JP7223669B2 - Corrosion-resistant materials, parts for semiconductor manufacturing equipment, and semiconductor manufacturing equipment - Google Patents

Corrosion-resistant materials, parts for semiconductor manufacturing equipment, and semiconductor manufacturing equipment Download PDF

Info

Publication number
JP7223669B2
JP7223669B2 JP2019177295A JP2019177295A JP7223669B2 JP 7223669 B2 JP7223669 B2 JP 7223669B2 JP 2019177295 A JP2019177295 A JP 2019177295A JP 2019177295 A JP2019177295 A JP 2019177295A JP 7223669 B2 JP7223669 B2 JP 7223669B2
Authority
JP
Japan
Prior art keywords
corrosion
semiconductor manufacturing
resistant member
manufacturing equipment
yag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019177295A
Other languages
Japanese (ja)
Other versions
JP2021054664A (en
Inventor
守 山城
善則 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2019177295A priority Critical patent/JP7223669B2/en
Publication of JP2021054664A publication Critical patent/JP2021054664A/en
Application granted granted Critical
Publication of JP7223669B2 publication Critical patent/JP7223669B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は、腐食性流体に曝される環境下で使用される、耐食性部材、半導体製造装置用部品および半導体製造装置に関する。 The present invention relates to corrosion-resistant members, parts for semiconductor manufacturing equipment, and semiconductor manufacturing equipment used in environments exposed to corrosive fluids.

従来、半導体製造工程などで、半導体ウェハ、ガラス基板などの対象物に薄膜を成膜するための成膜装置、および対象物に微細加工を施すためのエッチング装置が用いられている。成膜装置では、原料ガスが反応室内に供給され、原料ガスを化学反応させることによって、対象物上に薄膜を形成する。原料ガスには反応性の高いガスが含まれることがある。エッチング装置では、ハロゲン系ガスなどのエッチングガスが反応室内に供給され、対象物の表面をエッチングガスと化学反応させて気化させることによって、対象物に微細加工を施す。原料ガスおよびエッチングガスは、反応室内でプラズマ化されて使用されることもある。 2. Description of the Related Art Conventionally, in a semiconductor manufacturing process or the like, a film forming apparatus for forming a thin film on an object such as a semiconductor wafer or a glass substrate, and an etching apparatus for performing microfabrication on the object have been used. In the film forming apparatus, source gas is supplied into a reaction chamber, and a thin film is formed on an object by chemically reacting the source gas. The raw material gas may contain a highly reactive gas. In an etching apparatus, an etching gas such as a halogen-based gas is supplied into a reaction chamber, and the surface of the object is vaporized by a chemical reaction with the etching gas, thereby finely processing the object. The raw material gas and the etching gas may be plasmatized in the reaction chamber and used.

これら半導体製造装置の反応室には、ガスノズル、窓、基板載置用部品などの各種半導体製造装置用部品が使用されている。これら半導体製造装置用部品の材質として、イットリア、イットリア・アルミニウム・ガーネット(YAG)、アルミナなどのセラミック焼結体が用いられる(特許文献1)。 In reaction chambers of these semiconductor manufacturing apparatuses, various semiconductor manufacturing apparatus parts such as gas nozzles, windows, and substrate mounting parts are used. Ceramic sintered bodies such as yttria, yttria aluminum garnet (YAG), and alumina are used as materials for these parts for semiconductor manufacturing equipment (Patent Document 1).

半導体製造装置用部品の表面が、反応性の高いガス、またはプラズマと反応すると、表面からパーティクルが発生することがある。パーティクルが対象物に付着すると、不良の原因となり得るので、半導体製造装置用部品には耐食性が求められる。イットリア、およびYAGは、アルミナと比較して、耐食性が高いことが知られている。また、耐食性部材の表面粗さ、気孔率を小さくすることで耐食性が向上することも知られている(特許文献1、2)。 When the surface of a component for semiconductor manufacturing equipment reacts with highly reactive gas or plasma, particles may be generated from the surface. If particles adhere to an object, they may cause defects, so parts for semiconductor manufacturing equipment are required to have corrosion resistance. Yttria and YAG are known to have higher corrosion resistance than alumina. It is also known that the corrosion resistance is improved by reducing the surface roughness and porosity of the corrosion-resistant member (Patent Documents 1 and 2).

パーティクルが原因の不良を低減するため、さらに耐食性に優れた、耐食性部材が求められている。 In order to reduce defects caused by particles, there is a demand for corrosion-resistant members with even better corrosion resistance.

WO2014/119177号公報WO2014/119177 特開平10-45461号公報JP-A-10-45461

本開示は、耐食性に優れ、パーティクルの発生が少ない、耐食性部材、半導体製造装置用部品、半導体製造装置を提供することを課題とする。 An object of the present disclosure is to provide a corrosion-resistant member, a component for a semiconductor manufacturing apparatus, and a semiconductor manufacturing apparatus that are excellent in corrosion resistance and generate less particles.

本開示は、単結晶YAGからなる耐食性部材、ならびに、該耐食性部材を使用した、半導体製造装置用部品、および半導体製造装置である。 The present disclosure relates to a corrosion-resistant member made of single-crystal YAG, a component for a semiconductor manufacturing apparatus, and a semiconductor manufacturing apparatus using the corrosion-resistant member.

本開示によれば、耐食性に優れ、パーティクルの発生が少ない、耐食性部材、半導体製造装置用部品、半導体製造装置を提供することができる。 According to the present disclosure, it is possible to provide a corrosion-resistant member, a component for a semiconductor manufacturing apparatus, and a semiconductor manufacturing apparatus that are excellent in corrosion resistance and generate less particles.

プラズマ処理装置の概略断面図である。1 is a schematic cross-sectional view of a plasma processing apparatus; FIG. ガスノズルの概略図である。1 is a schematic diagram of a gas nozzle; FIG. 耐食性部材の断面形状である。It is a cross-sectional shape of a corrosion-resistant member.

以下、本発明の実施形態について図を参照しながら説明する。 Embodiments of the present invention will be described below with reference to the drawings.

本明細書において、耐食性部材とは、プラズマ、ハロゲン系ガス、酸性液体、アルカリ性液体などの反応性の高い腐食性流体に対して耐食性を有する部品のことである。 In this specification, a corrosion-resistant member is a component that has corrosion resistance against highly reactive corrosive fluids such as plasma, halogen-based gas, acidic liquids, and alkaline liquids.

耐食性部材は、半導体製造工程で使用される、成膜装置(CVD装置など)やエッチング装置(RIE装置など)、プラズマ処理装置、各種反応炉などの半導体製造装置、ハロゲン系ガスなどの腐食性の強い気体を使用するエキシマレーザ、高温の腐食性液体を使用する洗浄装置などに使用される。例えば、半導体製造装置においては、インジェクタ、ガスノズル、シャワーヘッドなどのガス供給部品、窓などの内部監察用部品、静電チャック、キャリアプレートなどの基板保持部品、熱電対の保護管などの保護部品等に使用される。 Corrosion-resistant members are used in semiconductor manufacturing processes such as film deposition equipment (CVD equipment, etc.), etching equipment (RIE equipment, etc.), plasma processing equipment, semiconductor manufacturing equipment such as various reactors, and corrosive materials such as halogen-based gases. It is used in excimer lasers that use strong gases and cleaning equipment that uses high-temperature corrosive liquids. For example, in semiconductor manufacturing equipment, gas supply parts such as injectors, gas nozzles and shower heads, internal inspection parts such as windows, substrate holding parts such as electrostatic chucks and carrier plates, protective parts such as thermocouple protective tubes, etc. used for

図1は、本開示の耐食性部材を用いた半導体製造装置の一例である、プラズマ処理装置の概略断面図である。プラズマ処理装置1は、半導体ウェハ、ガラス基板等の対象物5に薄膜を形成したり、エッチング処理したり、対象物5の表面の改質処理をする装置である。プラズマ処理装置1は、対象物5を処理するための反応室2を備える。反応室2の内部には、反応室2内にガスを供給するガスノズル4と、内部電極7を備えた静電チャック等の保持部6とを備える。反応室2の外部には、ガスノズル4に原料ガスを供給するガス供給管3と、プラズマを生成するための電力を供給する、コイル9と電源10、内部電極7に接続されるバイアス電源8を備える。 FIG. 1 is a schematic cross-sectional view of a plasma processing apparatus, which is an example of a semiconductor manufacturing apparatus using the corrosion-resistant member of the present disclosure. The plasma processing apparatus 1 is an apparatus for forming a thin film on an object 5 such as a semiconductor wafer or a glass substrate, performing an etching process, or modifying the surface of the object 5 . A plasma processing apparatus 1 comprises a reaction chamber 2 for processing an object 5 . Inside the reaction chamber 2, there are provided a gas nozzle 4 for supplying gas into the reaction chamber 2 and a holder 6 such as an electrostatic chuck provided with an internal electrode 7. As shown in FIG. Outside the reaction chamber 2, there are a gas supply pipe 3 for supplying raw material gas to the gas nozzle 4, a coil 9 and a power supply 10 for supplying power for generating plasma, and a bias power supply 8 connected to the internal electrode 7. Prepare.

保持部6に対象物5が載置され、ガスノズル4を介して反応室2内にガスが供給され、コイル9および電源10から供給された電力による放電によってプラズマ化し、対象物5上が処理される。 An object 5 is placed on the holding part 6, gas is supplied into the reaction chamber 2 through the gas nozzle 4, and plasma is generated by electric discharge from the coil 9 and the power supply 10, and the object 5 is processed. be.

例えば、対象物5上に酸化ケイ素(SiO)からなる薄膜を形成するときは、シラン(SiH)、酸素(O)等の原料ガスが供給され、対象物5をエッチング処理するときは、SF、CF、CHF、ClF、NF、C、C、HF、Cl、HCl、BCl、CCl等のハロゲン系ガス等のエッチングガスが供給される。 For example, when forming a thin film made of silicon oxide (SiO 2 ) on the object 5, source gases such as silane (SiH 4 ) and oxygen (O 2 ) are supplied, and when the object 5 is etched, , SF6, CF4, CHF3, ClF3, NF3, C3F8, C4F8 , HF , Cl2 , HCl , BCl3 , and CCl4 . be.

図2は、本開示の耐食性部材を用いた半導体製造装置用部品の一例である、ガスノズルの概略図である。(a)は斜視図であり、(b)は(a)のA1-A1線における断面図である。ガスノズル4は、ガスを案内する管状の供給孔11を備える。ガスノズル4は、例えば、円柱状に形成されており、供給孔11は、ガスノズル4の軸心に沿って円周上に複数(図2に示す例では4本)設けられる。 FIG. 2 is a schematic diagram of a gas nozzle, which is an example of a component for semiconductor manufacturing equipment using the corrosion-resistant member of the present disclosure. (a) is a perspective view, and (b) is a cross-sectional view taken along line A1-A1 of (a). The gas nozzle 4 has a tubular supply hole 11 for guiding gas. The gas nozzle 4 is formed, for example, in a cylindrical shape, and a plurality of supply holes 11 (four in the example shown in FIG. 2) are provided along the axis of the gas nozzle 4 on the circumference.

本開示の耐食性部材は、単結晶イットリア・アルミニウム・ガーネット(YAG)からなる。本開示の半導体製造装置用部品および半導体製造装置は、単結晶YAGからなる耐食性部材を用いている。 The corrosion resistant member of the present disclosure consists of single crystal yttria aluminum garnet (YAG). A component for a semiconductor manufacturing apparatus and a semiconductor manufacturing apparatus according to the present disclosure use a corrosion-resistant member made of single-crystal YAG.

各種部材の耐食性を評価するため、リアクティブイオンエッチング装置(RIE装置)を用いて、試料にCFのプラズマを照射し、エッチング深さ(エッチングレート)を比較した。アルミナセラミックス、サファイア(単結晶アルミナ)、単結晶YAG、イット
リアセラミックスのエッチング深さは、それぞれ、0.61μm、0.56μm、0.16μm、0.13μmであり、単結晶YAGの耐プラズマ耐食性は、アルミナセラミック、サファイア(単結晶アルミナ)を上回り、イットリアセラミックに匹敵することがわかった。
In order to evaluate the corrosion resistance of various members, a reactive ion etching device (RIE device) was used to irradiate the sample with CF 4 plasma, and the etching depth (etching rate) was compared. The etching depths of alumina ceramics, sapphire (single crystal alumina), single crystal YAG, and yttria ceramics are 0.61 μm, 0.56 μm, 0.16 μm, and 0.13 μm, respectively. , alumina ceramics, sapphire (single crystal alumina), and comparable to yttria ceramics.

先行文献に記載の通り、YAGおよびイットリアは、アルミナと比較して耐食性が高い。また、気孔率および表面粗さを小さくすることで、耐食性は向上する。単結晶は、セラミック(多結晶)と比較して、気孔が小さく、少ない(または気孔そのものがない)ので、耐食性が高い。また、多結晶では、結晶粒界は、結晶の粒内と比べて、結晶性が悪くエッチングされやすいが、単結晶には結晶粒界がないので、耐食性が高くなる。また、結晶粒界がなく、気孔も小さい(少ない)ため、表面粗さを小さくしやすい。上記理由により、単結晶YAGは、耐食性に優れた、耐食性部材となる。 As described in the prior art, YAG and yttria have higher corrosion resistance than alumina. Corrosion resistance is improved by reducing porosity and surface roughness. Single crystals have smaller and fewer pores (or no pores at all) than ceramics (polycrystals), and therefore have high corrosion resistance. Also, in polycrystals, the grain boundaries have poorer crystallinity than the insides of crystals and are easily etched, but since single crystals do not have grain boundaries, they have high corrosion resistance. In addition, since there are no crystal grain boundaries and the pores are small (few), the surface roughness can be easily reduced. For the reasons described above, single-crystal YAG serves as a corrosion-resistant member with excellent corrosion resistance.

さらに、YAGセラミックスは、使用環境温度が製造時の焼成温度(融点(℃)の50~80%程度)近くまで上昇すると、焼結が進行するなどして変質するのに対し、単結晶YAGは融点近くまで安定であり、耐熱性に優れる。YAGの融点は約1970℃であり、1600℃~1900℃の高温環境下でも変質が低減される。 Furthermore, YAG ceramics deteriorates due to progress of sintering when the environmental temperature of use rises close to the sintering temperature (about 50 to 80% of the melting point (° C.) at the time of manufacturing, whereas single crystal YAG It is stable up to near the melting point and has excellent heat resistance. YAG has a melting point of about 1970°C, and deterioration is reduced even in a high temperature environment of 1600°C to 1900°C.

また、YAGは、アルミナと比較すると柔らかい材料であり、単結晶YAG部材は、サファイア部材と比べて加工精度が優れ、加工精度の要求される部品、例えば、レーザー用の窓、レンズなどの光学用部品、圧力センサー用のダイヤフラムなどの薄膜部品の材料として好適である。また、YAGは、イットリアと比較すると融点が低いので、単結晶YAGは、単結晶イットリアと比べて生産性に優れるとともに、生産コストを低くできる。 In addition, YAG is a softer material than alumina, and single-crystal YAG members have excellent processing accuracy compared to sapphire members, and parts that require processing accuracy, such as laser windows and lenses. It is suitable as a material for thin film parts such as parts and diaphragms for pressure sensors. In addition, since YAG has a lower melting point than yttria, single-crystal YAG is superior to single-crystal yttria in terms of productivity, and production costs can be reduced.

YAGの結晶構造は立方晶系であるため、{100}面は4回対称であり、面に垂直な軸を中心として90°回転させると等価な面が現れる。したがって、ガスノズル4などの柱状、筒状の部材で、軸方向が<100>方向であり、図3(a)のように、部材の内周面(例えば、ガスノズル4の供給孔11の内周面)または外周面の少なくともいずれかの、軸に垂直な断面の形状が、矩形状、特に好ましくは正方形状であれば、各内周面または各外周面が等価な面となって、各面の耐食性および各種物性が等しくなるので、耐食性部材として好適である。例えば、熱膨張率の異方性による変形が生じにくい。同様に、部材の軸方向が<100>方向であり、図3(b)のように、部材の、軸に垂直な断面の形状(外形状、内形状、貫通穴の配置)が、4回対称であれば、断面における各種物性が比較的等方的になるので、耐食性部材として好適である。 Since the crystal structure of YAG is a cubic system, the {100} plane has four-fold symmetry, and an equivalent plane appears when rotated 90° about an axis perpendicular to the plane. Therefore, a columnar or cylindrical member such as the gas nozzle 4 has an axial direction in the <100> direction, and as shown in FIG. surface) or the outer peripheral surface, the shape of the cross section perpendicular to the axis is rectangular, particularly preferably square, each inner peripheral surface or each outer peripheral surface is an equivalent surface, and each surface It is suitable as a corrosion-resistant member because it has the same corrosion resistance and various physical properties. For example, deformation due to the anisotropy of the coefficient of thermal expansion is less likely to occur. Similarly, the axial direction of the member is the <100> direction, and as shown in FIG. If it is symmetrical, various physical properties in the cross section will be relatively isotropic, so it is suitable as a corrosion-resistant member.

また、{111}面は3回対称であるため、面に垂直な軸を中心として120°回転させると等価な面が現れる。したがって、ガスノズル4などの柱状、または筒状の部材では、軸方向が<111>方向であり、図3(c)のように、部材の内周面または外周面の少なくともいずれかの軸に垂直な断面の形状が、正三角形状であれば、各内周面または各外周面が等価な面となって、各面の耐食性および各種物性が等しくなるので、耐食性部材として好適である。例えば、熱膨張率の異方性による変形が生じにくい。同様に、部材の軸方向が<111>方向であり、図3(d)のように、部材の軸に垂直な断面の形状(外形状、内形状、貫通穴の配置)が、3回対称であれば、断面における各種物性が比較的等方的になるので、耐食性部材として好適である。 Also, since the {111} plane has three-fold symmetry, an equivalent plane appears when rotated 120° about an axis perpendicular to the plane. Therefore, in a columnar or cylindrical member such as the gas nozzle 4, the axial direction is the <111> direction, and as shown in FIG. If the cross-sectional shape is an equilateral triangle, each inner peripheral surface or each outer peripheral surface becomes an equivalent surface, and each surface has the same corrosion resistance and various physical properties, and is suitable as a corrosion-resistant member. For example, deformation due to the anisotropy of the coefficient of thermal expansion is less likely to occur. Similarly, the axial direction of the member is the <111> direction, and as shown in FIG. If so, various physical properties in a cross section are relatively isotropic, and therefore, it is suitable as a corrosion-resistant member.

単結晶YAGのインゴットは、例えば、CZ(チョクラルスキー)法を用いて製造することができる。高純度(例えば4N以上)のイットリア粉末とアルミナ粉末とを混合した原料、または前記原料を仮焼して得られる多結晶YAGを、イリジウムなどの高融点金属製の坩堝に充填し、加熱して溶融させ、種結晶を融液に浸した後、所定の引上げ速度と回転速度で引き上げることで、円筒状の直胴部を有する単結晶を育成できる。種結晶の結晶
方位を適宜選択することで、所望の結晶方位の高純度(例えば、4N以上)な単結晶を製造できる。
An ingot of single-crystal YAG can be produced, for example, using the CZ (Czochralski) method. A raw material obtained by mixing high-purity (for example, 4N or higher) yttria powder and alumina powder, or polycrystalline YAG obtained by calcining the raw material, is filled in a crucible made of a high-melting-point metal such as iridium, and heated. After the seed crystal is melted and immersed in the melt, it is pulled up at a predetermined pulling speed and rotational speed to grow a single crystal having a cylindrical straight body. By appropriately selecting the crystal orientation of the seed crystal, a high-purity (for example, 4N or higher) single crystal having a desired crystal orientation can be produced.

棒状、筒状、板状の単結晶YAGは、例えば、EFG(Edge-defined Film-fed Growth)法を用いて製造することができる。高純度(例えば4N以上)のイットリア粉末とアルミナ粉末とを混合した原料、または前記原料を仮焼して得られる多結晶YAGを、スリットを有する金型を配置したイリジウムなどの高融点金属製の坩堝に充填し、加熱して溶融させ、スリットを介して金型の上面まで供給された融液に種結晶を浸した後、所定の引上げ速度で引き上げることで、棒状、筒状、板状の単結晶を育成できる。種結晶の結晶方位を適宜選択することで、所望の結晶方位の高純度(例えば、4N以上)な単結晶を製造できる。 Rod-shaped, cylindrical, and plate-shaped single-crystal YAG can be produced, for example, using an EFG (Edge-defined Film-fed Growth) method. A raw material obtained by mixing high-purity (for example, 4N or higher) yttria powder and alumina powder, or polycrystalline YAG obtained by calcining the raw material, is placed in a mold having a slit and is made of a high melting point metal such as iridium. The seed crystal is filled in a crucible, melted by heating, and immersed in the melt supplied to the upper surface of the mold through a slit. A single crystal can be grown. By appropriately selecting the crystal orientation of the seed crystal, a high-purity (for example, 4N or higher) single crystal having a desired crystal orientation can be produced.

育成されたインゴットをワイヤソー、外周刃切断機などの各種切断機を用いて所望の長さ(厚さ)に切断し、マシニングセンター、研磨装置などの各種加工装置を用いて所望の形状および表面粗さに加工することで、ガスノズルなどの製品を製造することができる。 The grown ingot is cut to the desired length (thickness) using various cutting machines such as wire saws and peripheral cutting machines, and the desired shape and surface roughness are obtained using various processing equipment such as machining centers and polishing machines. Products such as gas nozzles can be manufactured by processing to

1 :プラズマ処理装置
2 :反応室
3 :ガス導入管
4 :ガスノズル
5 :対象物
6 :保持部
7 :内部電極
8 :バイアス電源
9 :コイル
10:電源
11:供給孔
Reference Signs List 1: Plasma processing apparatus 2: Reaction chamber 3: Gas introduction pipe 4: Gas nozzle 5: Object 6: Holding part 7: Internal electrode 8: Bias power supply 9: Coil 10: Power supply 11: Supply hole

Claims (7)

単結晶YAGからなる柱状または筒状の耐食性部材であって、軸方向が<100>方向であり、内周面または外周面の少なくともいずれかの、軸に垂直な断面の形状が矩形状である耐食性部材。 A columnar or cylindrical corrosion-resistant member made of single-crystal YAG, having a <100> axial direction, and a rectangular cross-sectional shape perpendicular to the axis of at least one of the inner peripheral surface and the outer peripheral surface. Corrosion resistant material. 単結晶YAGからなる柱状または筒状の耐食性部材であって、軸方向が<100>方向であり、軸に垂直な断面の形状が4回対称である耐食性部材。A columnar or cylindrical corrosion-resistant member made of single-crystal YAG, the corrosion-resistant member having an axial direction in the <100> direction and a cross-sectional shape perpendicular to the axis having four-fold symmetry. 単結晶YAGからなる柱状または筒状の耐食性部材であって、軸方向が<111>方向であり、内周面または外周面の少なくともいずれかの、軸に垂直な断面の形状が正三角形状である耐食性部材。A columnar or cylindrical corrosion-resistant member made of single-crystal YAG, having an axial direction in the <111> direction, and an equilateral triangular cross-sectional shape of at least one of the inner peripheral surface and the outer peripheral surface perpendicular to the axis. A certain corrosion resistant member. 単結晶YAGからなる柱状または筒状の耐食性部材であって、軸方向が<111>方向であり、軸に垂直な断面の形状が3回対称である耐食性部材。What is claimed is: 1. A columnar or tubular corrosion-resistant member made of single-crystal YAG, the axial direction of which is in the <111> direction, and the cross-sectional shape perpendicular to the axis is three-fold symmetrical. 1600℃以上の高温環境下で使用される、請求項1から4のいずれかに記載の耐食性部材。 The corrosion resistant member according to any one of claims 1 to 4 , which is used in a high temperature environment of 1600°C or higher. 請求項1からのいずれかに記載の耐食性部材を用いた半導体製造装置用部品。 A component for a semiconductor manufacturing apparatus using the corrosion-resistant member according to any one of claims 1 to 5 . 請求項1からのいずれかに記載の耐食性部材を用いた半導体製造装置。


A semiconductor manufacturing apparatus using the corrosion-resistant member according to any one of claims 1 to 5 .


JP2019177295A 2019-09-27 2019-09-27 Corrosion-resistant materials, parts for semiconductor manufacturing equipment, and semiconductor manufacturing equipment Active JP7223669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019177295A JP7223669B2 (en) 2019-09-27 2019-09-27 Corrosion-resistant materials, parts for semiconductor manufacturing equipment, and semiconductor manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019177295A JP7223669B2 (en) 2019-09-27 2019-09-27 Corrosion-resistant materials, parts for semiconductor manufacturing equipment, and semiconductor manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2021054664A JP2021054664A (en) 2021-04-08
JP7223669B2 true JP7223669B2 (en) 2023-02-16

Family

ID=75269785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019177295A Active JP7223669B2 (en) 2019-09-27 2019-09-27 Corrosion-resistant materials, parts for semiconductor manufacturing equipment, and semiconductor manufacturing equipment

Country Status (1)

Country Link
JP (1) JP7223669B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148370A (en) 1999-11-19 2001-05-29 Kyocera Corp Anti-corrosion and anti-plasma ceramic member
WO2007026739A1 (en) 2005-08-31 2007-03-08 Kyocera Corporation Corrosion resistant member, treatment apparatus and sample treatment method using the member, and method for manufacture of corrosion resistant member
JP2012054266A (en) 2010-08-31 2012-03-15 Kyocera Corp Gas nozzle and method of manufacturing the same
US20120103519A1 (en) 2010-10-25 2012-05-03 Greene, Tweed Of Delaware, Inc. Plasma Etch Resistant, Highly Oriented Yttria Films, Coated Substrates and Related Methods
WO2014119177A1 (en) 2013-01-30 2014-08-07 京セラ株式会社 Gas nozzle and plasma device employing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692190A (en) * 1979-12-27 1981-07-25 Toshiba Ceramics Co Ltd Oxide single crystal body and its production
JP3426845B2 (en) * 1996-04-26 2003-07-14 京セラ株式会社 Electrostatic chuck

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148370A (en) 1999-11-19 2001-05-29 Kyocera Corp Anti-corrosion and anti-plasma ceramic member
WO2007026739A1 (en) 2005-08-31 2007-03-08 Kyocera Corporation Corrosion resistant member, treatment apparatus and sample treatment method using the member, and method for manufacture of corrosion resistant member
JP2012054266A (en) 2010-08-31 2012-03-15 Kyocera Corp Gas nozzle and method of manufacturing the same
US20120103519A1 (en) 2010-10-25 2012-05-03 Greene, Tweed Of Delaware, Inc. Plasma Etch Resistant, Highly Oriented Yttria Films, Coated Substrates and Related Methods
WO2014119177A1 (en) 2013-01-30 2014-08-07 京セラ株式会社 Gas nozzle and plasma device employing same

Also Published As

Publication number Publication date
JP2021054664A (en) 2021-04-08

Similar Documents

Publication Publication Date Title
JP5026794B2 (en) Free-standing silicon carbide products formed by chemical vapor deposition and methods for manufacturing them
JPH104083A (en) Anticorrosive material for semiconductor fabrication
JP5678721B2 (en) Seed crystal for growing silicon carbide single crystal and method for producing silicon carbide single crystal
KR20120094034A (en) Method of producing silicon carbide monocrystals
JP2005286069A (en) Gas nozzle and manufacturing method thereof, and thin film forming apparatus using it
JP2000191370A (en) Member for treatment chamber
JP5949760B2 (en) CaF2 polycrystal, focus ring, plasma processing apparatus, and method for producing CaF2 polycrystal
JP7223669B2 (en) Corrosion-resistant materials, parts for semiconductor manufacturing equipment, and semiconductor manufacturing equipment
JP7112491B2 (en) Ceramic sintered bodies and members for plasma processing equipment
JP7329619B2 (en) Plasma resistant member, parts for plasma processing equipment and plasma processing equipment
KR100319544B1 (en) Corrosion-resistant member and a producing process therof
CN108541278B (en) Cleaning method of SiC single crystal growth furnace
JP2000164572A (en) Plasma-resistant member and manufacture thereof
KR20140118905A (en) Silicon member and method of producing the same
JP2023500826A (en) Single crystal metal oxide plasma chamber components
JP7112509B2 (en) ceramic tube
WO2024171329A1 (en) Beta-digallium trioxide single crystal substrate, method for manufacturing beta-digallium trioxide single crystal, and method for manufacturing beta-digallium trioxide single crystal substrate
JP2006077302A (en) Method for producing silicon carbide member
WO2020110965A1 (en) Gas nozzle, method for producing gas nozzle, and plasma treatment device
JP3195093B2 (en) Method of forming diamond film
KR101984223B1 (en) A Cathode Electrode for Plasma Apparatus and Preparation Method Thereof
JP2008282861A (en) Corrosive member and its production process
TW201504178A (en) SiO2-based barrier layer for high-temperature diffusion and coating processes
JP2000256855A (en) Semiconductor producing device member
JP2001115261A (en) Semiconductor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211210

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230206

R150 Certificate of patent or registration of utility model

Ref document number: 7223669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150