WO2014119177A1 - Gas nozzle and plasma device employing same - Google Patents

Gas nozzle and plasma device employing same Download PDF

Info

Publication number
WO2014119177A1
WO2014119177A1 PCT/JP2013/084380 JP2013084380W WO2014119177A1 WO 2014119177 A1 WO2014119177 A1 WO 2014119177A1 JP 2013084380 W JP2013084380 W JP 2013084380W WO 2014119177 A1 WO2014119177 A1 WO 2014119177A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
gas nozzle
gas
sintered body
hole
Prior art date
Application number
PCT/JP2013/084380
Other languages
French (fr)
Japanese (ja)
Inventor
梶原 勇輝
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2014559522A priority Critical patent/JP6046752B2/en
Priority to US14/763,106 priority patent/US9790596B1/en
Publication of WO2014119177A1 publication Critical patent/WO2014119177A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45568Porous nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • C23C16/45589Movable means, e.g. fans
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32467Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • H01J37/32495Means for protecting the vessel against plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/14Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4404Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber

Definitions

  • the present invention relates to a gas nozzle used in a plasma apparatus such as a film forming apparatus or an etching apparatus in a semiconductor manufacturing process or a liquid crystal manufacturing process, for example, and a plasma apparatus using the same.
  • a film forming apparatus for forming a thin film on an object such as a semiconductor wafer or a glass substrate or a plasma apparatus such as an etching apparatus for performing fine processing on the object. It has been.
  • a raw material gas is supplied into a reaction chamber, and this gas chemically reacts to form a thin film on the object.
  • a halogen-based corrosive gas is supplied as a raw material gas into the reaction chamber, and this gas is turned into plasma to become an etching gas, whereby the object is finely processed.
  • the plasma apparatus has a gas nozzle for supplying gas into the reaction chamber.
  • the gas nozzle includes a columnar body made of a ceramic sintered body in which a through hole through which a gas flows is formed.
  • the surface of the ceramic sintered body constituting the inner wall of the through hole is damaged when exposed to plasma gas in the reaction chamber, and particles may fall off from this surface. is there. When these particles adhere to the target object, the target object tends to be defective.
  • the present invention provides a gas nozzle that meets the demand of reducing particle dropout.
  • a gas nozzle includes a columnar body made of a ceramic sintered body in which a through hole through which a gas flows is formed. An outlet of the gas in the through hole is formed on one end surface of the main body.
  • the inner wall of the through hole has a first region located near the outlet and a second region located inside the main body with respect to the first region. Said 1st area
  • region consist of the baking surface of the said ceramic sintered compact.
  • the average crystal grain size in the first region is larger than the average crystal grain size in the second region.
  • a plasma apparatus includes a reaction chamber, the gas nozzle through which the gas flows into the reaction chamber, and a discharge member that converts the gas into plasma by discharge.
  • FIG. 1 It is sectional drawing of the film-forming apparatus using the gas nozzle by one Embodiment of this invention.
  • A is a perspective view of the gas nozzle shown in FIG. 1, and (b) is a cross-sectional view taken along line A1-A1 of (a).
  • A) And (b) is sectional drawing of the part corresponded to FIG.2 (b) which shows the manufacturing process of the gas nozzle shown in FIG.
  • A) And (b) is sectional drawing of the part corresponded to FIG.2 (b) which shows the manufacturing process of the gas nozzle shown in FIG.
  • a film forming apparatus 1 of this embodiment is an apparatus for forming a thin film on an object 2 such as a semiconductor wafer or a glass substrate by, for example, a plasma CVD method.
  • the film forming apparatus 1 includes a reaction chamber 3 in which an object 2 is accommodated and a film is formed on the object 2, a gas supply pipe 4 outside the reaction chamber 3 that supplies a raw material gas to the reaction chamber 3, A gas nozzle 5 in the reaction chamber 3 for supplying gas from the gas supply pipe 4 into the reaction chamber 3, and a holding member such as an electrostatic chuck on which the object 2 is placed in the reaction chamber 3 and an internal electrode 6 is provided.
  • the film forming apparatus 1 may further include a plate-like member having a flow path through which the gas flows, interposed between the gas supply pipe 4 and the gas nozzle 5.
  • the film forming apparatus 1 can form a thin film on the object 2 as follows, for example.
  • a raw material gas is supplied into the reaction chamber 3 from the gas supply pipe 4 through the gas nozzle 5.
  • the gas supplied into the reaction chamber 3 is turned into plasma above the object 2 by electric discharge from the coil 9 and the power supply 10.
  • the plasma gas atom or molecule is chemically reacted and deposited on the object 2 to form a thin film on the object 2.
  • SiO 2 silicon oxide
  • SiH 4 silane
  • Ar argon
  • oxygen (O 2 ) gas, and the like are supplied to the reaction chamber 3 as raw materials.
  • nitrogen trifluoride (NF 3 ) gas, octafluoropropane (C 3 F 8 ) gas, or the like is supplied to the reaction chamber 3 when unnecessary deposits are cleaned by plasma.
  • the gas nozzle 5 of this embodiment has a cylindrical main body 12 made of a ceramic sintered body in which a through hole 11 through which a gas flows is formed.
  • the main body 12 has an end surface 13 that is a lower surface, the other end surface 14 that is an upper surface, and a side surface 15 that is located between the one end surface 13 and the other end surface 14.
  • the diameter (width) of the main body 12 is, for example, 30 mm or more and 100 mm or less.
  • the height of the main body 12 is 30 mm or more and 100 mm or less, for example.
  • the main body 12 may be columnar, for example, polygonal columnar.
  • yttria (Y 2 O 3 ) sintered body As the ceramic sintered body of the main body 12, yttria (Y 2 O 3 ) sintered body, yttrium aluminum garnet (YAG) sintered body, for example, magnesium aluminate sintered body (MgAl 2 O 4 ) spinel firing It is desirable to use a sintered body or an alumina (Al 2 O 3 ) sintered body (hereinafter referred to as a high-purity alumina sintered body) having an alumina purity of 99.5% by mass or more. As a result, the plasma resistance of the ceramic sintered body can be improved.
  • the alumina purity is a content obtained by converting aluminum into an oxide in the alumina sintered body, and can be obtained as follows. First, a part of the alumina sintered body is pulverized, and the obtained powder is dissolved in a solution such as hydrochloric acid. Next, the dissolved solution is measured using an ICP (Inductively Coupled Plasma) emission spectroscopic analyzer (manufactured by Shimadzu Corporation: ICPS-8100, etc.). Thereby, the metal amount of each obtained component is converted into an oxide, and the alumina purity is obtained.
  • ICP Inductively Coupled Plasma
  • the main body 12 When the main body 12 is made of an yttria sintered body, it has higher plasma resistance than an yttrium / aluminum / garnet sintered body, a spinel sintered body, or a high-purity alumina sintered body. Therefore, damage to the main body 12 due to the plasma gas can be suppressed, so that the gas nozzle 5 can be used for a long period of time.
  • the yttria sintered body used for the main body 12 contains, for example, 99% by mass or more and 99.99% by mass or less of yttria as a main component, and 0. 0% of zirconium (Zr) or silicon (Si) as a sintering aid. It is contained in an amount of 01% by mass to 1% by mass.
  • content of each component in a yttria sintered compact is content which converted these into oxide, and can be calculated
  • the plasma resistance is not less than a certain level, and mechanical characteristics and thermal characteristics are excellent as compared with the yttria sintered body.
  • the spinel sintered body used for the main body 12 contains, for example, magnesium aluminate as a main component, for example, 90 mass% or more and 99.9 mass% or less, and calcium (Ca), magnesium (Mg), or zirconium is a sintering aid. As 0.1 mass% or more and 10 mass% or less. As a result, plasma resistance can be improved.
  • content of each component in a spinel sintered compact is content which converted these into the oxide, and can be calculated
  • the through-hole 11 may consist of only the first hole 18 or may further include a hole having a diameter different from that of the first hole 18 and the second hole 19.
  • the 1st hole part 18 and the 2nd hole part 19 should just be columnar shape, for example, may be polygonal columnar shape.
  • the longitudinal directions of the first hole 18 and the second hole 19 may be parallel to the longitudinal direction of the main body 12 or may not be parallel.
  • the inner wall of the first hole portion 18 is made of a sintered surface of a ceramic sintered body.
  • the burnt surface is a surface that has not been processed after the ceramic sintered body is obtained by firing and is still fired.
  • the inner wall of the first hole 18 has a first region 21 located near the outlet 16 and a second region 22 located inside the main body 12 rather than the first region 21.
  • the second region 22 of the present embodiment is a region other than the first region 21 in the first hole 18.
  • the inner wall of the second hole portion 19 is made of a processed surface such as a ground surface or a polished surface of a ceramic sintered body.
  • the ground surface is a surface on which grinding is performed after obtaining a ceramic sintered body by firing.
  • the polished surface is a surface that is subjected to grinding after the ceramic sintered body is obtained by firing, and further subjected to polishing.
  • the inner wall of the second hole 19 has a third region 23 located near the inflow port 17 and a fourth region 24 located inside the main body 12 more than the third region 23.
  • the fourth region 24 of the present embodiment is a region other than the third region 23 in the second hole 19.
  • it can confirm that the inner wall of the 2nd hole part 19 is a processed surface by observing the inner wall of the 2nd hole part 19 with a scanning electron microscope or a metal microscope.
  • the surface of the ceramic sintered body constituting the inner wall of the through hole 11 may be exposed to a plasma gas in the reaction chamber 3.
  • the average crystal grain size in the first region 21 is larger than the average crystal grain size in the second region 22.
  • the average crystal grain size on the surface of the ceramic sintered body is large, the ratio of the area on the surface of the sintered surface of the crystal grain boundary that is easily corroded by plasma decreases. For this reason, it becomes difficult for particles to fall off when the burnt skin surface is exposed to a plasma gas. Therefore, since it is located in the vicinity of the outlet 16, it is possible to satisfactorily reduce the generation of particles in the first region 21 that is more easily exposed to plasmad gas than the second region 22. Therefore, the adhesion of particles to the object 2 can be reduced, and the occurrence of defects in the object 2 can be suppressed.
  • the mechanical strength of the surface of the ceramic surface increases. Therefore, in the second region 22 which is located inside the main body 12 and is less exposed to the plasmad gas than the first region 21, the mechanical strength is increased while reducing the influence of the plasmad gas. Damage to the main body 12 due to mechanical stress or thermal stress can be suppressed.
  • the average crystal grain size in the first region 21 is desirably 1.5 times or more than the average crystal grain size in the second region 22. As a result, the generation of particles in the first region 21 can be favorably reduced. Further, the average crystal grain size in the first region 21 is desirably 10 times or less than the average crystal grain size in the second region 22. The average crystal grain size in the first region 21 is, for example, 3 ⁇ m or more and 20 ⁇ m or less. The average crystal grain size in the second region 22 is, for example, 2 ⁇ m or more and 10 ⁇ m or less.
  • the inner wall of the first hole portion 18 is a burnt surface
  • the inner wall of the second hole portion 19 is a processed surface such as a ground surface or a polished surface. Therefore, since the inner wall of the first hole 18 that is easily exposed to plasma gas because it is located on the outlet 16 side of the second hole 19 is made of a burnt surface, the generation of particles can be reduced well. Can do.
  • the second hole portion 19 can improve the accuracy of the position and shape by machining as compared with the case where the inner wall is made of a burnt surface.
  • the second hole portion 19 which is located on the inlet 17 side of the first hole portion 18 and is not easily exposed to plasma gas, the influence of the plasma gas is reduced, and the position and shape accuracy are increased. Further, gas leakage due to poor connection between the gas nozzle 5 and the gas supply pipe 4 can be suppressed.
  • the third region 23 located in the vicinity of the inflow port 17 is formed by a processing surface such as a grinding surface or a polishing surface, and thus is caused by poor connection between the gas nozzle 5 and the gas supply pipe 4. Gas leakage can be suppressed satisfactorily.
  • the third region 20 is preferably a region having a distance of 5 mm or less from the inflow port 17.
  • the one end surface 13 of the main body 12 is made of a sintered surface of a ceramic sintered body.
  • the one end face 13 that is easily exposed to plasma gas is a burnt surface, the generation of particles can be reduced satisfactorily.
  • the burnt surface is continuously formed from the one end surface 13 of the main body 12 to the first region 21 of the through hole 11. As a result, the generation of particles can be reduced favorably.
  • the one end surface 13 may be a processed surface such as a ground surface or a polished surface. In this case, it is desirable that the one end surface 13 is a polished surface from the viewpoint of suppressing the falling off of the particles.
  • the other end surface 14 of the main body 12 is preferably made of a ground surface or a polished surface of a ceramic sintered body.
  • a main body sintered body 25 which is a ceramic sintered body before the through hole 11 of the main body 12 is formed is prepared. Specifically, for example, the following is performed.
  • pure water and an organic binder are added to the ceramic powder, and then wet mixed with a ball mill to prepare a slurry.
  • the slurry is granulated by spray drying to form a ceramic powder.
  • the ceramic powder is molded into a predetermined shape using a molding method such as a die pressing method or a cold isostatic pressing method (CIP molding method), and the cylindrical shape shown in FIG.
  • the molded body 26 is obtained.
  • a recess 27 that opens to the one end surface 13 that forms the first hole 18 described above is formed in the molded body 26 by cutting.
  • firing is performed at, for example, 1400 ° C. or more and 2000 ° C.
  • the molded body 26 is fired by placing the molded body 26 on the mounting table 28 of the firing furnace while exposing the one end surface 13 with the recess 27 opened as an upper side. It is done in the state.
  • the inner wall of the recess 27 has a first region 21 located near the one end surface 13 in the first region 21 than the first region 21. Compared with the second region 22 located inside the molded body 26, large heat is likely to be applied.
  • the molded body 26 is fired. Liquid phase sintering occurs. For this reason, the crystal of the first region 21 to which heat larger than that of the second region 22 is applied is likely to grow larger than that of the second region 22. As a result, the average crystal grain size in the first region 21 can be made larger than the average crystal grain size in the second region 22 on the inner wall of the recess 27 of the main body sintered body 25.
  • the first hole 18 having a diameter as small as 0.1 mm or more and 2 mm or less it is necessary to reduce the diameter of the recess 27 serving as the first hole 18. It becomes difficult to flow. Therefore, when the molded body 26 is baked, the heat applied to the inner wall of the recess 27 is likely to be uneven, and the heat applied to the first region 21 is likely to be greater than the heat applied to the second region 22. Therefore, the average crystal grain size in the first region 21 is likely to be larger than the average crystal grain size in the second region 22 on the inner wall of the recess 27 of the main body sintered body 25.
  • the recess 27 has a bottom surface at the end opposite to the one end surface 13 and does not penetrate the main body 12. As a result, it becomes difficult for air to flow in the recess 27. Therefore, the average crystal grain size in the first region 21 is likely to be larger than the average crystal grain size in the second region 22 on the inner wall of the recess 27 of the main body sintered body 25.
  • the molded body 26 As a molding method for forming the molded body 26, it is desirable to use a CIP molding method. According to the CIP molding method, since the pressure during molding is uniformly applied, the density of the molded body 26 can be made uniform. Therefore, when the molded body 26 is fired, crystal grains grow uniformly according to the applied temperature. As described above, the first region 21 is heated by applying heat larger than that of the second region 22 to the first region 21. The average crystal grain size in 21 is easily made larger than the average crystal grain size in the second region 22.
  • Hole processing is performed from the other end surface 14 side of the main body sintered body 25 using grinding, and the second hole portion 19 that opens to the other end surface 14 and is connected to the recess 27 is formed in the main body sintered body 25. . Accordingly, the recess 27 becomes the first hole 18, and the through-hole 11 constituted by the first hole 18 and the second hole 19 can be formed. Moreover, the other end surface 14 is ground by using a grinding process to obtain a ground surface. As a result, the main body sintered body 25 can be the main body 12. In addition, you may use ultrasonic processing as a grinding process.
  • the one end surface 13 can be made to be a burnt skin surface by not performing processing such as grinding or polishing on the one end surface 13.
  • the grilled surface is continuously formed from the one end surface 13 of the main body 12 to the first region 21 of the through hole 11.
  • the end surface 13 may be subjected to processing such as grinding or polishing.
  • the processing amount along the longitudinal direction of the main body sintered body 25 is desirably, for example, not less than 0.5 mm and not more than 2 mm. As a result, the first region 21 can remain in the main body 12.
  • the inner wall of the second hole 19 becomes a ground surface.
  • the inner wall of the 2nd hole part 19 can be made into a grinding
  • the other end surface 14 can be used as a polishing surface by polishing the other end surface 14.
  • the configuration in which the gas nozzle is used in the film forming apparatus has been described as an example.
  • the gas nozzle may be used in another semiconductor manufacturing apparatus or liquid crystal manufacturing apparatus, for example, an etching apparatus.

Abstract

A gas nozzle according to an embodiment of the present invention comprises a columnar main body formed from a ceramic sintered body, whereupon through holes are formed wherethrough gas flows. Gas discharge apertures in the through holes are formed on one end face of the main body. Inner walls of the through holes further comprise first regions which are located near the discharge apertures, and second regions which are located further inward of the main body than the first regions. The first regions and the second regions are formed from an untreated face of the ceramic sintered body. Average crystal grain diameters in the first regions are greater than average crystal grain diameters in the second regions.

Description

ガスノズルおよびこれを用いたプラズマ装置Gas nozzle and plasma apparatus using the same
 本発明は、例えば半導体製造工程または液晶製造工程において、例えば成膜装置またはエッチング装置などのプラズマ装置に用いられるガスノズルおよびこれを用いたプラズマ装置に関するものである。 The present invention relates to a gas nozzle used in a plasma apparatus such as a film forming apparatus or an etching apparatus in a semiconductor manufacturing process or a liquid crystal manufacturing process, for example, and a plasma apparatus using the same.
 従来、半導体製造工程または液晶製造工程においては、半導体ウエハまたはガラス基板などの対象物に薄膜を成膜するための成膜装置または対象物に微細加工を施すためのエッチング装置などのプラズマ装置が用いられている。成膜装置では、原料のガスが反応室内に供給され、このガスが化学反応することによって、対象物上に薄膜が形成される。また、エッチング装置では、原料のガスとしてハロゲン系腐食性ガスが反応室内に供給され、このガスがプラズマ化してエッチングガスとなることによって、対象物に微細加工が施される。 Conventionally, in a semiconductor manufacturing process or a liquid crystal manufacturing process, a film forming apparatus for forming a thin film on an object such as a semiconductor wafer or a glass substrate or a plasma apparatus such as an etching apparatus for performing fine processing on the object is used. It has been. In the film forming apparatus, a raw material gas is supplied into a reaction chamber, and this gas chemically reacts to form a thin film on the object. In the etching apparatus, a halogen-based corrosive gas is supplied as a raw material gas into the reaction chamber, and this gas is turned into plasma to become an etching gas, whereby the object is finely processed.
 特開2000-195807号公報に開示されているように、プラズマ装置は、ガスを反応室内に供給するためのガスノズルを有している。このガスノズルは、ガスが流れる貫通孔が形成されたセラミック焼結体からなる柱状の本体を備えている。 As disclosed in Japanese Patent Laid-Open No. 2000-195807, the plasma apparatus has a gas nozzle for supplying gas into the reaction chamber. The gas nozzle includes a columnar body made of a ceramic sintered body in which a through hole through which a gas flows is formed.
 ところで、プラズマ装置を用いる際に、貫通孔の内壁を構成するセラミック焼結体の表面が、反応室内でプラズマ化したガスに晒されると損傷を受けてしまい、この表面からパーティクルが脱落することがある。このパーティクルが対象物に付着すると、対象物に不良が生じやすくなる。 By the way, when using the plasma apparatus, the surface of the ceramic sintered body constituting the inner wall of the through hole is damaged when exposed to plasma gas in the reaction chamber, and particles may fall off from this surface. is there. When these particles adhere to the target object, the target object tends to be defective.
 本発明は、パーティクルの脱落を低減する要求に応えるガスノズルを提供するものである。 The present invention provides a gas nozzle that meets the demand of reducing particle dropout.
 本発明の一形態によるガスノズルは、ガスが流れる貫通孔が形成されたセラミック焼結体からなる柱状の本体を備える。該本体の一端面には、前記貫通孔における前記ガスの流出口が形成されている。前記貫通孔の内壁は、前記流出口の近傍に位置する第1領域と該第1領域よりも前記本体の内部に位置する第2領域とを有する。前記第1領域および前記第2領域は、前記セラミック焼結体の焼き肌面からなる。前記第1領域における平均結晶粒径は、前記第2領域における平均結晶粒径よりも大きい。 A gas nozzle according to an embodiment of the present invention includes a columnar body made of a ceramic sintered body in which a through hole through which a gas flows is formed. An outlet of the gas in the through hole is formed on one end surface of the main body. The inner wall of the through hole has a first region located near the outlet and a second region located inside the main body with respect to the first region. Said 1st area | region and said 2nd area | region consist of the baking surface of the said ceramic sintered compact. The average crystal grain size in the first region is larger than the average crystal grain size in the second region.
 本発明の一形態によるプラズマ装置は、反応室と、該反応室内に前記ガスが流出する上記ガスノズルと、前記ガスを放電によってプラズマ化させる放電部材とを備える。 A plasma apparatus according to an aspect of the present invention includes a reaction chamber, the gas nozzle through which the gas flows into the reaction chamber, and a discharge member that converts the gas into plasma by discharge.
 本発明の一形態によるガスノズルによれば、プラズマ化したガスに晒されやすい第1領域における耐プラズマ性を高め、ひいてはパーティクルの脱落を低減することができる。 According to the gas nozzle of one embodiment of the present invention, it is possible to improve the plasma resistance in the first region that is easily exposed to the plasma gas, and to reduce the dropout of particles.
本発明の一実施形態によるガスノズルを用いた成膜装置の断面図である。It is sectional drawing of the film-forming apparatus using the gas nozzle by one Embodiment of this invention. (a)は、図1に示したガスノズルの斜視図であり、(b)は、(a)のA1-A1線における断面図である。(A) is a perspective view of the gas nozzle shown in FIG. 1, and (b) is a cross-sectional view taken along line A1-A1 of (a). (a)および(b)は、図1に示したガスノズルの製造工程を示す、図2(b)に相当する部分の断面図である。(A) And (b) is sectional drawing of the part corresponded to FIG.2 (b) which shows the manufacturing process of the gas nozzle shown in FIG. (a)および(b)は、図1に示したガスノズルの製造工程を示す、図2(b)に相当する部分の断面図である。(A) And (b) is sectional drawing of the part corresponded to FIG.2 (b) which shows the manufacturing process of the gas nozzle shown in FIG.
 <ガスノズル>
  以下に、本発明の一実施形態によるガスノズルを用いた成膜装置1について、図1および図2を参照して詳細に説明する。
<Gas nozzle>
Hereinafter, a film forming apparatus 1 using a gas nozzle according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2.
 図1に示すように、本実施形態の成膜装置1は、例えばプラズマCVD法によって半導体ウェハまたはガラス基板などの対象物2に薄膜を成膜する装置である。成膜装置1は、対象物2が収容されるとともに対象物2への成膜が行なわれる反応室3と、反応室3に原料のガスを供給する反応室3外部のガス供給管4と、ガス供給管4から反応室3内にガスを供給する反応室3内のガスノズル5と、反応室3内で対象物2が載置されるとともに内部電極6を備えた静電チャックなどの保持部材7と、内部電極6が電気的に接続される反応室3外部のバイアス電源8と、反応室3内にプラズマを生成するために反応室3外部に設けられた放電部材とを備えている。この放電部材は、コイル9および電源10によって構成されており、原料ガスが供給された反応室3内において放電を行なう。なお、成膜装置1は、ガス供給管4とガスノズル5との間に介在した、ガスが流れる流路を有する板状部材をさらに備えていてもよい。 As shown in FIG. 1, a film forming apparatus 1 of this embodiment is an apparatus for forming a thin film on an object 2 such as a semiconductor wafer or a glass substrate by, for example, a plasma CVD method. The film forming apparatus 1 includes a reaction chamber 3 in which an object 2 is accommodated and a film is formed on the object 2, a gas supply pipe 4 outside the reaction chamber 3 that supplies a raw material gas to the reaction chamber 3, A gas nozzle 5 in the reaction chamber 3 for supplying gas from the gas supply pipe 4 into the reaction chamber 3, and a holding member such as an electrostatic chuck on which the object 2 is placed in the reaction chamber 3 and an internal electrode 6 is provided. 7, a bias power supply 8 outside the reaction chamber 3 to which the internal electrode 6 is electrically connected, and a discharge member provided outside the reaction chamber 3 for generating plasma in the reaction chamber 3. This discharge member is constituted by a coil 9 and a power source 10, and discharges in the reaction chamber 3 to which the raw material gas is supplied. The film forming apparatus 1 may further include a plate-like member having a flow path through which the gas flows, interposed between the gas supply pipe 4 and the gas nozzle 5.
 この成膜装置1は、例えば以下のようにして、対象物2に薄膜を成膜することができる。ガス供給管4からガスノズル5を介して反応室3内に原料のガスを供給する。反応室3内に供給されたガスは、対象物2の上方において、コイル9および電源10から供給された電力による放電によってプラズマ化する。このプラズマ化したガスの原子または分子が化学反応して対象物2に堆積することによって、対象物2に薄膜が成膜される。例えば、対象物2上に酸化ケイ素(SiO)薄膜を形成するときは、シラン(SiH)ガス、アルゴン(Ar)ガス、および酸素(O)ガス等が原料として反応室3に供給される。なお、プラズマによって不要堆積物をクリーニングするときは、三フッ化窒素(NF)ガス、またはオクタフルオロプロパン(C)ガス等が反応室3に供給される。 The film forming apparatus 1 can form a thin film on the object 2 as follows, for example. A raw material gas is supplied into the reaction chamber 3 from the gas supply pipe 4 through the gas nozzle 5. The gas supplied into the reaction chamber 3 is turned into plasma above the object 2 by electric discharge from the coil 9 and the power supply 10. The plasma gas atom or molecule is chemically reacted and deposited on the object 2 to form a thin film on the object 2. For example, when a silicon oxide (SiO 2 ) thin film is formed on the target 2, silane (SiH 4 ) gas, argon (Ar) gas, oxygen (O 2 ) gas, and the like are supplied to the reaction chamber 3 as raw materials. The Note that nitrogen trifluoride (NF 3 ) gas, octafluoropropane (C 3 F 8 ) gas, or the like is supplied to the reaction chamber 3 when unnecessary deposits are cleaned by plasma.
 次に、本実施形態のガスノズル5について詳細に説明する。図2(a)および(b)に示すように、ガスノズル5は、ガスが流れる貫通孔11が形成されたセラミック焼結体からなる円柱状の本体12を有する。この本体12は、下面である一端面13と、上面である他端面14と、一端面13および他端面14の間に位置する側面15とを有する。本体12の直径(幅)は、例えば30mm以上100mm以下である。また、本体12の高さは、例えば30mm以上100mm以下である。なお、本体12は、柱状であればよく、例えば多角柱状であってもよい。 Next, the gas nozzle 5 of this embodiment will be described in detail. As shown in FIGS. 2A and 2B, the gas nozzle 5 has a cylindrical main body 12 made of a ceramic sintered body in which a through hole 11 through which a gas flows is formed. The main body 12 has an end surface 13 that is a lower surface, the other end surface 14 that is an upper surface, and a side surface 15 that is located between the one end surface 13 and the other end surface 14. The diameter (width) of the main body 12 is, for example, 30 mm or more and 100 mm or less. Moreover, the height of the main body 12 is 30 mm or more and 100 mm or less, for example. The main body 12 may be columnar, for example, polygonal columnar.
 ガスノズル5の本体12は、セラミック焼結体からなるため、耐プラズマ性が高い。その結果、本体12が反応室3内のプラズマ化したガスに晒された際に、本体12からパーティクルの発生を低減することができる。したがって、対象物2へのパーティクルの付着を低減することができ、対象物2における不良の発生を抑制することができる。 Since the main body 12 of the gas nozzle 5 is made of a ceramic sintered body, it has high plasma resistance. As a result, generation of particles from the main body 12 can be reduced when the main body 12 is exposed to the plasmad gas in the reaction chamber 3. Therefore, the adhesion of particles to the object 2 can be reduced, and the occurrence of defects in the object 2 can be suppressed.
 本体12のセラミック焼結体としては、イットリア(Y)焼結体、イットリウム・アルミニウム・ガーネット(YAG)焼結体、例えばアルミン酸マグネシウム焼結体(MgAl)であるスピネル焼結体またはアルミナ純度が99.5質量%以上であるアルミナ(Al)焼結体(以下、高純度アルミナ焼結体という)などを用いることが望ましい。その結果、セラミック焼結体の耐プラズマ性を高めることができる。 As the ceramic sintered body of the main body 12, yttria (Y 2 O 3 ) sintered body, yttrium aluminum garnet (YAG) sintered body, for example, magnesium aluminate sintered body (MgAl 2 O 4 ) spinel firing It is desirable to use a sintered body or an alumina (Al 2 O 3 ) sintered body (hereinafter referred to as a high-purity alumina sintered body) having an alumina purity of 99.5% by mass or more. As a result, the plasma resistance of the ceramic sintered body can be improved.
 なお、アルミナ純度は、アルミナ焼結体においてアルミニウムを酸化物に換算した含有量のことであり、以下のようにして求めることができる。まず、アルミナ焼結体の一部を粉砕し、得られた粉体を塩酸などの溶液に溶解する。次に、ICP(Inductively Coupled Plasma)発光分光分析装置(島津製作所製:ICPS-8100等)を用いて、溶解した溶液を測定する。これによって、得られた各成分の金属量を酸化物に換算し、アルミナ純度を求める。 The alumina purity is a content obtained by converting aluminum into an oxide in the alumina sintered body, and can be obtained as follows. First, a part of the alumina sintered body is pulverized, and the obtained powder is dissolved in a solution such as hydrochloric acid. Next, the dissolved solution is measured using an ICP (Inductively Coupled Plasma) emission spectroscopic analyzer (manufactured by Shimadzu Corporation: ICPS-8100, etc.). Thereby, the metal amount of each obtained component is converted into an oxide, and the alumina purity is obtained.
 本体12がイットリア焼結体からなる場合には、イットリウム・アルミニウム・ガーネット焼結体、スピネル焼結体または高純度アルミナ焼結体と比較して耐プラズマ性が高い。したがって、プラズマ化したガスによる本体12の損傷を抑制できるため、ガスノズル5を長期間に渡って使用することができる。本体12に用いられるイットリア焼結体は、例えば、イットリアを主成分として例えば99質量%以上99.99質量%以下含んでおり、ジルコニウム(Zr)またはシリコン(Si)を焼結助剤として0.01質量%以上1質量%以下含んでいる。なお、イットリア焼結体における各成分の含有量は、これらを酸化物に換算した含有量のことであり、前述したアルミナ純度と同様にICP発光分光分析装置を用いて求めることができる。 When the main body 12 is made of an yttria sintered body, it has higher plasma resistance than an yttrium / aluminum / garnet sintered body, a spinel sintered body, or a high-purity alumina sintered body. Therefore, damage to the main body 12 due to the plasma gas can be suppressed, so that the gas nozzle 5 can be used for a long period of time. The yttria sintered body used for the main body 12 contains, for example, 99% by mass or more and 99.99% by mass or less of yttria as a main component, and 0. 0% of zirconium (Zr) or silicon (Si) as a sintering aid. It is contained in an amount of 01% by mass to 1% by mass. In addition, content of each component in a yttria sintered compact is content which converted these into oxide, and can be calculated | required using an ICP emission-spectral-analysis apparatus similarly to the alumina purity mentioned above.
 また、本体12がスピネル焼結体からなる場合には、耐プラズマ性が一定以上あるとともに、イットリア焼結体と比較して機械的特性および熱的特性が優れている。本体12に用いられるスピネル焼結体は、例えばアルミン酸マグネシウムを主成分として例えば90質量%以上99.9質量%以下含んでおり、カルシウム(Ca)、マグネシウム(Mg)またはジルコニウムを焼結助剤として0.1質量%以上10質量%以下含んでいる。その結果、耐プラズマ性を高めることができる。また、スピネル焼結体における各成分の含有量は、これらを酸化物に換算した含有量のことであり、前述したアルミナ純度と同様にICP発光分光分析装置を用いて求めることができる。 Further, when the main body 12 is made of a spinel sintered body, the plasma resistance is not less than a certain level, and mechanical characteristics and thermal characteristics are excellent as compared with the yttria sintered body. The spinel sintered body used for the main body 12 contains, for example, magnesium aluminate as a main component, for example, 90 mass% or more and 99.9 mass% or less, and calcium (Ca), magnesium (Mg), or zirconium is a sintering aid. As 0.1 mass% or more and 10 mass% or less. As a result, plasma resistance can be improved. Moreover, content of each component in a spinel sintered compact is content which converted these into the oxide, and can be calculated | required using an ICP emission-spectral-analysis apparatus similarly to the alumina purity mentioned above.
 また、本体12がイットリウム・アルミニウム・ガーネット焼結体からなる場合には、耐プラズマ性が一定以上であるとともに、イットリア焼結体やスピネル焼結体と比較して機械的特性および熱的特性が優れている。本体12に用いられるYAG焼結体は、イットリアを例えば45mol%以上80mol%以下含んでおり、アルミナを例えば20mol%以上55mol%以下含んでいる。その結果、機械的特性を優れたものとするとともに耐プラズマ性を高めることができる。なお、イットリウム・アルミニウム・ガーネット焼結体に含まれる各成分の含有量は、これらを酸化物に換算した含有量のことであり、前述したアルミナ純度と同様にICP発光分光分析装置を用いて求めることができる。 When the main body 12 is made of a yttrium / aluminum / garnet sintered body, the plasma resistance is not less than a certain level, and mechanical and thermal characteristics are higher than those of the yttria sintered body and the spinel sintered body. Are better. The YAG sintered compact used for the main body 12 contains yttria, for example, at 45 mol% or more and 80 mol% or less, and alumina, for example, at 20 mol% or more and 55 mol% or less. As a result, the mechanical properties can be improved and the plasma resistance can be improved. The content of each component contained in the sintered body of yttrium / aluminum / garnet is a content obtained by converting these into oxides, and is obtained using an ICP emission spectroscopic analyzer in the same manner as the alumina purity described above. be able to.
 本体12に形成された貫通孔11は、ガスノズル5においてガスが流れる流路である。この貫通孔11は、一端面13に形成された、ガスを反応室3内へ流出する流出口16と、他端面14に形成された、ガス供給管4からガスが流入する流入口17とを有する。 The through hole 11 formed in the main body 12 is a flow path through which gas flows in the gas nozzle 5. This through hole 11 has an outlet 16 formed on one end face 13 for flowing gas into the reaction chamber 3, and an inlet 17 formed on the other end face 14 for flowing gas from the gas supply pipe 4. Have.
 また、貫通孔11は、流出口16側に配された円柱状の第1孔部18と、流入口17側に配された円柱状の第2孔部19とを有する。第1孔部18の直径(幅)は、第2孔部19の直径(幅)よりも小さい。第1孔部18の直径(幅)は、例えば0.1mm以上2mm以下である。第1孔部18の高さは、例えば1mm以上10mm以下である。第2孔部19の直径(幅)は、例えば1mm以上20mm以下である。第2孔部19の高さは、例えば10mm以上100mm以下である。なお、貫通孔11は、第1孔部18のみからなってもよいし、第1孔部18および第2孔部19と異なる直径の孔部をさらに有していてもよい。また、第1孔部18および第2孔部19は、柱状であればよく、例えば多角柱状であってもよい。また、第1孔部18および第2孔部19の長手方向は、本体12の長手方向と平行であってもよいし、平行でなくてもよい。 Further, the through hole 11 has a columnar first hole 18 disposed on the outlet 16 side and a columnar second hole 19 disposed on the inlet 17 side. The diameter (width) of the first hole 18 is smaller than the diameter (width) of the second hole 19. The diameter (width) of the first hole 18 is, for example, not less than 0.1 mm and not more than 2 mm. The height of the 1st hole 18 is 1 mm or more and 10 mm or less, for example. The diameter (width) of the second hole 19 is, for example, 1 mm or more and 20 mm or less. The height of the second hole 19 is, for example, not less than 10 mm and not more than 100 mm. The through-hole 11 may consist of only the first hole 18 or may further include a hole having a diameter different from that of the first hole 18 and the second hole 19. Moreover, the 1st hole part 18 and the 2nd hole part 19 should just be columnar shape, for example, may be polygonal columnar shape. The longitudinal directions of the first hole 18 and the second hole 19 may be parallel to the longitudinal direction of the main body 12 or may not be parallel.
 第1孔部18と第2孔部19との境界には、第1孔部18の内壁と第2孔部10の内壁とを接続する段差部20が形成されている。その結果、第2孔部19の内壁でパーティクルが発生したとしても、段差部20にパーティクルが留まりやすくなり、パーティクルの流出口16からの流出を抑制することができる。 At the boundary between the first hole portion 18 and the second hole portion 19, a step portion 20 that connects the inner wall of the first hole portion 18 and the inner wall of the second hole portion 10 is formed. As a result, even if particles are generated on the inner wall of the second hole portion 19, the particles easily stay on the stepped portion 20, and the outflow of particles from the outlet 16 can be suppressed.
 第1孔部18の内壁は、セラミック焼結体の焼き肌面からなる。焼き肌面は、後述するように、焼成によってセラミック焼結体を得た後に加工されていない、焼成したままの表面である。この第1孔部18の内壁は、流出口16の近傍に位置する第1領域21と、第1領域21よりも本体12の内部に位置する第2領域22とを有する。本実施形態の第2領域22は、第1孔部18における第1領域21以外の領域である。なお、第1孔部18の内壁が焼き肌面であることは、第1孔部18の内壁を走査型電子顕微鏡または金属顕微鏡で観察することによって確認することができる。 The inner wall of the first hole portion 18 is made of a sintered surface of a ceramic sintered body. As will be described later, the burnt surface is a surface that has not been processed after the ceramic sintered body is obtained by firing and is still fired. The inner wall of the first hole 18 has a first region 21 located near the outlet 16 and a second region 22 located inside the main body 12 rather than the first region 21. The second region 22 of the present embodiment is a region other than the first region 21 in the first hole 18. In addition, it can confirm that the inner wall of the 1st hole 18 is a burnt skin surface by observing the inner wall of the 1st hole 18 with a scanning electron microscope or a metal microscope.
 第2孔部19の内壁は、セラミック焼結体の研削面または研磨面などの加工面からなる。研削面は、焼成によってセラミック焼結体を得た後に研削加工を行なった面である。また、研磨面は、焼成によってセラミック焼結体を得た後に研削加工を行ない、さらに研磨加工を行なった表面である。この第2孔部19の内壁は、流入口17の近傍に位置する第3領域23と、第3領域23よりも本体12の内部に位置する第4領域24とを有する。本実施形態の第4領域24は、第2孔部19における第3領域23以外の領域である。なお、第2孔部19の内壁が加工面であることは、第2孔部19の内壁を走査型電子顕微鏡または金属顕微鏡で観察することによって確認することができる。 The inner wall of the second hole portion 19 is made of a processed surface such as a ground surface or a polished surface of a ceramic sintered body. The ground surface is a surface on which grinding is performed after obtaining a ceramic sintered body by firing. Further, the polished surface is a surface that is subjected to grinding after the ceramic sintered body is obtained by firing, and further subjected to polishing. The inner wall of the second hole 19 has a third region 23 located near the inflow port 17 and a fourth region 24 located inside the main body 12 more than the third region 23. The fourth region 24 of the present embodiment is a region other than the third region 23 in the second hole 19. In addition, it can confirm that the inner wall of the 2nd hole part 19 is a processed surface by observing the inner wall of the 2nd hole part 19 with a scanning electron microscope or a metal microscope.
 ところで、成膜装置1を用いる際に、貫通孔11の内壁を構成するセラミック焼結体の表面が反応室3内でプラズマ化したガスに晒されることがある。 By the way, when the film forming apparatus 1 is used, the surface of the ceramic sintered body constituting the inner wall of the through hole 11 may be exposed to a plasma gas in the reaction chamber 3.
 一方、本実施形態においては、貫通孔11の内壁において、第1領域21および第2領域22が焼き肌面からなる。この焼き肌面は、加工による損傷を受けておらず、加工面と比較して平滑な表面となっているため、焼き肌面がプラズマ化したガスに晒された際にパーティクルが脱落しにくい。したがって、第1領域21および第2領域22におけるパーティクルの発生を低減できる。 On the other hand, in the present embodiment, on the inner wall of the through hole 11, the first region 21 and the second region 22 are made of a burnt surface. Since this burnt skin surface is not damaged by processing and is a smooth surface as compared with the processed surface, the particles are less likely to fall off when the burnt skin surface is exposed to plasma gas. Therefore, the generation of particles in the first region 21 and the second region 22 can be reduced.
 さらに、第1領域21における平均結晶粒径は、第2領域22における平均結晶粒径よりも大きい。セラミック焼結体の焼き肌面における平均結晶粒径が大きいと、プラズマに腐食されやすい結晶粒界の焼き肌面における面積の割合が小さくなる。このため、焼き肌面がプラズマ化したガスに晒された際にパーティクルが脱落しにくくなる。したがって、流出口16の近傍に位置することから第2領域22よりもプラズマ化したガスに晒されやすい第1領域21におけるパーティクルの発生を良好に低減できる。それ故、対象物2へのパーティクルの付着を低減し、対象物2の不良の発生を抑制することができる。 Furthermore, the average crystal grain size in the first region 21 is larger than the average crystal grain size in the second region 22. When the average crystal grain size on the surface of the ceramic sintered body is large, the ratio of the area on the surface of the sintered surface of the crystal grain boundary that is easily corroded by plasma decreases. For this reason, it becomes difficult for particles to fall off when the burnt skin surface is exposed to a plasma gas. Therefore, since it is located in the vicinity of the outlet 16, it is possible to satisfactorily reduce the generation of particles in the first region 21 that is more easily exposed to plasmad gas than the second region 22. Therefore, the adhesion of particles to the object 2 can be reduced, and the occurrence of defects in the object 2 can be suppressed.
 また、セラミック焼結体の焼き肌面における平均結晶粒径が小さいと、焼き肌面における結晶粒子の充填率が高くなるため、焼き肌面の機械的強度が高くなる。したがって、本体12の内部に位置することから第1領域21よりもプラズマ化したガスに晒されにくい第2領域22において、プラズマ化したガスによる影響を低減しつつ機械的強度を高めることによって、機械的応力または熱応力に起因した本体12の損傷を抑制することができる。 In addition, if the average crystal grain size on the surface of the ceramic sintered body is small, the filling rate of the crystal particles on the surface of the ceramic surface increases, so that the mechanical strength of the surface of the ceramic surface increases. Therefore, in the second region 22 which is located inside the main body 12 and is less exposed to the plasmad gas than the first region 21, the mechanical strength is increased while reducing the influence of the plasmad gas. Damage to the main body 12 due to mechanical stress or thermal stress can be suppressed.
 第1領域21は、流出口16からの距離が5mm以下の領域であることが望ましい。さらに、第1領域21は、流出口16からの距離が1mm以下の領域であることが望ましい。その結果、プラズマ化したガスに晒されやすい領域を第1領域21としつつ、プラズマ化したガスに晒されにくい領域を第2領域22とすることができるため、パーティクルの発生を良好に低減しつつ、機械的応力または熱応力に起因した本体12の損傷を抑制することができる。 The first area 21 is desirably an area having a distance of 5 mm or less from the outlet 16. Furthermore, the first region 21 is desirably a region having a distance of 1 mm or less from the outlet 16. As a result, the region that is easily exposed to the plasma gas can be the first region 21 and the region that is not easily exposed to the plasma gas can be the second region 22. Therefore, the generation of particles can be reduced well. In addition, damage to the main body 12 due to mechanical stress or thermal stress can be suppressed.
 第1領域21における平均結晶粒径は、第2領域22における平均結晶粒径の1.5倍以上であることが望ましい。その結果、第1領域21におけるパーティクルの発生を良好に低減することができる。さらに、第1領域21における平均結晶粒径は、第2領域22における平均結晶粒径の10倍以下であることが望ましい。第1領域21における平均結晶粒径は、例えば3μm以上20μm以下である。また、第2領域22における平均結晶粒径は、例えば2μm以上10μm以下である。この第1領域21および第2領域22における平均結晶粒径は、第1領域21および第2領域22の表面を金属顕微鏡を用いて撮影し、この撮影画像を、画像解析装置(ニレコ社製:LUZEX-FS)を用いて解析することによって求めることができる。 The average crystal grain size in the first region 21 is desirably 1.5 times or more than the average crystal grain size in the second region 22. As a result, the generation of particles in the first region 21 can be favorably reduced. Further, the average crystal grain size in the first region 21 is desirably 10 times or less than the average crystal grain size in the second region 22. The average crystal grain size in the first region 21 is, for example, 3 μm or more and 20 μm or less. The average crystal grain size in the second region 22 is, for example, 2 μm or more and 10 μm or less. The average crystal grain size in the first region 21 and the second region 22 is obtained by photographing the surfaces of the first region 21 and the second region 22 using a metal microscope, and using the photographed image as an image analysis apparatus (manufactured by Nireco Corporation: It can be determined by analyzing using (LUZEX-FS).
 また、本実施形態の貫通孔11においては、前述した如く、第1孔部18の内壁は焼き肌面からなり、第2孔部19の内壁は研削面または研磨面などの加工面からなる。したがって、第2孔部19よりも流出口16側に位置するためプラズマ化したガスに晒されやすい第1孔部18の内壁が焼き肌面からなることから、パーティクルの発生を良好に低減することができる。一方、第2孔部19は、内壁が加工面からなることから、内壁が焼き肌面からなる場合と比較して、加工によって位置や形状の精度を高めることができる。したがって、第1孔部18よりも流入口17側に位置するためプラズマ化したガスに晒されにくい第2孔部19において、プラズマ化したガスによる影響を低減しつつ、位置や形状の精度を高め、ガスノズル5とガス供給管4との接続不良に起因したガス漏れを抑制することができる。 Further, in the through hole 11 of the present embodiment, as described above, the inner wall of the first hole portion 18 is a burnt surface, and the inner wall of the second hole portion 19 is a processed surface such as a ground surface or a polished surface. Therefore, since the inner wall of the first hole 18 that is easily exposed to plasma gas because it is located on the outlet 16 side of the second hole 19 is made of a burnt surface, the generation of particles can be reduced well. Can do. On the other hand, since the inner wall is made of a machined surface, the second hole portion 19 can improve the accuracy of the position and shape by machining as compared with the case where the inner wall is made of a burnt surface. Therefore, in the second hole portion 19 which is located on the inlet 17 side of the first hole portion 18 and is not easily exposed to plasma gas, the influence of the plasma gas is reduced, and the position and shape accuracy are increased. Further, gas leakage due to poor connection between the gas nozzle 5 and the gas supply pipe 4 can be suppressed.
 特に、第2孔部19においては、流入口17の近傍に位置する第3領域23が研削面または研磨面などの加工面からなるため、ガスノズル5とガス供給管4との接続不良に起因したガス漏れを良好に抑制することができる。第3領域20は、流入口17からの距離が5mm以下の領域であることが望ましい。 In particular, in the second hole portion 19, the third region 23 located in the vicinity of the inflow port 17 is formed by a processing surface such as a grinding surface or a polishing surface, and thus is caused by poor connection between the gas nozzle 5 and the gas supply pipe 4. Gas leakage can be suppressed satisfactorily. The third region 20 is preferably a region having a distance of 5 mm or less from the inflow port 17.
 また、第1領域21における平均結晶粒径は、第3領域23における平均結晶粒径よりも大きい。その結果、第1領域21における平均結晶粒径を大きくすることによって前述した如くパーティクルの発生を良好に低減しつつ、第3領域23における平均結晶粒径を小さくすることによって、機械的応力または熱応力に起因した本体12の損傷を抑制することができる。 Further, the average crystal grain size in the first region 21 is larger than the average crystal grain size in the third region 23. As a result, by increasing the average crystal grain size in the first region 21 as described above, the generation of particles is satisfactorily reduced, while reducing the average crystal grain size in the third region 23, thereby increasing mechanical stress or heat. Damage to the main body 12 due to stress can be suppressed.
 また、本体12の一端面13は、セラミック焼結体の焼き肌面からなることが望ましい。その結果、プラズマ化したガスに晒されやすい一端面13が焼き肌面からなることから、パーティクルの発生を良好に低減することができる。また、本体12の一端面13から貫通孔11の第1領域21に渡って焼き肌面が連続的に形成されていることが望ましい。その結果、パーティクルの発生を良好に低減することができる。なお、一端面13の形状の精度を高める場合には、一端面13を研削面または研磨面などの加工面としてもよい。この場合、パーティクルの脱落を抑制する観点から、一端面13を研磨面とすることが望ましい。 Further, it is desirable that the one end surface 13 of the main body 12 is made of a sintered surface of a ceramic sintered body. As a result, since the one end face 13 that is easily exposed to plasma gas is a burnt surface, the generation of particles can be reduced satisfactorily. Further, it is desirable that the burnt surface is continuously formed from the one end surface 13 of the main body 12 to the first region 21 of the through hole 11. As a result, the generation of particles can be reduced favorably. In order to increase the accuracy of the shape of the one end surface 13, the one end surface 13 may be a processed surface such as a ground surface or a polished surface. In this case, it is desirable that the one end surface 13 is a polished surface from the viewpoint of suppressing the falling off of the particles.
 また、本体12の他端面14は、セラミック焼結体の研削面または研磨面からなることが望ましい。その結果、ガスノズル5とガス供給管4との接続不良に起因したガス漏れを良好に抑制することができる。 Further, the other end surface 14 of the main body 12 is preferably made of a ground surface or a polished surface of a ceramic sintered body. As a result, gas leakage due to poor connection between the gas nozzle 5 and the gas supply pipe 4 can be satisfactorily suppressed.
 <ガスノズルの製造方法>
  次に、前述したガスノズル5の製造方法を、図3および図4を参照しつつ説明する。
<Manufacturing method of gas nozzle>
Next, the manufacturing method of the gas nozzle 5 mentioned above is demonstrated, referring FIG. 3 and FIG.
 (1)まず、図3および図4に示すように、前述した本体12の貫通孔11が形成される前のセラミック焼結体である本体用焼結体25を作製する。具体的には、例えば以下のように行なう。 (1) First, as shown in FIGS. 3 and 4, a main body sintered body 25 which is a ceramic sintered body before the through hole 11 of the main body 12 is formed is prepared. Specifically, for example, the following is performed.
 まず、セラミック粉末に純水と有機バインダーを加えた後、ボールミルで湿式混合してスラリーを作製する。次に、スラリーをスプレードライにて造粒し、セラミック粉末を形成する。次に、セラミック粉末を用いて、金型プレス法または冷間静水圧プレス成形法(CIP成形法)などの成形法を用いて所定の形状に成形して図3(a)に示した円柱状の成形体26を得る。次に、図3(b)に示すように、切削加工を用いて、前述した第1孔部18となる、一端面13に開口した凹部27を成形体26に形成する。次に、図4(a)に示すように、大気雰囲気中または酸素雰囲気中のいずれかにて例えば1400℃以上2000℃以下で焼成する。以上のようにして、図4(b)に示した本体用焼結体25を得ることができる。この本体用焼結体25において、一端面13、他端面14、側面15および凹部27の内壁といった表面は、焼成後に加工されておらず、焼き肌面となっている。 First, pure water and an organic binder are added to the ceramic powder, and then wet mixed with a ball mill to prepare a slurry. Next, the slurry is granulated by spray drying to form a ceramic powder. Next, the ceramic powder is molded into a predetermined shape using a molding method such as a die pressing method or a cold isostatic pressing method (CIP molding method), and the cylindrical shape shown in FIG. The molded body 26 is obtained. Next, as shown in FIG. 3 (b), a recess 27 that opens to the one end surface 13 that forms the first hole 18 described above is formed in the molded body 26 by cutting. Next, as shown in FIG. 4A, firing is performed at, for example, 1400 ° C. or more and 2000 ° C. or less in either an air atmosphere or an oxygen atmosphere. As described above, the main body sintered body 25 shown in FIG. 4B can be obtained. In the main body sintered body 25, the surfaces such as the one end surface 13, the other end surface 14, the side surface 15, and the inner wall of the concave portion 27 are not processed after firing, and have a burnt surface.
 本実施形態において、成形体26の焼成は、図4(a)に示すように、凹部27が開口した一端面13を上側として露出させつつ、焼成炉の載置台28上に成形体26を載置した状態で行なう。その結果、成形体26の焼成の際に、成形体26の上方から熱が加わるため、凹部27の内壁においては、一端面13の近傍に位置する第1領域21に、第1領域21よりも成形体26の内部に位置する第2領域22と比較して、大きな熱が加わりやすい。 In the present embodiment, as shown in FIG. 4 (a), the molded body 26 is fired by placing the molded body 26 on the mounting table 28 of the firing furnace while exposing the one end surface 13 with the recess 27 opened as an upper side. It is done in the state. As a result, since heat is applied from above the molded body 26 during the firing of the molded body 26, the inner wall of the recess 27 has a first region 21 located near the one end surface 13 in the first region 21 than the first region 21. Compared with the second region 22 located inside the molded body 26, large heat is likely to be applied.
 ここで、本体用焼結体25としてイットリア焼結体、イットリウム・アルミニウム・ガーネット焼結体、スピネル焼結体または高純度アルミナ焼結体を形成する場合には、成形体26を焼成する際に液相焼結が生じる。このため、第2領域22よりも大きな熱が加わる第1領域21の結晶は、第2領域22よりも大きく成長しやすい。その結果、本体用焼結体25の凹部27の内壁において、第1領域21における平均結晶粒径を第2領域22における平均結晶粒径よりも大きくすることができる。 Here, when the yttria sintered body, the yttrium / aluminum / garnet sintered body, the spinel sintered body, or the high-purity alumina sintered body is formed as the main body sintered body 25, the molded body 26 is fired. Liquid phase sintering occurs. For this reason, the crystal of the first region 21 to which heat larger than that of the second region 22 is applied is likely to grow larger than that of the second region 22. As a result, the average crystal grain size in the first region 21 can be made larger than the average crystal grain size in the second region 22 on the inner wall of the recess 27 of the main body sintered body 25.
 特に、直径が0.1mm以上2mm以下と小さい第1孔部18を形成する場合には、第1孔部18となる凹部27の直径も小さくする必要があるため、凹部27内にて空気が流動しにくくなる。したがって、成形体26の焼成の際に、凹部27の内壁における熱の加わり方が不均一となりやすく、第1領域21に加わる熱が第2領域22に加わる熱よりも大きくなりやすい。このため、本体用焼結体25の凹部27の内壁において、第1領域21における平均結晶粒径を第2領域22における平均結晶粒径よりも大きくしやすい。 In particular, when the first hole 18 having a diameter as small as 0.1 mm or more and 2 mm or less is formed, it is necessary to reduce the diameter of the recess 27 serving as the first hole 18. It becomes difficult to flow. Therefore, when the molded body 26 is baked, the heat applied to the inner wall of the recess 27 is likely to be uneven, and the heat applied to the first region 21 is likely to be greater than the heat applied to the second region 22. Therefore, the average crystal grain size in the first region 21 is likely to be larger than the average crystal grain size in the second region 22 on the inner wall of the recess 27 of the main body sintered body 25.
 また、凹部27は、一端面13と反対側の端部に底面を有しており、本体12を貫通していない。その結果、凹部27内を空気が流動しにくくなる。したがって、本体用焼結体25の凹部27の内壁において、第1領域21における平均結晶粒径を第2領域22における平均結晶粒径よりも大きくしやすい。 The recess 27 has a bottom surface at the end opposite to the one end surface 13 and does not penetrate the main body 12. As a result, it becomes difficult for air to flow in the recess 27. Therefore, the average crystal grain size in the first region 21 is likely to be larger than the average crystal grain size in the second region 22 on the inner wall of the recess 27 of the main body sintered body 25.
 また、成形体26を形成する際の成形方法としては、CIP成形法を用いることが望ましい。CIP成形法によれば、成形時の圧力が均一に加わるため、成形体26の密度を均一にすることができる。したがって、成形体26を焼成する際に、加わる温度に応じて結晶粒子が均一に成長するため、前述した如く、第1領域21に第2領域22よりも大きな熱を加えることによって、第1領域21における平均結晶粒径を第2領域22における平均結晶粒径よりも大きくしやすい。 In addition, as a molding method for forming the molded body 26, it is desirable to use a CIP molding method. According to the CIP molding method, since the pressure during molding is uniformly applied, the density of the molded body 26 can be made uniform. Therefore, when the molded body 26 is fired, crystal grains grow uniformly according to the applied temperature. As described above, the first region 21 is heated by applying heat larger than that of the second region 22 to the first region 21. The average crystal grain size in 21 is easily made larger than the average crystal grain size in the second region 22.
 (2)本体用焼結体25に貫通孔11を形成することによって、本体用焼結体25を本体12として、図2に示したガスノズル5を作製する。具体的には例えば以下のように行なう。 (2) By forming the through-hole 11 in the main body sintered body 25, the main body sintered body 25 is used as the main body 12, and the gas nozzle 5 shown in FIG. Specifically, for example, the following is performed.
 研削加工を用いて、本体用焼結体25の他端面14側から孔加工を行ない、他端面14に開口するとともに凹部27とつながった第2孔部19を本体用焼結体25に形成する。これによって、凹部27が第1孔部18となり、第1孔部18および第2孔部19によって構成される貫通孔11を形成することができる。また、研削加工を用いて、他端面14を研削して研削面とする。その結果、本体用焼結体25を本体12とすることができる。なお、研削加工として超音波加工を用いてもよい。 Hole processing is performed from the other end surface 14 side of the main body sintered body 25 using grinding, and the second hole portion 19 that opens to the other end surface 14 and is connected to the recess 27 is formed in the main body sintered body 25. . Accordingly, the recess 27 becomes the first hole 18, and the through-hole 11 constituted by the first hole 18 and the second hole 19 can be formed. Moreover, the other end surface 14 is ground by using a grinding process to obtain a ground surface. As a result, the main body sintered body 25 can be the main body 12. In addition, you may use ultrasonic processing as a grinding process.
 本工程においては、本体用焼結体25の凹部27からなる第1孔部18の内壁に研削加工や研磨加工などの加工を行なわない。その結果、第1孔部18の内壁を焼き肌面としつつ、第1孔部18の内壁においても、本体用焼結体25の第1領域21および第2領域22における平均結晶粒径を維持することができる。したがって、第1領域21における平均結晶粒径を第2領域22における平均結晶粒径よりも大きくすることができる。 In this step, the inner wall of the first hole portion 18 formed of the concave portion 27 of the main body sintered body 25 is not subjected to processing such as grinding or polishing. As a result, the average crystal grain size in the first region 21 and the second region 22 of the main body sintered body 25 is maintained on the inner wall of the first hole 18 while the inner wall of the first hole 18 is a burnt surface. can do. Therefore, the average crystal grain size in the first region 21 can be made larger than the average crystal grain size in the second region 22.
 また、本工程において、一端面13に研削加工または研磨加工などの加工を行なわないことによって、一端面13を焼き肌面とすることができる。この場合、焼き肌面は、本体12の一端面13から貫通孔11の第1領域21に渡って連続的に形成される。なお、一端面13の形状の精度を高める場合には、一端面13に研削加工または研磨加工などの加工を行なってもよい。この場合、本体用焼結体25の長手方向に沿った加工量は、例えば0.5mm以上2mm以下であることが望ましい。その結果、第1領域21を本体12に残存させることができる。 Further, in this step, the one end surface 13 can be made to be a burnt skin surface by not performing processing such as grinding or polishing on the one end surface 13. In this case, the grilled surface is continuously formed from the one end surface 13 of the main body 12 to the first region 21 of the through hole 11. In addition, when improving the accuracy of the shape of the one end surface 13, the end surface 13 may be subjected to processing such as grinding or polishing. In this case, the processing amount along the longitudinal direction of the main body sintered body 25 is desirably, for example, not less than 0.5 mm and not more than 2 mm. As a result, the first region 21 can remain in the main body 12.
 また、第2孔部19は研削加工によって形成されるため、第2孔部19の内壁は研削面となる。なお、研削加工を用いて第2孔部19を形成した後に、第2孔部19の内壁に研磨加工を行なうことによって、第2孔部19の内壁を研磨面とすることができる。また、研削加工を用いて他端面14を研削面とした後に、他端面14に研磨加工を行なうことによって、他端面14を研磨面とすることができる。 In addition, since the second hole 19 is formed by grinding, the inner wall of the second hole 19 becomes a ground surface. In addition, after forming the 2nd hole part 19 using a grinding process, the inner wall of the 2nd hole part 19 can be made into a grinding | polishing surface by grind | polishing the inner wall of the 2nd hole part 19. FIG. Moreover, after making the other end surface 14 into a grinding surface using grinding, the other end surface 14 can be used as a polishing surface by polishing the other end surface 14.
 以上のようにして、図2に示したガスノズル5を作製することができる。 As described above, the gas nozzle 5 shown in FIG. 2 can be manufactured.
 本発明は前述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良、組合せ等が可能である。 The present invention is not limited to the above-described embodiments, and various changes, improvements, combinations, and the like can be made without departing from the gist of the present invention.
 例えば、前述した実施形態において、ガスノズルを成膜装置に用いた構成を例に説明したが、ガスノズルは他の半導体製造装置や液晶製造装置に用いてもよく、例えばエッチング装置に用いてもよい。 For example, in the above-described embodiment, the configuration in which the gas nozzle is used in the film forming apparatus has been described as an example. However, the gas nozzle may be used in another semiconductor manufacturing apparatus or liquid crystal manufacturing apparatus, for example, an etching apparatus.
1  成膜装置
2  対象物
3  反応室
4  ガス供給管
5  ガスノズル
6  内部電極
7  保持部材
8  バイアス電源
9  コイル
10 電源
11 貫通孔
12 本体
13 一端面
14 他端面
15 側面
16 流出口
17 流入口
18 第1孔部
19 第2孔部
20 段差部
21 第1領域
22 第2領域
23 第3領域
24 第4領域
25 本体用焼結体
26 成形体
27 凹部
28 載置台
DESCRIPTION OF SYMBOLS 1 Film-forming apparatus 2 Object 3 Reaction chamber 4 Gas supply pipe 5 Gas nozzle 6 Internal electrode 7 Holding member 8 Bias power supply 9 Coil 10 Power supply 11 Through-hole 12 Main body 13 One end surface 14 The other end surface 15 Side surface 16 Outlet 17 Inlet 18 First 1 hole part 19 2nd hole part 20 step part 21 1st field 22 2nd field 23 3rd field 24 4th field 25 sintered body 26 for main body molded object 27 recessed part 28 mounting table

Claims (8)

  1.  ガスが流れる貫通孔が形成されたセラミック焼結体からなる柱状の本体を備え、
    該本体の一端面には、前記貫通孔における前記ガスの流出口が形成されており、
    前記貫通孔の内壁は、前記流出口の近傍に位置する第1領域と該第1領域よりも前記本体の内部に位置する第2領域とを有し、
    前記第1領域および前記第2領域は、前記セラミック焼結体の焼き肌面からなり、
    前記第1領域における平均結晶粒径は、前記第2領域における平均結晶粒径よりも大きいガスノズル。
    A columnar body made of a ceramic sintered body in which a through-hole through which gas flows is formed,
    An outlet of the gas in the through hole is formed on one end surface of the main body,
    The inner wall of the through hole has a first region located in the vicinity of the outlet and a second region located inside the main body rather than the first region,
    The first region and the second region are composed of a sintered surface of the ceramic sintered body,
    The gas nozzle in which the average crystal grain size in the first region is larger than the average crystal grain size in the second region.
  2.  請求項1に記載のガスノズルにおいて、
    前記セラミック焼結体は、イットリア焼結体、イットリウム・アルミニウム・ガーネット焼結体、スピネル焼結体またはアルミナ純度が99.5質量%以上であるアルミナ焼結体からなるガスノズル。
    The gas nozzle according to claim 1, wherein
    The ceramic sintered body is a gas nozzle comprising an yttria sintered body, an yttrium / aluminum / garnet sintered body, a spinel sintered body, or an alumina sintered body having an alumina purity of 99.5% by mass or more.
  3.  請求項1に記載のガスノズルにおいて、
    前記第1領域は、前記流出口からの距離が5μm以下の領域であるガスノズル。
    The gas nozzle according to claim 1, wherein
    The gas nozzle in which the first region is a region having a distance of 5 μm or less from the outflow port.
  4.  請求項1に記載のガスノズルにおいて、
    前記第1領域における平均結晶粒径は、前記第2領域における平均結晶粒径の1.5倍以上10倍以下であるガスノズル。
    The gas nozzle according to claim 1, wherein
    The gas nozzle in which the average crystal grain size in the first region is 1.5 to 10 times the average crystal grain size in the second region.
  5.  請求項1に記載のガスノズルにおいて、
    前記本体の前記一端面は、前記セラミック焼結体の焼き肌面からなるガスノズル。
    The gas nozzle according to claim 1, wherein
    The gas nozzle in which the one end surface of the main body is a burnt surface of the ceramic sintered body.
  6.  請求項1に記載のガスノズルにおいて、
    前記本体の他端面には、前記貫通孔における前記ガスの流入口が形成されており、
    前記貫通孔の内壁は、前記流入口の近傍に位置する第3領域を有し、
    該第3領域は、前記セラミック焼結体の研削面または研磨面からなり、
    前記第1領域における平均結晶粒径は、前記第3領域における平均結晶粒径よりも大きいガスノズル。
    The gas nozzle according to claim 1, wherein
    On the other end surface of the main body, an inlet for the gas in the through hole is formed,
    The inner wall of the through hole has a third region located in the vicinity of the inflow port,
    The third region comprises a ground surface or a polished surface of the ceramic sintered body,
    The gas nozzle in which the average crystal grain size in the first region is larger than the average crystal grain size in the third region.
  7.  請求項6に記載のガスノズルにおいて、
    前記本体の他端面は、前記セラミック焼結体の研削面または研磨面からなるガスノズル。
    The gas nozzle according to claim 6.
    The other end surface of the main body is a gas nozzle comprising a ground surface or a polished surface of the ceramic sintered body.
  8.  反応室と、該反応室内に前記ガスが流出する請求項1に記載のガスノズルと、前記ガスを放電によってプラズマ化させる放電部材とを備えたプラズマ装置。 A plasma apparatus comprising: a reaction chamber; the gas nozzle according to claim 1 through which the gas flows into the reaction chamber; and a discharge member that converts the gas into plasma by discharge.
PCT/JP2013/084380 2013-01-30 2013-12-21 Gas nozzle and plasma device employing same WO2014119177A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014559522A JP6046752B2 (en) 2013-01-30 2013-12-21 Gas nozzle and plasma apparatus using the same
US14/763,106 US9790596B1 (en) 2013-01-30 2013-12-21 Gas nozzle and plasma device employing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-015004 2013-01-30
JP2013015004 2013-01-30

Publications (1)

Publication Number Publication Date
WO2014119177A1 true WO2014119177A1 (en) 2014-08-07

Family

ID=51261901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084380 WO2014119177A1 (en) 2013-01-30 2013-12-21 Gas nozzle and plasma device employing same

Country Status (3)

Country Link
US (1) US9790596B1 (en)
JP (1) JP6046752B2 (en)
WO (1) WO2014119177A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170301522A1 (en) * 2013-07-19 2017-10-19 Applied Materials, Inc. Ion assisted deposition for rare-earth oxide based thin film coatings on process rings
CN108257838A (en) * 2016-12-29 2018-07-06 中微半导体设备(上海)有限公司 Prevent plasma from entering internal gas nozzle and its method of work with interferometer
CN109427527A (en) * 2017-08-24 2019-03-05 中微半导体设备(上海)有限公司 A kind of plasma etch apparatus and the spray head for the equipment
WO2020110965A1 (en) * 2018-11-26 2020-06-04 京セラ株式会社 Gas nozzle, method for producing gas nozzle, and plasma treatment device
WO2020110964A1 (en) * 2018-11-26 2020-06-04 京セラ株式会社 Gas nozzle, method for producing gas nozzle, and plasma treatment device
JPWO2021020502A1 (en) * 2019-07-31 2021-02-04
JP2021054664A (en) * 2019-09-27 2021-04-08 京セラ株式会社 Anticorrosive member, component for semiconductor production device and semiconductor production device
WO2021106871A1 (en) 2019-11-27 2021-06-03 京セラ株式会社 Plasma resistant member, plasma treatment device component, and plasma treatment device
CN113000233A (en) * 2019-12-18 2021-06-22 中微半导体设备(上海)股份有限公司 Plasma reactor and gas nozzle thereof
KR20210144777A (en) 2019-03-28 2021-11-30 다테호 가가쿠 고교 가부시키가이샤 spinel powder
JP7470222B2 (en) 2018-11-26 2024-04-17 京セラ株式会社 Gas nozzle manufacturing method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9583369B2 (en) 2013-07-20 2017-02-28 Applied Materials, Inc. Ion assisted deposition for rare-earth oxide based coatings on lids and nozzles
US9725799B2 (en) 2013-12-06 2017-08-08 Applied Materials, Inc. Ion beam sputtering with ion assisted deposition for coatings on chamber components
KR102592009B1 (en) * 2019-04-05 2023-10-19 가부시키가이샤 사무코 Manufacturing method of polishing head, polishing device and semiconductor wafer
JP2023169796A (en) 2022-05-17 2023-11-30 日本特殊陶業株式会社 Yag sintered compact, manufacturing method thereof, member for semiconductor manufacturing apparatus, and gas nozzle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH092864A (en) * 1995-04-18 1997-01-07 Applied Materials Inc Lowly granulating plasma-resistant fluoro-alumina ceramic material and its production
JPH11214365A (en) * 1998-01-28 1999-08-06 Kyocera Corp Member for semiconductor element manufacturing device
JP2001181042A (en) * 1999-12-27 2001-07-03 Kyocera Corp Corrosion-resistant ceramic member and method for producing the same
JP2003181326A (en) * 2001-12-17 2003-07-02 Kyocera Corp Ceramic nozzle and method for manufacturing the same
JP2003340318A (en) * 2002-05-24 2003-12-02 Kyocera Corp Nozzle made of ceramic and manufacturing method therefor
JP2007063595A (en) * 2005-08-30 2007-03-15 Toshiba Ceramics Co Ltd Ceramic gas nozzle made of y2o3 sintered compact
JP2012054266A (en) * 2010-08-31 2012-03-15 Kyocera Corp Gas nozzle and method of manufacturing the same
WO2013065666A1 (en) * 2011-10-31 2013-05-10 京セラ株式会社 Gas nozzle, plasma device using same, and method for manufacturing gas nozzle

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1968348A (en) * 1932-07-27 1934-07-31 Placide Henry Nozzle
US3352492A (en) * 1960-08-02 1967-11-14 Powder Melting Corp Method of and apparatus for depositing metal powder
US3592575A (en) * 1969-07-25 1971-07-13 Forney International Burner nozzle tip
US3745969A (en) * 1971-04-19 1973-07-17 Motorola Inc Offset top ejection vapor deposition apparatus
US3881863A (en) * 1973-07-09 1975-05-06 Aero Flow Dynamics Inc The Win Dual fuel burner
US3995811A (en) * 1975-05-22 1976-12-07 Eutectic Corporation Nozzle for depositing metal powder by spraying
DE2608417C3 (en) * 1976-03-01 1981-02-12 Degussa Ag, 6000 Frankfurt METHOD AND DEVICE FOR PRODUCING Soot
US4080927A (en) * 1976-10-06 1978-03-28 General Atomic Company Fluidized bed-gas coater apparatus
US4069974A (en) * 1976-12-29 1978-01-24 Ford Motor Company Electrostatic powder coating apparatus
US4293755A (en) * 1978-10-23 1981-10-06 General Instrument Corporation Method of cooling induction-heated vapor deposition apparatus and cooling apparatus therefor
US4313721A (en) * 1979-03-15 1982-02-02 Joseph Henriques Oil burner diffuser
FR2504033A1 (en) * 1981-04-17 1982-10-22 Sames Sa METHOD OF ELECTROSTATIC PAINTING OF SMALL EXTENSIONED PIECES, CARRIED BY AN OMEGA TRANSPORTER, WITH A ROTATING BOWL PROJECTOR ON THE AXIS OF THE OMEGA BUCKLE
US4389229A (en) * 1981-10-01 1983-06-21 Western Electric Co., Inc. Methods and apparatus for fabricating a lightguide preform
US4730775A (en) * 1986-01-10 1988-03-15 Afa Division Of Waynesboro Textiles, Inc. Two piece foamer nozzle assembly
JPH0280303A (en) * 1987-06-04 1990-03-20 Tonen Corp Process and apparatus for forming thin superconducting film
US4854263B1 (en) * 1987-08-14 1997-06-17 Applied Materials Inc Inlet manifold and methods for increasing gas dissociation and for PECVD of dielectric films
US5134965A (en) * 1989-06-16 1992-08-04 Hitachi, Ltd. Processing apparatus and method for plasma processing
FR2653633B1 (en) * 1989-10-19 1991-12-20 Commissariat Energie Atomique CHEMICAL TREATMENT DEVICE ASSISTED BY A DIFFUSION PLASMA.
US5232164A (en) * 1990-05-09 1993-08-03 Resch D R Precisely adjustable atomizer
DE4106563C2 (en) * 1991-03-01 1999-06-02 Bosch Gmbh Robert Device for the electrostatic atomization of liquids
DE4106770C2 (en) * 1991-03-04 1996-10-17 Leybold Ag Performing reactive coating of a substrate
JP3375646B2 (en) * 1991-05-31 2003-02-10 株式会社日立製作所 Plasma processing equipment
BR9204887A (en) * 1991-12-23 1993-06-29 Comision Nac Energ Atom PROCESS FOR FORMING A SOLID SUBSTRATE ON A PROPERTY FILM SIMILAR TO THE DIAMOND, THE SOLID BODIES SO COATED AND THE COVERED FILM SO OBTAINED
US5567267A (en) * 1992-11-20 1996-10-22 Tokyo Electron Limited Method of controlling temperature of susceptor
US5614055A (en) * 1993-08-27 1997-03-25 Applied Materials, Inc. High density plasma CVD and etching reactor
US5522934A (en) * 1994-04-26 1996-06-04 Tokyo Electron Limited Plasma processing apparatus using vertical gas inlets one on top of another
US5643394A (en) * 1994-09-16 1997-07-01 Applied Materials, Inc. Gas injection slit nozzle for a plasma process reactor
US5556521A (en) * 1995-03-24 1996-09-17 Sony Corporation Sputter etching apparatus with plasma source having a dielectric pocket and contoured plasma source
JP3380091B2 (en) * 1995-06-09 2003-02-24 株式会社荏原製作所 Reactive gas injection head and thin film vapor phase growth apparatus
US5772771A (en) * 1995-12-13 1998-06-30 Applied Materials, Inc. Deposition chamber for improved deposition thickness uniformity
US5678595A (en) * 1995-12-21 1997-10-21 Benkan Corporation Vacuum exhaust valve
US6070551A (en) * 1996-05-13 2000-06-06 Applied Materials, Inc. Deposition chamber and method for depositing low dielectric constant films
EP0958401B1 (en) * 1996-06-28 2004-09-08 Lam Research Corporation Apparatus and method for high density plasma chemical vapor deposition or etching
US6013155A (en) * 1996-06-28 2000-01-11 Lam Research Corporation Gas injection system for plasma processing
US6106663A (en) * 1998-06-19 2000-08-22 Lam Research Corporation Semiconductor process chamber electrode
US6143078A (en) * 1998-11-13 2000-11-07 Applied Materials, Inc. Gas distribution system for a CVD processing chamber
JP3572211B2 (en) 1998-12-28 2004-09-29 京セラ株式会社 Gas introduction nozzle for semiconductor manufacturing equipment
US6230651B1 (en) * 1998-12-30 2001-05-15 Lam Research Corporation Gas injection system for plasma processing
KR100302609B1 (en) * 1999-05-10 2001-09-13 김영환 Temperature controllable gas distributor
US6302965B1 (en) * 2000-08-15 2001-10-16 Applied Materials, Inc. Dispersion plate for flowing vaporizes compounds used in chemical vapor deposition of films onto semiconductor surfaces
KR100436941B1 (en) * 2000-11-07 2004-06-23 주성엔지니어링(주) apparatus and method for depositing thin film
KR100413145B1 (en) * 2001-01-11 2003-12-31 삼성전자주식회사 Gas injector and apparatus for etching the gas injector
US20020129768A1 (en) * 2001-03-15 2002-09-19 Carpenter Craig M. Chemical vapor deposition apparatuses and deposition methods
US20020179247A1 (en) * 2001-06-04 2002-12-05 Davis Matthew F. Nozzle for introduction of reactive species in remote plasma cleaning applications
US20030000924A1 (en) * 2001-06-29 2003-01-02 Tokyo Electron Limited Apparatus and method of gas injection sequencing
US20030070620A1 (en) * 2001-10-15 2003-04-17 Cooperberg David J. Tunable multi-zone gas injection system
US6916398B2 (en) * 2001-10-26 2005-07-12 Applied Materials, Inc. Gas delivery apparatus and method for atomic layer deposition
US20030141178A1 (en) * 2002-01-30 2003-07-31 Applied Materials, Inc. Energizing gas for substrate processing with shockwaves
US20050092245A1 (en) * 2003-11-03 2005-05-05 Ahn-Sik Moon Plasma chemical vapor deposition apparatus having an improved nozzle configuration
KR100782369B1 (en) * 2004-11-11 2007-12-07 삼성전자주식회사 Device for making semiconductor
US8298336B2 (en) * 2005-04-01 2012-10-30 Lam Research Corporation High strip rate downstream chamber
JP2007305890A (en) * 2006-05-15 2007-11-22 Elpida Memory Inc Semiconductor manufacturing apparatus
JP2008205219A (en) * 2007-02-20 2008-09-04 Masato Toshima Showerhead, and cvd apparatus using the same showerhead

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH092864A (en) * 1995-04-18 1997-01-07 Applied Materials Inc Lowly granulating plasma-resistant fluoro-alumina ceramic material and its production
JPH11214365A (en) * 1998-01-28 1999-08-06 Kyocera Corp Member for semiconductor element manufacturing device
JP2001181042A (en) * 1999-12-27 2001-07-03 Kyocera Corp Corrosion-resistant ceramic member and method for producing the same
JP2003181326A (en) * 2001-12-17 2003-07-02 Kyocera Corp Ceramic nozzle and method for manufacturing the same
JP2003340318A (en) * 2002-05-24 2003-12-02 Kyocera Corp Nozzle made of ceramic and manufacturing method therefor
JP2007063595A (en) * 2005-08-30 2007-03-15 Toshiba Ceramics Co Ltd Ceramic gas nozzle made of y2o3 sintered compact
JP2012054266A (en) * 2010-08-31 2012-03-15 Kyocera Corp Gas nozzle and method of manufacturing the same
WO2013065666A1 (en) * 2011-10-31 2013-05-10 京セラ株式会社 Gas nozzle, plasma device using same, and method for manufacturing gas nozzle

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170301522A1 (en) * 2013-07-19 2017-10-19 Applied Materials, Inc. Ion assisted deposition for rare-earth oxide based thin film coatings on process rings
US10796888B2 (en) * 2013-07-19 2020-10-06 Applied Materials, Inc. Ion assisted deposition for rare-earth oxide based thin film coatings on process rings
CN108257838B (en) * 2016-12-29 2020-10-02 中微半导体设备(上海)股份有限公司 Gas nozzle with interferometer for preventing plasma from entering inside and working method thereof
CN108257838A (en) * 2016-12-29 2018-07-06 中微半导体设备(上海)有限公司 Prevent plasma from entering internal gas nozzle and its method of work with interferometer
CN109427527B (en) * 2017-08-24 2021-02-26 中微半导体设备(上海)股份有限公司 Plasma etching equipment and spray head used for same
CN109427527A (en) * 2017-08-24 2019-03-05 中微半导体设备(上海)有限公司 A kind of plasma etch apparatus and the spray head for the equipment
WO2020110964A1 (en) * 2018-11-26 2020-06-04 京セラ株式会社 Gas nozzle, method for producing gas nozzle, and plasma treatment device
WO2020110965A1 (en) * 2018-11-26 2020-06-04 京セラ株式会社 Gas nozzle, method for producing gas nozzle, and plasma treatment device
JP7470222B2 (en) 2018-11-26 2024-04-17 京セラ株式会社 Gas nozzle manufacturing method
KR102530856B1 (en) * 2018-11-26 2023-05-10 교세라 가부시키가이샤 Gas nozzle, manufacturing method of gas nozzle, and plasma processing apparatus
KR20210077746A (en) * 2018-11-26 2021-06-25 교세라 가부시키가이샤 Gas nozzle, manufacturing method of gas nozzle, and plasma processing apparatus
KR20210144777A (en) 2019-03-28 2021-11-30 다테호 가가쿠 고교 가부시키가이샤 spinel powder
JPWO2021020502A1 (en) * 2019-07-31 2021-02-04
WO2021020502A1 (en) * 2019-07-31 2021-02-04 京セラ株式会社 Gas nozzle and plasma processing device using same
JP2021054664A (en) * 2019-09-27 2021-04-08 京セラ株式会社 Anticorrosive member, component for semiconductor production device and semiconductor production device
JP7223669B2 (en) 2019-09-27 2023-02-16 京セラ株式会社 Corrosion-resistant materials, parts for semiconductor manufacturing equipment, and semiconductor manufacturing equipment
EP4068912A4 (en) * 2019-11-27 2023-11-22 Kyocera Corporation Plasma resistant member, plasma treatment device component, and plasma treatment device
WO2021106871A1 (en) 2019-11-27 2021-06-03 京セラ株式会社 Plasma resistant member, plasma treatment device component, and plasma treatment device
CN113000233B (en) * 2019-12-18 2022-09-02 中微半导体设备(上海)股份有限公司 Plasma reactor and gas nozzle thereof
CN113000233A (en) * 2019-12-18 2021-06-22 中微半导体设备(上海)股份有限公司 Plasma reactor and gas nozzle thereof

Also Published As

Publication number Publication date
JPWO2014119177A1 (en) 2017-01-26
US9790596B1 (en) 2017-10-17
JP6046752B2 (en) 2016-12-21

Similar Documents

Publication Publication Date Title
JP6046752B2 (en) Gas nozzle and plasma apparatus using the same
JP5865916B2 (en) Gas nozzle, plasma apparatus using the same, and method for manufacturing gas nozzle
CN108352319B (en) Shower plate, semiconductor manufacturing apparatus, and method for manufacturing shower plate
WO2009133638A1 (en) Yttria sinter and member for plasma processor
JP2017508891A (en) Diffusion bonded plasma resistant chemical vapor deposition (CVD) chamber heater
JP7397974B2 (en) Air permeable parts, semiconductor manufacturing equipment parts, plugs and adsorption parts
WO2021241645A1 (en) Air-permeable plug, substrate support assembly, and shower plate
KR102530856B1 (en) Gas nozzle, manufacturing method of gas nozzle, and plasma processing apparatus
JPH11310451A (en) Alumina ceramics material excellent in plasma corrosion resistance and its production
JP4884259B2 (en) Corrosion resistant member and gas nozzle for thin film forming apparatus using the same
JP7112491B2 (en) Ceramic sintered bodies and members for plasma processing equipment
JP5199599B2 (en) Yttria sintered body and member for plasma process equipment
JP7112509B2 (en) ceramic tube
JP7231367B2 (en) Alumina sintered body
JP7470222B2 (en) Gas nozzle manufacturing method
JP7329610B2 (en) Member for plasma processing apparatus, manufacturing method thereof, and plasma processing apparatus
JP2008013399A (en) Aluminum nitride based sintered compact and gas nozzle using the same
JP2002068864A (en) Plasma resistant member and method of manufacturing for the same
WO2020110965A1 (en) Gas nozzle, method for producing gas nozzle, and plasma treatment device
JP2023008826A (en) gas nozzle
JP2020164406A (en) Corrosion resistant member
JP2001044266A (en) Semiconductor wafer holding tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873204

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014559522

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14763106

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13873204

Country of ref document: EP

Kind code of ref document: A1