen-based gas or plasma thereof. A semiconductor characterized in that a surface has a relative density of 97% or more, a maximum crystal grain diameter is smaller than a minimum line width of a wiring pattern in the semiconductor element, and is 80% or less than a minimum line distance between the corrosion resistant ceramics. Member for device manufacturing equipment.
【請求項2】前記セラミックスの最大結晶粒子径が20
0nm以下であることを特徴とする請求項1記載の半導
体素子製造装置用部材。
2. The maximum crystal grain size of the ceramic is 20.
It is 0 nm or less, The member for semiconductor device manufacturing apparatuses of Claim 1 characterized by the above-mentioned.
【請求項3】耐食性セラミックスが、炭化ケイ素、窒化
ケイ素、窒化アルミニウム、炭化ホウ素、マグネシア、
アルミナ、スピネル化合物、希土類酸化物、アルミナ−
希土類酸化物化合物の群から選ばれる少なくとも1種を
主成分とすることを特徴とする請求項1記載の半導体製
造装置用部材。
3. Corrosion resistant ceramics include silicon carbide, silicon nitride, aluminum nitride, boron carbide, magnesia,
Alumina, spinel compound, rare earth oxide, alumina-
The member for a semiconductor manufacturing apparatus according to claim 1, which contains at least one selected from the group of rare earth oxide compounds as a main component.
【請求項4】半導体ウエハに対してハロゲン系ガス或い
はそのプラズマにより処理を施し半導体素子を製造する
ための装置内に設置される部材であって、少なくとも前
記ハロゲン系ガス或いはそのプラズマに曝される表面
が、相対密度97%以上、最大結晶粒子径が200nm
以下の耐食性セラミックスにより形成されていることを
特徴とする半導体素子製造装置用部材。
4. A member installed in an apparatus for manufacturing a semiconductor device by treating a semiconductor wafer with a halogen-based gas or plasma thereof, which is exposed to at least the halogen-based gas or plasma thereof. The surface has a relative density of 97% or more and a maximum crystal grain size of 200 nm
A member for a semiconductor device manufacturing apparatus, which is formed of the following corrosion resistant ceramics.
【請求項5】一次粒子径が200nm以下のセラミック
ス原料粉末を、所定の部材形状に成形した後、最大結晶
粒子径が半導体素子における配線パターンの最小幅およ
び最小線間距離より80%以下、相対密度が97%以上
になるように焼成することを特徴とする半導体素子製造
装置用部材の製造方法。
5. A ceramic raw material powder having a primary particle diameter of 200 nm or less is molded into a predetermined member shape, and then the maximum crystal particle diameter is 80% or less relative to the minimum width and the minimum distance between wiring patterns of a semiconductor element, and A method for manufacturing a member for a semiconductor device manufacturing apparatus, which comprises firing so as to have a density of 97% or more.
【請求項6】前記セラミックス原料粉末が、ゾルゲル
法、気相合成法又はプラズマ合成法で作製されたことを
特徴とする請求項5記載の半導体素子製造装置用部材の
製造方法。
6. The method for manufacturing a member for a semiconductor device manufacturing apparatus according to claim 5, wherein the ceramic raw material powder is manufactured by a sol-gel method, a gas phase synthesis method or a plasma synthesis method.
JP01583298A 1998-01-28 1998-01-28 Components for semiconductor device manufacturing equipment Expired - Fee Related JP3527839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01583298A JP3527839B2 (en) 1998-01-28 1998-01-28 Components for semiconductor device manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01583298A JP3527839B2 (en) 1998-01-28 1998-01-28 Components for semiconductor device manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH11214365A JPH11214365A (en) 1999-08-06
JP3527839B2 true JP3527839B2 (en) 2004-05-17

Family

ID=11899825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01583298A Expired - Fee Related JP3527839B2 (en) 1998-01-28 1998-01-28 Components for semiconductor device manufacturing equipment

Country Status (1)

Country Link
JP (1) JP3527839B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001179080A (en) * 1999-12-27 2001-07-03 Nihon Ceratec Co Ltd Member for treating substrate contaminated with metallic substance at low degree
JP2006315955A (en) * 2000-07-10 2006-11-24 Toshiba Ceramics Co Ltd Ceramic member
JP4688307B2 (en) * 2000-07-11 2011-05-25 コバレントマテリアル株式会社 Plasma-resistant member for semiconductor manufacturing equipment
JP4733819B2 (en) * 2000-09-01 2011-07-27 太平洋セメント株式会社 Method of forming corrosion-resistant ceramic sprayed coating
JP4523134B2 (en) * 2000-09-06 2010-08-11 太平洋セメント株式会社 Vacuum processing apparatus member and electrostatic chuck
WO2002052628A1 (en) * 2000-12-26 2002-07-04 Tokyo Electron Limited Plasma processing method and plasma processor
JP2002198356A (en) * 2000-12-26 2002-07-12 Tokyo Electron Ltd Plasma treatment apparatus
US6805952B2 (en) * 2000-12-29 2004-10-19 Lam Research Corporation Low contamination plasma chamber components and methods for making the same
JP4585129B2 (en) * 2001-02-15 2010-11-24 太平洋セメント株式会社 Electrostatic chuck
JP4903322B2 (en) * 2001-08-20 2012-03-28 株式会社日本セラテック Yttrium oxide material
JP2003264169A (en) * 2002-03-11 2003-09-19 Tokyo Electron Ltd Plasma treatment device
JP4648030B2 (en) * 2005-02-15 2011-03-09 日本碍子株式会社 Yttria sintered body, ceramic member, and method for producing yttria sintered body
JP4796354B2 (en) * 2005-08-19 2011-10-19 日本碍子株式会社 Electrostatic chuck and method for producing yttria sintered body
JP5014656B2 (en) * 2006-03-27 2012-08-29 国立大学法人東北大学 Plasma processing apparatus member and manufacturing method thereof
EP2123615A4 (en) * 2007-01-17 2012-05-09 Toto Ltd Ceramic member and corrosion-resistant member
US9633822B2 (en) 2011-10-31 2017-04-25 Kyocera Corporation Gas nozzle, plasma apparatus using the same, and method for manufacturing gas nozzle
WO2014119177A1 (en) * 2013-01-30 2014-08-07 京セラ株式会社 Gas nozzle and plasma device employing same

Also Published As

Publication number Publication date
JPH11214365A (en) 1999-08-06

Similar Documents

Publication Publication Date Title
JP3527839B2 (en) Components for semiconductor device manufacturing equipment
US6933254B2 (en) Plasma-resistant articles and production method thereof
US6383964B1 (en) Ceramic member resistant to halogen-plasma corrosion
US6645585B2 (en) Container for treating with corrosive-gas and plasma and method for manufacturing the same
JP3619330B2 (en) Components for plasma process equipment
KR101457215B1 (en) Yttrium oxide-containing material, component of semiconductor manufacturing equipment, amd method of producing yttrium oxide-containing material
JP3261044B2 (en) Components for plasma processing equipment
JP3618048B2 (en) Components for semiconductor manufacturing equipment
JP2002068838A (en) Plasma resistant member and method for manufacturing the same
JP3555442B2 (en) Alumina ceramic material excellent in plasma corrosion resistance and method for producing the same
JP2000103689A (en) Alumina sintered compact, its production and plasma- resistant member
EP0708065A1 (en) Plasma fluorine resistant polycristalline alumina ceramic material and method of making
JP3808245B2 (en) Chamber component for semiconductor manufacturing
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
JP2001151559A (en) Corrosion-resistant member
JP2001240482A (en) Plasma resistance material, high-frequency transmission material, and plasma equipment
JP2001199762A (en) Corrosion-resisting ceramic material
JP3769416B2 (en) Components for plasma processing equipment
JP3784180B2 (en) Corrosion resistant material
JP3500278B2 (en) Corrosion resistant materials for semiconductor manufacturing
JP4733819B2 (en) Method of forming corrosion-resistant ceramic sprayed coating
JP4623794B2 (en) Alumina corrosion resistant member and plasma apparatus
JPH11279761A (en) Corrosion resistant member
JPH11278944A (en) Silicon nitride corrosion resistant member and its production
JP3971539B2 (en) Alumina plasma corrosion resistant material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees