JP2006077302A - Method for producing silicon carbide member - Google Patents
Method for producing silicon carbide member Download PDFInfo
- Publication number
- JP2006077302A JP2006077302A JP2004263922A JP2004263922A JP2006077302A JP 2006077302 A JP2006077302 A JP 2006077302A JP 2004263922 A JP2004263922 A JP 2004263922A JP 2004263922 A JP2004263922 A JP 2004263922A JP 2006077302 A JP2006077302 A JP 2006077302A
- Authority
- JP
- Japan
- Prior art keywords
- cvd
- sic
- silicon carbide
- intermediate layer
- base material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Carbon And Carbon Compounds (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
本発明は、CVD法による炭化ケイ素部材の製造方法に関する。 The present invention relates to a method for manufacturing a silicon carbide member by a CVD method.
CVD法(化学気相成長法)で製造した炭化ケイ素体(CVD−SiC)は、緻密体であって耐食性等に優れ、しかも高純度であるため半導体製造用各種部材・治具として好適に使用されている。 Silicon carbide body (CVD-SiC) manufactured by CVD (chemical vapor deposition) is a dense body, excellent in corrosion resistance, etc., and high in purity, so it is suitable for use as various parts and jigs for semiconductor manufacturing. Has been.
CVD−SiCの製造法としては、基材上にCVDでSiCを蒸着させた後、基材を焼失させる方法が知られている。例えば、基材に黒鉛を用い、CVD後に前記黒鉛基材を焼失させる方法がある(特許文献1)。しかし、この方法では一般に基材の繰り返し利用ができないほか、管状体、特に片端を閉塞した管状体のような長尺部材では、完全に黒鉛基材を焼失させるのが難しく、長時間の熱処理を必要とする、などの問題点があった。また、黒鉛とSiCとの熱膨張係数の差によりCVD−SiCにクラックや割れが発生することもある。 As a method for producing CVD-SiC, a method is known in which SiC is deposited on a substrate by CVD and then the substrate is burned off. For example, there is a method in which graphite is used as a base material and the graphite base material is burned off after CVD (Patent Document 1). However, this method generally does not allow repeated use of the base material, and it is difficult to completely burn out the graphite base material with a long member such as a tubular body, particularly a tubular body with one end closed. There was a problem such as need. Moreover, cracks and cracks may occur in CVD-SiC due to the difference in thermal expansion coefficient between graphite and SiC.
管状体のCVD−SiCの製造法としては、黒鉛製円筒基材を用い反応室内で複数の前記円筒基材を直列に接続してCVD処理する方法が提案されているが(特許文献2)、当該黒鉛基材の除去方法については具体的に提案されていない。 As a method for producing CVD-SiC of a tubular body, a method of performing CVD treatment by connecting a plurality of cylindrical base materials in series in a reaction chamber using a graphite cylindrical base material has been proposed (Patent Document 2). There is no specific proposal for a method for removing the graphite substrate.
基材を焼失させる以外の方法として、基材にSiCと熱膨張係数が大きく異なるAl2O3を採用することにより、基材を焼失させずに単に温度降下により基材を分離する方法が提案されているが(特許文献3)、高純度なAl2O3製基材を製作するのは難しく、CVD−SiCへの不純物汚染、などの問題点がある。同様の観点から、基材にSiCと熱膨張係数が大きく異なる熱分解窒化ホウ素(pBN)を採用することにより、基材を焼失させずに単に温度降下により基材を分離する方法も提案されているが(特許文献4)、pBNは高純度にできるものの基材のような構造体とするには時間と費用を要するため生産性、原価面で問題がある。 As a method other than burning out the base material, a method is proposed in which Al 2 O 3 having a coefficient of thermal expansion significantly different from that of SiC is used for the base material, and the base material is simply separated by a temperature drop without burning the base material. However, it is difficult to produce a high-purity Al 2 O 3 base material and there are problems such as impurity contamination to CVD-SiC. From the same point of view, a method has been proposed in which pyrolytic boron nitride (pBN), which has a thermal expansion coefficient significantly different from that of SiC, is used for the base material, and the base material is simply separated by a temperature drop without burning the base material. However, although pBN can be highly purified, it takes time and cost to form a structure like a base material, and thus there are problems in terms of productivity and cost.
基材を溶解除去させる方法として、AlやNi等の金属を基材にして酸やアルカリなどで溶解除去する方法や合成樹脂を基材とし有機溶媒で溶解除去させる方法が提案されているが(特許文献5)、前記金属の場合にはSiCとの熱膨張係数の差が大きいためCVD−SiCにクラックや割れが発生する問題があり、前記合成樹脂の場合、CVD温度のような1000℃超の高温度まで軟化・焼失せずに形状を保持できるものは現実にはない。 As a method for dissolving and removing the base material, a method of dissolving and removing it with an acid or alkali using a metal such as Al or Ni as a base material, or a method of dissolving and removing it with an organic solvent using a synthetic resin as a base material has been proposed ( Patent Document 5), in the case of the metal, there is a problem that cracks and cracks occur in CVD-SiC because of the large difference in thermal expansion coefficient from SiC. In the case of the synthetic resin, the temperature exceeds 1000 ° C. In reality, there is nothing that can maintain the shape without softening and burning up to a high temperature.
本発明は、CVD−SiCを製造する際の基材として、繰り返し使用でき、CVD−SiCから簡単に分離させることができ、CVD−SiCにクラック、割れ、不純物汚染を発生させない基材を採用して、生産性に優れた炭化ケイ素部材の製造法の提供を目的とする。 The present invention employs a base material that can be repeatedly used as a base material for producing CVD-SiC, can be easily separated from CVD-SiC, and does not generate cracks, cracks, or impurity contamination in CVD-SiC. An object of the present invention is to provide a method for producing a silicon carbide member having excellent productivity.
本発明は、基材上に薬液で溶解可能な中間層を形成後、前記中間層の表面にCVD法で炭化ケイ素膜を成膜して炭化ケイ素体とした後、前記中間層を薬液で溶解させて除去し前記基材から前記炭化ケイ素体を分離させることを特徴とする炭化ケイ素部材の製造法を提供する。 In the present invention, an intermediate layer that can be dissolved with a chemical solution is formed on a substrate, a silicon carbide film is formed on the surface of the intermediate layer by a CVD method to form a silicon carbide body, and then the intermediate layer is dissolved with a chemical solution. And removing the silicon carbide body from the substrate to provide a method for producing a silicon carbide member.
本発明は、基材上に薬液で溶解可能な中間層を形成し、CVD終了後、前記中間層を薬液で除去してCVD−SiCとする製造法であるため、前記基材は繰り返し使用できる。また、基材の焼失過程がないため、管状体などの長尺品でも簡便に基材を分離させることができ生産性、原価の点で優れる。 The present invention is a manufacturing method in which an intermediate layer that can be dissolved with a chemical solution is formed on a substrate, and after the end of CVD, the intermediate layer is removed with a chemical solution to obtain CVD-SiC. Therefore, the substrate can be used repeatedly. . Moreover, since there is no burning process of the base material, the base material can be easily separated even in a long product such as a tubular body, which is excellent in terms of productivity and cost.
また、前記中間層をアモルファスSi膜やポリSi膜で形成すると、高純度であるため、CVD−SiCへの不純物汚染を防止でき、しかもSiCとSiとの熱膨張係数の差が小さいのでCVD−SiCにクラックや割れなどの欠陥を発生させない。 Further, when the intermediate layer is formed of an amorphous Si film or a poly-Si film, it is highly pure, so that impurity contamination to CVD-SiC can be prevented, and the difference in thermal expansion coefficient between SiC and Si is small, so that CVD- Does not cause defects such as cracks and cracks in SiC.
本発明の炭化ケイ素部材の製造法(以下、本製造法という)は、CVD−SiCを製造するにあたって、薬液で溶解可能な中間層(以下、溶解可能中間層という)を表面に形成した基材を使用する。 The method for producing a silicon carbide member of the present invention (hereinafter referred to as the present production method) is a substrate in which an intermediate layer (hereinafter referred to as a dissolvable intermediate layer) that can be dissolved with a chemical solution is formed on the surface when producing CVD-SiC Is used.
本製造法において基材としては、その表面に前記溶解可能中間層が形成できるものであれば特に制限されないが、高純度のものであると好ましい。好適な基材として、黒鉛、グラッシーカーボン、黒鉛を化学反応にて炭化ケイ素に転化したもの、焼結炭化ケイ素、再結晶炭化ケイ素、再結晶炭化ケイ素にシリコンを含浸したもの、反応焼結炭化ケイ素、反応焼結体や焼結体にシリコンを含浸したもの、または、これらのバルク体の表面にCVD法等によりSiCを成膜したものやCVD−SiC等が挙げられる。 In the present production method, the substrate is not particularly limited as long as it can form the dissolvable intermediate layer on the surface thereof, but is preferably high-purity. Suitable base materials include graphite, glassy carbon, graphite converted to silicon carbide by chemical reaction, sintered silicon carbide, recrystallized silicon carbide, recrystallized silicon carbide impregnated with silicon, reaction sintered silicon carbide Examples include a reaction sintered body, a sintered body impregnated with silicon, a SiC film formed on the surface of these bulk bodies by a CVD method, CVD-SiC, and the like.
なかでも、基材をCVD−SiCで製作すると、基材と製品部材との間の熱膨張係数の差がなくなるため、熱膨張係数の差に起因するクラックや割れの発生を防止でき、高純度で製品部材への不純物汚染がなく、高強度でハンドリング性に優れ、しかも高耐食性でCVDの反応ガスに対し耐久性がある、などの点から特に好ましい。 In particular, if the base material is made of CVD-SiC, there is no difference in the thermal expansion coefficient between the base material and the product member, so cracks and cracks due to the difference in the thermal expansion coefficient can be prevented, and high purity. It is particularly preferable from the viewpoints that there is no impurity contamination on the product member, high strength, excellent handling properties, high corrosion resistance, and durability against CVD reaction gas.
前記基材の表面は、平坦で平滑であるほど、その表面上にさらに形成される溶解可能中間層除去後に基材からCVD−SiCを分離するのが容易になるため好ましい。この場合、基材表面の表面粗さRmaxが20μm以下、またはRaが2μm以下とすると好ましい。 The surface of the substrate is preferably flat and smooth because it becomes easier to separate the CVD-SiC from the substrate after removing the dissolvable intermediate layer formed on the surface. In this case, the surface roughness R max of the substrate surface is preferably 20 μm or less, or Ra is 2 μm or less.
本製造法において前記溶解可能中間層の組成としては、薬液で溶解可能であり、製品部材との熱膨張係数の差が小さく、耐熱性があり、高純度のものが得られる限りにおいては特に制限されない。前記溶解可能中間層が酸またはアルカリで溶解なものであると薬液による除去が容易であるため好ましく、アモルファスSi膜、ポリSi膜、ドープドSi膜、単結晶Si膜などのSi系半導体薄膜、シリコン・ゲルマニウム膜、ゲルマニウム膜などの半導体薄膜、タングステン膜、モリブデン膜、Al膜、MoSi2膜、W−Ti膜、WSi2膜、Cr膜などの金属薄膜、SiO2膜、PSG(リンガラス)膜、BSG(ボロンガラス)膜、BPSG(ボロン・リンガラス)膜などのガラス膜、Al2O3膜などの酸化膜やSi3N4などの窒化膜などが好ましいものの例として挙げられる。 In the present production method, the composition of the dissolvable intermediate layer is not particularly limited as long as it can be dissolved in a chemical solution, has a small difference in thermal expansion coefficient from the product member, has heat resistance, and has a high purity. Not. It is preferable that the dissolvable intermediate layer is soluble in acid or alkali because it can be easily removed with a chemical solution, and an Si-based semiconductor thin film such as an amorphous Si film, a poly-Si film, a doped Si film, or a single-crystal Si film, silicon Semiconductor thin films such as germanium films and germanium films, tungsten films, molybdenum films, Al films, MoSi 2 films, W-Ti films, WSi 2 films, metal films such as Cr films, SiO 2 films, PSG (phosphorus glass) films Preferred examples include glass films such as BSG (boron glass) film, BPSG (boron / phosphor glass) film, oxide films such as Al 2 O 3 film, and nitride films such as Si 3 N 4 .
溶解可能中間層がSi系の膜であると、前記の条件を充たすため特に好ましい。Si系の膜としては、アモルファスSi膜(以下、a−Si膜と略す)やポリSi膜(以下、p−Si膜と略す)が好ましく挙げられる。 It is particularly preferable that the dissolvable intermediate layer is a Si-based film in order to satisfy the above conditions. Preferred examples of the Si film include an amorphous Si film (hereinafter abbreviated as a-Si film) and a poly Si film (hereinafter abbreviated as p-Si film).
a−Si膜は、スパッタ法、蒸着法またはCVD法などで製造できる。例えば、ジシランなどの原料ガスを熱やプラズマなどにより分解して堆積膜を形成するCVD法が一例である。前記CVD法は、10〜15000Pa程度の減圧下で行われる場合には減圧CVD法またはLPCVD法などと称されたり、分解手段がプラズマの場合には、プラズマCVD法と称されることもある。 The a-Si film can be manufactured by sputtering, vapor deposition, CVD, or the like. For example, a CVD method in which a source gas such as disilane is decomposed by heat or plasma to form a deposited film is an example. The CVD method may be referred to as a low pressure CVD method or an LPCVD method when performed under a reduced pressure of about 10 to 15000 Pa, or may be referred to as a plasma CVD method when the decomposition means is plasma.
また、p−Si膜は、前記a−Si膜を結晶化させることで製造できる。一例として、CVD法により形成したa−Si膜を600℃以下で熱アニールして固相成長させる方法がある。熱処理の代わりにエキシマレーザーで照射してアニール処理しa−Si膜を溶融再結晶化させても製造できる。これらの方法以外にも、液相成長法、CVD法などの気相成長法、熱アニールなどの固相成長法でも製造できる。 The p-Si film can be manufactured by crystallizing the a-Si film. As an example, there is a method in which an a-Si film formed by a CVD method is subjected to solid phase growth by thermal annealing at 600 ° C. or lower. Instead of heat treatment, it can also be produced by irradiating with an excimer laser and annealing to melt and recrystallize the a-Si film. In addition to these methods, it can also be produced by a liquid phase growth method, a vapor phase growth method such as a CVD method, or a solid phase growth method such as thermal annealing.
本製造法において、前記溶解可能中間層の厚さとしては、1〜1000μmであると好ましい。溶解可能中間層の厚さが1μm未満であると、局所的な膜厚の不均一により基材上に直接CVD−SiCが形成されるなど溶解可能中間層を薬液で溶解除去しても基材がCVD−SiCから完全に分離させることができないおそれがあり好ましくない。 In this production method, the thickness of the dissolvable intermediate layer is preferably 1 to 1000 μm. If the thickness of the dissolvable intermediate layer is less than 1 μm, even if the dissolvable intermediate layer is dissolved and removed with a chemical solution, such as CVD-SiC is directly formed on the substrate due to local non-uniform film thickness, May not be completely separated from CVD-SiC.
一方、溶解可能中間層の厚さが1000μmを超えると、溶解可能中間層と製品であるCVD−SiCとの熱膨張係数の差に起因するクラックや割れが発生するおそれがある。また、溶解可能中間層の形成に時間と費用が必要以上にかかり原価面で不利となるため好ましくない。溶解可能中間層の厚さが30〜800μmであるとより好ましく、50〜600μmであるとさらに好ましい。 On the other hand, if the thickness of the dissolvable intermediate layer exceeds 1000 μm, cracks and cracks may be generated due to the difference in thermal expansion coefficient between the dissolvable intermediate layer and the product CVD-SiC. Moreover, it takes time and money to form the dissolvable intermediate layer more than necessary, which is not preferable in terms of cost. The thickness of the dissolvable intermediate layer is more preferably 30 to 800 μm, and further preferably 50 to 600 μm.
本製造法において、CVD−SiCを形成した場合、得られたCVD−SiCの形状によっては、溶解可能中間層が得られたCVD−SiCに覆われてその内部にあり、そのまま薬液に浸漬しただけでは溶解可能中間層を実質的に除去できない場合がある。その場合には、溶解可能中間層が直接薬液と接触できるように、得られたCVD−SiCの一部を何らかの手段で削除することが望ましい。そのような手段の一例としては研作や切断などの機械的加工が挙げられる。なお、このようなCVD−SiCの一部を削除する代わりに当該部分をマスキングするなど何らかの別の代替手段を採用してもよい。 In this production method, when CVD-SiC is formed, depending on the shape of the obtained CVD-SiC, the dissolvable intermediate layer is covered with the obtained CVD-SiC, and is immersed in the chemical solution as it is. In this case, the dissolvable intermediate layer may not be substantially removed. In that case, it is desirable to delete a part of the obtained CVD-SiC by some means so that the dissolvable intermediate layer can directly contact the chemical solution. An example of such means is mechanical processing such as grinding or cutting. Note that instead of deleting a part of such CVD-SiC, some other alternative means such as masking the part may be adopted.
前記薬液としては、溶解可能中間層を溶解除去できるものであれば特に制限されないが、酸やアルカリなどが好ましいものとして挙げられる。例えば、溶解可能中間層がa−Si膜やp−Si膜である場合には、薬液としてフッ酸、硝酸またはフッ硝酸を使用すると溶解除去が容易に出きるため好ましい。これら酸やアルカリの濃度については特に制限はないが、10〜70質量%であると好ましい。 The chemical solution is not particularly limited as long as it can dissolve and remove the dissolvable intermediate layer, but preferred are acids and alkalis. For example, when the dissolvable intermediate layer is an a-Si film or a p-Si film, it is preferable to use hydrofluoric acid, nitric acid or hydrofluoric acid as a chemical solution because dissolution and removal can be easily performed. Although there is no restriction | limiting in particular about the density | concentration of these acids and alkalis, it is preferable in it being 10-70 mass%.
前記溶解可能中間層を溶解除去させるためには前記薬液を入れたタンク(以下、薬液槽ともいう)にCVD−SiCを浸漬することで行われるが、浸漬時間を短縮するため薬液槽内を撹拌したり、薬液を加温することが好ましい。 In order to dissolve and remove the dissolvable intermediate layer, CVD-SiC is immersed in a tank containing the chemical solution (hereinafter also referred to as a chemical solution tank), but the chemical solution tank is agitated to shorten the immersion time. It is preferable to warm the chemical solution.
本製造において、前記溶解可能中間層の表面上に製品となるCVD−SiCを形成する方法については熱CVD法、プラズマCVD法、光CVD法など特に制限されない。熱CVD法であると成膜速度を速くすることができ短時間で厚膜を成膜できるため好ましい。 In this production, a method for forming CVD-SiC as a product on the surface of the dissolvable intermediate layer is not particularly limited, such as a thermal CVD method, a plasma CVD method, and a photo CVD method. The thermal CVD method is preferable because the film formation rate can be increased and a thick film can be formed in a short time.
例えば、1000℃以上の高温および減圧下でSiCl4、SiHCl3、SiH2Cl2、SiH3Cl、SiH4等のケイ素含有化合物とCH4、CH2H6、C3H8等の炭素含有化合物とを反応させる方法、または炭素とケイ素とを同時に含有する、CH3SiCl3、(CH3)2SiCl2、(CH3)3SiCl、(CH3)4SiCl等の熱分解などが挙げられる。 For example, silicon-containing compounds such as SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , SiH 3 Cl, and SiH 4 and carbon such as CH 4 , CH 2 H 6 , and C 3 H 8 at a high temperature of 1000 ° C. or higher and reduced pressure Examples include a method of reacting a compound, or thermal decomposition of CH 3 SiCl 3 , (CH 3 ) 2 SiCl 2 , (CH 3 ) 3 SiCl, (CH 3 ) 4 SiCl, etc. containing carbon and silicon simultaneously. It is done.
前記CVD−SiCの膜厚としては、50〜5000μmであると好ましい。CVD−SiCの膜厚が50μm未満であるとCVD−SiCの強度不足で破損のおそれが高くなり好ましくない。一方、CVD−SiCの膜厚が5000μmを超えるとCVD−SiCと溶解可能中間層の熱膨張率差によりCVD−SiCにクラックが入るおそれがあり好ましくない。CVD−SiCの膜厚が200〜3000μmであると好ましく、CVD−SiCの膜厚が500〜2000μmであると特に好ましい。 The film thickness of the CVD-SiC is preferably 50 to 5000 μm. If the film thickness of CVD-SiC is less than 50 μm, the strength of CVD-SiC is insufficient and the risk of breakage is increased, which is not preferable. On the other hand, if the film thickness of CVD-SiC exceeds 5000 μm, there is a risk that cracks may occur in the CVD-SiC due to the difference in thermal expansion coefficient between the CVD-SiC and the dissolvable intermediate layer. The film thickness of CVD-SiC is preferably 200 to 3000 μm, and the film thickness of CVD-SiC is particularly preferably 500 to 2000 μm.
以下、図1を用いて本製造法を説明する。図1は、本製造法の一実施態様を一連の流れとして示したものである。図中、1は基材を、2は溶解可能中間層を、3は所望のCVD−SiCを、それぞれ示し以下同様とする。なお、本製造法は図1に限定されて解釈されるものではない。 Hereinafter, this manufacturing method will be described with reference to FIG. FIG. 1 shows an embodiment of the production method as a series of flows. In the figure, 1 indicates a substrate, 2 indicates a dissolvable intermediate layer, 3 indicates a desired CVD-SiC, and so on. In addition, this manufacturing method is limited to FIG. 1, and is not interpreted.
図1の(a)は、基材1の表面に溶解可能中間層2を形成した場合の基材の断面図を示す。次に、溶解可能中間層2の上にCVD−SiC3をCVD法で形成した場合の断面図を(b)に示す。次に、基材1から所望のCVD−SiC3を分離させるため、(b)のCVD−SiC3の一部(右端部分)研作・切削加工などの機械加工により削除して溶解可能中間層を露出させた場合の断面図を(c)に示す。次に、図示しないが、全体をフッ硝酸などの前記溶解可能中間層を溶解できる薬液の槽に浸漬させ溶解可能中間層2を除去し基材1を回収後、得られた所望のCVD−SiC3の断面図を(d)に示す。
FIG. 1A shows a cross-sectional view of a base material when a dissolvable
[例1]
図1で説明した方法にしたがって片端を閉じたCVD−SiCの直管を作成した場合の例を説明する。基材として、φ4×1000mmの円柱状のCVD−SiCを使用した。この基材表面にプラズマCVD法でa−Si膜を100μm成膜した。前記プラズマCVD法の条件としては、原料ガスとしてSiH4を用い、13.56MHzの高周波電力を印加し、基材を300℃に加熱して成膜した。
[Example 1]
An example in which a straight tube of CVD-SiC with one end closed according to the method described in FIG. 1 will be described. As the substrate, φ4 × 1000 mm columnar CVD-SiC was used. An a-Si film having a thickness of 100 μm was formed on the surface of the substrate by plasma CVD. As the conditions for the plasma CVD method, SiH 4 was used as a source gas, high frequency power of 13.56 MHz was applied, and the substrate was heated to 300 ° C. to form a film.
さらに、その表面に熱CVD法によりCVD−SiCを1000μm成膜した。熱CVD法の条件は、原料ガスとしてCH3SiCl3を用い、1300℃で成膜した。得られたCVD−SiCの一端を機械加工により除去して、a−Si膜を露出させた状態で、フッ硝酸薬液槽(濃度50質量%のフッ酸:濃度70質量%のフッ酸硝酸を質量比で1:4で混合した)に一日浸漬させた。 Further, a CVD-SiC film having a thickness of 1000 μm was formed on the surface by a thermal CVD method. As the conditions for the thermal CVD method, a film was formed at 1300 ° C. using CH 3 SiCl 3 as a source gas. One end of the obtained CVD-SiC was removed by machining to expose the a-Si film, and a hydrofluoric acid chemical bath (hydrofluoric acid having a concentration of 50 mass%: hydrofluoric acid nitric acid having a concentration of 70 mass% was massed) Mixed at a ratio of 1: 4) for one day.
その結果、外径φ6.2内径φ4.2×1000mmの片端を閉じたCVD−SiCの管状体を得た。得られた管状体の外観を検査したところ、クラックや割れは観察されなかった。また、得られた管状体の不純物濃度を測定するためGDMS(グロー放電質量分析)法で分析した。不純物の分析結果は、Alの濃度が0.01ppmで、それ以外の金属元素の濃度が0.01ppm以下であった。さらに、使用したφ4×1000mmのCVD−SiC基材を回収後、外観検査したところ、変形や欠陥もなく、再使用可能であることを確認した。 As a result, a CVD-SiC tubular body having one end with an outer diameter of φ6.2 and an inner diameter of φ4.2 × 1000 mm was obtained. When the appearance of the obtained tubular body was inspected, no cracks or cracks were observed. Moreover, in order to measure the impurity concentration of the obtained tubular body, it analyzed by GDMS (glow discharge mass spectrometry) method. As a result of analyzing impurities, the concentration of Al was 0.01 ppm, and the concentration of other metal elements was 0.01 ppm or less. Furthermore, after recovering the used φ4 × 1000 mm CVD-SiC substrate and inspecting its appearance, it was confirmed that it was reusable without deformation and defects.
[例2]
例1において、例1で使用したCVD−SiC基材を再度、基材として使用した以外は例1と同様にした。得られた管状体の外観は例1と同様に割れやクラック等は観察されなかった。また、GDMS法による不純物の分析結果は、Alの濃度が0.01ppmで、それ以外の金属元素の濃度が0.01ppm以下であった。さらに、回収したCVD−SiC基材を外観検査したところ、変形や欠陥もなく、再使用可能な状態であった。
[Example 2]
In Example 1, it was carried out similarly to Example 1 except having used the CVD-SiC base material used in Example 1 again as a base material. As for the appearance of the obtained tubular body, as in Example 1, no cracks or cracks were observed. As a result of analyzing impurities by the GDMS method, the concentration of Al was 0.01 ppm, and the concentration of other metal elements was 0.01 ppm or less. Furthermore, when the collected CVD-SiC base material was externally inspected, it was in a reusable state without deformation or defects.
[例3(比較例)]
例1において、基材として、φ4×1000mmの円柱状の高純度(純度99.9質量%)アルミナ焼結体基材を使用し、a−Si膜を形成しないことと、フッ硝酸薬液槽に浸漬しない以外は例1と同様にした。成膜後に基材であるアルミナ焼結体はCVD−SiCから分離していたが、外観を検査したところ、得られた管状体と基材の両方に割れが観察された。また、GDMS法により得られた管状体の不純物濃度を測定したところ、Alが300ppm、Feが50ppm、Cuが5ppmで、それ以外は0.01ppm以下であった。
[Example 3 (comparative example)]
In Example 1, a φ4 × 1000 mm cylindrical high purity (purity 99.9 mass%) alumina sintered body base material was used, and an a-Si film was not formed. The procedure was the same as Example 1 except that the immersion was not performed. After the film formation, the alumina sintered body as the base material was separated from the CVD-SiC, but when the appearance was inspected, cracks were observed in both the obtained tubular body and the base material. Moreover, when the impurity concentration of the tubular body obtained by the GDMS method was measured, Al was 300 ppm, Fe was 50 ppm, Cu was 5 ppm, and otherwise, it was 0.01 ppm or less.
[例4(比較例)]
例1において、基材として、φ4×1000mmの黒鉛基材を使用し、a−Si膜を形成せずフッ硝酸薬液槽に浸漬しない代わりに、前記黒鉛基材を焼失させるために大気中1200℃で2ヶ月間かけて熱処理する以外は例1と同様にした。得られたCVD−SiCの管状体を観察したところ外観にクラックが認められたほか、内部に黒鉛基材の一部が焼失せずに残留しているのが確認された。また、GDMS法により得られた管状体の不純物の濃度は、Alが0.01ppm、それ以外は0.01ppm以下であった。
[Example 4 (comparative example)]
In Example 1, as a base material, a φ4 × 1000 mm graphite base material was used. Instead of forming an a-Si film and not immersing in a hydrofluoric acid chemical bath, the graphite base material was burned at 1200 ° C. in the atmosphere. In the same manner as in Example 1 except that the heat treatment was performed for 2 months. When the obtained CVD-SiC tubular body was observed, cracks were observed in its appearance, and it was confirmed that a part of the graphite base material remained without being burned out. The concentration of impurities in the tubular body obtained by the GDMS method was 0.01 ppm for Al, and 0.01 ppm or less for the others.
[例5(比較例)]
例1において、基材として、φ4×1000mmの円柱状のタングステン基材を使用し、a−Si膜を形成しないことと、フッ硝酸薬液槽に浸漬しない以外は例1と同様にした。得られたCVD−SiCの管状体を観察したところ外観にクラックが認められた。なお、得られた管状体の内部にタングステン基材は残っておらず、フッ硝酸薬液で完全に溶解除去されていた。また、GDMS法により得られた管状体の不純物濃度を測定したところAlが0.01ppm、それ以外は0.01ppm以下であった。
[Example 5 (comparative example)]
In Example 1, a cylindrical tungsten substrate having a diameter of 4 × 1000 mm was used as the substrate, and the same procedure as in Example 1 was performed except that an a-Si film was not formed and the film was not immersed in a hydrofluoric acid chemical bath. When the obtained CVD-SiC tubular body was observed, cracks were observed in its appearance. In addition, the tungsten base material did not remain inside the obtained tubular body, and was completely dissolved and removed with a hydrofluoric acid chemical solution. Moreover, when the impurity concentration of the tubular body obtained by the GDMS method was measured, Al was 0.01 ppm, and otherwise, it was 0.01 ppm or less.
本製造法により、CVD−SiCをクラックや割れなどの欠陥がなく、しかも不純物濃度が問題のないレベルで、簡便に製造できる。したがって、半導体製造装置用として好適なCVD−SiC製治具を提供できる。 By this production method, CVD-SiC can be easily produced at a level free from defects such as cracks and cracks and with no problem in impurity concentration. Therefore, a CVD-SiC jig suitable for a semiconductor manufacturing apparatus can be provided.
本製造法により、黒鉛基材の焼失が難しい形状、例えば、外径に対し長さの長い形状(長尺形状)でも、CVD−SiCをクラックや割れなどの欠陥がなく、しかも不純物濃度が問題のないレベルで高い生産性で製造できる。したがって、熱電対保護管、ガス導入管などの長尺形状を有する半導体製造装置用CVD−SiC製治具の高生産性で製造できる。 With this manufacturing method, even if the graphite substrate is difficult to burn out, for example, a shape that is longer than the outer diameter (long shape), CVD-SiC has no defects such as cracks and cracks, and the impurity concentration is a problem. It can be manufactured with high productivity at a level without any problems. Therefore, it can be manufactured with high productivity of a CVD-SiC jig for a semiconductor manufacturing apparatus having a long shape such as a thermocouple protection tube and a gas introduction tube.
1:基材
2:溶解可能中間層
3:CVD−SiC
1: Base material 2: Dissolvable intermediate layer 3: CVD-SiC
Claims (7)
The method for producing a silicon carbide member according to claim 1, wherein the silicon carbide body has a thickness of 50 to 5000 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004263922A JP2006077302A (en) | 2004-09-10 | 2004-09-10 | Method for producing silicon carbide member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004263922A JP2006077302A (en) | 2004-09-10 | 2004-09-10 | Method for producing silicon carbide member |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006077302A true JP2006077302A (en) | 2006-03-23 |
Family
ID=36156997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004263922A Withdrawn JP2006077302A (en) | 2004-09-10 | 2004-09-10 | Method for producing silicon carbide member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006077302A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009041060A (en) * | 2007-08-08 | 2009-02-26 | Tokai Carbon Co Ltd | METHOD FOR PRODUCING CVD-SiC |
CN111627846A (en) * | 2019-02-28 | 2020-09-04 | 艾德麦普株式会社 | SiC film structure and method for producing SiC film structure |
JP2021095319A (en) * | 2019-12-19 | 2021-06-24 | イビデン株式会社 | Mold for forming nonoxide-based vapor-phase deposited ceramic material, nonoxide-based vapor-phase deposited ceramic material, and method for manufacturing mold for forming nonoxide-based vapor-phase deposited ceramic material |
JP7477424B2 (en) | 2020-10-21 | 2024-05-01 | イビデン株式会社 | SiC vapor phase growth apparatus component and method for regenerating vapor phase growth apparatus component |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0410904A (en) * | 1990-03-30 | 1992-01-16 | Shin Etsu Chem Co Ltd | Mold and molding method |
JP2001073139A (en) * | 1999-09-07 | 2001-03-21 | Asahi Glass Co Ltd | Production of silicon carbide molded body |
-
2004
- 2004-09-10 JP JP2004263922A patent/JP2006077302A/en not_active Withdrawn
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0410904A (en) * | 1990-03-30 | 1992-01-16 | Shin Etsu Chem Co Ltd | Mold and molding method |
JP2001073139A (en) * | 1999-09-07 | 2001-03-21 | Asahi Glass Co Ltd | Production of silicon carbide molded body |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009041060A (en) * | 2007-08-08 | 2009-02-26 | Tokai Carbon Co Ltd | METHOD FOR PRODUCING CVD-SiC |
CN111627846A (en) * | 2019-02-28 | 2020-09-04 | 艾德麦普株式会社 | SiC film structure and method for producing SiC film structure |
CN111627846B (en) * | 2019-02-28 | 2023-05-23 | 艾德麦普株式会社 | SiC film structure and method for producing SiC film structure |
JP2021095319A (en) * | 2019-12-19 | 2021-06-24 | イビデン株式会社 | Mold for forming nonoxide-based vapor-phase deposited ceramic material, nonoxide-based vapor-phase deposited ceramic material, and method for manufacturing mold for forming nonoxide-based vapor-phase deposited ceramic material |
JP7385459B2 (en) | 2019-12-19 | 2023-11-22 | イビデン株式会社 | A mold for forming a non-oxide vapor grown ceramic material, a non-oxide vapor grown ceramic material, and a method for manufacturing a mold for forming a non-oxide vapor grown ceramic material |
JP7477424B2 (en) | 2020-10-21 | 2024-05-01 | イビデン株式会社 | SiC vapor phase growth apparatus component and method for regenerating vapor phase growth apparatus component |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100642923B1 (en) | High pure expanded graphite sheet having flexible bending ability and its manufacturing method, and the inner layer of crucible using the sheet | |
US10094017B2 (en) | Method and system for preparing polycrystalline group III metal nitride | |
JP2009249279A (en) | Method for manufacturing silicon nano-structure | |
JP2000160343A (en) | Corrosion resistant cvd-silicon carbide and corrosion resistant cvd-silicon carbide coating material | |
JP2006016288A (en) | Method for treating surface of metal carbide substrate for use in semiconductor manufacturing processes and metal-carbide substrate | |
JP3488373B2 (en) | Corrosion resistant materials | |
RU2684128C1 (en) | Article with silicon carbide coating and method for manufacturing of article with silicon carbide coating | |
JP2001097734A (en) | Quartz glass container and method for producing the same | |
JP2006077302A (en) | Method for producing silicon carbide member | |
JPH08188408A (en) | Silicon carbide molded product by chemical vapor deposition and its production | |
KR102571434B1 (en) | Method of coating silica crucibles with silicon nitride | |
JP3623054B2 (en) | Components for plasma process equipment | |
US10450652B2 (en) | Synthesis of structured carbon material from organic materials | |
JP2001257163A (en) | Silicon carbide member, plasma-resistant member, and semiconductor manufacturing device | |
JP4608884B2 (en) | Method for forming surface protective film of jig for heat treatment | |
JP2009161858A (en) | CORROSION RESISTANT CVD-SiC COATING MATERIAL, AND FIXTURE FOR CVD SYSTEM | |
JP6639022B2 (en) | Cleaning method for silicon carbide deposits | |
JP2004075521A (en) | Flexible high-purity expanded graphite sheet, its manufacturing method, and insole for carbon crucible using the same | |
JP3836743B2 (en) | Carbon nanotube, carbon nanotube film, silicon carbide substrate containing carbon nanotube film, and method of manufacturing carbon nanotube film body | |
KR20140118905A (en) | Silicon member and method of producing the same | |
JP4907009B2 (en) | Carbon nanotube film, carbon nanotube film-containing SiC substrate, and method of manufacturing carbon nanotube film body | |
JP2005213571A (en) | Vapor deposited ceramic coated material and method for manufacturing the same | |
JP2625880B2 (en) | Method of manufacturing susceptor made of SiC | |
JPH07267661A (en) | Quartz glass pipe and its production | |
JPH0410904A (en) | Mold and molding method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070801 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100914 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20100924 |