WO2021020502A1 - Gas nozzle and plasma processing device using same - Google Patents

Gas nozzle and plasma processing device using same Download PDF

Info

Publication number
WO2021020502A1
WO2021020502A1 PCT/JP2020/029211 JP2020029211W WO2021020502A1 WO 2021020502 A1 WO2021020502 A1 WO 2021020502A1 JP 2020029211 W JP2020029211 W JP 2020029211W WO 2021020502 A1 WO2021020502 A1 WO 2021020502A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas nozzle
plasma
cutting level
mean square
root mean
Prior art date
Application number
PCT/JP2020/029211
Other languages
French (fr)
Japanese (ja)
Inventor
悠司 川瀬
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2021535419A priority Critical patent/JPWO2021020502A1/ja
Publication of WO2021020502A1 publication Critical patent/WO2021020502A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the present disclosure relates to a gas nozzle and a plasma processing apparatus using the gas nozzle.
  • Patent Document 1 includes a columnar main body made of a ceramic sintered body having through holes through which gas flows, and a gas discharge port in the through holes is formed on one end surface of the main body. The gas nozzle is described. In the gas nozzle described in Patent Document 1, the average length (Rsm) of the contour curve element on one end surface is five times or more the average crystal grain size in the ceramic sintered body.
  • the gas nozzle according to the present disclosure is between a supply port to which a plasma generation gas is supplied, a discharge port in which the plasma generation gas is discharged toward a plasma space in which plasma is generated, and a supply port and the discharge port. Includes a flow path provided in.
  • the cutting level difference R ⁇ c 1 in the roughness curve of the end face located on the plasma space side is smaller than the cutting level difference R ⁇ c 2 in the roughness curve of the outer peripheral surface connected to the end face.
  • the cutting level difference is the difference between the cutting level at a load length rate of 25% on the roughness curve and the cutting level at a load length rate of 75% on the roughness curve.
  • the plasma processing apparatus includes the above gas nozzle.
  • (A) is an explanatory view showing a gas nozzle according to an embodiment of the present disclosure
  • (B) is an explanatory view seen from the arrow X direction of (A)
  • (C) is the arrow Y direction of (A). It is an explanatory diagram seen from.
  • the end face exposed to plasma on the plasma space side of the outer surface of the gas nozzle is required to have higher corrosion resistance to plasma than other outer surfaces.
  • the cutting level difference R ⁇ c 1 on the roughness curve of the end face located on the plasma space side is based on the cutting level difference R ⁇ c 2 on the roughness curve of the outer peripheral surface connected to the end face. Is also small. If the cutting level difference R ⁇ c 1 of the end face located on the plasma space side exposed to the space with high plasma density is small, it is difficult to deteriorate and the commercial value can be maintained for a long period of time.
  • the cutting level difference (R ⁇ c) is the difference in the height direction of the cutting levels C (Rrm1) and C (Rrm2) corresponding to the load length ratios Rmr1 and Rmr2 in the roughness curve defined by JIS B0601: 2001, respectively. Is. When the cutting level difference (R ⁇ c) is large, the unevenness of the surface to be measured becomes large, and when it is small, the unevenness of the surface becomes small.
  • the gas nozzle according to the embodiment of the present disclosure will be described with reference to FIGS. 1 (A) to 1 (C).
  • the gas nozzle 1 according to the embodiment shown in FIG. 1A has a supply port 2a to which the plasma generation gas is supplied and a discharge port 3a to discharge the plasma generation gas toward the plasma space where the plasma is generated. And a flow path provided between the supply port 2a and the discharge port 3a.
  • the supply port 2a located on the inner peripheral side communicates with the discharge port 3a opened at the end face located on the plasma space side.
  • the supply port 2a located on the outer peripheral side communicates with a discharge port (not shown) having four openings on the outer peripheral surface.
  • the gas nozzle 1 according to the embodiment has a substantially cylindrical shape in which a part of the outer peripheral surface is constricted.
  • the size of the gas nozzle 1 according to the embodiment is not limited, and is formed in a desired size depending on the plasma processing apparatus provided.
  • the gas nozzle 1 according to the embodiment has a length of about 50 mm to 60 mm and a diameter of about 60 mm to 70 mm.
  • the gas nozzle 1 is made of ceramics.
  • Ceramics as a material is not limited, for example, Y 2 O 3 -ZrO 2 system ceramics, Y 2 O 3 system, like YAG-based ceramic.
  • further improved corrosion resistance (the plasma resistance) with respect to the plasma, the mechanical strength because it can be more improved, may be used Y 2 O 3 -ZrO 2 system ceramics.
  • the ceramics in the present disclosure include polycrystalline bodies and single crystal bodies.
  • Examples of the Y 2 O 3- ZrO 2 type ceramics include ceramics such as (I) and (II) below.
  • Ceramics containing yttrium zirconate as the main component (I) Ceramics having an yttrium oxide solid solution in which yttrium oxide is dissolved in yttrium oxide and a zirconium oxide solid solution in which yttrium oxide is dissolved in zirconium oxide as a main crystal phase.
  • the composition formula of yttrium zirconate is shown as, for example, YZrO 3 , Zr 3 Y 4 O 12 .
  • Ceramics containing yttrium zirconate as a main component can be obtained, for example, by firing a mixture of yttrium oxide and zirconium oxide.
  • the mixing ratio of yttrium oxide and zirconium oxide is not limited.
  • yttrium oxide contributes to the improvement of plasma resistance
  • zirconium oxide contributes to the improvement of mechanical strength. Therefore, when the proportion of yttrium oxide is large, ceramics having plasma resistance superior to mechanical strength can be obtained.
  • the proportion of zirconium oxide is increased, ceramics having better mechanical strength than plasma resistance can be obtained.
  • ceramics containing yttrium zirconate as a main component can be obtained, for example, by the following procedure. First, ceramics are obtained by firing a mixture of yttrium oxide and zirconium oxide. Additives generally contained in ceramics may be added to the mixture of yttrium oxide and zirconium oxide, if necessary.
  • the crystal structure is similar to that of zirconium oxide whose composition formula is represented as ZrO 2 . Therefore, even if an X-ray diffractometer is used, the main diffraction peaks overlap, and it is difficult to identify each of them.
  • zirconium oxide is added to yttrium oxide. It can be considered that a solid solution of yttrium oxide is present.
  • the solid solution of zirconium oxide in which yttrium oxide is dissolved in zirconium oxide may be confirmed by using a scanning electron microscope (SEM) and an energy dispersive analyzer (EDS).
  • SEM scanning electron microscope
  • EDS energy dispersive analyzer
  • the ceramics containing yttrium aluminum composite oxide as a main component for example, at least one of YAG, YAM and YAP is the main component.
  • YAG is shown as Al 5 Y 3 O 12
  • YAM is shown as Al 2 Y 4 O 9
  • YAP is shown as Al YO 3 .
  • the main component in the present disclosure refers to a component that occupies 50% by mass or more of the total 100% by mass of the components constituting the ceramics, and is particularly preferably 60% by mass or more.
  • Each component constituting the ceramics can be identified by using an X-ray diffractometer (XRD), and the mass ratio of each component can be determined by the Rietveld method using XRD.
  • XRD X-ray diffractometer
  • the supply port 2a is formed on the end face 2 on the side where the plasma generation gas is supplied when the gas nozzle 1 according to the embodiment is provided in the plasma processing apparatus.
  • the discharge port 3a is formed on the end face 3 located on the plasma space side when the gas nozzle 1 according to the embodiment is provided in the plasma processing apparatus.
  • the portion through which the plasma generation gas flows from the supply port 2a to the discharge port 3a serves as a flow path.
  • the plasma generation gas include fluorine-based gases such as SF 6 , CF 4 , CHF 3 , ClF 3 , NF 3 , C 4 F 8 , and HF, and chlorine such as Cl 2 , HCl, BCl 3 , and CCl 4. Examples include system gas.
  • the inner diameters of the supply port 2a and the discharge port 3a are set to a desired size according to the plasma processing device provided with the gas nozzle 1 according to the embodiment. Specifically, the supply port 2a and the discharge port 3a have an inner diameter of about 1 mm to 4 mm.
  • the cutting level difference R ⁇ c 1 on the roughness curve of the end surface 3 located on the plasma space side is based on the cutting level difference R ⁇ c 2 on the roughness curve of the outer peripheral surface 4 connected to the end surface 3. Is also formed to be small. If the cutting level difference R ⁇ c 1 of the end face 3 exposed to the space with high plasma density is smaller than the cutting level difference R ⁇ c 2 in the roughness curve of the outer peripheral surface 4, it is less likely to deteriorate and the commercial value is maintained for a long period of time. Can be done.
  • cutting level difference means the difference between the cutting level at a load length rate of 25% on the roughness curve and the cutting level at a load length rate of 75% on the roughness curve. ..
  • surface irregularities may be reduced by polishing.
  • the end surface 3 is smoother than the outer peripheral surface 4.
  • the difference between the cutting level difference R ⁇ c 1 and the cutting level difference R ⁇ c 2 is not limited.
  • the difference between the cutting level difference R ⁇ c 1 and the cutting level difference R ⁇ c 2 may be 0.8 ⁇ m or more, and 1 ⁇ m or more and 1.4 ⁇ m or less in terms of further improving plasma resistance and further suppressing deterioration. May be good.
  • the cutting level difference R ⁇ c 2 in the roughness curve of the outer peripheral surface 4 is, for example, 1 ⁇ m or more and 1.5 ⁇ m or less.
  • the root mean square height Rq 1 of the end face 3 located on the plasma space side is formed to be smaller than the root mean square height Rq 2 of the outer peripheral surface 4 connected to the end face 3. It may have been.
  • the smaller the root mean square height the smoother the surface.
  • plasma resistance can be further improved and deterioration can be further suppressed.
  • the difference between the root mean square height Rq 1 and the root mean square height Rq 2 is not limited.
  • the difference between the root mean square height Rq 1 and the root mean square Rq 2 may be 0.8 ⁇ m or more, and 0.9 ⁇ m or more 1 in terms of further improving plasma resistance and suppressing deterioration. It may be 0.5 ⁇ m or less.
  • the root mean square height Rq 2 of the outer peripheral surface 4 is, for example, 0.9 ⁇ m or more and 1.5 ⁇ m or less.
  • Root mean square slope Aruderuta q2 of the outer peripheral surface 4 is, for example, 0.6 or more and 1 or less.
  • Cut level difference Aruderutashi, root mean square height Rq and root mean square slope Aruderuta q is, JIS B 0601: conforms to 2001, a laser microscope (KEYENCE manufactured, ultra-deep color 3D profile measuring microscope (VK-X1000 or It can be measured using the successor model)).
  • the measurement conditions are coaxial epi-illumination for illumination, 240 times for measurement magnification, no cutoff value ⁇ s, 0.08 mm for cutoff value ⁇ c, correction of termination effect, and end face 3 and outer peripheral surface 4 to be measured.
  • the measurement range per location is 1404 ⁇ m ⁇ 1053 ⁇ m.
  • four lines to be measured are drawn along the longitudinal direction at approximately equal intervals, and line roughness is measured for each of these lines.
  • Calculated cut level difference R ⁇ c obtained from each line, a mean value for each measurement range of root mean square height Rq and root mean square slope Aruderuta q may be compared average.
  • a mixture of a powder containing yttrium oxide as a main component and a powder containing zirconium oxide as a main component (hereinafter, a powder containing yttrium oxide as a main component and a powder containing zirconium oxide as a main component is referred to as "ceramic powder”.
  • ceramic powder a powder containing yttrium oxide as a main component and a powder containing zirconium oxide as a main component.
  • the mixture is pulverized and mixed with a bead mill to obtain a slurry.
  • the ceramic powder includes a powder containing yttrium oxide as a main component and a powder containing zirconium oxide as a main component, and a powder containing zirconium oxide as a main component and a powder containing yttrium oxide as a main component, for example. It is mixed in a mass ratio of 5 to 3.1. With this mass ratio, ceramics can be obtained in which plasma resistance and mechanical strength are exhibited in a well-balanced manner.
  • a molded product is obtained by pressure molding into a columnar shape using a molding method such as a uniaxial pressure molding method or a cold hydrostatic pressure molding method (CIP molding method).
  • a molding method such as a uniaxial pressure molding method or a cold hydrostatic pressure molding method (CIP molding method).
  • CIP molding method cold hydrostatic pressure molding method
  • the molded product is cut to obtain a precursor.
  • the firing atmosphere is an atmospheric atmosphere, the firing temperature is 1640 ° C. or higher and 1880 ° C. or lower, the holding time is 1.5 hours or more and 5 hours or less, and natural cooling may be performed in the temperature lowering process.
  • a ceramic (sinter) having a main crystal phase of an yttrium oxide solid solution in which zirconium oxide is dissolved in yttrium oxide and a zirconium oxide solid solution in which yttrium oxide is dissolved in zirconium oxide for example, in the above temperature lowering process. It may be annealed. The annealing treatment may be performed, for example, at a temperature of 1300 ° C. or higher and 1500 ° C. or lower for 3 hours or more and 5 hours or less.
  • Ceramics (single crystal) containing yttrium aluminum composite oxide as a main component can be obtained, for example, by the following procedure. First, a powder containing yttrium oxide as a main component and a powder containing aluminum oxide as a main component are heated and melted in a crucible made of molybdenum, and then the EFG method, Czochralski method, Cairoporous method, TGT method or HEM method. A columnar or cylindrical ingot is obtained by crystallization with.
  • the atmospheric gas in the melting may be argon gas
  • the melting temperature may be 1550 ° C. to 1850 ° C.
  • the pressure of the argon gas may be 0.02 to 0.06 MPa.
  • a flow path is formed by honing using diamond abrasive grains having a particle size number of # 3000 or more and # 6000 or less.
  • an end face located on the plasma space side is formed by a polishing process using diamond abrasive grains having an average particle size (D 50 ) of 1 ⁇ m or more and 3 ⁇ m or less.
  • a gas nozzle in which the root mean square height Rq 1 of the end face located on the plasma space side is smaller than the root mean square height Rq 2 of the outer peripheral surface connected to the end face is obtained by the following procedure.
  • a flow path is formed by honing using diamond abrasive grains having a particle size number of # 3000 or more and # 6000 or less.
  • an end face located on the plasma space side is formed by a polishing process using diamond abrasive grains having an average particle size (D 50 ) of 1 ⁇ m or more and 2 ⁇ m or less.
  • a flow path is formed by honing processing using diamond abrasive grains having a particle size number of # 4000 or more and # 6000 or less.
  • an end face located on the plasma space side is formed by a polishing process using diamond abrasive grains having an average particle size (D 50 ) of 1 ⁇ m or more and 2 ⁇ m or less.
  • the gas nozzle according to the present disclosure is provided in the plasma processing apparatus.
  • the gas nozzle according to the present disclosure is used, for example, as a nozzle for supplying plasma generation gas to the plasma space (space in the chamber) of the plasma processing apparatus.
  • the gas nozzle according to the present disclosure is not limited to the above-described embodiment.
  • the gas nozzle 1 described above has a substantially cylindrical shape in which a part of the outer peripheral surface is constricted.
  • the shape of the gas nozzle according to the present disclosure is not limited to a columnar shape.
  • the gas nozzle according to the present disclosure may have, for example, an elliptical columnar column, a prismatic columnar column (for example, a triangular columnar column, a square columnar column, a pentagonal columnar column, a hexagonal columnar column, etc.) in addition to the columnar column, depending on the plasma processing apparatus. ..

Abstract

A gas nozzle according to the present disclosure includes a supply port to which a plasma generation gas is supplied, a discharge port through which the plasma generation gas is discharged toward a plasma space in which plasma is generated, and a flow path provided between the supply port and the discharge port. A cutting level difference Rδc1 on a roughness curve of an end face located on a plasma space side is less than the cutting level difference Rδc2 on a roughness curve of the outer peripheral surface connected to the end surface. The cutting level difference is the difference between the cutting level at a load length rate of 25% on the roughness curve and the cutting level at a load length rate of 75% on the roughness curve.

Description

ガスノズルおよびそれを用いたプラズマ処理用装置Gas nozzle and plasma processing equipment using it
 本開示は、ガスノズルおよびそれを用いたプラズマ処理用装置に関する。 The present disclosure relates to a gas nozzle and a plasma processing apparatus using the gas nozzle.
 従来、半導体や液晶などの製造において、エッチングや成膜などの工程でプラズマを利用して被処理物への処理が施されている。このような工程では、高い反応性を有するハロゲン元素(例えば、フッ素、塩素など)を含む腐食性ガスが使用される。そのため、半導体や液晶などの製造装置に用いられる腐食性ガスやプラズマに接触する部材には、高い耐腐食性が要求される。このような部材として、例えば特許文献1には、ガスが流れる貫通孔が形成されたセラミック焼結体からなる柱状の本体を備え、本体の一端面には貫通孔におけるガスの排出口が形成されたガスノズルが記載されている。特許文献1に記載のガスノズルにおいて、一端面における輪郭曲線要素の平均長さ(Rsm)は、セラミック焼結体における平均結晶粒径の5倍以上である。 Conventionally, in the manufacture of semiconductors, liquid crystals, etc., the object to be processed is treated using plasma in processes such as etching and film formation. In such a step, a corrosive gas containing a highly reactive halogen element (for example, fluorine, chlorine, etc.) is used. Therefore, high corrosion resistance is required for members that come into contact with corrosive gas or plasma used in manufacturing equipment such as semiconductors and liquid crystals. As such a member, for example, Patent Document 1 includes a columnar main body made of a ceramic sintered body having through holes through which gas flows, and a gas discharge port in the through holes is formed on one end surface of the main body. The gas nozzle is described. In the gas nozzle described in Patent Document 1, the average length (Rsm) of the contour curve element on one end surface is five times or more the average crystal grain size in the ceramic sintered body.
特許第5865916号公報Japanese Patent No. 586591
 本開示に係るガスノズルは、プラズマ生成用ガスが供給される供給口と、プラズマ生成用ガスがプラズマの生成されるプラズマ空間に向かって排出される排出口と、供給口と前記排出口との間に備えられた流路とを含む。プラズマ空間側に位置する端面の粗さ曲線における切断レベル差Rδcが、該端面に接続される外周面の粗さ曲線における切断レベル差Rδcよりも小さい。切断レベル差が、粗さ曲線における25%の負荷長さ率での切断レベルと、粗さ曲線における75%の負荷長さ率での切断レベルとの差である。 The gas nozzle according to the present disclosure is between a supply port to which a plasma generation gas is supplied, a discharge port in which the plasma generation gas is discharged toward a plasma space in which plasma is generated, and a supply port and the discharge port. Includes a flow path provided in. The cutting level difference Rδc 1 in the roughness curve of the end face located on the plasma space side is smaller than the cutting level difference Rδc 2 in the roughness curve of the outer peripheral surface connected to the end face. The cutting level difference is the difference between the cutting level at a load length rate of 25% on the roughness curve and the cutting level at a load length rate of 75% on the roughness curve.
 さらに、本開示に係るプラズマ処理用装置は上記のガスノズルを含む。 Further, the plasma processing apparatus according to the present disclosure includes the above gas nozzle.
(A)は本開示の一実施形態に係るガスノズルを示す説明図であり、(B)は(A)の矢印X方向から見た説明図であり、(C)は(A)の矢印Y方向から見た説明図である。(A) is an explanatory view showing a gas nozzle according to an embodiment of the present disclosure, (B) is an explanatory view seen from the arrow X direction of (A), and (C) is the arrow Y direction of (A). It is an explanatory diagram seen from.
 プラズマ処理用装置に使用されるガスノズルにおいて、ガスノズルの外表面のうち、プラズマ空間側でプラズマに晒される端面には、プラズマに対する耐腐食性が他の外表面よりも高いことが求められている。 In the gas nozzle used for the plasma processing apparatus, the end face exposed to plasma on the plasma space side of the outer surface of the gas nozzle is required to have higher corrosion resistance to plasma than other outer surfaces.
 本開示に係るガスノズルは、上記のように、プラズマ空間側に位置する端面の粗さ曲線における切断レベル差Rδcが、前記端面に接続される外周面の粗さ曲線における切断レベル差Rδcよりも小さい。プラズマ密度の高い空間に晒されるプラズマ空間側に位置する端面の切断レベル差Rδcが小さいと劣化しにくく、長期間にわたって商品価値を維持することができる。切断レベル差(Rδc)とは、JIS B0601:2001で規定されている粗さ曲線における負荷長さ率Rmr1、Rmr2にそれぞれ一致する切断レベルC(Rrm1)、C(Rrm2)の高さ方向の差である。切断レベル差(Rδc)が大きい場合、測定の対象とする表面の凹凸は大きくなり、小さい場合、その表面の凹凸は小さくなる。 In the gas nozzle according to the present disclosure, as described above, the cutting level difference Rδc 1 on the roughness curve of the end face located on the plasma space side is based on the cutting level difference Rδc 2 on the roughness curve of the outer peripheral surface connected to the end face. Is also small. If the cutting level difference Rδc 1 of the end face located on the plasma space side exposed to the space with high plasma density is small, it is difficult to deteriorate and the commercial value can be maintained for a long period of time. The cutting level difference (Rδc) is the difference in the height direction of the cutting levels C (Rrm1) and C (Rrm2) corresponding to the load length ratios Rmr1 and Rmr2 in the roughness curve defined by JIS B0601: 2001, respectively. Is. When the cutting level difference (Rδc) is large, the unevenness of the surface to be measured becomes large, and when it is small, the unevenness of the surface becomes small.
 プラズマ空間側に位置する端面の粗さ曲線における切断レベル差Rδcが、前記端面に接続される外周面の粗さ曲線における切断レベル差Rδcよりも小さいと、プラズマ空間側に位置する端面に生じる急峻な凸部が相対的に少なくなる。そのため、凸部の先端から生じる脱粒が減少して、脱粒した粒子がプラズマ空間内を浮遊するおそれが抑制される。この場合、プラズマ空間側に位置する端面に生じる急峻な凹部も相対的に少なくなる。そのため、凹部内から生じる脱粒が減少して、脱粒した粒子がプラズマ空間内を浮遊するおそれが抑制される。その結果、プラズマ密度の高い空間が汚染されるおそれが少なくなるので、半導体ウェハへの成膜等のプラズマ処理を容易かつ高品質にすることができる。 When the cutting level difference Rδc 1 in the roughness curve of the end face located on the plasma space side is smaller than the cutting level difference Rδc 2 in the roughness curve of the outer peripheral surface connected to the end face, the end face located on the plasma space side The number of steep protrusions generated is relatively small. Therefore, the shedding generated from the tip of the convex portion is reduced, and the possibility that the shed particles are suspended in the plasma space is suppressed. In this case, the number of steep recesses generated in the end face located on the plasma space side is relatively small. Therefore, the shedding generated from the recesses is reduced, and the possibility that the shed particles float in the plasma space is suppressed. As a result, the possibility that the space having a high plasma density is contaminated is reduced, so that plasma processing such as film formation on a semiconductor wafer can be easily and high quality.
 本開示の一実施形態に係るガスノズルを、図1(A)~(C)に基づいて説明する。図1(A)に示す一実施形態に係るガスノズル1は、プラズマ生成用ガスが供給される供給口2aと、プラズマ生成用ガスがプラズマの生成されるプラズマ空間に向かって排出される排出口3aと、供給口2aと排出口3aとの間に備えられた流路とを含む。 The gas nozzle according to the embodiment of the present disclosure will be described with reference to FIGS. 1 (A) to 1 (C). The gas nozzle 1 according to the embodiment shown in FIG. 1A has a supply port 2a to which the plasma generation gas is supplied and a discharge port 3a to discharge the plasma generation gas toward the plasma space where the plasma is generated. And a flow path provided between the supply port 2a and the discharge port 3a.
 供給口2aのうち、内周側に位置する供給口2aは、プラズマ空間側に位置する端面で開口する排出口3aに連通する。外周側に位置する供給口2aは、外周面4開口する図示しない排出口に連通する。 Of the supply ports 2a, the supply port 2a located on the inner peripheral side communicates with the discharge port 3a opened at the end face located on the plasma space side. The supply port 2a located on the outer peripheral side communicates with a discharge port (not shown) having four openings on the outer peripheral surface.
 一実施形態に係るガスノズル1は、外周面の一部が括れた略円柱状を有している。一実施形態に係るガスノズル1の大きさは限定されず、備えられるプラズマ処理用装置に応じて所望の大きさで形成される。具体的には、一実施形態に係るガスノズル1は、50mm~60mm程度の長さを有し、60mm~70mm程度の直径を有する。 The gas nozzle 1 according to the embodiment has a substantially cylindrical shape in which a part of the outer peripheral surface is constricted. The size of the gas nozzle 1 according to the embodiment is not limited, and is formed in a desired size depending on the plasma processing apparatus provided. Specifically, the gas nozzle 1 according to the embodiment has a length of about 50 mm to 60 mm and a diameter of about 60 mm to 70 mm.
 一実施形態に係るガスノズル1はセラミックスで形成されている。材料となるセラミックスは限定されず、例えば、Y-ZrO系のセラミックス、Y系、YAG系のセラミックスなどが挙げられる。これらの中でも、プラズマに対する耐腐食性(耐プラズマ性)をより向上させ、機械的強度もより向上させることができる点で、Y-ZrO系のセラミックスを用いてもよい。本開示におけるセラミックスとは、多結晶体および単結晶体を含めて言う。 The gas nozzle 1 according to one embodiment is made of ceramics. Ceramics as a material is not limited, for example, Y 2 O 3 -ZrO 2 system ceramics, Y 2 O 3 system, like YAG-based ceramic. Among these, further improved corrosion resistance (the plasma resistance) with respect to the plasma, the mechanical strength because it can be more improved, may be used Y 2 O 3 -ZrO 2 system ceramics. The ceramics in the present disclosure include polycrystalline bodies and single crystal bodies.
 Y-ZrO系のセラミックスとしては、例えば、下記の(I)および(II)のようなセラミックスが挙げられる。
 (I)ジルコン酸イットリウムを主成分とするセラミックス。
 (II)酸化イットリウムに酸化ジルコニウムが固溶した酸化イットリウム固溶体と、酸化ジルコニウムに酸化イットリウムが固溶した酸化ジルコニウム固溶体とを主結晶相とするセラミックス。
Examples of the Y 2 O 3- ZrO 2 type ceramics include ceramics such as (I) and (II) below.
(I) Ceramics containing yttrium zirconate as the main component.
(II) Ceramics having an yttrium oxide solid solution in which yttrium oxide is dissolved in yttrium oxide and a zirconium oxide solid solution in which yttrium oxide is dissolved in zirconium oxide as a main crystal phase.
 ジルコン酸イットリウムは、組成式が、例えば、YZrO、Zr12などとして示される。ジルコン酸イットリウムを主成分とするセラミックスは、例えば、酸化イットリウムと酸化ジルコニウムとの混合物を焼成して得られる。酸化イットリウムと酸化ジルコニウムとの混合割合は限定されない。例えば、酸化イットリウムは耐プラズマ性の向上に寄与し、酸化ジルコニウムは機械的強度の向上に寄与する。そのため、酸化イットリウムの割合が多くなると、機械的強度よりも耐プラズマ性に優れたセラミックスが得られる。酸化ジルコニウムの割合が多くなると、耐プラズマ性よりも機械的強度に優れたセラミックスが得られる。 The composition formula of yttrium zirconate is shown as, for example, YZrO 3 , Zr 3 Y 4 O 12 . Ceramics containing yttrium zirconate as a main component can be obtained, for example, by firing a mixture of yttrium oxide and zirconium oxide. The mixing ratio of yttrium oxide and zirconium oxide is not limited. For example, yttrium oxide contributes to the improvement of plasma resistance, and zirconium oxide contributes to the improvement of mechanical strength. Therefore, when the proportion of yttrium oxide is large, ceramics having plasma resistance superior to mechanical strength can be obtained. When the proportion of zirconium oxide is increased, ceramics having better mechanical strength than plasma resistance can be obtained.
 一実施形態に係る半導体製造装置用部材において、ジルコン酸イットリウムを主成分とするセラミックスは、例えば、次の手順で得られる。まず、酸化イットリウムと酸化ジルコニウムとの混合物を焼成することによって、セラミックスが得られる。酸化イットリウムと酸化ジルコニウムとの混合物に、セラミックスに一般的に含まれる添加剤などを、必要に応じて添加してもよい。 In the semiconductor manufacturing apparatus member according to the embodiment, ceramics containing yttrium zirconate as a main component can be obtained, for example, by the following procedure. First, ceramics are obtained by firing a mixture of yttrium oxide and zirconium oxide. Additives generally contained in ceramics may be added to the mixture of yttrium oxide and zirconium oxide, if necessary.
 酸化イットリウムに酸化ジルコニウムが固溶した酸化イットリウム固溶体と、酸化ジルコニウムに酸化イットリウムが固溶した酸化ジルコニウム固溶体とを主結晶相とするセラミックスについて、組成式がYとして示される酸化イットリウムと、組成式がZrOとして示される酸化ジルコニウムとは結晶構造が類似している。そのため、X線回折装置を用いても、主要な回折ピークが重なり、それぞれを同定することは困難である。したがって、X線回折装置を用いて、回折角2θが20.5°に現れるYのみに起因する回折ピークから高角度側へのピークシフトが確認された場合、酸化イットリウムに酸化ジルコニウムが固溶した酸化イットリウム固溶体が存在しているとみなせばよい。 Yttrium oxide solid solution of zirconium oxide in yttrium oxide solid solution, the ceramic yttrium oxide zirconium oxide to the zirconium oxide solid solution in which a solid solution as a main crystalline phase, and yttrium oxide composition formula is represented as Y 2 O 3, The crystal structure is similar to that of zirconium oxide whose composition formula is represented as ZrO 2 . Therefore, even if an X-ray diffractometer is used, the main diffraction peaks overlap, and it is difficult to identify each of them. Therefore, when a peak shift from the diffraction peak caused only by Y 2 O 3 in which the diffraction angle 2θ appears at 20.5 ° to the high angle side is confirmed using an X-ray diffractometer, zirconium oxide is added to yttrium oxide. It can be considered that a solid solution of yttrium oxide is present.
 一方、酸化ジルコニウムに酸化イットリウムが固溶した酸化ジルコニウム固溶体は走査型電子顕微鏡(SEM)およびエネルギー分散型分析装置(EDS)を用いて確認すればよい。イットリウムアルミニウム複合酸化物を主成分して含有するセラミックスとしては、例えば、YAG、YAMおよびYAPの少なくともいずれが主成分である。 On the other hand, the solid solution of zirconium oxide in which yttrium oxide is dissolved in zirconium oxide may be confirmed by using a scanning electron microscope (SEM) and an energy dispersive analyzer (EDS). As the ceramics containing yttrium aluminum composite oxide as a main component, for example, at least one of YAG, YAM and YAP is the main component.
 YAGはAl12として、YAMはAlとして、YAPはAlYOとして示される。本開示における主成分とは、セラミックスを構成する成分の合計100質量%のうち、50質量%以上を占める成分を言い、特に60質量%以上であるとよい。セラミックスを構成する各成分は、X線回折装置(XRD)を用いて同定することができ、各成分の質量比率は、XRDを用いたリートベルト法によって求めることができる。 YAG is shown as Al 5 Y 3 O 12 , YAM is shown as Al 2 Y 4 O 9 , and YAP is shown as Al YO 3 . The main component in the present disclosure refers to a component that occupies 50% by mass or more of the total 100% by mass of the components constituting the ceramics, and is particularly preferably 60% by mass or more. Each component constituting the ceramics can be identified by using an X-ray diffractometer (XRD), and the mass ratio of each component can be determined by the Rietveld method using XRD.
 一実施形態に係るガスノズル1において供給口2aは、一実施形態に係るガスノズル1がプラズマ処理用装置に備えられた場合に、プラズマ生成用ガスが供給される側の端面2に形成されている。一方、排出口3aは、一実施形態に係るガスノズル1がプラズマ処理用装置に備えられた場合に、プラズマ空間側に位置する端面3に形成されている。供給口2aから排出口3aまでプラズマ生成用ガスの流れる部分が流路となる。プラズマ生成用ガスとしては、例えば、SF、CF、CHF、ClF、NF、C、HFなどのフッ素系ガスや、Cl、HCl、BCl、CClなどの塩素系ガスなどが挙げられる。 In the gas nozzle 1 according to the embodiment, the supply port 2a is formed on the end face 2 on the side where the plasma generation gas is supplied when the gas nozzle 1 according to the embodiment is provided in the plasma processing apparatus. On the other hand, the discharge port 3a is formed on the end face 3 located on the plasma space side when the gas nozzle 1 according to the embodiment is provided in the plasma processing apparatus. The portion through which the plasma generation gas flows from the supply port 2a to the discharge port 3a serves as a flow path. Examples of the plasma generation gas include fluorine-based gases such as SF 6 , CF 4 , CHF 3 , ClF 3 , NF 3 , C 4 F 8 , and HF, and chlorine such as Cl 2 , HCl, BCl 3 , and CCl 4. Examples include system gas.
 供給口2aおよび排出口3aの内径は、一実施形態に係るガスノズル1が備えられるプラズマ処理用装置に応じて所望の大きさに設定される。具体的には、供給口2aおよび排出口3aは、1mm~4mm程度の内径を有する。 The inner diameters of the supply port 2a and the discharge port 3a are set to a desired size according to the plasma processing device provided with the gas nozzle 1 according to the embodiment. Specifically, the supply port 2a and the discharge port 3a have an inner diameter of about 1 mm to 4 mm.
 一実施形態に係るガスノズル1は、プラズマ空間側に位置する端面3の粗さ曲線における切断レベル差Rδcが、この端面3に接続される外周面4の粗さ曲線における切断レベル差Rδcよりも小さくなるように形成されている。プラズマ密度の高い空間に晒される端面3の切断レベル差Rδcが、外周面4の粗さ曲線における切断レベル差Rδcと比較して小さいと劣化しにくく、長期間にわたって商品価値を維持することができる。 In the gas nozzle 1 according to the embodiment, the cutting level difference Rδc 1 on the roughness curve of the end surface 3 located on the plasma space side is based on the cutting level difference Rδc 2 on the roughness curve of the outer peripheral surface 4 connected to the end surface 3. Is also formed to be small. If the cutting level difference Rδc 1 of the end face 3 exposed to the space with high plasma density is smaller than the cutting level difference Rδc 2 in the roughness curve of the outer peripheral surface 4, it is less likely to deteriorate and the commercial value is maintained for a long period of time. Can be done.
 本明細書において「切断レベル差」とは、粗さ曲線における25%の負荷長さ率での切断レベルと、粗さ曲線における75%の負荷長さ率での切断レベルとの差を意味する。切断レベル差が小さいほど、面が滑らかであることを示す。切断レベル差を小さくするためには、例えば、研磨によって表面の凹凸を少なくすればよい。一実施形態に係るガスノズル1においては、外周面4よりも端面3の方が滑らかである。 As used herein, the term "cutting level difference" means the difference between the cutting level at a load length rate of 25% on the roughness curve and the cutting level at a load length rate of 75% on the roughness curve. .. The smaller the cutting level difference, the smoother the surface. In order to reduce the difference in cutting level, for example, surface irregularities may be reduced by polishing. In the gas nozzle 1 according to one embodiment, the end surface 3 is smoother than the outer peripheral surface 4.
 端面3の粗さ曲線における切断レベル差Rδcが、外周面4の粗さ曲線における切断レベル差Rδcよりも小さければ、切断レベル差Rδcと切断レベル差Rδcとの差は限定されない。より耐プラズマ性を向上させて劣化をより抑制する点で、切断レベル差Rδcと切断レベル差Rδcとの差が0.8μm以上であってもよく、1μm以上1.4μm以下であってもよい。外周面4の粗さ曲線における切断レベル差Rδcは、例えば、1μm以上1.5μm以下である。 If the cutting level difference Rδc 1 on the roughness curve of the end surface 3 is smaller than the cutting level difference Rδc 2 on the roughness curve of the outer peripheral surface 4, the difference between the cutting level difference Rδc 1 and the cutting level difference Rδc 2 is not limited. The difference between the cutting level difference Rδc 1 and the cutting level difference Rδc 2 may be 0.8 μm or more, and 1 μm or more and 1.4 μm or less in terms of further improving plasma resistance and further suppressing deterioration. May be good. The cutting level difference Rδc 2 in the roughness curve of the outer peripheral surface 4 is, for example, 1 μm or more and 1.5 μm or less.
 さらに、一実施形態に係るガスノズル1は、プラズマ空間側に位置する端面3の二乗平均平方根高さRqが、端面3に接続される外周面4の二乗平均平方根高さRqよりも小さく形成されていてもよい。二乗平均平方根高さについても小さいほど、面が滑らかであることを示す。端面3の二乗平均平方根高さRqが外周面4の二乗平均平方根高さRqと比較して小さいと、より耐プラズマ性を向上させて劣化をより抑制することができる。 Further, in the gas nozzle 1 according to the embodiment, the root mean square height Rq 1 of the end face 3 located on the plasma space side is formed to be smaller than the root mean square height Rq 2 of the outer peripheral surface 4 connected to the end face 3. It may have been. The smaller the root mean square height, the smoother the surface. When the root mean square height Rq 1 of the end face 3 is smaller than the root mean square height Rq 2 of the outer peripheral surface 4, plasma resistance can be further improved and deterioration can be further suppressed.
 端面3の二乗平均平方根高さRqが、外周面4の二乗平均平方根高さRqよりも小さければ、二乗平均平方根高さRqと二乗平均平方根高さRqとの差は限定されない。より耐プラズマ性を向上させて劣化をより抑制する点で、二乗平均平方根高さRqと二乗平均平方根高さRqとの差が0.8μm以上であってもよく、0.9μm以上1.5μm以下であってもよい。外周面4の二乗平均平方根高さRqは、例えば、0.9μm以上1.5μm以下である。 If the root mean square height Rq 1 of the end face 3 is smaller than the root mean square height Rq 2 of the outer peripheral surface 4, the difference between the root mean square height Rq 1 and the root mean square height Rq 2 is not limited. The difference between the root mean square height Rq 1 and the root mean square Rq 2 may be 0.8 μm or more, and 0.9 μm or more 1 in terms of further improving plasma resistance and suppressing deterioration. It may be 0.5 μm or less. The root mean square height Rq 2 of the outer peripheral surface 4 is, for example, 0.9 μm or more and 1.5 μm or less.
 端面3の二乗平均平方根傾斜RΔq1が、外周面4の二乗平均平方根傾斜RΔq2よりも小さければ、二乗平均平方根傾斜RΔq1と二乗平均平方根傾斜RΔq2との差は限定されない。より耐プラズマ性を向上させて劣化をより抑制する点で、二乗平均平方根RΔq1と二乗平均平方根RΔq2との差が0.5以上であってもよく、0.55以上0.8以下であってもよい。外周面4の二乗平均平方根傾斜RΔq2は、例えば、0.6以上1以下である。 If the root mean square slope RΔ q1 of the end face 3 is smaller than the root mean square slope RΔ q2 of the outer peripheral surface 4, the difference between the root mean square slope RΔ q1 and the root mean square slope RΔ q2 is not limited. The difference between the root mean square RΔ q1 and the root mean square RΔ q2 may be 0.5 or more, and 0.55 or more and 0.8 or less in terms of further improving plasma resistance and suppressing deterioration. There may be. Root mean square slope Aruderuta q2 of the outer peripheral surface 4 is, for example, 0.6 or more and 1 or less.
 切断レベル差Rδc、二乗平均平方根高さRqおよび二乗平均平方根傾斜RΔは、JIS B 0601:2001に準拠し、レーザー顕微鏡((株)キーエンス製、超深度カラー3D形状測定顕微鏡(VK-X1000またはその後継機種))を用いて測定することができる。測定条件としては、照明を同軸落射照明、測定倍率を240倍、カットオフ値λsを無し、カットオフ値λcを0.08mm、終端効果の補正を有り、測定対象とする端面3および外周面4からそれぞれ1か所当たりの測定範囲を1404μm×1053μmとする。各測定範囲毎に長手方向に沿って、略等間隔となるように測定対象とする線を4本引き、これらの線に対してそれぞれ線粗さ計測を行う。各線から得られる切断レベル差Rδc、二乗平均平方根高さRqおよび二乗平均平方根傾斜RΔの測定範囲毎の平均値を算出して、平均値を比較すればよい。 Cut level difference Aruderutashi, root mean square height Rq and root mean square slope Aruderuta q is, JIS B 0601: conforms to 2001, a laser microscope (KEYENCE manufactured, ultra-deep color 3D profile measuring microscope (VK-X1000 or It can be measured using the successor model)). The measurement conditions are coaxial epi-illumination for illumination, 240 times for measurement magnification, no cutoff value λs, 0.08 mm for cutoff value λc, correction of termination effect, and end face 3 and outer peripheral surface 4 to be measured. The measurement range per location is 1404 μm × 1053 μm. For each measurement range, four lines to be measured are drawn along the longitudinal direction at approximately equal intervals, and line roughness is measured for each of these lines. Calculated cut level difference Rδc obtained from each line, a mean value for each measurement range of root mean square height Rq and root mean square slope Aruderuta q, may be compared average.
 以下、本開示に係るガスノズルの製造方法の一例について説明する。具体的には、まず、酸化イットリウムを主成分とする粉末、酸化ジルコニウムを主成分とする粉末(以下、酸化イットリウムを主成分とする粉末および酸化ジルコニウムを主成分とする粉末の混合物を「セラミック粉末」と記載する場合がある)、純水および分散剤を加えた後、ビーズミルで粉砕、混合してスラリーを得る。セラミック粉末には、酸化イットリウムを主成分とする粉末と酸化ジルコニウムを主成分とする粉末とが、酸化ジルコニウムを主成分とする粉末1に対して、酸化イットリウムを主成分とする粉末が例えば2.5~3.1の質量比で混合されている。この質量比であれば、耐プラズマ性と機械的強度とがバランスよく発揮されるセラミックスが得られる。 Hereinafter, an example of the gas nozzle manufacturing method according to the present disclosure will be described. Specifically, first, a mixture of a powder containing yttrium oxide as a main component and a powder containing zirconium oxide as a main component (hereinafter, a powder containing yttrium oxide as a main component and a powder containing zirconium oxide as a main component is referred to as "ceramic powder". After adding pure water and a dispersant, the mixture is pulverized and mixed with a bead mill to obtain a slurry. The ceramic powder includes a powder containing yttrium oxide as a main component and a powder containing zirconium oxide as a main component, and a powder containing zirconium oxide as a main component and a powder containing yttrium oxide as a main component, for example. It is mixed in a mass ratio of 5 to 3.1. With this mass ratio, ceramics can be obtained in which plasma resistance and mechanical strength are exhibited in a well-balanced manner.
 得られたスラリーに有機バインダーを添加し撹拌した後、スラリーを順次、噴霧乾燥、脱鉄処理して、顆粒を得る。この顆粒を成形型に充填した後、1軸加圧成形法または冷間静水圧加圧成形法(CIP成形法)などの成形法を用いて円柱状に加圧成形して成形体を得る。次いで、この成形体に切削加工を施して前駆体を得る。この前駆体を順次、脱脂、焼成することで、ジルコン酸イットリウムを主成分とするセラミックス(焼結体)を得ることができる。 After adding an organic binder to the obtained slurry and stirring it, the slurry is sequentially spray-dried and deironed to obtain granules. After filling the granules in a molding die, a molded product is obtained by pressure molding into a columnar shape using a molding method such as a uniaxial pressure molding method or a cold hydrostatic pressure molding method (CIP molding method). Next, the molded product is cut to obtain a precursor. By sequentially degreasing and firing this precursor, ceramics (sintered body) containing yttrium zirconate as a main component can be obtained.
 焼成雰囲気は大気雰囲気、焼成温度は1640℃以上1880℃以下とし、保持時間は1.5時間以上5時間以下とし、降温過程では自然冷却すればよい。 The firing atmosphere is an atmospheric atmosphere, the firing temperature is 1640 ° C. or higher and 1880 ° C. or lower, the holding time is 1.5 hours or more and 5 hours or less, and natural cooling may be performed in the temperature lowering process.
 酸化イットリウムに酸化ジルコニウムが固溶した酸化イットリウム固溶体と、酸化ジルコニウムに酸化イットリウムが固溶した酸化ジルコニウム固溶体とを主結晶相とするセラミックス(焼結体)を得るには、上記降温過程で、例えばアニール処理を施せばよい。アニール処理は、例えば1300℃以上1500℃以下の温度で、3時間以上5時間以下行えばよい。 In order to obtain a ceramic (sinter) having a main crystal phase of an yttrium oxide solid solution in which zirconium oxide is dissolved in yttrium oxide and a zirconium oxide solid solution in which yttrium oxide is dissolved in zirconium oxide, for example, in the above temperature lowering process. It may be annealed. The annealing treatment may be performed, for example, at a temperature of 1300 ° C. or higher and 1500 ° C. or lower for 3 hours or more and 5 hours or less.
 イットリウムアルミニウム複合酸化物を主成分とするセラミックス(単結晶体)は、例えば、次の手順で得られる。まず、酸化イットリウムを主成分とする粉末および酸化アルミニウムを主成分とする粉末をモリブデンからなるルツボ内で加熱し溶融させた後、EFG法、チョクラルスキー法、カイロポーラス法、TGT法またはHEM法で結晶化させることによって円柱状あるいは円筒状のインゴットを得る。ここで、溶融における雰囲気ガスはアルゴンガス、溶融温度は1550℃~1850℃、アルゴンガスの圧力は0.02~0.06MPaとすればよい。 Ceramics (single crystal) containing yttrium aluminum composite oxide as a main component can be obtained, for example, by the following procedure. First, a powder containing yttrium oxide as a main component and a powder containing aluminum oxide as a main component are heated and melted in a crucible made of molybdenum, and then the EFG method, Czochralski method, Cairoporous method, TGT method or HEM method. A columnar or cylindrical ingot is obtained by crystallization with. Here, the atmospheric gas in the melting may be argon gas, the melting temperature may be 1550 ° C. to 1850 ° C., and the pressure of the argon gas may be 0.02 to 0.06 MPa.
 得られた焼結体やインゴットの軸方向に沿って、ホーニング加工などの研削加工を施して、流路を形成する。ホーニング加工を用いる場合、砥粒は、JIS R 6001-2:2017に記載されている粒度番号が#3000以上のダイヤモンド砥粒を用いればよい。焼結体やインゴットの端面を、平均粒径(D50)が1μm以上3μm以下のダイヤモンド砥粒を用いて、研磨加工することにより、プラズマ空間側に位置する端面が得られ、本開示のガスノズルを得ることができる。 Grinding such as honing is performed along the axial direction of the obtained sintered body or ingot to form a flow path. When honing is used, diamond abrasive grains having a particle size number of # 3000 or more described in JIS R 6001-2: 2017 may be used as the abrasive grains. By polishing the end face of the sintered body or ingot with diamond abrasive grains having an average particle size (D 50 ) of 1 μm or more and 3 μm or less, an end face located on the plasma space side can be obtained, and the gas nozzle of the present disclosure can be obtained. Can be obtained.
 切断レベル差Rδcと切断レベル差Rδcとの差が1μm以上であるガスノズルを得るには、例えば、次の手順によって得られる。まず、上記粒度番号が#3000以上#6000以下のダイヤモンド砥粒を用いたホーニング加工によって流路を形成する。次いで、平均粒径(D50)が1μm以上3μm以下のダイヤモンド砥粒を用いた研磨加工によってプラズマ空間側に位置する端面を形成する。 To obtain a gas nozzle in which the difference between the cutting level difference Rδc 1 and the cutting level difference Rδc 2 is 1 μm or more, for example, the following procedure is obtained. First, a flow path is formed by honing using diamond abrasive grains having a particle size number of # 3000 or more and # 6000 or less. Next, an end face located on the plasma space side is formed by a polishing process using diamond abrasive grains having an average particle size (D 50 ) of 1 μm or more and 3 μm or less.
 プラズマ空間側に位置する端面の二乗平均平方根高さRqが、端面に接続される外周面の二乗平均平方根高さRqよりも小さいガスノズルを得るには、例えば、次の手順によって得られる。まず、上記粒度番号が#3000以上#6000以下のダイヤモンド砥粒を用いたホーニング加工によって流路を形成する。次いで、平均粒径(D50)が1μm以上2μm以下のダイヤモンド砥粒を用いた研磨加工によってプラズマ空間側に位置する端面を形成する。 To obtain a gas nozzle in which the root mean square height Rq 1 of the end face located on the plasma space side is smaller than the root mean square height Rq 2 of the outer peripheral surface connected to the end face, for example, is obtained by the following procedure. First, a flow path is formed by honing using diamond abrasive grains having a particle size number of # 3000 or more and # 6000 or less. Next, an end face located on the plasma space side is formed by a polishing process using diamond abrasive grains having an average particle size (D 50 ) of 1 μm or more and 2 μm or less.
 二乗平均平方根高さRqと二乗平均平方根高さRqとの差が0.8μm以上であるガスノズルを得るには、例えば、次の手順によって得られる。まず、上記粒度番号が#4000以上#6000以下のダイヤモンド砥粒を用いたホーニング加工によって流路を形成する。次いで、平均粒径(D50)が1μm以上2μm以下のダイヤモンド砥粒を用いた研磨加工によってプラズマ空間側に位置する端面を形成する。 To obtain a gas nozzle in which the difference between the root mean square height Rq 1 and the root mean square height Rq 2 is 0.8 μm or more, for example, the following procedure is obtained. First, a flow path is formed by honing processing using diamond abrasive grains having a particle size number of # 4000 or more and # 6000 or less. Next, an end face located on the plasma space side is formed by a polishing process using diamond abrasive grains having an average particle size (D 50 ) of 1 μm or more and 2 μm or less.
 本開示に係るガスノズルは、プラズマ処理用装置に備えられる。具体的には、本開示に係るガスノズルは、例えば、プラズマ処理用装置のプラズマ空間(チャンバー内の空間)にプラズマ生成用ガスを供給するためのノズルなどとして使用される。 The gas nozzle according to the present disclosure is provided in the plasma processing apparatus. Specifically, the gas nozzle according to the present disclosure is used, for example, as a nozzle for supplying plasma generation gas to the plasma space (space in the chamber) of the plasma processing apparatus.
 本開示に係るガスノズルは、上述の一実施形態に限定されない。例えば、上述のガスノズル1は、外周面の一部が括れた略円柱状を有している。しかし、本開示に係るガスノズルの形状は、円柱状に限定されない。本開示に係るガスノズルはプラズマ処理用装置に応じて、円柱状以外に、例えば、楕円柱状、角柱状(例えば、三角柱状、四角柱状、五角柱状、六角柱状など)などを有していてもよい。 The gas nozzle according to the present disclosure is not limited to the above-described embodiment. For example, the gas nozzle 1 described above has a substantially cylindrical shape in which a part of the outer peripheral surface is constricted. However, the shape of the gas nozzle according to the present disclosure is not limited to a columnar shape. The gas nozzle according to the present disclosure may have, for example, an elliptical columnar column, a prismatic columnar column (for example, a triangular columnar column, a square columnar column, a pentagonal columnar column, a hexagonal columnar column, etc.) in addition to the columnar column, depending on the plasma processing apparatus. ..
 1  ガスノズル
 2  プラズマ生成用ガスが供給される側の端面
 2a 供給口
 3  プラズマ空間側に位置する端面
 3a 排出口
 4  外周面
1 Gas nozzle 2 End face on the side where plasma generation gas is supplied 2a Supply port 3 End face located on the plasma space side 3a Discharge port 4 Outer surface

Claims (10)

  1.  プラズマ生成用ガスが供給される供給口と、
     前記プラズマ生成用ガスがプラズマの生成されるプラズマ空間に向かって排出される排出口と、
     前記供給口と前記排出口との間に備えられた流路と、
    を含み、
     前記プラズマ空間側に位置する端面の粗さ曲線における切断レベル差Rδcが、前記端面に接続される外周面の粗さ曲線における切断レベル差Rδcよりも小さく、
     前記切断レベル差が、粗さ曲線における25%の負荷長さ率での切断レベルと、粗さ曲線における75%の負荷長さ率での切断レベルとの差である、
    ガスノズル。
    The supply port to which the plasma generation gas is supplied and
    The discharge port where the plasma generation gas is discharged toward the plasma space where plasma is generated, and
    A flow path provided between the supply port and the discharge port,
    Including
    The cutting level difference Rδc 1 in the roughness curve of the end face located on the plasma space side is smaller than the cutting level difference Rδc 2 in the roughness curve of the outer peripheral surface connected to the end face.
    The cutting level difference is the difference between the cutting level at a load length rate of 25% on the roughness curve and the cutting level at a load length rate of 75% on the roughness curve.
    Gas nozzle.
  2.  前記切断レベル差Rδcと前記切断レベル差Rδcとの差が0.8μm以上である、請求項1に記載のガスノズル。 The gas nozzle according to claim 1 , wherein the difference between the cutting level difference Rδc 1 and the cutting level difference Rδc 2 is 0.8 μm or more.
  3.  前記プラズマ空間側に位置する端面の二乗平均平方根高さRqは、前記端面に接続される外周面の二乗平均平方根高さRqよりも小さい、請求項1または2に記載のガスノズル。 The gas nozzle according to claim 1 or 2, wherein the root mean square height Rq 1 of the end face located on the plasma space side is smaller than the root mean square Rq 2 of the outer peripheral surface connected to the end face.
  4.  前記二乗平均平方根高さRqと前記二乗平均平方根高さRqとの差が0.8μm以上である請求項3に記載のガスノズル。 The gas nozzle according to claim 3, wherein the difference between the root mean square height Rq 1 and the root mean square Rq 2 squared is 0.8 μm or more.
  5.  前記プラズマ空間側に位置する端面の二乗平均平方根傾斜RΔq1は、前記端面に接続される外周面の二乗平均平方根傾斜RΔq2よりも小さい、請求項1~4のいずれかに記載のガスノズル。 The gas nozzle according to any one of claims 1 to 4, wherein the root mean square slope RΔ q1 of the end face located on the plasma space side is smaller than the root mean square RΔ q2 of the outer peripheral surface connected to the end face.
  6.  前記二乗平均平方根傾斜RΔq1と前記二乗平均平方根傾斜RΔq2との差が0.5以上である請求項5に記載のガスノズル。 The gas nozzle according to claim 5, wherein the difference between the root mean square slope RΔ q1 and the root mean square slope RΔ q2 is 0.5 or more.
  7.  前記セラミックスが、ジルコン酸イットリウムを主成分として含有するセラミックスを含む請求項1~6のいずれかに記載のガスノズル。 The gas nozzle according to any one of claims 1 to 6, wherein the ceramic contains a ceramic containing yttrium zirconate as a main component.
  8.  前記セラミックスが、酸化イットリウムに酸化ジルコニウムが固溶した酸化イットリウム固溶体と、酸化ジルコニウムに酸化イットリウムが固溶した酸化ジルコニウム固溶体とを主結晶相として含有するセラミックスを含む請求項1~6のいずれかに記載のガスノズル。 The ceramics according to any one of claims 1 to 6, which include ceramics containing an yttrium oxide solid solution in which zirconium oxide is dissolved in yttrium oxide and a zirconium oxide solid solution in which zirconium oxide is dissolved in zirconium oxide as a main crystal phase. The described gas nozzle.
  9.  前記セラミックスが、イットリウムアルミニウム複合酸化物を主成分して含有するセラミックスを含む請求項1~6のいずれかに記載のガスノズル。 The gas nozzle according to any one of claims 1 to 6, wherein the ceramic contains a ceramic containing yttrium aluminum composite oxide as a main component.
  10.  請求項1~9のいずれかに記載のガスノズルを含むプラズマ処理用装置。 A plasma processing apparatus including the gas nozzle according to any one of claims 1 to 9.
PCT/JP2020/029211 2019-07-31 2020-07-30 Gas nozzle and plasma processing device using same WO2021020502A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021535419A JPWO2021020502A1 (en) 2019-07-31 2020-07-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019141012 2019-07-31
JP2019-141012 2019-07-31

Publications (1)

Publication Number Publication Date
WO2021020502A1 true WO2021020502A1 (en) 2021-02-04

Family

ID=74229242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029211 WO2021020502A1 (en) 2019-07-31 2020-07-30 Gas nozzle and plasma processing device using same

Country Status (2)

Country Link
JP (1) JPWO2021020502A1 (en)
WO (1) WO2021020502A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285845A (en) * 2004-03-26 2005-10-13 Ibiden Co Ltd Gas-jetting board for plasma etching apparatus
JP2007063595A (en) * 2005-08-30 2007-03-15 Toshiba Ceramics Co Ltd Ceramic gas nozzle made of y2o3 sintered compact
WO2013065666A1 (en) * 2011-10-31 2013-05-10 京セラ株式会社 Gas nozzle, plasma device using same, and method for manufacturing gas nozzle
WO2014119177A1 (en) * 2013-01-30 2014-08-07 京セラ株式会社 Gas nozzle and plasma device employing same
JP2019069892A (en) * 2007-04-27 2019-05-09 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Method and apparatus for reducing erosion rate of surface exposed to halogen-containing plasma

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6659493B2 (en) * 2016-07-29 2020-03-04 京セラ株式会社 Mounting member
JP6419391B2 (en) * 2016-11-29 2018-11-07 京セラ株式会社 Watch case

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285845A (en) * 2004-03-26 2005-10-13 Ibiden Co Ltd Gas-jetting board for plasma etching apparatus
JP2007063595A (en) * 2005-08-30 2007-03-15 Toshiba Ceramics Co Ltd Ceramic gas nozzle made of y2o3 sintered compact
JP2019069892A (en) * 2007-04-27 2019-05-09 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Method and apparatus for reducing erosion rate of surface exposed to halogen-containing plasma
WO2013065666A1 (en) * 2011-10-31 2013-05-10 京セラ株式会社 Gas nozzle, plasma device using same, and method for manufacturing gas nozzle
WO2014119177A1 (en) * 2013-01-30 2014-08-07 京セラ株式会社 Gas nozzle and plasma device employing same

Also Published As

Publication number Publication date
JPWO2021020502A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
TWI745247B (en) Yttrium fluoride sprayed coating, spray material therefor, and corrosion resistant coating including sprayed coating
KR100489172B1 (en) A film of yittria-alumina complex oxide, a method of producing the same, a sprayed film, a corrosion resistant member, a member effective for reducing particle generation
JP5159310B2 (en) Corrosion-resistant member and processing apparatus using the same
JPH1045461A (en) Corrosion resistant member
US20080207432A1 (en) Y2O3 Sintered Body Corrosion Resistant Member and Method for Producing Same and Member for Semiconductor/Liquid Crystal Producing Apparatus
US6789498B2 (en) Elements having erosion resistance
JP2009068067A (en) Plasma resistant ceramics sprayed coating
TWI769013B (en) Ceramic sintered body comprising magnesium aluminate spinel
JP4780932B2 (en) Corrosion-resistant member, method for manufacturing the same, and member for semiconductor / liquid crystal manufacturing apparatus
JP2009068066A (en) Plasma resistant ceramics sprayed coating
KR102532969B1 (en) Rare earth oxyfluoride sintered body and manufacturing method thereof
JP4762168B2 (en) Alumina sintered body, member for processing apparatus using the same, and processing apparatus
JPWO2012165334A1 (en) CaF2 polycrystal, focus ring, plasma processing apparatus, and method for producing CaF2 polycrystal
WO2021020502A1 (en) Gas nozzle and plasma processing device using same
JP4798693B2 (en) Yttria ceramic parts for plasma processing apparatus and method for manufacturing the same
JP2006199562A (en) Corrosion-resistant member, and semiconductor or member for liquid crystal manufacturing apparatus using the same
JP2010064937A (en) Ceramic for plasma treatment apparatuses
JP3706488B2 (en) Corrosion-resistant ceramic material
TWI385138B (en) Ceramic components and corrosion resistance components
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
US20210265140A1 (en) Ceramic sintered body and member for plasma processing apparatus
TWI508208B (en) Semiconductor manufacturing fixture and manufacturing method thereof
JP2001148370A (en) Anti-corrosion and anti-plasma ceramic member
JP7329610B2 (en) Member for plasma processing apparatus, manufacturing method thereof, and plasma processing apparatus
JP7112509B2 (en) ceramic tube

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20848217

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021535419

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20848217

Country of ref document: EP

Kind code of ref document: A1