JP2001199762A - Corrosion-resisting ceramic material - Google Patents

Corrosion-resisting ceramic material

Info

Publication number
JP2001199762A
JP2001199762A JP2000009141A JP2000009141A JP2001199762A JP 2001199762 A JP2001199762 A JP 2001199762A JP 2000009141 A JP2000009141 A JP 2000009141A JP 2000009141 A JP2000009141 A JP 2000009141A JP 2001199762 A JP2001199762 A JP 2001199762A
Authority
JP
Japan
Prior art keywords
ceramic material
corrosion
mgo
plasma
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000009141A
Other languages
Japanese (ja)
Other versions
JP4368021B2 (en
Inventor
Tatsuya Shiogai
達也 塩貝
Tomoyuki Ogura
知之 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2000009141A priority Critical patent/JP4368021B2/en
Publication of JP2001199762A publication Critical patent/JP2001199762A/en
Application granted granted Critical
Publication of JP4368021B2 publication Critical patent/JP4368021B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a corrosion-resisting ceramic material having high corrosion resistance to corrosive gases and plasmas, especially to halogen-based gases of which the representative is a fluorine-based gas and further to a plasma generated therefrom, and suitably used for an inner-wall material, a jig, etc., of a plasma treatment unit, etc. SOLUTION: This corrosion-resisting ceramic material comprises a spinel ceramic material which contains MgO and Al2O3 as main components, wherein the composition ratio of MgO to Al2O3 is in the range of 0.76-2.33 by weight, and crystalline particles of the material have an average particle diameter of <3 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プラズマ処理装置
や半導体・液晶製造用プラズマ装置内の内壁材や治具等
として好適に用いられる耐蝕性セラミックス材料に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a corrosion-resistant ceramic material suitably used as an inner wall material or a jig in a plasma processing apparatus or a plasma apparatus for producing semiconductors and liquid crystals.

【0002】[0002]

【従来の技術】近年、半導体メモリーの急激な高集積化
により、エッチング、不純物拡散、イオン注入工程の繰
り返し回数の増加や、細密化によるプラズマの高出力化
等、半導体製造装置内の環境は以前と比較して苛酷なも
のとなっている。その結果、耐高温性、耐蝕性に優れた
セラミックスが、半導体製造装置内の部材として多くの
プロセスにおいて用いらるようになってきている。
2. Description of the Related Art In recent years, the environment in a semiconductor manufacturing apparatus has been increased due to the rapid integration of semiconductor memories, an increase in the number of repetitions of etching, impurity diffusion, and ion implantation steps, and an increase in plasma output due to miniaturization. It is severe compared to. As a result, ceramics having excellent high-temperature resistance and corrosion resistance have been used in many processes as members in semiconductor manufacturing equipment.

【0003】その中で、たとえば、パターン形成のため
に行われるドライエッチングでは、ハロゲン系ガスがプ
ラズマにより活性化されて使用されるため、装置を構成
する部材にはこのような活性ガスに対する耐蝕性が要求
される。このような状況の中、従来より、被処理物以外
のこれらプラズマに曝される部分には、一般にガラスや
石英等のSiOを主成分とする材料、あるいはアルミ
ナや窒化アルミニウム等が多用されてきた。
[0003] Among them, for example, in dry etching for forming a pattern, a halogen-based gas is activated by plasma and used. Is required. Under such circumstances, a material mainly containing SiO 2 such as glass or quartz, or alumina, aluminum nitride, or the like has been frequently used for a portion exposed to the plasma other than the object to be processed. Was.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来から用い
られているガラスや石英等のSiOを主成分とする材
料では、プラズマに対する耐蝕性が十分ではなく、特に
ハロゲン系ガスのプラズマ中では、装置部材そのものが
エッチングされてしまい、表面性状が変化したり、局所
的エッチングにより尖孔が生じたりする不都合があっ
た。
However, conventionally used materials containing SiO 2 as a main component, such as glass and quartz, do not have sufficient corrosion resistance to plasma. The device member itself is etched, and the surface properties are changed, and there are inconveniences that a sharp hole is formed by local etching.

【0005】また、アルミナや窒化アルミニウム等で
は、上記SiOを主成分とするものと比較してハロゲ
ン系ガスのプラズマに対してはより安定であるが、高温
中でプラズマに曝された場合には腐食反応が進行し、部
材の表面から結晶粒子が脱粒し、パーティクルが発生し
易くなるといった劣化の生ずる問題点があった。
Alumina, aluminum nitride and the like are more stable to halogen-based gas plasmas than those containing SiO 2 as a main component, but they are less stable when exposed to plasma at high temperatures. However, there is a problem in that the corrosion reaction proceeds, crystal particles are degranulated from the surface of the member, and particles are easily generated.

【0006】本発明はかかる事情に鑑みてなされたもの
であって、腐食性ガスおよびプラズマ、特にフッ素系に
代表されるハロゲン系の腐食性ガスおよびプラズマに対
して高い耐蝕性を有する耐蝕性セラミックス材料を提供
することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and is intended to provide a corrosion-resistant ceramic having high corrosion resistance to corrosive gases and plasmas, particularly halogen-based corrosive gases and plasmas represented by fluorine. The purpose is to provide the material.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意検討した結果、MgOとAl
主成分としたスピネル質セラミックス材料において、M
gOとAlの組成比(MgO/Al)を適
切な範囲に制御し、かつ、セラミックス材料を構成する
結晶粒子の平均粒径を適切な範囲に制御することによ
り、腐食性ガスおよび腐食性ガスのプラズマ、特にフッ
素系に代表されるハロゲン系の腐食性ガスおよびそれら
のプラズマに対して高い耐蝕性が示されることを見出
し、本発明を完成するに至った。
Means for Solving the Problems The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, in a spinel ceramic material containing MgO and Al 2 O 3 as main components, M
By controlling the composition ratio of gO and Al 2 O 3 (MgO / Al 2 O 3 ) to an appropriate range and controlling the average particle size of the crystal grains constituting the ceramic material to an appropriate range, the corrosiveness is improved. The present inventors have found that a plasma of a gas and a corrosive gas, particularly a halogen-based corrosive gas typified by a fluorine-based gas, and that the plasma show high corrosion resistance, have completed the present invention.

【0008】すなわち、本発明は、MgOとAl
を主成分としたスピネル質セラミックス材料であって、
前記MgOとAlの組成比が重量比で0.67〜
2.33の範囲にあり、かつ、結晶粒子の平均粒径が3
μm未満であることを特徴とする耐蝕性セラミックス材
料、を提供するものである。
That is, the present invention relates to MgO and Al 2 O 3
Is a spinel-based ceramic material whose main component is
The composition ratio of MgO and Al 2 O 3 is 0.67 to
2.33 and the average grain size of the crystal grains is 3
a corrosion-resistant ceramic material characterized by being less than μm.

【0009】ここで、本発明の耐蝕性セラミックス材料
においては、結晶粒子の70%以上が3μm以下の粒径
を有していることが好ましい。また、MgOとAl
の合計100重量部に対する不純物成分の含有量は3
重量部以下であり、かつ、気孔率が1%以下であること
が好ましい。
Here, in the corrosion-resistant ceramic material of the present invention, it is preferable that 70% or more of the crystal particles have a particle size of 3 μm or less. Also, MgO and Al 2 O
The content of the impurity components to the total 100 parts by weight of 3 3
It is preferable that the amount is not more than 1 part by weight and the porosity is not more than 1%.

【0010】[0010]

【発明の実施の形態】以下、本発明について具体的に説
明する。本発明の耐蝕性セラミックス材料は、MgOと
Alを主成分としたスピネル質セラミックス材料
であり、その好適な形態としては、焼結体を挙げること
ができるが、溶射膜やスパッタ膜等の成膜体も含まれ
る。スピネルは、通常は、MgAlで表され、理
論比はMgOとAlがモル比で1:1、重量比で
28.6:71.4で結合した化合物である。ここで、
MgOとAlの組成比率をそれぞれ変化させた場
合、理論比ではMgAl結晶のみが存在し、Mg
Oが過剰であればMgO+MgAlの2相の結晶
構造となり、一方、Alが過剰であればAl
+MgAlの2相の結晶構造となる。本発明で
は理論比よりもMgOを増加させてMgO+MgAl
の2相となるようにMgO/Alの組成比を
規定する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described specifically. The corrosion-resistant ceramic material of the present invention is a spinel ceramic material containing MgO and Al 2 O 3 as main components, and a preferred form thereof is a sintered body. Of the film is also included. Spinel is usually represented by MgAl 2 O 4 , and is a compound in which MgO and Al 2 O 3 are combined at a theoretical ratio of 1: 1 in a molar ratio and 28.6: 71.4 in a weight ratio. here,
When the composition ratio of MgO and Al 2 O 3 was changed, only the MgAl 2 O 4 crystal was present at the theoretical ratio,
O is a two-phase crystal structure of long if MgO + MgAl 2 O 4 excess, whereas, if an excessive Al 2 O 3 Al 2 O
3 + MgAl 2 O 4 has a two-phase crystal structure. In the present invention, MgO is increased from the theoretical ratio to obtain MgO + MgAl 2
The composition ratio of MgO / Al 2 O 3 is defined so as to be two phases of O 4 .

【0011】具体的には、MgAlの理論比にお
いては、MgO/Alの重量比は約0.4である
が、本発明においては、MgO/Alを0.67
〜2.33の範囲とする。これにより、MgAl
結晶のみの場合やAl+MgAlの2相の
場合よりも良好な耐蝕性が得られることとなる。
[0011] Specifically, in theory ratio of MgAl 2 O 4, although the weight ratio of MgO / Al 2 O 3 is about 0.4, in the present invention, the MgO / Al 2 O 3 0. 67
To 2.33. Thereby, MgAl 2 O 4
Better corrosion resistance can be obtained than in the case of only crystals or in the case of two phases of Al 2 O 3 + MgAl 2 O 4 .

【0012】本発明において、MgOとAlとの
組成比を、重量比で0.67〜2.33の範囲としたの
は、0.67未満ではMgOが過剰であってもその量が
少なく、また2.33を超えると過剰なMgOの量が多
過ぎ、いずれの場合もフッ素系に代表されるハロゲン系
腐食性ガスおよびハロゲン系プラズマに対する耐蝕性が
低下するからである。
In the present invention, the weight ratio of the composition ratio of MgO to Al 2 O 3 is in the range of 0.67 to 2.33. This is because when the content is less than 2.33 and the amount of excess MgO is too large, the corrosion resistance to halogen-based corrosive gas represented by fluorine and halogen-based plasma is reduced in any case.

【0013】本発明においては、上述した組成の規定に
加え、セラミックス材料を構成する結晶粒子の平均粒径
を3μm未満とする。平均粒径は、たとえば、試料の研
磨面をサーマルエッチング等して得られる表面をSEM
観察等し、また、画像解析等することにより求めること
ができる。本発明において、セラミックス材料の結晶粒
子径を規定するのは、ハロゲン系腐食性ガスおよびハロ
ゲン系プラズマに曝されたときの耐蝕性の向上を図り、
また、パーティクルの発生の抑制を図るためである。
In the present invention, in addition to the above-mentioned composition, the average particle diameter of the crystal grains constituting the ceramic material is set to less than 3 μm. The average particle size can be determined, for example, by using a SEM
It can be determined by observation and the like, and by image analysis and the like. In the present invention, the crystal grain size of the ceramic material is defined in order to improve corrosion resistance when exposed to a halogen-based corrosive gas and a halogen-based plasma,
Another reason is to suppress generation of particles.

【0014】すなわち、本発明のように、結晶粒子の平
均粒径が3μm未満の場合には、セラミックス材料の粒
界相が薄く、これによってハロゲン系腐食性ガスおよび
ハロゲン系プラズマに曝されたときのエッチングレート
が遅くなり、また、パーティクルの発生も抑制され、優
れた耐蝕性が得られるようになる。これに対し、結晶粒
子の平均粒径が3μm以上の場合には、粒界相の厚みが
厚くなり、その部分が選択的にエッチングされてエッチ
ング速度が速くなるため、好ましくない。
That is, as in the present invention, when the average grain size of the crystal grains is less than 3 μm, the grain boundary phase of the ceramic material is thin, so that when the ceramic material is exposed to a halogen-based corrosive gas and a halogen-based plasma. The etching rate becomes slow, and the generation of particles is suppressed, so that excellent corrosion resistance can be obtained. On the other hand, when the average grain size of the crystal grains is 3 μm or more, the thickness of the grain boundary phase becomes large, and the portion is selectively etched, so that the etching rate is undesirably increased.

【0015】なお、特開平10−330150号公報に
は、MgOを15重量%以上、Al を85重量%
以下の範囲で含有し、MgO、MgO+MgAl
、MgAl、Al+MgAl
のいずれかの結晶相からなり、これら結晶相の平均粒径
が3μm以上、かつ気孔率が0.2%以下であるセラミ
ックス焼結体が開示されているが、このように平均粒径
が3μm以上の場合には、粒界相の厚みが増す結果、粒
界相での耐蝕性の低下が顕著であった。このような点か
ら、特開平10−330150号公報に開示の発明と本
発明との相違は明らかである。
Note that Japanese Patent Application Laid-Open No. 10-330150 discloses
Means that MgO is at least 15% by weight and Al 2O385% by weight
MgO, MgO + MgAl contained in the following range
2O4, MgAl2O4, Al2O3+ MgAl2O4
And the average particle size of these crystal phases
Having a porosity of 3 μm or more and a porosity of 0.2% or less
Box sintered body is disclosed.
Is 3 μm or more, the thickness of the grain boundary phase increases,
The corrosion resistance in the interphase was significantly reduced. Like this
Et al., The invention disclosed in JP-A-10-330150 and the present invention.
The difference from the invention is clear.

【0016】ところで、平均粒径を考える場合には、そ
の粒径の分布の状態もまた問題となる。すなわち、粒径
が極めて小さい粒子が、粒径が比較的大きい粒子中に分
散しているような場合であって、全体的な平均粒径が3
μm以下となっているようなときには、粒径が大きい粒
子間の粒界に起因して、耐蝕性が低下することが推測さ
れる。このような耐蝕性の低下が起こらないように、本
発明においては、粒径が3μm以下の結晶粒子が70%
以上存在している状態において、平均粒径が3μm以下
となっていることが好ましい。
When considering the average particle size, the state of the distribution of the particle size also poses a problem. That is, this is a case where particles having a very small particle size are dispersed in particles having a relatively large particle size, and the overall average particle size is 3%.
If it is less than μm, it is assumed that corrosion resistance is reduced due to grain boundaries between particles having a large particle size. In order to prevent such a decrease in corrosion resistance, in the present invention, 70% of the crystal particles having a particle size of 3 μm or less are used.
In the above state, the average particle diameter is preferably 3 μm or less.

【0017】次に、本発明の耐蝕性セラミックス材料に
おいては、主成分であるMgOとAl以外の成
分、すなわち不純物成分の含有量は、MgOとAl
の合計100重量部に対して3重量部以下であり、か
つ気孔率が1%以下であることが好ましい。
Next, in the corrosion-resistant ceramic material of the present invention, MgO and other than Al 2 O 3 component is a main component, i.e. the content of impurity components are, MgO and Al 2 O
It is preferable that the total amount of 3 is not more than 3 parts by weight and the porosity is not more than 1% based on 100 parts by weight.

【0018】これは、通常、半導体製造装置等では、不
純物による汚染が問題とされ、純度95%以上の高純度
の部材が要求されるためであり、本発明においては、不
純物成分の好ましい範囲として、MgOとAl
合計100重量部に対して合計で3重量部以下とした。
なお、このような不純物成分としては、SiO、Ca
O、NaO、Fe等が挙げられる。
This is because, in semiconductor manufacturing equipment and the like, contamination by impurities is a problem, and a high-purity member having a purity of 95% or more is required. In the present invention, a preferable range of the impurity component is as follows. , MgO and Al 2 O 3 in a total of 3 parts by weight or less based on 100 parts by weight in total.
Note that such impurity components include SiO 2 , Ca
O, Na 2 O, Fe 2 O 3 and the like.

【0019】また、本発明の耐蝕性セラミックス材料に
おいて、好ましい気孔率の範囲を1%以下としたのは、
セラミックス材料中に気孔が存在し、その気孔が表面に
現れた場合には、その部分で腐食反応が著しく起こり、
表面状態の劣化が激しくなるおそれがあるからである。
すなわち、気孔率を1%以下とすることにより、気孔部
分からの腐食による表面性状の劣化を有効に防止するこ
とが可能となる。
Further, in the corrosion-resistant ceramic material of the present invention, the preferable range of the porosity is set to 1% or less.
If pores exist in the ceramic material and the pores appear on the surface, a significant corrosion reaction occurs in that part,
This is because there is a possibility that the deterioration of the surface state may become severe.
That is, by setting the porosity to 1% or less, it is possible to effectively prevent deterioration of the surface properties due to corrosion from the pores.

【0020】上述した本発明にかかる耐蝕性セラミック
ス材料の製造方法としては、結晶粒子径が所定の条件を
満足し、好ましくは気孔率が1%以下である緻密な組織
を有するものを製造することができれば、どのような方
法を用いても構わない。たとえば、従来から広く用いら
れているように、原料粉末を目的の組成となるように混
合後、成形、焼結する方法を用いることができ、ホット
プレス(HP)処理や熱間静水圧加圧(HIP)処理等
を行うことにより、気孔率の極めて小さい焼結体として
もよい。このような焼結法は、各種装置に用いられる部
材全体を本発明の耐蝕性セラミックス材料で構成する場
合に好適に用いられる。
The above-mentioned method for producing a corrosion-resistant ceramic material according to the present invention includes producing a material having a fine structure in which the crystal grain size satisfies predetermined conditions and the porosity is preferably 1% or less. Any method can be used as long as it is possible. For example, a method of mixing the raw material powder to have a desired composition, and then molding and sintering can be used as conventionally widely used, such as hot pressing (HP) treatment or hot isostatic pressing. By performing (HIP) treatment or the like, a sintered body having extremely low porosity may be obtained. Such a sintering method is suitably used when the entire member used for various devices is made of the corrosion-resistant ceramic material of the present invention.

【0021】また、焼結法に限らず、溶射やスパッタ等
の成膜方法を用いて、各種のセラミックスや金属等の基
材表面に本発明の耐蝕性セラミックス材料を成膜形成す
る方法も用いることができる。これらの成膜方法は、部
材形状が簡単である場合にも用いることができるが、部
材形状が複雑な場合や、腐食性ガスあるいは腐食性ガス
のプラズマに露呈される一部の部位のみに本発明の耐蝕
性セラミックス材料を形成することが好ましい場合に、
好適に用いられる。
In addition to the sintering method, a method of forming a film of the corrosion-resistant ceramic material of the present invention on the surface of a base material of various ceramics and metals using a film forming method such as thermal spraying or sputtering is also used. be able to. These film forming methods can be used even when the shape of the member is simple.However, the method is applied only to the case where the shape of the member is complicated, or only to a part of the gas exposed to corrosive gas or corrosive gas plasma. When it is preferable to form the corrosion-resistant ceramic material of the invention,
It is preferably used.

【0022】後述する実施例において詳述するように、
本発明のスピネル質セラミックス材料について、平行平
板電極型プラズマエッチング装置を用いて、CFとO
の混合ガス雰囲気でプラズマエッチングを行ったとこ
ろ、従来から使用されている石英ガラス等と比較して、
エッチング速度(腐食速度)が遅く、ハロゲン系プラズ
マに対して、高い耐蝕性を有していることが確認され
た。
As will be described in detail in an embodiment described later,
For the spinel ceramic material of the present invention, CF 4 and O were used by using a parallel plate electrode type plasma etching apparatus.
When plasma etching was performed in a mixed gas atmosphere of No. 2 , compared with conventionally used quartz glass and the like,
It was confirmed that the etching rate (corrosion rate) was low, and the composition had high corrosion resistance to halogen plasma.

【0023】このように、本発明のセラミックス材料
は、特にフッ素系腐食ガスおよびフッ素系プラズマに対
して、高い耐蝕性を有している。フッ素系ガスとしては
CFの他にSF、CHFなどがあり、これらのガ
ス雰囲気にマイクロ波等を導入するとこれらのガスがプ
ラズマ化される。フッ素系ガス以外のハロゲンガスとし
ては、Cl、BCl、HCl、CCl等の塩素系
ガス、Br、HBr、CBr等の臭素系ガスが挙げ
られ、これらの腐食ガスにさらにAr等の不活性ガスが
導入される場合もあるが、本発明のセラミックス材料
は、これらの腐食性ガスに対しても良好な耐蝕性を示
す。
As described above, the ceramic material of the present invention has high corrosion resistance especially to fluorine-based corrosive gas and fluorine-based plasma. Examples of the fluorine-based gas include SF 6 , CHF 3, and the like in addition to CF 4. When a microwave or the like is introduced into the gas atmosphere, these gases are turned into plasma. Examples of the halogen gas other than the fluorine-based gas include a chlorine-based gas such as Cl 2 , BCl 3 , HCl, and CCl 4 , and a bromine-based gas such as Br 2 , HBr, and CBr 4. May be introduced, but the ceramic material of the present invention exhibits good corrosion resistance to these corrosive gases.

【0024】したがって、本発明のセラミックス材料
は、上記のようなハロゲン系腐食性ガスあるいは腐食性
ガスのプラズマに対する耐蝕性を活かして、各種の半導
体製造装置や液晶製造装置等のプラズマ装置において、
少なくとも一部がこれら腐食性ガス等の環境に曝される
部位の部材として好適に用いられる。このような部材
は、部材全体が上記セラミックス材料から構成されてい
てもよく、腐食性ガスあるいは腐食性ガスのプラズマに
露呈される部位のみが上記セラミックス材料から構成さ
れていてもよい。
Therefore, the ceramic material of the present invention can be used in plasma devices such as various semiconductor manufacturing devices and liquid crystal manufacturing devices by utilizing the corrosion resistance to the above-mentioned halogen-based corrosive gas or corrosive gas plasma.
At least a part thereof is suitably used as a member of a portion exposed to an environment such as a corrosive gas. In such a member, the entire member may be made of the ceramic material, or only a portion exposed to a corrosive gas or a plasma of a corrosive gas may be made of the ceramic material.

【0025】[0025]

【実施例】以下、本発明の実施例について、比較例と対
比しながら説明する。純度99%のMgAl粉末
および純度99.9%のMgO粉末を所定の組成比とな
るように調合し、ボールミルを用いてエタノール中72
時間粉砕して混合粉末を得た。この混合粉末を一軸加圧
で50MPa、1分間、冷間静水圧成形法で150MP
a、1分間かけて成形した。
EXAMPLES Examples of the present invention will be described below in comparison with comparative examples. MgAl 2 O 4 powder having a purity of 99% and MgO powder having a purity of 99.9% were prepared so as to have a predetermined composition ratio.
The mixture was ground for an hour to obtain a mixed powder. This mixed powder is uniaxially pressed at 50 MPa, for 1 minute, at 150 MPa by cold isostatic pressing.
a Molding was performed for 1 minute.

【0026】次いで、成形体を1500〜1650℃で
1〜6時間、大気炉を用いて焼結し、焼結体を作製し
た。さらに一部の焼結体については、その後、アルゴン
(Ar)を圧力媒体として、1400℃または1500
℃、圧力177MPa(1800kgf/cm)で1
時間HIP処理し、相対密度が100%の焼結体を作製
した(実施例1〜7)。これら実施例1〜7にかかる試
料の作製条件を表1に示す。
Next, the molded body was sintered at 1500 to 1650 ° C. for 1 to 6 hours using an air furnace to produce a sintered body. Further, with respect to some of the sintered bodies, thereafter, using argon (Ar) as a pressure medium, 1400 ° C. or 1500 ° C.
At 177 MPa (1800 kgf / cm 2 )
HIP processing was performed for a time to produce a sintered body having a relative density of 100% (Examples 1 to 7). Table 1 shows the manufacturing conditions of the samples according to Examples 1 to 7.

【0027】[0027]

【表1】 [Table 1]

【0028】また、比較のため、上記方法と同様の方法
で粉末を作製、成形を行い、焼成時間を長くする等して
粒成長を促進させることにより、平均粒径が3μm以上
となるように焼結を行い、さらに一部の焼結体について
は同様の方法でHIP処理を行って焼結体を作製した
(比較例1〜5)。また、比較例6として石英ガラスを
準備した。これら比較例にかかる試料の作製条件につい
ても表1に併記した。
For comparison, powder is produced and molded in the same manner as described above, and the grain growth is promoted by elongating the firing time so that the average grain size becomes 3 μm or more. Sintering was performed, and further, a part of the sintered bodies was subjected to HIP treatment in the same manner to produce sintered bodies (Comparative Examples 1 to 5). In addition, quartz glass was prepared as Comparative Example 6. Table 1 also shows the manufacturing conditions of the samples according to these comparative examples.

【0029】このようにして得られた各焼結体について
は、その密度をアルキメデス法により測定し、気孔率を
求めた。結果は表1に示されるように、全ての試料にお
いて0〜0.05%の範囲にあり、いずれも緻密質であ
ることが確認された。また、焼結体の粒径を測定するた
めに、焼結体を鏡面研磨した後に、サーマルエッチング
を行い、SEM観察から平均粒子径を求めた。測定され
た平均粒子径もまた表1に併記されている。
The density of each of the thus obtained sintered bodies was measured by the Archimedes method, and the porosity was obtained. As shown in Table 1, the results were in the range of 0 to 0.05% in all samples, and it was confirmed that all samples were dense. In addition, in order to measure the particle size of the sintered body, the sintered body was mirror-polished, then subjected to thermal etching, and the average particle size was determined from SEM observation. The average particle size measured is also shown in Table 1.

【0030】ここで、図1には実施例1の、図2には比
較例2の、サーマルエッチング後の研磨面の状態を観察
したSEM写真をそれぞれ示す。実施例1では、3μm
以上の粒径を有する結晶粒子がほとんど観察されず、ま
た、気孔もほとんど観察されない程度に緻密質であるこ
とが確認された。一方、比較例2では、結晶粒子間に微
少な気孔が多く観察され、また、結晶粒径が3μm以上
のものも多く観察される等、実施例1と比較例2との微
構造差が顕著に観察された。
Here, FIG. 1 shows SEM photographs of the polished surface after thermal etching of Example 1 and FIG. 2 shows SEM photographs of Comparative Example 2 respectively. In Example 1, 3 μm
It was confirmed that crystal particles having the above-mentioned particle size were hardly observed, and that the particles were dense enough that hardly any pores were observed. On the other hand, in Comparative Example 2, many fine pores were observed between the crystal grains, and those having a crystal grain size of 3 μm or more were also observed. Was observed.

【0031】次に、各試料のエッチング処理を、周波数
2.45GHz、出力800Wの平行平板電極型プラズ
マエッチング装置を用いて、CFとOの体積比が
4:1の雰囲気で約2時間プラズマエッチングすること
により行った。そして、各試料のエッチング前後での重
量変化を測定することにより、エッチングレートを算出
した。
Next, each sample was etched for about 2 hours using a parallel plate electrode type plasma etching apparatus with a frequency of 2.45 GHz and an output of 800 W in an atmosphere in which the volume ratio of CF 4 to O 2 was 4: 1. This was performed by plasma etching. Then, an etching rate was calculated by measuring a change in weight of each sample before and after etching.

【0032】結果は表1に併記した通りであり、本発明
の条件を満足する実施例1〜7は、比較例1〜6に比べ
てエッチングレートが低く、CFガスを含むプラズマ
による侵食速度が遅いこと、すなわち、CFガスを含
むプラズマに対し、高い耐蝕性を示すことが確認され
た。
The results are as shown in Table 1. In Examples 1 to 7 satisfying the conditions of the present invention, the etching rate was lower than that in Comparative Examples 1 to 6, and the erosion rate by the plasma containing CF 4 gas was used. Is high, that is, it shows high corrosion resistance to plasma containing CF 4 gas.

【0033】なお、図3は図1に示した研磨面(微構
造)を有する実施例1の、図4は図2に示した研磨面
(微構造)を有する比較例2の、プラズマエッチング後
の組織をそれぞれ示したSEM写真である。実施例1で
は粒界腐食や脱粒といった劣化がほとんど観察されない
のに対し、比較例2では、脱粒が顕著に生じていること
が確認された。この比較例2における脱粒には、粒界に
微小な気孔が多数存在していたことのみならず、結晶粒
子が大きいために粒界層が厚くなっており、粒界腐食が
起こり易い構造となっていたこともまた関与しているも
のと考えられる。
FIG. 3 is a view of Example 1 having the polished surface (fine structure) shown in FIG. 1, and FIG. 4 is a comparative example 2 having a polished surface (fine structure) shown in FIG. 3 is an SEM photograph showing the structure of each of FIGS. In Example 1, degradation such as intergranular corrosion and grain shedding was hardly observed, whereas in Comparative Example 2, grain shedding was confirmed to have occurred significantly. The grain removal in Comparative Example 2 was not only because there were many fine pores at the grain boundaries, but also because the crystal grains were large, the grain boundary layer was thick and the structure was prone to intergranular corrosion. It is also considered that this was involved.

【0034】[0034]

【発明の効果】以上、本発明によれば、MgOとAl
を主成分としたスピネル質セラミックス材料であっ
て、MgOとAlとの組成比が重量比で0.67
〜2.33の範囲であり、結晶粒子の平均粒径を3μm
未満とすることにより、腐食性ガスおよび腐食性ガスの
プラズマ、特にフッ素系に代表されるハロゲン系の腐食
性ガスおよびそれらのプラズマに対して高い耐蝕性を有
するセラミックス材料が得られる。このような材料を半
導体製造装置等の前記ガス又はプラズマ雰囲気に曝され
る部材に適用することにより、装置の耐久性を飛躍的に
向上させることが可能となる。
As described above, according to the present invention, MgO and Al 2
A spinel ceramic material containing O 3 as a main component, wherein the composition ratio between MgO and Al 2 O 3 is 0.67 by weight.
22.33, and the average particle size of the crystal particles is 3 μm.
By setting the value to less than the above value, a corrosive gas and a plasma of the corrosive gas, particularly a halogen-based corrosive gas represented by a fluorine-based gas, and a ceramic material having high corrosion resistance to the plasma can be obtained. By applying such a material to a member that is exposed to the gas or plasma atmosphere, such as a semiconductor manufacturing apparatus, it is possible to dramatically improve the durability of the apparatus.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の耐蝕性セラミックス材料に係る実施例
1の微構造を示すSEM写真。
FIG. 1 is an SEM photograph showing a microstructure of Example 1 relating to a corrosion-resistant ceramic material of the present invention.

【図2】比較例2の微構造を示すSEM写真。FIG. 2 is an SEM photograph showing a microstructure of Comparative Example 2.

【図3】図1記載の実施例1のプラズマエッチング後の
組織を示すSEM写真。
FIG. 3 is an SEM photograph showing a structure after plasma etching of Example 1 shown in FIG. 1;

【図4】図2記載の比較例2のプラズマエッチング後の
組織を示すSEM写真。
FIG. 4 is an SEM photograph showing a structure after plasma etching of Comparative Example 2 shown in FIG. 2;

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G031 AA03 AA29 BA18 CA01 CA04 4K057 DE01 DE06 DE11 DM14 DM35 5F004 AA16 BA04 BB29 DA00 DA01 DA04 DA05 DA11 DA16 DA18 DA26  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G031 AA03 AA29 BA18 CA01 CA04 4K057 DE01 DE06 DE11 DM14 DM35 5F004 AA16 BA04 BB29 DA00 DA01 DA04 DA05 DA11 DA16 DA18 DA26

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 MgOとAlを主成分としたスピ
ネル質セラミックス材料であって、前記MgOとAl
の組成比が重量比で0.67〜2.33の範囲にあ
り、かつ、結晶粒子の平均粒径が3μm未満であること
を特徴とする耐蝕性セラミックス材料。
1. A spinel ceramic material containing MgO and Al 2 O 3 as main components, wherein the MgO and Al 2 O 3
A corrosion-resistant ceramic material, characterized in that the composition ratio of O 3 is in the range of 0.67 to 2.33 by weight, and the average particle size of the crystal particles is less than 3 μm.
【請求項2】 前記結晶粒子の70%以上が3μm以下
の粒径を有することを特徴とする請求項1に記載の耐蝕
性セラミックス材料。
2. The corrosion-resistant ceramic material according to claim 1, wherein 70% or more of the crystal particles have a particle size of 3 μm or less.
【請求項3】 前記MgOとAlの合計100重
量部に対する不純物成分の含有量が3重量部以下であ
り、かつ、気孔率が1%以下であることを特徴とする請
求項1又は請求項2に記載の耐蝕性セラミックス材料。
3. The method according to claim 1, wherein the content of the impurity component is 3 parts by weight or less and the porosity is 1% or less based on 100 parts by weight of the total of MgO and Al 2 O 3. The corrosion-resistant ceramic material according to claim 2.
JP2000009141A 2000-01-18 2000-01-18 Corrosion resistant ceramic material Expired - Fee Related JP4368021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000009141A JP4368021B2 (en) 2000-01-18 2000-01-18 Corrosion resistant ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000009141A JP4368021B2 (en) 2000-01-18 2000-01-18 Corrosion resistant ceramic material

Publications (2)

Publication Number Publication Date
JP2001199762A true JP2001199762A (en) 2001-07-24
JP4368021B2 JP4368021B2 (en) 2009-11-18

Family

ID=18537325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000009141A Expired - Fee Related JP4368021B2 (en) 2000-01-18 2000-01-18 Corrosion resistant ceramic material

Country Status (1)

Country Link
JP (1) JP4368021B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246452A (en) * 2001-02-15 2002-08-30 Taiheiyo Cement Corp Electrostatic chuck
JP2005158675A (en) * 2003-10-30 2005-06-16 Kyocera Corp Plasma processing device
JP2009132584A (en) * 2007-11-30 2009-06-18 Taiheiyo Cement Corp Ceramic sintered compact and electrostatic chuck using the same
JP2010018853A (en) * 2008-07-11 2010-01-28 Taiheiyo Cement Corp Thermally sprayed ceramic film and corrosion-resistant member using the same
JPWO2016002480A1 (en) * 2014-06-30 2017-04-27 日本碍子株式会社 MgO-based ceramic film, member for semiconductor manufacturing apparatus, and method for manufacturing MgO-based ceramic film
CN110294630A (en) * 2018-03-23 2019-10-01 日本碍子株式会社 The manufacturing method of composite sinter, semiconductor manufacturing apparatus member and composite sinter
JP2020118635A (en) * 2019-01-28 2020-08-06 株式会社デンソー Exhaust gas sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4733819B2 (en) * 2000-09-01 2011-07-27 太平洋セメント株式会社 Method of forming corrosion-resistant ceramic sprayed coating

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246452A (en) * 2001-02-15 2002-08-30 Taiheiyo Cement Corp Electrostatic chuck
JP4585129B2 (en) * 2001-02-15 2010-11-24 太平洋セメント株式会社 Electrostatic chuck
JP2005158675A (en) * 2003-10-30 2005-06-16 Kyocera Corp Plasma processing device
JP2009132584A (en) * 2007-11-30 2009-06-18 Taiheiyo Cement Corp Ceramic sintered compact and electrostatic chuck using the same
JP2010018853A (en) * 2008-07-11 2010-01-28 Taiheiyo Cement Corp Thermally sprayed ceramic film and corrosion-resistant member using the same
JPWO2016002480A1 (en) * 2014-06-30 2017-04-27 日本碍子株式会社 MgO-based ceramic film, member for semiconductor manufacturing apparatus, and method for manufacturing MgO-based ceramic film
CN110294630A (en) * 2018-03-23 2019-10-01 日本碍子株式会社 The manufacturing method of composite sinter, semiconductor manufacturing apparatus member and composite sinter
CN110294630B (en) * 2018-03-23 2023-04-07 日本碍子株式会社 Composite sintered body, semiconductor manufacturing apparatus component, and method for manufacturing composite sintered body
JP2020118635A (en) * 2019-01-28 2020-08-06 株式会社デンソー Exhaust gas sensor
JP7052747B2 (en) 2019-01-28 2022-04-12 株式会社デンソー Exhaust sensor

Also Published As

Publication number Publication date
JP4368021B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
JP4548887B2 (en) Corrosion-resistant ceramic member and manufacturing method thereof
JP3619330B2 (en) Components for plasma process equipment
KR101365139B1 (en) Apparatus and method which reduce the erosion rate of surfaces exposed to halogen-containing plasmas
JP3261044B2 (en) Components for plasma processing equipment
JP2003146751A (en) Plasma-resistant member and method of producing the same
JP3559426B2 (en) Corrosion resistant materials
JP3527839B2 (en) Components for semiconductor device manufacturing equipment
JP3488373B2 (en) Corrosion resistant materials
JP2001199762A (en) Corrosion-resisting ceramic material
JP4160224B2 (en) Oxyhalide components
JP2002068838A (en) Plasma resistant member and method for manufacturing the same
JP2000103689A (en) Alumina sintered compact, its production and plasma- resistant member
JP2000086344A (en) High density fluoride sintered body, its production, and member for semiconductor-producing apparatus by using the same
JP2000313656A (en) Corrosionproof ceramic material and corrosionproof member
JP3659435B2 (en) Corrosion resistant member, plasma processing apparatus, semiconductor manufacturing apparatus, liquid crystal manufacturing apparatus, and discharge vessel.
JP3623054B2 (en) Components for plasma process equipment
JP3706488B2 (en) Corrosion-resistant ceramic material
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
JP2001151559A (en) Corrosion-resistant member
JP4733819B2 (en) Method of forming corrosion-resistant ceramic sprayed coating
JP4480951B2 (en) Corrosion resistant material
JP2000239066A (en) Corrosionproof member and its production, and member for plasma treatment device using the same
JP2001206764A (en) Corrosion-resistant ceramics and its manufacturing method
JP3732966B2 (en) Corrosion resistant material
JP2000313655A (en) High-density magnesium oxide-based sintered compact and its production, and member for plasma treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090825

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees