JP3559426B2 - Corrosion resistant materials - Google Patents

Corrosion resistant materials Download PDF

Info

Publication number
JP3559426B2
JP3559426B2 JP14268097A JP14268097A JP3559426B2 JP 3559426 B2 JP3559426 B2 JP 3559426B2 JP 14268097 A JP14268097 A JP 14268097A JP 14268097 A JP14268097 A JP 14268097A JP 3559426 B2 JP3559426 B2 JP 3559426B2
Authority
JP
Japan
Prior art keywords
mgo
mgal
corrosion
plasma
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14268097A
Other languages
Japanese (ja)
Other versions
JPH10330150A (en
Inventor
哲治 早崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP14268097A priority Critical patent/JP3559426B2/en
Priority to US09/031,401 priority patent/US6447937B1/en
Publication of JPH10330150A publication Critical patent/JPH10330150A/en
Priority to US10/198,675 priority patent/US6916559B2/en
Application granted granted Critical
Publication of JP3559426B2 publication Critical patent/JP3559426B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ハロゲン系腐食性ガスが存在する雰囲気下でのプラズマに対して優れた耐食性を有する耐食性部材を提供せんとするものであり、例えば、半導体製造用や液晶プロセス用のプラズマ装置に使用されるウエハ保持具やクランプリング等の治具や内壁材、あるいはフロンガス分解処理装置やエキシマレーザーのレーザー管等として好適に使用できるものである。
【0002】
【従来の技術】
従来、半導体装置の製造工程におけるプラズマプロセスとして、フッ素系や塩素系等のハロゲン系腐食性ガスが、その反応性の高さから、気相成長、エッチングやクリーニングに利用されている。
【0003】
そして、これらのハロゲン系腐食性ガス下でプラズマに曝される部材には耐食性が要求されることから、石英ガラス、あるいはステンレスやアルミニウム等の耐食軽金属材、さらにはアルミナ焼結体や窒化アルミニウム焼結体、及びこれらセラミック焼結体に炭化珪素等のセラミック膜を被覆したものが使用されていた(特公平5−53872号、特開平3−217016号、特開平8−91932号公報参照。)
【0004】
【発明が解決しようとする課題】
しかしながら、耐蝕性部材として石英ガラスを用いたものでは、プラズマ中での耐食性が不充分であることからハロゲンプラズマに曝されると、プラズマとの接触部が激しくエッチングされて消耗するといった課題があった。
【0005】
また、耐蝕性部材としてステンレスやアルミニウム等の耐食軽金属材を用いたものにおいても耐食性が不充分で、特に耐食軽金属材が腐食を受けると半導体装置の製造において、ウエハに悪影響を与える恐れが高いために不良品発生の原因となるといった課題があった。
【0006】
また、耐蝕性部材としてアルミナ焼結体や窒化アルミニウム焼結体、あるいは上記セラミック焼結体にセラミック膜を被覆したものでは、石英ガラスや耐食軽金属材と比較してハロゲン系腐食性ガスに対して高い耐食性を有しているものの、高温でプラズマと接すると腐食が徐々に進行してセラミック焼結体の表面からハロゲン化物が蒸発あるいは微粉体となって消耗するといった課題があり、さらに耐食性の高い材質が望まれていた。
【0007】
【課題を解決するための手段】
そこで、本件出願人は、ハロゲン系腐食性ガスを含む雰囲気下でプラズマに曝されたとしても優れた耐食性を有する材質について検討を重ねた結果、マグネシウム(Mg)の化合物を含むセラミック焼結体がハロゲン系腐食性ガスと反応してハロゲン化物を生成したとしても融点が高く安定であることから、耐蝕性に優れることを見出した。
【0008】
また、セラミック焼結体に多数の気孔が存在したり、粒界相が多いと腐食を受けやすく、耐食性が大きく低下することを見出した。
【0009】
即ち、本発明は、フッ素系や塩素系等のハロゲン系腐食性ガスを含む雰囲気下でプラズマに曝される耐蝕性部材を、酸化物換算でMgOを15重量%以上、Alを85重量%以下の範囲とし、MgO、MgAlとMgO、MgAl、MgAlとAlのいずれかの結晶相からなり、上記結晶相の平均結晶粒子径が15μm以上でかつ気孔率が0.1%以下であるセラミック焼結体からなることを特徴とする。
【0010】
【発明の実施の形態】
本発明の耐食性部材は、ハロゲン系腐食性ガス下でプラズマに曝される部材であり、ハロゲン系腐食性ガスとしては、SF、CF、CHF、CIF、HF等のフッ素系ガス、Cl、BCl、HCl、CCl等の塩素系ガス、あるいはBr、HBr、CBr等の臭素系ガスなどがある。そして、これらのハロゲン系腐食性ガスが使用される雰囲気下で高周波やマイクロ波が導入されるとこれらのガスがプラズマ化されることになる。
【0011】
また、エッチング効果をより高めるために、ハロゲン系腐食性ガスとともに、Arなどの不活性ガスを導入してプラズマを発生させることもある。
【0012】
本発明は、これらのハロゲン系腐食性ガス下でプラズマに曝される耐食性部材を、MgO、MgAlとMgO、MgAl、MgAlとAlのいずれかの結晶相からなるセラミック焼結体により形成したものである。
【0013】
即ち、セラミック焼結体の結晶相を構成するMgOやMgAlは、フッ素系ガスと反応すると主にMgFを生成し、また、塩素系ガスと反応すると主にMgClを生成するが、これらのハロゲン化物の融点(MgF:1260℃,MgCl:714℃)は、従来の石英ガラスあるいはアルミナ焼結体や窒化アルミニウム焼結体との反応により生成されるハロゲン化物の融点(SiF:−90℃,SiCl:−70℃,AlF:1040℃,AlCl:178℃)より高いために、高温でプラズマに曝されたとしても安定した耐熱性と耐食性を兼ね備えており、ハロゲン系腐食性ガス下でのプラズマに対する耐食性を高めることができる。
【0014】
ここで、MgAlとは、MgOとAlの理論定比が、重量比で28.6:71.4(モル比で1:1)で結合した化合物のことである。そして、MgOとAlの組成比率を種々変化させると、理論定比では実質的にMgAl結晶のみが存在するが、理論定比よりMgOを多くするとMgOとMgAlの二相結晶構造となり、一方、理論定比よりAlを多くするとAlとMgAlの二相結晶構造となる。
【0015】
そして、本件出願人は、MgO、MgAlとMgO、MgAl、MgAlとAlのいずれかの結晶相からなるセラミック焼結体の含有量を、酸化物換算でMgOを15重量%以上、Alを85重量%以下とすることにより、ハロゲン系腐食性ガス下でのプラズマに対して優れた耐食性を有する耐食性部材が得られることを見出したものである。
【0016】
即ち、酸化物換算でのMgOの含有量が15重量%未満となる(酸化物換算でのAlの含有量が85重量%より多くなる)と、セラミック焼結体中におけるAl結晶相の量が多くなり過ぎるために、ハロゲンプラズマによる腐食を受けやすくなるからである。
【0017】
また、耐食性部材を構成するセラミック焼結体の耐食性を高めるためには、気孔率を0.2%以下とするとともに、セラミック焼結体を構成するMgO、MgAl、Alの平均結晶粒子径を3μm以上、好ましくは気孔率を0.1%以下、MgO、MgAl、Alの平均結晶粒子径を15μm以上とすることが良い。
【0018】
これは、セラミック焼結体に気孔が存在すると、気孔のエッジがプラズマにより浸食を受け易く、気孔率が0.2%を越えると、腐食の進行が加速されるからであり、MgO、MgAl、Alの平均結晶粒子径が3μm未満であるとプラズマにより腐食を受けやすい粒界相が多くなるとともに、気孔率を0.2%以下とすることができないためである。
【0019】
なお、本発明における結晶相の平均結晶粒子径とは、MgOあるいはMgAlを主体とするセラミック焼結体の場合、MgO結晶あるいはMgAl結晶の平均結晶粒子径のことであり、MgAlとMgOあるいはMgAlとAlを主体とするセラミック焼結体の場合、MgAl結晶とMgO結晶あるいはMgAl結晶とAl結晶をまとめて測定した時の平均結晶粒子径のことである。そして、平均結晶粒子径を測定する方法としては、耐食性部材の任意の表面又は断面を金属顕微鏡又は電子顕微鏡(SEM)で拡大し、画像解析装置により分析することで求めることができるが、簡易的に、耐食性部材の任意の表面又は断面を拡大したSEM写真を用意し、このSEM写真に10本の線を任意に引いたあと、線の全長を線上に位置する結晶数で除した値を平均結晶粒子径としても良い。
【0020】
また、セラミック焼結体の気孔率についてはアルキメデス法で、結晶相についてはX線回折で、含有量についてはICP又は蛍光X線によりそれぞれ求めることができる。
【0021】
さらに、耐食性部材を構成するセラミック焼結体には、SiO、CaO、NaO、Fe等が不純物成分として含まれることがあるが、これらの不純物成分とハロゲン系腐食性ガスとの反応により生成されるハロゲン化物の融点はそれほど高くないことから、不純物量が主要成分をなすAlとMgOの合計100重量部に対し、1重量部より多く含まれると大きく腐食を受けることになる。
【0022】
その為、これら不純物量は主要成分をなすAlとMgOの合計100重量部に対し、1重量部以下とすることが望ましく、この不純物量を1重量部以下とするには、出発原料に高純度のAlとMgOを使用するとともに、製造工程中における不純物の混入を防止するようにすれば良い。
【0023】
以下、本発明に係る耐食性部材の製造方法を説明する。
【0024】
まず、純度が99%以上でかつ平均粒径が0.1〜5μmのAlを85重量%未満と、純度が99%以上でかつ平均粒径が0.1〜5μmのMgOを15重量%以上の割合で添加し、さらにバインダーと溶媒を加えて混合することにより泥漿を作製し、この泥漿を押出成形法や射出成形法、あるいはドクターブレード法など公知のセラミック成形手段により所定の形状に成形するか、あるいは上記泥漿をスプレードライヤで造粒して顆粒を作製したあと、型内に充填して金型プレス成形法やラバープレス成形法により所定の形状に成形する。
【0025】
しかるのち、これらの成形体を大気雰囲気下や真空雰囲気下にて1500〜1700℃の温度で1〜10時間程度焼成することにより、MgO、MgAlとMgO、MgAl、MgAlとAlのいずれかの結晶相からなる耐食性部材を得ることができる。
【0026】
(実施例1)
本発明の耐食性部材として、MgAlとMgOの結晶相からなるセラミック焼結体と、従来の耐食性部材として、石英ガラス、純度99.5%のアルミナ焼結体、及び純度99.9%のアルミナ焼結体をそれぞれ用意し、フッ素系及び塩素系の腐食性ガス下でプラズマに曝した時の耐食性について実験を行った。
【0027】
本実験では、本発明及び従来の耐食性部材を直径30mm×厚さ3mmに形成したあと、ラップ加工を施して表面を鏡面にしたものを試料とし、この試料をRIEプラズマ装置に設置してSFガス雰囲気下及びClガス雰囲気下でそれぞれ高周波を導入してプラズマを発生させ、これらのプラズマ中で3時間曝したあと、処理前後の重量の減少量から1分間当たりのエッチングレートを算出した。
【0028】
なお、本発明の耐食性部材には、Al70重量%、MgO30重量%に対し、溶媒とバインダーを加えて約10時間混合したあと、スプレードライヤで造粒して顆粒を作製し、この顆粒を金型内に充填してメカプレス法により1.0ton/cm程度の圧力で加圧することにより円柱状体を成形し、しかるのち、大気雰囲気中にて1700℃の温度で2時間焼成することにより製作したものを使用した。
【0029】
各試料の特性及びそれぞれの結果は表1に示す通りである。
【0030】
【表1】

Figure 0003559426
【0031】
この結果、本発明の耐食性部材は、SFガス及びClガスのいずれの腐食性ガスに対してもエッチングレートを20Å/min以下とすることができ、従来の耐食性部材と比較して優れた耐食性を有していた。
【0032】
(実施例2)
次に、耐食性部材として、AlとMgOの含有量をそれぞれ異ならせて製作したMgO、MgAlとMgO、MgAl、MgAlとAlのいずれかの結晶相からなるセラミック焼結体を製作し、フッ素系及び塩素系の腐食性ガス下でプラズマに曝した時の耐食性について実験を行った。
【0033】
本実験では、AlとMgOをそれぞれ表1に示す割合で添加し、さらに溶媒とバインダーを加えて約10時間混合したあと、スプレードライヤで造粒して顆粒を作製し、この顆粒を金型内に充填してメカプレス法により1.0ton/cm程度の圧力で加圧することにより円柱状体を成形し、しかるのち、大気雰囲気中にて1700℃の温度で2時間焼成することで製作したものを使用した。
【0034】
そして、これらのセラミック焼結体を直径30mm×厚さ3mmに切削したあと、ラップ加工を施して表面を鏡面に仕上げたものを試料とし、これらの試料をRIEプラズマ装置に設置してSFガス雰囲気下及びClガス雰囲気下でそれぞれ高周波を導入してプラズマを発生させ、これらのプラズマ中で3時間曝したあと、処理前後の重量の減少量から1分間当たりのエッチングレートを算出した。
【0035】
各試料の特性を表2に、それぞれの結果を表3に示す。
【0036】
【表2】
Figure 0003559426
【0037】
【表3】
Figure 0003559426
【0038】
この結果、MgOが15重量%未満(Alが85重量%より多い)では、セラミック焼結体中のAl結晶量が多いために、SFガス雰囲気下のエッチングレートが70Å/min、Clガス雰囲気下のエッチングレートが120Å/min程度と、実施例1で用いた純度99.9%のアルミナ焼結体と同程度の耐食性であった。
【0039】
これに対し、MgOを15重量%以上(Alを85重量%以下)したものでは、SFガス雰囲気下での腐食を30Å/min以下、Clガス雰囲気下での腐食を50Å/min以下とすることができ、優れた耐食性を有していた。特に、MgOを30重量%以上(Alを70重量%以下)としたものでは、SFガス及びClガス雰囲気下での腐食を20Å/min以下とすることができ、さらに、MgOのみからなるセラミック焼結体ではSFガス及びClガス雰囲気下での腐食を5Å/minとすることができた。
【0040】
(実施例3)
さらに、表2の試料No.3におけるセラミック焼結体を用い、焼成温度を制御して気孔率及び平均粒子径を異ならせた時の耐食性について実施例1と同様の条件にて実験を行った。
【0041】
セラミック焼結体の気孔率及び平均粒子径を表4に、その結果を表5に示す。
【0042】
【表4】
Figure 0003559426
【0043】
【表5】
Figure 0003559426
【0044】
この結果、試料A,B,は、いずれも気孔率が0.1%より大きく、また、MgAl及びMgOの平均結晶粒子径が15μm未満であるために、気孔のエッジや粒界相部分が浸食を受け、大きく腐食した。
【0045】
これに対し、試料〜Fは、気孔率が0.1%以下、MgAl結晶とMgO結晶の平均結晶粒子径が15μm以上であるため、SFガス雰囲気下での腐食が30Å/min以下、Clガス雰囲気下での腐食が50Å/min以下と優れた耐食性を有していた。
【0046】
また、本実験における結晶相の平均結晶粒子径と気孔率の関係は、表2の試料No.1,2,4〜8のセラミック焼結体においても同様の傾向が見られた。
【0047】
【発明の効果】
以上のように、本発明によれば、耐食性部材を、酸化物換算でMgOを15重量%以上、Alを85重量%以下の範囲とし、MgO、MgAlとMgO、MgAl、MgAlとAlのいずれかの結晶相からなり、上記結晶相の平均結晶粒子径が15μm以上でかつ気孔率が0.1%以下であるセラミック焼結体により形成したことから、フッ素系や塩素系等のハロゲン系腐食性ガスが存在する雰囲気下でプラズマに曝されたとしても優れた耐食性を有し、例えば、プラズマ装置に使用されるウエハ保持具やクランプリング等の治具や内壁材、あるいはフロンガス分解処理装置やエキシマレーザーに使用されるプラズマ発生用保護管等の部材として好適に使用することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
An object of the present invention is to provide a corrosion-resistant member having excellent corrosion resistance to plasma in an atmosphere in which a halogen-based corrosive gas is present. For example, the present invention is used for a plasma device for semiconductor production or a liquid crystal process. It can be suitably used as a jig such as a wafer holder and a clamp ring, an inner wall material, a fluorocarbon gas decomposition processing apparatus, a laser tube of an excimer laser, and the like.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a plasma process in a semiconductor device manufacturing process, a halogen-based corrosive gas such as a fluorine-based gas and a chlorine-based gas has been used for vapor-phase growth, etching, and cleaning due to its high reactivity.
[0003]
Since the members exposed to plasma under these halogen-based corrosive gases are required to have corrosion resistance, quartz glass, corrosion-resistant light metal materials such as stainless steel and aluminum, and sintered alumina or aluminum nitride are required. A sintered body and a ceramic sintered body coated with a ceramic film such as silicon carbide have been used (see Japanese Patent Publication No. 5-53872, Japanese Patent Application Laid-Open No. 3-217016, and Japanese Patent Application Laid-Open No. 8-91932).
[0004]
[Problems to be solved by the invention]
However, in the case of using quartz glass as a corrosion-resistant member, the corrosion resistance in plasma is insufficient, so that when exposed to halogen plasma, there is a problem that a contact portion with plasma is severely etched and consumed. Was.
[0005]
Further, even when a corrosion-resistant light metal material such as stainless steel or aluminum is used as the corrosion-resistant member, the corrosion resistance is insufficient. There is a problem that this may cause defective products.
[0006]
In addition, in the case of an alumina sintered body or aluminum nitride sintered body as a corrosion-resistant member, or the above-mentioned ceramic sintered body coated with a ceramic film, it is more resistant to halogen-based corrosive gases than quartz glass and corrosion-resistant light metal materials. Despite having high corrosion resistance, there is a problem that when it comes into contact with plasma at high temperature, corrosion gradually progresses and the halide evaporates or becomes fine powder from the surface of the ceramic sintered body and is consumed. The material was desired.
[0007]
[Means for Solving the Problems]
Accordingly, the applicant has repeatedly studied materials having excellent corrosion resistance even when exposed to plasma in an atmosphere containing a halogen-based corrosive gas. As a result, a ceramic sintered body containing a magnesium (Mg) compound was obtained. It has been found that even when a halide is produced by reacting with a halogen-based corrosive gas, the melting point is high and the material is stable, so that it has excellent corrosion resistance.
[0008]
Further, they have found that when a large number of pores are present in the ceramic sintered body or when there are many grain boundary phases, the ceramics are susceptible to corrosion and the corrosion resistance is greatly reduced.
[0009]
That is, according to the present invention, a corrosion-resistant member exposed to plasma in an atmosphere containing a halogen-based corrosive gas such as a fluorine-based gas and a chlorine-based gas is prepared by converting 15% by weight or more of MgO and 85% of Al 2 O 3 in terms of oxide. a weight percent range, MgO, MgAl 2 O 4 and MgO, consists MgAl 2 O 4, MgAl 2 O 4 and any crystalline phase of Al 2 O 3, the average crystal grain size of the crystalline phase 15 [mu] m It is characterized by being made of a ceramic sintered body having a porosity of 0.1 % or less.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The corrosion-resistant member of the present invention is a member exposed to plasma under a halogen-based corrosive gas. Examples of the halogen-based corrosive gas include fluorine-based gases such as SF 6 , CF 4 , CHF 3 , CIF 3 , and HF. There are chlorine-based gases such as Cl 2 , BCl 3 , HCl, and CCl 4 , and bromine-based gases such as Br 2 , HBr, and CBr 4 . When high-frequency waves or microwaves are introduced in an atmosphere in which these halogen-based corrosive gases are used, these gases are turned into plasma.
[0011]
In order to further enhance the etching effect, an inert gas such as Ar may be introduced together with the halogen-based corrosive gas to generate plasma.
[0012]
The present invention provides a corrosion-resistant member exposed to plasma under these halogen-based corrosive gases by using any one of MgO, MgAl 2 O 4 and MgO, MgAl 2 O 4 , and any one of MgAl 2 O 4 and Al 2 O 3. It is formed by a ceramic sintered body composed of phases.
[0013]
That is, MgO or MgAl 2 O 4 constituting the crystal phase of the ceramic sintered body mainly generates MgF 2 when reacted with a fluorine-based gas, and mainly generates MgCl 2 when reacted with a chlorine-based gas. The melting points of these halides (MgF 2 : 1260 ° C., MgCl 2 : 714 ° C.) are the melting points (SiF 2) of the halides formed by the reaction with conventional quartz glass or sintered alumina or sintered aluminum nitride. 4: -90 ℃, SiCl 4: -70 ℃, AlF 3: 1040 ℃, AlCl 3: for higher than 178 ° C.), and also has a stable heat resistance and corrosion resistance as was exposed to the plasma at a high temperature, Corrosion resistance to plasma under a halogen-based corrosive gas can be increased.
[0014]
Here, MgAl 2 O 4 is a compound in which the theoretical stoichiometric ratio of MgO and Al 2 O 3 is 28.6: 71.4 by weight (1: 1 by mole). When the composition ratio of MgO and Al 2 O 3 is variously changed, only MgAl 2 O 4 crystals are substantially present at the theoretical stoichiometric ratio. However, when MgO is increased more than the theoretical stoichiometric ratio, MgO and MgAl 2 O 4 are mixed. A two-phase crystal structure is formed. On the other hand, when Al 2 O 3 is increased more than the theoretical stoichiometric ratio, a two-phase crystal structure of Al 2 O 3 and MgAl 2 O 4 is formed.
[0015]
The applicant of the present invention has calculated the content of a ceramic sintered body composed of any one of MgO, MgAl 2 O 4 and MgO, MgAl 2 O 4 , and any crystal phase of MgAl 2 O 4 and Al 2 O 3 in terms of oxide. It has been found that by setting MgO to 15% by weight or more and Al 2 O 3 to 85% by weight or less , a corrosion-resistant member having excellent corrosion resistance to plasma under a halogen-based corrosive gas can be obtained. is there.
[0016]
That is, when the content of MgO in terms of oxide is less than 15% by weight (the content of Al 2 O 3 in terms of oxide is more than 85% by weight), Al 2 O in the ceramic sintered body is reduced. This is because the amount of the three crystal phases becomes too large, so that it becomes susceptible to corrosion by halogen plasma.
[0017]
Further, in order to increase the corrosion resistance of the ceramic sintered body constituting the corrosion resistant member, the porosity is set to 0.2% or less, and MgO, MgAl 2 O 4 , Al 2 O 3 constituting the ceramic sintered body are reduced. It is preferable that the average crystal particle diameter is 3 μm or more, preferably the porosity is 0.1% or less, and the average crystal particle diameter of MgO, MgAl 2 O 4 and Al 2 O 3 is 15 μm or more.
[0018]
This is because when the pore is present in the ceramic sintered body, easy pore edges eroded by plasma, when the porosity exceeds 0.2%, is because the progress of corrosion is accelerated, MgO, MgAl 2 If the average crystal particle diameter of O 4 and Al 2 O 3 is less than 3 μm, the number of grain boundary phases which are susceptible to corrosion by plasma increases, and the porosity cannot be reduced to 0.2% or less.
[0019]
Note that the average crystal grain size of the crystal phase in the present invention, when the ceramic sintered body consisting mainly of MgO or MgAl 2 O 4, is that the average crystal grain size of the MgO crystal or MgAl 2 O 4 crystal, In the case of a ceramic sintered body mainly composed of MgAl 2 O 4 and MgO or MgAl 2 O 4 and Al 2 O 3 , MgAl 2 O 4 crystal and MgO crystal or MgAl 2 O 4 crystal and Al 2 O 3 crystal are collected together. It is the average crystal particle diameter measured. As a method of measuring the average crystal particle diameter, it can be obtained by enlarging an arbitrary surface or cross section of the corrosion-resistant member with a metal microscope or an electron microscope (SEM) and analyzing it with an image analyzer. An SEM photograph in which an arbitrary surface or cross section of the corrosion-resistant member is enlarged is prepared, and ten lines are arbitrarily drawn on the SEM photograph, and the value obtained by dividing the total length of the line by the number of crystals located on the line is averaged. The crystal particle diameter may be used.
[0020]
The porosity of the ceramic sintered body can be determined by Archimedes' method, the crystal phase can be determined by X-ray diffraction, and the content can be determined by ICP or fluorescent X-ray.
[0021]
Further, the ceramic sintered body constituting the corrosion resistant member may contain SiO 2 , CaO, Na 2 O, Fe 2 O 3, and the like as impurity components. Since the melting point of the halide produced by the above reaction is not so high, if the amount of impurities is more than 1 part by weight with respect to the total of 100 parts by weight of Al 2 O 3 and MgO, which are the main components, it is greatly corroded. Will be.
[0022]
Therefore, the amount of these impurities is desirably 1 part by weight or less with respect to the total of 100 parts by weight of Al 2 O 3 and MgO which are the main components. High-purity Al 2 O 3 and MgO may be used to prevent impurities from being mixed during the manufacturing process.
[0023]
Hereinafter, a method for manufacturing a corrosion-resistant member according to the present invention will be described.
[0024]
First, less than 85% by weight of Al 2 O 3 having a purity of 99% or more and an average particle size of 0.1 to 5 μm, and MgO having a purity of 99% or more and an average particle size of 0.1 to 5 μm are added. Weight percent or more, and further, a binder and a solvent are added and mixed to form a slurry, and the slurry is formed into a predetermined shape by a known ceramic molding means such as an extrusion molding method, an injection molding method, or a doctor blade method. Alternatively, the slurry is granulated by a spray dryer to form granules, and then filled into a mold and formed into a predetermined shape by a die press molding method or a rubber press molding method.
[0025]
Thereafter, these compacts are fired at a temperature of 1500 to 1700 ° C. for about 1 to 10 hours under an air atmosphere or a vacuum atmosphere, so that MgO, MgAl 2 O 4 and MgO, MgAl 2 O 4 , MgAl 2 It is possible to obtain a corrosion-resistant member made of any one of the crystal phases of O 4 and Al 2 O 3 .
[0026]
(Example 1)
A ceramic sintered body composed of a crystal phase of MgAl 2 O 4 and MgO as the corrosion resistant member of the present invention, and quartz glass, a 99.5% pure alumina sintered body, and a purity of 99.9% as the conventional corrosion resistant member. Were prepared, and an experiment was conducted on corrosion resistance when exposed to plasma under a fluorine-based and chlorine-based corrosive gas.
[0027]
In this experiment, after the present invention and the conventional anti-corrosion member was formed with a diameter 30 mm × thickness 3 mm, a material obtained by the surface mirror is subjected to lapping and sample, SF 6 by installing this sample RIE plasma device Plasma was generated by introducing high frequency waves in a gas atmosphere and a Cl 2 gas atmosphere, respectively, and after exposure for 3 hours in these plasmas, the etching rate per minute was calculated from the weight loss before and after the treatment.
[0028]
The corrosion-resistant member of the present invention was prepared by adding a solvent and a binder to 70% by weight of Al 2 O 3 and 30% by weight of MgO and mixing them for about 10 hours, and then granulating with a spray dryer to produce granules. The granules are filled in a mold and pressurized at a pressure of about 1.0 ton / cm 2 by a mechanical press method to form a columnar body, and then fired at 1700 ° C. for 2 hours in an air atmosphere. What was manufactured by using it was used.
[0029]
The properties of each sample and the results are as shown in Table 1.
[0030]
[Table 1]
Figure 0003559426
[0031]
As a result, the corrosion-resistant member of the present invention can have an etching rate of 20 ° / min or less for both corrosive gas of SF 6 gas and Cl 2 gas, and is superior to the conventional corrosion-resistant member. It had corrosion resistance.
[0032]
(Example 2)
Next, as a corrosion-resistant member, any one of MgO, MgAl 2 O 4 and MgO, MgAl 2 O 4 , and MgAl 2 O 4 and Al 2 O 3 manufactured with different contents of Al 2 O 3 and MgO respectively was used. A ceramic sintered body composed of a crystalline phase was fabricated, and an experiment was performed on the corrosion resistance when exposed to plasma under a fluorine-based or chlorine-based corrosive gas.
[0033]
In this experiment, Al 2 O 3 and MgO were added in the proportions shown in Table 1, respectively, and a solvent and a binder were added and mixed for about 10 hours, and then granulated by a spray dryer to produce granules. A cylindrical body is formed by filling in a mold and pressing at a pressure of about 1.0 ton / cm 2 by a mechanical press method, and then firing at 1700 ° C. for 2 hours in an air atmosphere. The manufactured one was used.
[0034]
Then, after cutting these ceramic sintered bodies to a diameter of 30 mm × thickness of 3 mm, lapping was performed to obtain a mirror-finished surface, and these samples were placed in an RIE plasma apparatus to obtain SF 6 gas. Plasma was generated by introducing high frequency waves in an atmosphere and in a Cl 2 gas atmosphere, and after exposure for 3 hours in these plasmas, the etching rate per minute was calculated from the weight loss before and after the treatment.
[0035]
Table 2 shows the characteristics of each sample, and Table 3 shows the results.
[0036]
[Table 2]
Figure 0003559426
[0037]
[Table 3]
Figure 0003559426
[0038]
As a result, when the content of MgO is less than 15% by weight (the content of Al 2 O 3 is more than 85% by weight), since the amount of Al 2 O 3 crystals in the ceramic sintered body is large, the etching rate in an atmosphere of SF 6 gas is 70 °. / Min, the etching rate in a Cl 2 gas atmosphere was about 120 ° / min, and the corrosion resistance was about the same as that of the 99.9% pure alumina sintered body used in Example 1.
[0039]
On the other hand, in the case of MgO of 15% by weight or more (Al 2 O 3 of 85% by weight or less), corrosion in SF 6 gas atmosphere is 30 ° / min or less, and corrosion in Cl 2 gas atmosphere is 50 ° / min. min or less, and had excellent corrosion resistance. In particular, when the content of MgO is 30% by weight or more (the content of Al 2 O 3 is 70% by weight or less), corrosion in an atmosphere of SF 6 gas and Cl 2 gas can be reduced to 20 ° / min or less. In the case of the ceramic sintered body composed of only the material, corrosion in an atmosphere of SF 6 gas and Cl 2 gas could be reduced to 5 ° / min.
[0040]
(Example 3)
Further, the sample Nos. An experiment was performed on the corrosion resistance when the porosity and the average particle diameter were varied by controlling the firing temperature using the ceramic sintered body of Example 3 under the same conditions as in Example 1.
[0041]
Table 4 shows the porosity and average particle size of the ceramic sintered body, and Table 5 shows the results.
[0042]
[Table 4]
Figure 0003559426
[0043]
[Table 5]
Figure 0003559426
[0044]
As a result, the samples A, B, and C all had a porosity of more than 0.1 %, and the average crystal particle diameter of MgAl 2 O 4 and MgO was less than 15 μm. The boundary phase was eroded and corroded significantly.
[0045]
On the other hand, since Samples D to F have a porosity of 0.1 % or less and an average crystal particle diameter of MgAl 2 O 4 crystal and MgO crystal of 15 μm or more, corrosion in SF 6 gas atmosphere is 30 ° C. / Min or less, corrosion in a Cl 2 gas atmosphere was 50 ° / min or less, indicating excellent corrosion resistance.
[0046]
The relationship between the average crystal grain size of the crystal phase and the porosity in this experiment is shown in Table 2 for sample No. A similar tendency was observed in the ceramic sintered bodies of 1, 2, 4 to 8.
[0047]
【The invention's effect】
As described above, according to the present invention, the corrosion-resistant member is formed such that MgO is in a range of 15% by weight or more and Al 2 O 3 is 85% by weight or less in terms of oxide, and MgO, MgAl 2 O 4 and MgO, MgAl 2 A ceramic sintered body composed of any one of O 4 , MgAl 2 O 4 and Al 2 O 3 and having an average crystal particle diameter of 15 μm or more and a porosity of 0.1 % or less. Due to its formation, it has excellent corrosion resistance even when exposed to plasma in an atmosphere in which a halogen-based corrosive gas such as a fluorine-based or chlorine-based gas is present. It can be suitably used as a member such as a jig such as a ring or an inner wall material, or a protective tube for plasma generation used in a CFC decomposition apparatus or an excimer laser.

Claims (1)

ハロゲン系腐食性ガスを含む雰囲気下でプラズマに曝される部材が、酸化物換算でMgOを15重量%以上、Alを85重量%以下の範囲とし、MgO、MgAlとMgO、MgAl、MgAlとAlのいずれかの結晶相からなり、上記結晶相の平均結晶粒子径が15μm以上でかつ気孔率が0.1%以下であるセラミック焼結体からなる耐食性部材。Member to be exposed to a plasma in an atmosphere containing a halogen-based corrosive gas, MgO and 15 wt% or more in terms of oxide, the Al 2 O 3 in the range of 85 wt% or less, MgO, MgAl 2 O 4 and MgO , MgAl 2 O 4 , or a ceramic phase of any one of MgAl 2 O 4 and Al 2 O 3 having an average crystal particle diameter of 15 μm or more and a porosity of 0.1 % or less. Corrosion resistant member made of aggregate.
JP14268097A 1997-02-26 1997-05-30 Corrosion resistant materials Expired - Fee Related JP3559426B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP14268097A JP3559426B2 (en) 1997-05-30 1997-05-30 Corrosion resistant materials
US09/031,401 US6447937B1 (en) 1997-02-26 1998-02-26 Ceramic materials resistant to halogen plasma and components using the same
US10/198,675 US6916559B2 (en) 1997-02-26 2002-07-17 Ceramic material resistant to halogen plasma and member utilizing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14268097A JP3559426B2 (en) 1997-05-30 1997-05-30 Corrosion resistant materials

Publications (2)

Publication Number Publication Date
JPH10330150A JPH10330150A (en) 1998-12-15
JP3559426B2 true JP3559426B2 (en) 2004-09-02

Family

ID=15321030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14268097A Expired - Fee Related JP3559426B2 (en) 1997-02-26 1997-05-30 Corrosion resistant materials

Country Status (1)

Country Link
JP (1) JP3559426B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8541328B2 (en) 2010-10-25 2013-09-24 Ngk Insulators, Ltd. Ceramic material, member for semiconductor manufacturing equipment, sputtering target member and method for producing ceramic material
US8597776B2 (en) 2010-10-25 2013-12-03 Ngk Insulators, Ltd. Ceramic material, laminate, member for use in semiconductor manufacturing equipment, and sputtering target member
US9142439B2 (en) 2012-09-14 2015-09-22 Ngk Insulators, Ltd. Laminated structure, member for semiconductor manufacturing apparatus, and method for producing laminated structure
US9892950B2 (en) 2011-10-11 2018-02-13 Ngk Insulators, Ltd. Ceramic member, member for semiconductor manufacturing apparatus, and method for manufacturing ceramic member

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010280566A (en) * 1999-01-29 2010-12-16 Mitsubishi Materials Corp Magnesia-spinel refractory
US6492566B1 (en) * 1999-02-25 2002-12-10 Council Of Scientific And Industrial Research Process for the preparation of dihydroxydiphenylmethanes
JP4166386B2 (en) * 1999-09-30 2008-10-15 日本碍子株式会社 Corrosion resistant member and manufacturing method thereof
JP4733819B2 (en) * 2000-09-01 2011-07-27 太平洋セメント株式会社 Method of forming corrosion-resistant ceramic sprayed coating
JP4585129B2 (en) * 2001-02-15 2010-11-24 太平洋セメント株式会社 Electrostatic chuck
US7329467B2 (en) 2003-08-22 2008-02-12 Saint-Gobain Ceramics & Plastics, Inc. Ceramic article having corrosion-resistant layer, semiconductor processing apparatus incorporating same, and method for forming same
CN101018885B (en) 2004-08-24 2010-07-14 圣戈本陶瓷及塑料股份有限公司 Semiconductor processing components and semiconductor processing utilizing same
JP5307671B2 (en) * 2008-10-23 2013-10-02 日本碍子株式会社 Aluminum nitride-based composite material, manufacturing method thereof, and member for semiconductor manufacturing apparatus
JP5687350B2 (en) * 2011-09-14 2015-03-18 京セラ株式会社 Magnesium aluminate sintered body and member for semiconductor manufacturing equipment
JP5806158B2 (en) * 2012-03-30 2015-11-10 京セラ株式会社 Magnesium aluminate sintered body
JP5721658B2 (en) * 2012-03-30 2015-05-20 京セラ株式会社 Magnesium aluminate sintered body
CN103539433B (en) * 2013-09-30 2015-08-19 成都超纯应用材料有限责任公司 A kind of protecting materials for plasma spray header and its preparation method and application method
JP7213710B2 (en) * 2018-03-23 2023-01-27 日本碍子株式会社 Composite sintered body, semiconductor manufacturing device member, and manufacturing method of composite sintered body

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8541328B2 (en) 2010-10-25 2013-09-24 Ngk Insulators, Ltd. Ceramic material, member for semiconductor manufacturing equipment, sputtering target member and method for producing ceramic material
US8597776B2 (en) 2010-10-25 2013-12-03 Ngk Insulators, Ltd. Ceramic material, laminate, member for use in semiconductor manufacturing equipment, and sputtering target member
US9184081B2 (en) 2010-10-25 2015-11-10 Ngk Insulators, Ltd. Electrostatic chuck
US9202718B2 (en) 2010-10-25 2015-12-01 Ngk Insulators, Ltd. Electrostatic chuck
US9245775B2 (en) 2010-10-25 2016-01-26 Ngk Insulators, Ltd. Heating device
US9287144B2 (en) 2010-10-25 2016-03-15 Ngk Insulators, Ltd. Heating device
US9437463B2 (en) 2010-10-25 2016-09-06 Ngk Insulators, Ltd. Heating device
US9892950B2 (en) 2011-10-11 2018-02-13 Ngk Insulators, Ltd. Ceramic member, member for semiconductor manufacturing apparatus, and method for manufacturing ceramic member
US9142439B2 (en) 2012-09-14 2015-09-22 Ngk Insulators, Ltd. Laminated structure, member for semiconductor manufacturing apparatus, and method for producing laminated structure

Also Published As

Publication number Publication date
JPH10330150A (en) 1998-12-15

Similar Documents

Publication Publication Date Title
JP3559426B2 (en) Corrosion resistant materials
JP3619330B2 (en) Components for plasma process equipment
JP4548887B2 (en) Corrosion-resistant ceramic member and manufacturing method thereof
JP3261044B2 (en) Components for plasma processing equipment
EP1013623B1 (en) Corrosion-resistant composite oxide material
JP3046288B1 (en) Components for semiconductor / liquid crystal manufacturing equipment
JPH11214365A (en) Member for semiconductor element manufacturing device
JP3488373B2 (en) Corrosion resistant materials
JP3618048B2 (en) Components for semiconductor manufacturing equipment
JP3706488B2 (en) Corrosion-resistant ceramic material
JP2000239067A (en) Oxyhalide-based member
JP2006199562A (en) Corrosion-resistant member, and semiconductor or member for liquid crystal manufacturing apparatus using the same
JP3623054B2 (en) Components for plasma process equipment
JP3659435B2 (en) Corrosion resistant member, plasma processing apparatus, semiconductor manufacturing apparatus, liquid crystal manufacturing apparatus, and discharge vessel.
JP4368021B2 (en) Corrosion resistant ceramic material
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
JP4641609B2 (en) Corrosion resistant material
JP3500278B2 (en) Corrosion resistant materials for semiconductor manufacturing
KR20090101245A (en) Ceramic member and corrosion-resistant member
JP2001148370A (en) Anti-corrosion and anti-plasma ceramic member
JP2000239066A (en) Corrosionproof member and its production, and member for plasma treatment device using the same
JP2005022971A (en) Member for plasma processing device
JP3732966B2 (en) Corrosion resistant material
JP2000313655A (en) High-density magnesium oxide-based sintered compact and its production, and member for plasma treatment apparatus
JP2001019549A (en) Anticorrosive member and constructional member for semiconductor/liquid crystal production apparatus using the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees