JPH10330150A - Corrosion resistant member - Google Patents

Corrosion resistant member

Info

Publication number
JPH10330150A
JPH10330150A JP9142680A JP14268097A JPH10330150A JP H10330150 A JPH10330150 A JP H10330150A JP 9142680 A JP9142680 A JP 9142680A JP 14268097 A JP14268097 A JP 14268097A JP H10330150 A JPH10330150 A JP H10330150A
Authority
JP
Japan
Prior art keywords
mgo
corrosion
mgal
gas
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9142680A
Other languages
Japanese (ja)
Other versions
JP3559426B2 (en
Inventor
Tetsuji Hayazaki
哲治 早崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP14268097A priority Critical patent/JP3559426B2/en
Priority to US09/031,401 priority patent/US6447937B1/en
Publication of JPH10330150A publication Critical patent/JPH10330150A/en
Priority to US10/198,675 priority patent/US6916559B2/en
Application granted granted Critical
Publication of JP3559426B2 publication Critical patent/JP3559426B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a corrosion resistant member having an excellent corrosion resistance against plasma in an atmosphere containing a halogen-based corrosive gas such as a fluorine-based or chlorine-based gas. SOLUTION: This corrosion resistant member is composed of a ceramic sintered compact comprising >=15 wt.% MgO and <=85 wt.% Al2 O3 , in terms of oxides, having any crystal phase of MgO, MgAl2 O4 and MgO, MgAl2 O4 , and MgAl2 O4 and Al2 O3 , further having >=3 μm average crystalline particle diameter of the crystal phase and having <=0.2% porosity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ハロゲン系腐食性
ガスが存在する雰囲気下でのプラズマに対して優れた耐
食性を有する耐食性部材を提供せんとするものであり、
例えば、半導体製造用や液晶プロセス用のプラズマ装置
に使用されるウエハ保持具やクランプリング等の治具や
内壁材、あるいはフロンガス分解処理装置やエキシマレ
ーザーのレーザー管等として好適に使用できるものであ
る。
The present invention provides a corrosion-resistant member having excellent corrosion resistance to plasma in an atmosphere in which a halogen-based corrosive gas is present.
For example, it can be suitably used as a jig such as a wafer holder or a clamp ring or an inner wall material used for a plasma apparatus for semiconductor production or a liquid crystal process, or a CFC gas decomposition processing apparatus or a laser tube of an excimer laser. .

【0002】[0002]

【従来の技術】従来、半導体装置の製造工程におけるプ
ラズマプロセスとして、フッ素系や塩素系等のハロゲン
系腐食性ガスが、その反応性の高さから、気相成長、エ
ッチングやクリーニングに利用されている。
2. Description of the Related Art Conventionally, as a plasma process in a semiconductor device manufacturing process, a halogen-based corrosive gas such as a fluorine-based gas and a chlorine-based gas has been used for vapor phase growth, etching and cleaning due to its high reactivity. I have.

【0003】そして、これらのハロゲン系腐食性ガス下
でプラズマに曝される部材には耐食性が要求されること
から、石英ガラス、あるいはステンレスやアルミニウム
等の耐食軽金属材、さらにはアルミナ焼結体や窒化アル
ミニウム焼結体、及びこれらセラミック焼結体に炭化珪
素等のセラミック膜を被覆したものが使用されていた
(特公平5−53872号、特開平3−217016
号、特開平8−91932号公報参照。)
[0003] Since the members exposed to plasma under these halogen-based corrosive gases are required to have corrosion resistance, quartz glass, corrosion-resistant light metal materials such as stainless steel and aluminum, and alumina sintered bodies and Aluminum nitride sintered bodies and those obtained by coating these ceramic sintered bodies with a ceramic film such as silicon carbide have been used (Japanese Patent Publication No. 5-53872, JP-A-3-217016).
And JP-A-8-91932. )

【0004】[0004]

【発明が解決しようとする課題】しかしながら、耐蝕性
部材として石英ガラスを用いたものでは、プラズマ中で
の耐食性が不充分であることからハロゲンプラズマに曝
されると、プラズマとの接触部が激しくエッチングされ
て消耗するといった課題があった。
However, in the case where quartz glass is used as the corrosion-resistant member, the corrosion resistance in the plasma is insufficient, so that when exposed to halogen plasma, the contact portion with the plasma becomes severe. There was a problem that it was consumed by etching.

【0005】また、耐蝕性部材としてステンレスやアル
ミニウム等の耐食軽金属材を用いたものにおいても耐食
性が不充分で、特に耐食軽金属材が腐食を受けると半導
体装置の製造において、ウエハに悪影響を与える恐れが
高いために不良品発生の原因となるといった課題があっ
た。
Further, even when a corrosion-resistant light metal material such as stainless steel or aluminum is used as the corrosion-resistant member, the corrosion resistance is insufficient. Particularly, if the corrosion-resistant light metal material is corroded, it may adversely affect the wafer in the manufacture of semiconductor devices. However, there is a problem that the defective product causes a defective product.

【0006】また、耐蝕性部材としてアルミナ焼結体や
窒化アルミニウム焼結体、あるいは上記セラミック焼結
体にセラミック膜を被覆したものでは、石英ガラスや耐
食軽金属材と比較してハロゲン系腐食性ガスに対して高
い耐食性を有しているものの、高温でプラズマと接する
と腐食が徐々に進行してセラミック焼結体の表面からハ
ロゲン化物が蒸発あるいは微粉体となって消耗するとい
った課題があり、さらに耐食性の高い材質が望まれてい
た。
Further, in the case of an alumina sintered body or an aluminum nitride sintered body as a corrosion-resistant member, or a ceramic sintered body coated with a ceramic film, a halogen-based corrosive gas is used as compared with quartz glass or a corrosion-resistant light metal material. Despite having high corrosion resistance, there is a problem that corrosion gradually progresses when it comes into contact with plasma at high temperature, and the halide evaporates or becomes fine powder from the surface of the ceramic sintered body and is consumed. A material having high corrosion resistance has been desired.

【0007】[0007]

【課題を解決するための手段】そこで、本件出願人は、
ハロゲン系腐食性ガスを含む雰囲気下でプラズマに曝さ
れたとしても優れた耐食性を有する材質について検討を
重ねた結果、マグネシウム(Mg)の化合物を含むセラ
ミック焼結体がハロゲン系腐食性ガスと反応してハロゲ
ン化物を生成したとしても融点が高く安定であることか
ら、耐蝕性に優れることを見出した。
[Means for Solving the Problems] Accordingly, the present applicant has
After examining materials that have excellent corrosion resistance even when exposed to plasma in an atmosphere containing a halogen-based corrosive gas, a ceramic sintered body containing a magnesium (Mg) compound reacts with the halogen-based corrosive gas. It has been found that even if a halide is produced, the melting point is high and stable, so that it is excellent in corrosion resistance.

【0008】また、セラミック焼結体に多数の気孔が存
在したり、粒界相が多いと腐食を受けやすく、耐食性が
大きく低下することを見出した。
It has also been found that when a ceramic sintered body has a large number of pores or has a large number of grain boundary phases, it is susceptible to corrosion and the corrosion resistance is greatly reduced.

【0009】即ち、本発明は、フッ素系や塩素系等のハ
ロゲン系腐食性ガスが存在する雰囲気下でプラズマに曝
される耐蝕性部材を、酸化物換算でMgOを15重量%
以上、Al2 3 を85重量%以下の範囲で含有し、M
gO、MgAl2 4 とMgO、MgAl2 4 、Mg
Al2 4 とAl2 3 のいずれかの結晶相からなり、
上記結晶相の平均結晶粒子径が3μm以上でかつ気孔率
が0.2%以下であるセラミック焼結体により形成した
ことを特徴とする。
That is, according to the present invention, a corrosion-resistant member exposed to plasma in an atmosphere in which a halogen-based corrosive gas such as a fluorine-based or chlorine-based gas is present is prepared by adding 15% by weight of MgO in terms of oxide.
As described above, Al 2 O 3 is contained in a range of 85% by weight or less, and M
gO, MgAl 2 O 4 and MgO, MgAl 2 O 4 , Mg
Consisting of any of the crystal phases of Al 2 O 4 and Al 2 O 3 ,
It is characterized by being formed of a ceramic sintered body having an average crystal grain diameter of the crystal phase of 3 μm or more and a porosity of 0.2% or less.

【0010】[0010]

【発明の実施の形態】本発明の耐食性部材は、ハロゲン
系腐食性ガス下でプラズマに曝される部材であり、ハロ
ゲン系腐食性ガスとしては、SF6 、CF4 、CH
3 、CIF3 、HF等のフッ素系ガス、Cl2 、BC
3 、HCl、CCl4 等の塩素系ガス、あるいはBr
2 、HBr、CBr4 等の臭素系ガスなどがある。そし
て、これらのハロゲン系腐食性ガスが使用される雰囲気
下で高周波やマイクロ波が導入されるとこれらのガスが
プラズマ化されることになる。
BEST MODE FOR CARRYING OUT THE INVENTION The corrosion-resistant member of the present invention is a member that is exposed to plasma under a halogen-based corrosive gas, and includes SF 6 , CF 4 , CH
Fluorine gas such as F 3 , CIF 3 , HF, Cl 2 , BC
chlorine gas such as l 3 , HCl, CCl 4 or Br
2, HBr, and the like bromine-based gas such as CBr 4. When high-frequency waves or microwaves are introduced in an atmosphere in which these halogen-based corrosive gases are used, these gases are turned into plasma.

【0011】また、エッチング効果をより高めるため
に、ハロゲン系腐食性ガスとともに、Arなどの不活性
ガスを導入してプラズマを発生させることもある。
In order to further enhance the etching effect, plasma may be generated by introducing an inert gas such as Ar together with a halogen-based corrosive gas.

【0012】本発明は、これらのハロゲン系腐食性ガス
下でプラズマに曝される耐食性部材を、MgO、MgA
2 4 とMgO、MgAl2 4 、MgAl2 4
Al2 3 のいずれかの結晶相からなるセラミック焼結
体により形成したものである。
According to the present invention, a corrosion-resistant member exposed to plasma under these halogen-based corrosive gases is made of MgO, MgA.
It is formed of a ceramic sintered body composed of any one of crystalline phases of l 2 O 4 and MgO, MgAl 2 O 4 , and MgAl 2 O 4 and Al 2 O 3 .

【0013】即ち、セラミック焼結体の結晶相を構成す
るMgOやMgAl2 4 は、フッ素系ガスと反応する
と主にMgF2 を生成し、また、塩素系ガスと反応する
と主にMgCl2 を生成するが、これらのハロゲン化物
の融点(MgF2 :1260℃,MgCl2 :714
℃)は、従来の石英ガラスあるいはアルミナ焼結体や窒
化アルミニウム焼結体との反応により生成されるハロゲ
ン化物の融点(SiF4:−90℃,SiCl4 :−7
0℃,AlF3 :1040℃,AlCl3 :178℃)
より高いために、高温でプラズマに曝されたとしても安
定した耐熱性と耐食性を兼ね備えており、ハロゲン系腐
食性ガス下でのプラズマに対する耐食性を高めることが
できる。
That is, MgO and MgAl 2 O 4 constituting the crystal phase of the ceramic sintered body mainly produce MgF 2 when reacting with a fluorine-based gas, and mainly produce MgCl 2 when reacting with a chlorine-based gas. However, the melting points of these halides (MgF 2 : 1260 ° C, MgCl 2 : 714
° C.) is the melting point of the halide formed by the reaction of a conventional quartz glass or alumina sintered body or an aluminum nitride sintered body (SiF 4: -90 ℃, SiCl 4: -7
0 ° C., AlF 3 : 1040 ° C., AlCl 3 178 ° C.)
Since it is higher, it has both stable heat resistance and corrosion resistance even when exposed to plasma at a high temperature, and can enhance corrosion resistance to plasma under a halogen-based corrosive gas.

【0014】ここで、MgAl2 4 とは、MgOとA
2 3 の理論定比が、重量比で28.6:71.4
(モル比で1:1)で結合した化合物のことである。そ
して、MgOとAl2 3 の組成比率を種々変化させる
と、理論定比では実質的にMgAl2 4 結晶のみが存
在するが、理論定比よりMgOを多くするとMgOとM
gAl2 4 の二相結晶構造となり、一方、理論定比よ
りAl2 3 を多くするとAl2 3 とMgAl2 4
の二相結晶構造となる。
Here, MgAl 2 O 4 means MgO and A
The theoretical constant ratio of l 2 O 3 is 28.6: 71.4 by weight.
(1: 1 molar ratio). When the composition ratio of MgO and Al 2 O 3 is changed variously, substantially only MgAl 2 O 4 crystals are present at the theoretical stoichiometric ratio.
gAl 2 O 4 has a two-phase crystal structure. On the other hand, when Al 2 O 3 is more than the theoretical stoichiometric ratio, Al 2 O 3 and MgAl 2 O 4
Has a two-phase crystal structure.

【0015】そして、本件出願人は、MgO、MgAl
2 4 とMgO、MgAl2 4 、MgAl2 4 とA
2 3 のいずれかの結晶相からなるセラミック焼結体
の含有量を、酸化物換算でMgOを15重量%以上、A
2 3 を85重量%未満とすることにより、ハロゲン
系腐食性ガス下でのプラズマに対して優れた耐食性を有
する耐食性部材が得られることを見出したものである。
[0015] The applicant of the present invention has been described as MgO, MgAl
2 O 4 and MgO, MgAl 2 O 4 , MgAl 2 O 4 and A
The content of the ceramic sintered body made of any crystalline phase of l 2 O 3, MgO and 15 wt% or more in terms of oxide, A
It has been found that by setting l 2 O 3 to less than 85% by weight, a corrosion-resistant member having excellent corrosion resistance to plasma under a halogen-based corrosive gas can be obtained.

【0016】即ち、酸化物換算でのMgOの含有量が1
5重量%未満となる(酸化物換算でのAl2 3 の含有
量が85重量%より多くなる)と、セラミック焼結体中
におけるAl2 3 結晶相の量が多くなり過ぎるため
に、ハロゲンプラズマによる腐食を受けやすくなるから
である。
That is, the content of MgO in terms of oxide is 1
When the content is less than 5% by weight (the content of Al 2 O 3 in terms of oxide is more than 85% by weight), the amount of the Al 2 O 3 crystal phase in the ceramic sintered body becomes too large. This is because it becomes susceptible to corrosion by halogen plasma.

【0017】また、耐食性部材を構成するセラミック焼
結体の耐食性を高めるためには、気孔率を0.2%以下
とするとともに、セラミック焼結体を構成するMgO、
MgAl2 4 、Al2 3 の平均結晶粒子径を3μm
以上、好ましくは気孔率を0.1%以下、MgO、Mg
Al2 4 、Al2 3 の平均結晶粒子径を15μm以
上とすることが良い。
Further, in order to improve the corrosion resistance of the ceramic sintered body constituting the corrosion resistant member, the porosity is set to 0.2% or less, and MgO, which constitutes the ceramic sintered body,
The average crystal grain size of MgAl 2 O 4 and Al 2 O 3 is 3 μm
Above, preferably, the porosity is 0.1% or less, MgO, Mg
The average crystal particle diameter of Al 2 O 4 and Al 2 O 3 is preferably set to 15 μm or more.

【0018】これは、セラミック焼結体に気孔が存在す
ると、気孔のエッジがプラズマにより浸食を受け易く、
気孔率が0.2%を越えると、腐食の進行が加速される
からであり、MgO、MgAl2 4 、Al2 3 の平
均結晶粒子径が3μm未満であるとプラズマにより腐食
を受けやすい粒界相が多くなるとともに、気孔率を0.
2%以下とすることができないためである。
This is because, when pores exist in the ceramic sintered body, the edges of the pores are easily eroded by plasma,
If the porosity exceeds 0.2%, the progress of corrosion is accelerated. If the average crystal particle diameter of MgO, MgAl 2 O 4 , and Al 2 O 3 is less than 3 μm, corrosion is likely to occur due to plasma. As the grain boundary phase increases, the porosity is reduced to 0.
This is because it cannot be less than 2%.

【0019】なお、本発明における結晶相の平均結晶粒
子径とは、MgOあるいはMgAl2 4 を主体とする
セラミック焼結体の場合、MgO結晶あるいはMgAl
2 4 結晶の平均結晶粒子径のことであり、MgAl2
4 とMgOあるいはMgAl2 4 とAl2 3 を主
体とするセラミック焼結体の場合、MgAl2 4 結晶
とMgO結晶あるいはMgAl2 4 結晶とAl2 3
結晶をまとめて測定した時の平均結晶粒子径のことであ
る。そして、平均結晶粒子径を測定する方法としては、
耐食性部材の任意の表面又は断面を金属顕微鏡又は電子
顕微鏡(SEM)で拡大し、画像解析装置により分析す
ることで求めることができるが、簡易的に、耐食性部材
の任意の表面又は断面を拡大したSEM写真を用意し、
このSEM写真に10本の線を任意に引いたあと、線の
全長を線上に位置する結晶数で除した値を平均結晶粒子
径としても良い。
In the present invention, the average crystal grain size of the crystal phase means that in the case of a ceramic sintered body mainly composed of MgO or MgAl 2 O 4 , MgO crystal or MgAl
And that the average crystal grain size of 2 O 4 crystal, MgAl 2
In the case of a ceramic sintered body mainly composed of O 4 and MgO or MgAl 2 O 4 and Al 2 O 3 , MgAl 2 O 4 crystal and MgO crystal or MgAl 2 O 4 crystal and Al 2 O 3
It is the average crystal particle diameter when the crystals are measured together. And as a method of measuring the average crystal particle diameter,
Any surface or cross section of the corrosion resistant member can be obtained by enlarging it with a metallurgical microscope or an electron microscope (SEM) and analyzing it with an image analysis device. Prepare an SEM photograph,
After arbitrarily drawing ten lines on this SEM photograph, the value obtained by dividing the total length of the line by the number of crystals located on the line may be used as the average crystal particle diameter.

【0020】また、セラミック焼結体の気孔率について
はアルキメデス法で、結晶相についてはX線回折で、含
有量についてはICP又は蛍光X線によりそれぞれ求め
ることができる。
The porosity of the ceramic sintered body can be determined by the Archimedes method, the crystal phase can be determined by X-ray diffraction, and the content can be determined by ICP or X-ray fluorescence.

【0021】さらに、耐食性部材を構成するセラミック
焼結体には、SiO2 、CaO、Na2 O、Fe2 3
等が不純物成分として含まれることがあるが、これらの
不純物成分とハロゲン系腐食性ガスとの反応により生成
されるハロゲン化物の融点はそれほど高くないことか
ら、不純物量が主要成分をなすAl2 3 とMgOの合
計100重量部に対し、1重量部より多く含まれると大
きく腐食を受けることになる。
Further, the ceramic sintered body constituting the corrosion resistant member includes SiO 2 , CaO, Na 2 O, Fe 2 O 3
And the like may be contained as impurity components. However, since the melting point of the halide generated by the reaction of these impurity components with the halogen-based corrosive gas is not so high, the amount of impurities such as Al 2 O If the content is more than 1 part by weight with respect to 100 parts by weight of the total of 3 and MgO, corrosion will be greatly caused.

【0022】その為、これら不純物量は主要成分をなす
Al2 3 とMgOの合計100重量部に対し、1重量
部以下とすることが望ましく、この不純物量を1重量部
以下とするには、出発原料に高純度のAl2 3 とMg
Oを使用するとともに、製造工程中における不純物の混
入を防止するようにすれば良い。
Therefore, the amount of these impurities is desirably 1 part by weight or less with respect to the total of 100 parts by weight of Al 2 O 3 and MgO constituting the main components. , High purity Al 2 O 3 and Mg as starting materials
O may be used, and contamination of impurities during the manufacturing process may be prevented.

【0023】以下、本発明に係る耐食性部材の製造方法
を説明する。
Hereinafter, a method for manufacturing a corrosion-resistant member according to the present invention will be described.

【0024】まず、純度が99%以上でかつ平均粒径が
0.1〜5μmのAl2 3 を85重量%未満と、純度
が99%以上でかつ平均粒径が0.1〜5μmのMgO
を15重量%以上の割合で添加し、さらにバインダーと
溶媒を加えて混合することにより泥漿を作製し、この泥
漿を押出成形法や射出成形法、あるいはドクターブレー
ド法など公知のセラミック成形手段により所定の形状に
成形するか、あるいは上記泥漿をスプレードライヤで造
粒して顆粒を作製したあと、型内に充填して金型プレス
成形法やラバープレス成形法により所定の形状に成形す
る。
First, when less than 85% by weight of Al 2 O 3 having a purity of 99% or more and an average particle diameter of 0.1 to 5 μm, the purity of the powder is 99% or more and an average particle diameter of 0.1 to 5 μm. MgO
Is added at a ratio of 15% by weight or more, and a binder and a solvent are added and mixed to produce a slurry. The slurry is subjected to a predetermined ceramic molding method such as an extrusion molding method, an injection molding method, or a doctor blade method. Alternatively, the slurry is granulated by a spray dryer to produce granules, and then filled into a mold and formed into a predetermined shape by a die press molding method or a rubber press molding method.

【0025】しかるのち、これらの成形体を大気雰囲気
下や真空雰囲気下にて1500〜1700℃の温度で1
〜10時間程度焼成することにより、MgO、MgAl
2 4 とMgO、MgAl2 4 、MgAl2 4 とA
2 3 のいずれかの結晶相からなる耐食性部材を得る
ことができる。
Thereafter, these compacts are heated at a temperature of 1500 to 1700 ° C. in an air atmosphere or a vacuum atmosphere.
By firing for about 10 hours, MgO, MgAl
2 O 4 and MgO, MgAl 2 O 4 , MgAl 2 O 4 and A
A corrosion-resistant member made of any one of the crystal phases of l 2 O 3 can be obtained.

【0026】(実施例1)本発明の耐食性部材として、
MgAl2 4 とMgOの結晶相からなるセラミック焼
結体と、従来の耐食性部材として、石英ガラス、純度9
9.5%のアルミナ焼結体、及び純度99.9%のアル
ミナ焼結体をそれぞれ用意し、フッ素系及び塩素系の腐
食性ガス下でプラズマに曝した時の耐食性について実験
を行った。
(Example 1) As a corrosion-resistant member of the present invention,
A ceramic sintered body composed of a crystal phase of MgAl 2 O 4 and MgO, and quartz glass having a purity of 9 as a conventional corrosion-resistant member.
A 9.5% alumina sintered body and a 99.9% pure alumina sintered body were prepared, respectively, and an experiment was conducted on corrosion resistance when exposed to plasma under a fluorine-based or chlorine-based corrosive gas.

【0027】本実験では、本発明及び従来の耐食性部材
を直径30mm×厚さ3mmに形成したあと、ラップ加
工を施して表面を鏡面にしたものを試料とし、この試料
をRIEプラズマ装置に設置してSF6 ガス雰囲気下及
びCl2 ガス雰囲気下でそれぞれ高周波を導入してプラ
ズマを発生させ、これらのプラズマ中で3時間曝したあ
と、処理前後の重量の減少量から1分間当たりのエッチ
ングレートを算出した。
In this experiment, the present invention and the conventional corrosion-resistant member were formed into a sample having a diameter of 30 mm × thickness of 3 mm, and then subjected to a lapping process to obtain a mirror-finished surface, and this sample was set in an RIE plasma apparatus. Plasma was generated by introducing high frequency waves in an SF 6 gas atmosphere and a Cl 2 gas atmosphere, and after exposing for 3 hours in these plasmas, the etching rate per minute was calculated from the weight loss before and after the treatment. Calculated.

【0028】なお、本発明の耐食性部材には、Al2
3 70重量%、MgO30重量%に対し、溶媒とバイン
ダーを加えて約10時間混合したあと、スプレードライ
ヤで造粒して顆粒を作製し、この顆粒を金型内に充填し
てメカプレス法により1.0ton/cm2 程度の圧力
で加圧することにより円柱状体を成形し、しかるのち、
大気雰囲気中にて1700℃の温度で2時間焼成するこ
とにより製作したものを使用した。
The corrosion-resistant member of the present invention includes Al 2 O
3 After adding a solvent and a binder to 70% by weight and 30% by weight of MgO, mixing them for about 10 hours, granulating them with a spray dryer to prepare granules, filling the granules in a mold, and pressing the granules by a mechanical press method. A cylindrical body is formed by applying a pressure of about 0.0 ton / cm 2, and thereafter,
What was manufactured by firing at a temperature of 1700 ° C. for 2 hours in an air atmosphere was used.

【0029】各試料の特性及びそれぞれの結果は表1に
示す通りである。
The properties of each sample and the results are as shown in Table 1.

【0030】[0030]

【表1】 [Table 1]

【0031】この結果、本発明の耐食性部材は、SF6
ガス及びCl2 ガスのいずれの腐食性ガスに対してもエ
ッチングレートを20Å/min以下とすることがで
き、従来の耐食性部材と比較して優れた耐食性を有して
いた。
As a result, the corrosion-resistant member of the present invention was SF 6
The etching rate could be set to 20 ° / min or less for both corrosive gases such as gas and Cl 2 gas, and had excellent corrosion resistance as compared with conventional corrosion-resistant members.

【0032】(実施例2)次に、耐食性部材として、A
2 3 とMgOの含有量をそれぞれ異ならせて製作し
たMgO、MgAl2 4 とMgO、MgAl2 4
MgAl2 4 とAl2 3 のいずれかの結晶相からな
るセラミック焼結体を製作し、フッ素系及び塩素系の腐
食性ガス下でプラズマに曝した時の耐食性について実験
を行った。
Example 2 Next, as a corrosion-resistant member, A
MgO, MgAl 2 O 4 and MgO, MgO, MgAl 2 O 4 , which were manufactured with different contents of l 2 O 3 and MgO,
A ceramic sintered body composed of any one of MgAl 2 O 4 and Al 2 O 3 crystal phases was manufactured, and an experiment was performed on corrosion resistance when exposed to plasma under a fluorine-based or chlorine-based corrosive gas.

【0033】本実験では、Al2 3 とMgOをそれぞ
れ表1に示す割合で添加し、さらに溶媒とバインダーを
加えて約10時間混合したあと、スプレードライヤで造
粒して顆粒を作製し、この顆粒を金型内に充填してメカ
プレス法により1.0ton/cm2 程度の圧力で加圧
することにより円柱状体を成形し、しかるのち、大気雰
囲気中にて1700℃の温度で2時間焼成することで製
作したものを使用した。
In this experiment, Al 2 O 3 and MgO were added in the proportions shown in Table 1, respectively, a solvent and a binder were added and mixed for about 10 hours, and then granulated by a spray dryer to produce granules. The granules are filled in a mold and pressed by a mechanical press method at a pressure of about 1.0 ton / cm 2 to form a columnar body, and then fired at 1700 ° C. for 2 hours in an air atmosphere. What was produced by doing it was used.

【0034】そして、これらのセラミック焼結体を直径
30mm×厚さ3mmに切削したあと、ラップ加工を施
して表面を鏡面に仕上げたものを試料とし、これらの試
料をRIEプラズマ装置に設置してSF6 ガス雰囲気下
及びCl2 ガス雰囲気下でそれぞれ高周波を導入してプ
ラズマを発生させ、これらのプラズマ中で3時間曝した
あと、処理前後の重量の減少量から1分間当たりのエッ
チングレートを算出した。
Then, after cutting these ceramic sintered bodies to a diameter of 30 mm × thickness of 3 mm, lapping was performed to obtain mirror-finished surfaces, and these samples were set in an RIE plasma apparatus. Plasma is generated by introducing high frequency waves in SF 6 gas atmosphere and Cl 2 gas atmosphere, and after exposing for 3 hours in these plasmas, the etching rate per minute is calculated from the weight loss before and after the treatment. did.

【0035】各試料の特性を表2に、それぞれの結果を
表3に示す。
Table 2 shows the characteristics of each sample, and Table 3 shows the results.

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】この結果、MgOが15重量%未満(Al
2 3 が85重量%より多い)では、セラミック焼結体
中のAl2 3 結晶量が多いために、SF6 ガス雰囲気
下のエッチングレートが70Å/min、Cl2 ガス雰
囲気下のエッチングレートが120Å/min程度と、
実施例1で用いた純度99.9%のアルミナ焼結体と同
程度の耐食性であった。
As a result, MgO was less than 15% by weight (Al
2 O 3 is more than 85% by weight), since the amount of Al 2 O 3 crystals in the ceramic sintered body is large, the etching rate in the SF 6 gas atmosphere is 70 ° / min, and the etching rate in the Cl 2 gas atmosphere is 70% / min. Is about 120Å / min,
The corrosion resistance was about the same as that of the alumina sintered body having a purity of 99.9% used in Example 1.

【0039】これに対し、MgOを15重量%以上(A
2 3 を85重量%以下)したものでは、SF6 ガス
雰囲気下での腐食を30Å/min以下、Cl2 ガス雰
囲気下での腐食を50Å/min以下とすることがで
き、優れた耐食性を有していた。特に、MgOを30重
量%以上(Al2 3 を70重量%以下)としたもので
は、SF6 ガス及びCl2 ガス雰囲気下での腐食を20
Å/min以下とすることができ、さらに、MgOのみ
からなるセラミック焼結体ではSF6 ガス及びCl2
ス雰囲気下での腐食を5Å/minとすることができ
た。
On the other hand, MgO of 15% by weight or more (A
(85% by weight or less of l 2 O 3 ), the corrosion under SF 6 gas atmosphere can be reduced to 30 ° / min or less, and the corrosion under Cl 2 gas atmosphere can be reduced to 50 ° / min or less. Had. In particular, when MgO is 30% by weight or more (Al 2 O 3 is 70% by weight or less), corrosion in an atmosphere of SF 6 gas and Cl 2 gas is 20% or less.
Å / min or less, and further, in a ceramic sintered body made of only MgO, corrosion in an atmosphere of SF 6 gas and Cl 2 gas could be reduced to 5 Å / min.

【0040】(実施例3)さらに、表2の試料No.3
におけるセラミック焼結体を用い、焼成温度を制御して
気孔率及び平均粒子径を異ならせた時の耐食性について
実施例1と同様の条件にて実験を行った。
(Example 3) Further, the sample No. 3
An experiment was performed on the corrosion resistance when the porosity and the average particle size were varied by controlling the firing temperature using the ceramic sintered body of Example 1 under the same conditions as in Example 1.

【0041】セラミック焼結体の気孔率及び平均粒子径
を表4に、その結果を表5に示す。
Table 4 shows the porosity and average particle size of the ceramic sintered body, and Table 5 shows the results.

【0042】[0042]

【表4】 [Table 4]

【0043】[0043]

【表5】 [Table 5]

【0044】この結果、試料A,Bは、いずれも気孔率
が0.2%より大きく、また、MgAl2 4 及びMg
Oの平均結晶粒子径が3μm未満であるために、気孔の
エッジや粒界相部分が浸食を受け、大きく腐食した。
[0044] As a result, the samples A, B are both porosity greater than 0.2%, also, MgAl 2 O 4 and Mg
Since the average crystal particle diameter of O was less than 3 μm, the edges of the pores and the grain boundary phase portion were eroded and corroded significantly.

【0045】これに対し、試料C〜Fは、気孔率が0.
2%以下、MgAl2 4 結晶とMgO結晶の平均結晶
粒子径が3μm以上であるため、SF6 ガス雰囲気下で
の腐食が30Å/min以下、Cl2 ガス雰囲気下での
腐食が50Å/min以下と優れた耐食性を有してい
た。
On the other hand, Samples C to F have a porosity of 0.
Since the average crystal particle diameter of MgAl 2 O 4 crystal and MgO crystal is 3 μm or more, corrosion in SF 6 gas atmosphere is 30 ° / min or less, and corrosion in Cl 2 gas atmosphere is 50 ° / min. It had the following excellent corrosion resistance.

【0046】また、本実験における結晶相の平均結晶粒
子径と気孔率の関係は、表2の試料No.1,2,4〜
8のセラミック焼結体においても同様の傾向が見られ
た。
The relationship between the average crystal grain size of the crystal phase and the porosity in this experiment is shown in Table 2 for sample no. 1,2,4 ~
A similar tendency was observed in the ceramic sintered body of No. 8.

【0047】[0047]

【発明の効果】以上のように、本発明によれば、耐食性
部材を、酸化物換算でMgOを15重量%以上、Al2
3 を85重量%以下の範囲で含有し、MgO、MgA
2 4 とMgO、MgAl2 4 、MgAl2 4
Al2 3 のいずれかの結晶相からなり、上記結晶相の
平均結晶粒子径が3μm以上でかつ気孔率が0.2%以
下であるセラミック焼結体により形成したことから、フ
ッ素系や塩素系等のハロゲン系腐食性ガスが存在する雰
囲気下でプラズマに曝されたとしても優れた耐食性を有
し、例えば、プラズマ装置に使用されるウエハ保持具や
クランプリング等の治具や内壁材、あるいはフロンガス
分解処理装置やエキシマレーザーに使用されるプラズマ
発生用保護管等の部材として好適に使用することができ
る。
As described above, according to the present invention, the corrosion-resistant member is made of MgO of not less than 15% by weight and Al 2
O 3 was contained in an amount of 85 wt% or less, MgO, MGA
It is composed of any one crystal phase of l 2 O 4 and MgO, MgAl 2 O 4 , MgAl 2 O 4 and Al 2 O 3 , and the average crystal particle diameter of the crystal phase is 3 μm or more and the porosity is 0.2% Since it is formed of the following ceramic sintered body, it has excellent corrosion resistance even when exposed to plasma under an atmosphere in which a halogen-based corrosive gas such as a fluorine-based or chlorine-based gas is present. It can be suitably used as a jig such as a wafer holder and a clamp ring to be used, an inner wall material, or a member such as a protective tube for plasma generation used in a CFC decomposition apparatus or an excimer laser.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ハロゲン系腐食性ガスを含む雰囲気下でプ
ラズマに曝される部材が、酸化物換算でMgOを15重
量%以上、Al2 3 を85重量%以下の範囲で含有
し、MgO、MgAl2 4 とMgO、MgAl
2 4 、MgAl2 4 とAl2 3 のいずれかの結晶
相からなり、上記結晶相の平均結晶粒子径が3μm以上
でかつ気孔率が0.2%以下であるセラミック焼結体か
らなる耐食性部材。
1. A member exposed to plasma in an atmosphere containing a halogen-based corrosive gas contains 15% by weight or more of MgO and 85% by weight or less of Al 2 O 3 in terms of oxide. , MgAl 2 O 4 and MgO, MgAl
A ceramic sintered body comprising a crystal phase of any one of 2 O 4 , MgAl 2 O 4 and Al 2 O 3 , wherein the crystal phase has an average crystal particle diameter of 3 μm or more and a porosity of 0.2% or less. Corrosion resistant member.
JP14268097A 1997-02-26 1997-05-30 Corrosion resistant materials Expired - Fee Related JP3559426B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP14268097A JP3559426B2 (en) 1997-05-30 1997-05-30 Corrosion resistant materials
US09/031,401 US6447937B1 (en) 1997-02-26 1998-02-26 Ceramic materials resistant to halogen plasma and components using the same
US10/198,675 US6916559B2 (en) 1997-02-26 2002-07-17 Ceramic material resistant to halogen plasma and member utilizing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14268097A JP3559426B2 (en) 1997-05-30 1997-05-30 Corrosion resistant materials

Publications (2)

Publication Number Publication Date
JPH10330150A true JPH10330150A (en) 1998-12-15
JP3559426B2 JP3559426B2 (en) 2004-09-02

Family

ID=15321030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14268097A Expired - Fee Related JP3559426B2 (en) 1997-02-26 1997-05-30 Corrosion resistant materials

Country Status (1)

Country Link
JP (1) JP3559426B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290067A (en) * 1999-02-25 2000-10-17 Council Scient Ind Res Improving method for producing magnesium aluminate spinel aggregate
JP2001097791A (en) * 1999-09-30 2001-04-10 Ngk Insulators Ltd Corrosionproof member and method for producing the same
JP2002068831A (en) * 2000-09-01 2002-03-08 Taiheiyo Cement Corp Corrosion-resistant ceramics and corrosion-resistant member using the same
JP2002246452A (en) * 2001-02-15 2002-08-30 Taiheiyo Cement Corp Electrostatic chuck
US7329467B2 (en) 2003-08-22 2008-02-12 Saint-Gobain Ceramics & Plastics, Inc. Ceramic article having corrosion-resistant layer, semiconductor processing apparatus incorporating same, and method for forming same
JP2010248054A (en) * 2008-10-23 2010-11-04 Ngk Insulators Ltd Aluminum nitride-based composite material, method for manufacturing the same and member for semiconductor manufacturing apparatus
JP2010280566A (en) * 1999-01-29 2010-12-16 Mitsubishi Materials Corp Magnesia-spinel refractory
US8017062B2 (en) 2004-08-24 2011-09-13 Yeshwanth Narendar Semiconductor processing components and semiconductor processing utilizing same
WO2013038916A1 (en) * 2011-09-14 2013-03-21 京セラ株式会社 Magnesium aluminate-based sintered body and member for use in semiconductor manufacturing devices
JP2013209249A (en) * 2012-03-30 2013-10-10 Kyocera Corp Magnesium aluminate-based sintered body
JP2013209248A (en) * 2012-03-30 2013-10-10 Kyocera Corp Magnesium aluminate-based sintered body
CN103539433A (en) * 2013-09-30 2014-01-29 成都超纯应用材料有限责任公司 Protection material for plasma spray header as well as preparation method and application method thereof
JP2019167288A (en) * 2018-03-23 2019-10-03 日本碍子株式会社 Complex sintered body, semiconductor manufacturing apparatus and manufacturing method of complex sintered body

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012056808A1 (en) 2010-10-25 2012-05-03 日本碍子株式会社 Ceramic material, member for semiconductor manufacturing device, sputtering target member, and manufacturing method for ceramic material
WO2012056807A1 (en) 2010-10-25 2012-05-03 日本碍子株式会社 Ceramic material, laminated body, member for semiconductor manufacturing device, and sputtering target member
JP6018071B2 (en) 2011-10-11 2016-11-02 日本碍子株式会社 Ceramic member, member for semiconductor manufacturing apparatus, and method for manufacturing ceramic member
JP5934069B2 (en) 2012-09-14 2016-06-15 日本碍子株式会社 LAMINATED STRUCTURE, SEMICONDUCTOR MANUFACTURING DEVICE MEMBER AND METHOD FOR PRODUCING LAMINATED STRUCTURE

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010280566A (en) * 1999-01-29 2010-12-16 Mitsubishi Materials Corp Magnesia-spinel refractory
JP2000290067A (en) * 1999-02-25 2000-10-17 Council Scient Ind Res Improving method for producing magnesium aluminate spinel aggregate
JP2001097791A (en) * 1999-09-30 2001-04-10 Ngk Insulators Ltd Corrosionproof member and method for producing the same
JP2002068831A (en) * 2000-09-01 2002-03-08 Taiheiyo Cement Corp Corrosion-resistant ceramics and corrosion-resistant member using the same
JP4733819B2 (en) * 2000-09-01 2011-07-27 太平洋セメント株式会社 Method of forming corrosion-resistant ceramic sprayed coating
JP2002246452A (en) * 2001-02-15 2002-08-30 Taiheiyo Cement Corp Electrostatic chuck
US7329467B2 (en) 2003-08-22 2008-02-12 Saint-Gobain Ceramics & Plastics, Inc. Ceramic article having corrosion-resistant layer, semiconductor processing apparatus incorporating same, and method for forming same
US8017062B2 (en) 2004-08-24 2011-09-13 Yeshwanth Narendar Semiconductor processing components and semiconductor processing utilizing same
JP2010248054A (en) * 2008-10-23 2010-11-04 Ngk Insulators Ltd Aluminum nitride-based composite material, method for manufacturing the same and member for semiconductor manufacturing apparatus
WO2013038916A1 (en) * 2011-09-14 2013-03-21 京セラ株式会社 Magnesium aluminate-based sintered body and member for use in semiconductor manufacturing devices
JPWO2013038916A1 (en) * 2011-09-14 2015-03-26 京セラ株式会社 Magnesium aluminate sintered body and member for semiconductor manufacturing equipment
JP2013209249A (en) * 2012-03-30 2013-10-10 Kyocera Corp Magnesium aluminate-based sintered body
JP2013209248A (en) * 2012-03-30 2013-10-10 Kyocera Corp Magnesium aluminate-based sintered body
CN103539433A (en) * 2013-09-30 2014-01-29 成都超纯应用材料有限责任公司 Protection material for plasma spray header as well as preparation method and application method thereof
JP2019167288A (en) * 2018-03-23 2019-10-03 日本碍子株式会社 Complex sintered body, semiconductor manufacturing apparatus and manufacturing method of complex sintered body

Also Published As

Publication number Publication date
JP3559426B2 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
JP3559426B2 (en) Corrosion resistant materials
JP3619330B2 (en) Components for plasma process equipment
JP4548887B2 (en) Corrosion-resistant ceramic member and manufacturing method thereof
JP3261044B2 (en) Components for plasma processing equipment
JP3488373B2 (en) Corrosion resistant materials
JPH11214365A (en) Member for semiconductor element manufacturing device
JP3046288B1 (en) Components for semiconductor / liquid crystal manufacturing equipment
JP3618048B2 (en) Components for semiconductor manufacturing equipment
JP3706488B2 (en) Corrosion-resistant ceramic material
JP2000239067A (en) Oxyhalide-based member
JP3623054B2 (en) Components for plasma process equipment
JP3093897B2 (en) High purity alumina ceramics and method for producing the same
JP3659435B2 (en) Corrosion resistant member, plasma processing apparatus, semiconductor manufacturing apparatus, liquid crystal manufacturing apparatus, and discharge vessel.
JP4641609B2 (en) Corrosion resistant material
JP2001199762A (en) Corrosion-resisting ceramic material
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
JP2000239066A (en) Corrosionproof member and its production, and member for plasma treatment device using the same
JP3500278B2 (en) Corrosion resistant materials for semiconductor manufacturing
JP2001148370A (en) Anti-corrosion and anti-plasma ceramic member
JP3769416B2 (en) Components for plasma processing equipment
JP2005022971A (en) Member for plasma processing device
JP2002222803A (en) Corrosion resistant member for manufacturing semiconductor
JPH11278944A (en) Silicon nitride corrosion resistant member and its production
JP3732966B2 (en) Corrosion resistant material
JP2001019549A (en) Anticorrosive member and constructional member for semiconductor/liquid crystal production apparatus using the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees