JP2013209248A - Magnesium aluminate-based sintered body - Google Patents

Magnesium aluminate-based sintered body Download PDF

Info

Publication number
JP2013209248A
JP2013209248A JP2012080742A JP2012080742A JP2013209248A JP 2013209248 A JP2013209248 A JP 2013209248A JP 2012080742 A JP2012080742 A JP 2012080742A JP 2012080742 A JP2012080742 A JP 2012080742A JP 2013209248 A JP2013209248 A JP 2013209248A
Authority
JP
Japan
Prior art keywords
magnesium aluminate
sintered body
mass
plasma
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012080742A
Other languages
Japanese (ja)
Other versions
JP5806158B2 (en
Inventor
Yasuhiro Tanaka
泰宏 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2012080742A priority Critical patent/JP5806158B2/en
Publication of JP2013209248A publication Critical patent/JP2013209248A/en
Application granted granted Critical
Publication of JP5806158B2 publication Critical patent/JP5806158B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnesium aluminate-based sintered body excellent in corrosion resistance against halogen-based corrosive gas and plasma thereof.SOLUTION: By including MgAlOas a main component and Ca as much as ≥0.2 to≤1.5 mass% in terms of CaO, a magnesium aluminate-based sintered body excellent in corrosion resistance against halogen-based corrosive gas and plasma thereof can be obtained, and therefor can be used for a long period when being used under an atmosphere generating halogen-based corrosive gas and plasma thereof.

Description

本発明は、アルミン酸マグネシウム質焼結体に関する。   The present invention relates to a magnesium aluminate sintered body.

従来、気相成長、エッチングまたはクリーニング等の半導体製造工程では、フッ素、塩素や臭素等のハロゲン系腐食性ガスおよびそのプラズマが利用されている。このため、半導体製造装置に用いられる部材には、ハロゲン系腐食性ガスまたはそのプラズマに対し高い耐食性を有するセラミック部材が用いられており、その中でも特に高い耐食性を有するセラミック部材として、従来からY焼結体が用いられていた。 Conventionally, halogen-based corrosive gases such as fluorine, chlorine and bromine and plasma thereof are used in semiconductor manufacturing processes such as vapor phase growth, etching or cleaning. For this reason, ceramic members having high corrosion resistance against halogen-based corrosive gas or plasma thereof have been used as members used in semiconductor manufacturing apparatuses. Among them, Y 2 has been conventionally used as a ceramic member having particularly high corrosion resistance. An O 3 sintered body was used.

しかしながら、近年では、Yなどの希土類元素は需要増大による価格上昇や、資源の地域的偏在に伴う供給面において不安定であることから、希土類元素を含有することなく、耐食性に優れる部材が求められている。   However, in recent years, since rare earth elements such as Y are unstable in terms of supply due to an increase in demand due to an increase in demand and local uneven distribution of resources, members having excellent corrosion resistance without containing rare earth elements are required. ing.

このような、希土類元素を含有することなく耐食性に優れる部材として、例えば特許文献1には、スピネル結晶の含有量が94vol%以上であり、Al、MgOおよびCaOの合計量が98重量%以上で、この合計量内にCaOを0.05〜0.5重量%含み、Al
/MgO(重量比)が65/35〜80/20、ZrOが2重量%以下含有し、かさ密度が3.40g/cm以上、平均結晶粒径が3μm以上、であるアルミン酸マグネシウム質焼結体が提案されている。
As a member excellent in corrosion resistance without containing a rare earth element, for example, Patent Document 1 discloses that the spinel crystal content is 94 vol% or more, and the total amount of Al 2 O 3 , MgO and CaO is 98 wt. % Or more, and 0.05 to 0.5% by weight of CaO in this total amount, Al 2
Magnesium aluminate containing O 3 / MgO (weight ratio) of 65 / 35-80 / 20, ZrO 2 of 2% by weight or less, bulk density of 3.40 g / cm 3 or more, and average crystal grain size of 3 μm or more A sintered material has been proposed.

特開2000-302538号公報JP 2000-302538 A

ところで、特許文献1に記載されたアルミン酸マグネシウム質焼結体は、希土類元素を含まず優れた耐食性を有しているが、近年ではさらに高い耐食性を有するセラミック部材が要求されている。   Incidentally, the magnesium aluminate sintered body described in Patent Document 1 does not contain a rare earth element and has excellent corrosion resistance, but in recent years, a ceramic member having higher corrosion resistance has been required.

それゆえ本発明は、上記要求を満たすべく案出されたものであり、希土類元素を含有することなく、ハロゲン系腐食性ガスおよびそのプラズマに対する耐食性に優れ、緻密で高い強度を有するアルミン酸マグネシウム質焼結体を提供することを目的とする。   Therefore, the present invention has been devised to satisfy the above-mentioned requirements, and does not contain a rare earth element, and is excellent in corrosion resistance to halogen-based corrosive gas and its plasma, and is dense and has high strength. It aims at providing a sintered compact.

本発明のアルミン酸マグネシウム質焼結体は、アルミン酸マグネシウムを主成分とし、CaをCaO換算で0.2質量%以上1.5質量%以下含むことを特徴とするものである。   The magnesium aluminate-based sintered body of the present invention is characterized by containing magnesium aluminate as a main component and containing Ca in an amount of 0.2% by mass to 1.5% by mass in terms of CaO.

本発明のアルミン酸マグネシウム質焼結体によれば、アルミン酸マグネシウムを主成分とし、CaをCaO換算で0.2質量%以上1.5質量%以下含むことにより、ハロゲン系腐食性ガスおよびそのプラズマに対する耐食性が優れたものとすることができる。   According to the magnesium aluminate sintered body of the present invention, magnesium aluminate is the main component, and Ca is contained in an amount of 0.2 mass% or more and 1.5 mass% or less in terms of CaO. It can be excellent.

本実施形態のアルミン酸マグネシウム質焼結体を備えるプラズマエッチング装置の一例を示す断面図である。It is sectional drawing which shows an example of the plasma etching apparatus provided with the magnesium aluminate sintered compact of this embodiment.

以下、本実施形態のアルミン酸マグネシウム質焼結体の一例について説明する。   Hereinafter, an example of the magnesium aluminate sintered body of the present embodiment will be described.

本実施形態のアルミン酸マグネシウム質焼結体は、アルミン酸マグネシウムを主成分とし、CaをCaO換算で0.2質量%以上1.5質量%以下含むことを特徴とするものである。   The magnesium aluminate-based sintered body of the present embodiment is characterized by containing magnesium aluminate as a main component and containing Ca in an amount of 0.2% by mass to 1.5% by mass in terms of CaO.

主成分であるMgAlの結晶粒界に、Ca酸化物が存在することで、結晶粒界のハロゲン系腐食性ガスおよびそのプラズマに対する耐食性(以下、単に耐食性ともいう。)を高めることができ、Caを上記範囲で含有することにより、耐食性に優れたものとすることができる。また、Ca成分を含有することにより、従来よりも低い焼成温度でアルミン酸マグネシウム質焼結体を充分に緻密化させることが可能となるため、焼成にかかるコストを低減することができる。 The presence of Ca oxide at the crystal grain boundary of MgAl 2 O 4 as the main component enhances the corrosion resistance to the halogen-based corrosive gas and the plasma at the crystal grain boundary (hereinafter also simply referred to as corrosion resistance). It can be made excellent in corrosion resistance by containing Ca in the above range. Further, by containing the Ca component, it becomes possible to sufficiently densify the magnesium aluminate sintered body at a lower firing temperature than before, so that the cost for firing can be reduced.

また、CaをCaO換算で0.6質量%を超えて1.0質量%以下含むことにより、耐食性および機械的特性がともに高いものとすることができる。   Moreover, by including Ca in excess of 0.6% by mass and 1.0% by mass or less in terms of CaO, both corrosion resistance and mechanical properties can be improved.

また、本実施形態のアルミン酸マグネシウム質焼結体は、結晶粒界にCaAlを含まないことが好ましい。結晶粒界にCaAlを含まないことにより、機械的特性を高く維持できる傾向がある。 Further, magnesium aluminate sintered body of the present embodiment is preferably free of CaAl 2 O 4 in the grain boundaries. By not including CaAl 2 O 4 in the crystal grain boundary, there is a tendency that mechanical properties can be maintained high.

ここで、本実施形態のアルミン酸マグネシウム質焼結体は、主成分であるアルミン酸マグネシウムは組成式がMgAlとして表され、MgOとAlとのモル比が1:1の理論定比、すなわち質量比が28.6:71.4であることが好適であるが、MgOの比率が理論定比より多いことで耐食性がより高まる傾向があるため、MgOとAlとの比率が、質量比で28.6〜30.0:71.4〜70.0であることが好適である。なお、Alの割合は理論定比より少ないほうが結晶粒界にCaAlが存在しにくい傾向がある。すなわち、MgAl100質量%に対して、Alの含有量が71.4質量%より
少ないと結晶粒界にCaAlが存在しにくくなる傾向がある。
Here, in the magnesium aluminate sintered body of the present embodiment, the main component magnesium aluminate is represented by a composition formula MgAl 2 O 4 , and the molar ratio of MgO to Al 2 O 3 is 1: 1. It is preferable that the theoretical ratio, that is, the mass ratio is 28.6: 71.4, but since the corrosion resistance tends to be further increased when the ratio of MgO is larger than the theoretical ratio, MgO and Al 2 O 3 Is preferably 28.6 to 30.0: 71.4 to 70.0 in terms of mass ratio. Note that when the proportion of Al 2 O 3 is smaller than the theoretical constant ratio, CaAl 2 O 4 tends not to exist at the grain boundaries. That is, when the content of Al 2 O 3 is less than 71.4% by mass with respect to 100% by mass of MgAl 2 O 4 , CaAl 2 O 4 tends not to exist at the grain boundaries.

また、主成分とは、アルミン酸マグネシウム質焼結体を構成する各種の結晶相の中で最も存在比率の大きい結晶相の成分のことであり、最も存在比率の大きい結晶相であるか否かの確認においては、以下のように面積で確認する。具体例としては、アルミン酸マグネシウム質焼結体に前処理として研磨加工を施し、金属顕微鏡、SEM(Scanning Electron Microscope)またはEPMA(Electron Probe Micro Analyzer)等を用いて、任意の
倍率で、例えば100μm×100μmの範囲について撮影し、この撮影画像を画像解析装置で解析することにより確認することができる。
The main component is a component of the crystal phase having the largest abundance ratio among the various crystal phases constituting the magnesium aluminate sintered body, and whether or not it is the crystal phase having the largest abundance ratio. In the confirmation, the area is confirmed as follows. As a specific example, a magnesium aluminate sintered body is subjected to a polishing process as a pretreatment, and using a metal microscope, SEM (Scanning Electron Microscope), EPMA (Electron Probe Micro Analyzer), or the like at an arbitrary magnification, for example, 100 μm. It can be confirmed by photographing a range of × 100 μm and analyzing the photographed image with an image analyzer.

ここで、画像解析装置としては、例えば、ニレコ社製のLUZEX−FS等を用いればよい。また、アルミン酸マグネシウム質焼結体を構成する成分の同定については、例えば、X線回折法またはTEM(Transmission Electron Microscope)による電子回折法等により得られたデータをJCPDSカードデータと照合することによって同定することができる。   Here, as the image analysis device, for example, LUZEX-FS manufactured by Nireco Corporation may be used. In addition, for identification of the components constituting the magnesium aluminate sintered body, for example, by collating data obtained by X-ray diffraction method or electron diffraction method by TEM (Transmission Electron Microscope) with JCPDS card data. Can be identified.

また、アルミン酸マグネシウム質焼結体を構成する各成分の酸化物に換算した含有量については、アルミン酸マグネシウム質焼結体の一部を粉砕し、得られた粉体を塩酸などの溶液に溶解した後、ICP(Inductively Coupled Plasma)発光分光分析装置(島津製作所製:ICPS−8100等)を用いて測定し、得られた各成分の金属量を酸化物に換算することにより求めることができる。   In addition, regarding the content converted to oxides of each component constituting the magnesium aluminate sintered body, a part of the magnesium aluminate sintered body is pulverized and the obtained powder is put into a solution such as hydrochloric acid. After dissolution, measurement can be performed using an ICP (Inductively Coupled Plasma) emission spectroscopic analyzer (manufactured by Shimadzu Corporation: ICPS-8100, etc.), and the amount of metal obtained can be determined by converting it to an oxide. .

次に、アルミン酸マグネシウム質焼結体の耐食性については、例えば、縦が10mm、横が10mm、厚みが1mmの試料を準備し、試料の表面の一部をマスキングした後、この試料をRIE(Reactive Ion Etching)装置にセットする。次いで、試料の表面をCFガス雰囲気下でプラズマ中に数時間曝露する試験を行なう。そして、プラズマに曝された表面とマスキングによりプラズマに曝されていない表面との段差について、表面粗さ計を用いて測定する。そして、同じ条件で試験した、MgOとAlとのモル比が1:1の理論定比であるアルミン酸マグネシウムからなるアルミン酸マグネシウム質焼結体の段差の測定結果を1とした場合の相対比較値をエッチングレート比として評価することができる。 Next, regarding the corrosion resistance of the magnesium aluminate sintered body, for example, a sample having a length of 10 mm, a width of 10 mm, and a thickness of 1 mm is prepared. Reactive Ion Etching) Next, a test is performed in which the surface of the sample is exposed to plasma in a CF 4 gas atmosphere for several hours. Then, a step between the surface exposed to plasma and the surface not exposed to plasma by masking is measured using a surface roughness meter. And when the measurement result of the level difference of the magnesium aluminate sintered body made of magnesium aluminate having a molar ratio of MgO to Al 2 O 3 of 1: 1 which is a theoretical constant ratio tested under the same conditions is 1. Can be evaluated as the etching rate ratio.

また、アルミン酸マグネシウム質焼結体の機械的特性の1つである強度については、JIS R 1601−1995の3点曲げ強度試験に準拠し測定することができる。   The strength, which is one of the mechanical properties of the magnesium aluminate sintered body, can be measured in accordance with the three-point bending strength test of JIS R 1601-1995.

また、アルミン酸マグネシウム質焼結体の緻密性については、JIS R 1634−1998の密度測定方法(アルキメデス法)により求められる気孔率の値を測定することにより確認することができる。   The denseness of the magnesium aluminate sintered body can be confirmed by measuring the value of the porosity determined by the density measuring method (Archimedes method) of JIS R 1634-1998.

また、本実施形態のアルミン酸マグネシウム質焼結体は、SiおよびPのうち少なくとも一種を焼結助剤として含むことができる。なお、SiおよびPはアルミン酸マグネシウムの密度向上に作用し、より高密度化することが可能であるとともに、従来よりも低温域でアルミン酸マグネシウム質焼結体を高密度に焼結させることができるため、製造コストを低く抑えることができる。   Further, the magnesium aluminate sintered body of the present embodiment can include at least one of Si and P as a sintering aid. Si and P act to improve the density of magnesium aluminate and can be made higher in density, and at the same time, the magnesium aluminate sintered body can be sintered at a higher density in a lower temperature range than before. Therefore, the manufacturing cost can be kept low.

次に、本実施形態のアルミン酸マグネシウム質焼結体の製造方法の一例について説明する。   Next, an example of the manufacturing method of the magnesium aluminate sintered body of this embodiment is demonstrated.

出発原料として、水酸化マグネシウム(Mg(OH)),酸化アルミニウム(Al)およびNi源として酸化ニッケル(NiO)とを準備する。次に、水酸化マグネシウム(Mg(OH))と酸化アルミニウム(Al)を所定の割合となるように秤量後、秤量した粉末と、純水と、アルミナボールとをボールミルに入れて、混合および粉砕を1〜50時間行うことにより混合スラリーを得る。 Magnesium hydroxide (Mg (OH) 2 ), aluminum oxide (Al 2 O 3 ) are prepared as starting materials, and nickel oxide (NiO) is prepared as a Ni source. Next, magnesium hydroxide (Mg (OH) 2 ) and aluminum oxide (Al 2 O 3 ) are weighed to a predetermined ratio, and the weighed powder, pure water, and alumina balls are put in a ball mill. Mixing and grinding are performed for 1 to 50 hours to obtain a mixed slurry.

そして、得られた混合スラリーを乾燥機内で乾燥して乾燥体を得た後、電気炉内で1100℃以上1300℃以下の温度で1〜10時間加熱して熱処理した粉体(以下、単に仮焼体ともいう。)を得る。   The obtained mixed slurry is dried in a dryer to obtain a dried body, and then heated in an electric furnace at a temperature of 1100 ° C. or higher and 1300 ° C. or lower for 1 to 10 hours for heat treatment (hereinafter simply referred to as temporary Also called fired body.)

次に、上記仮焼体に、仮焼体100質量%に対し、CaがCaO換算での質量が0.2質量%以上1.5質量%以下、好ましくは、0.6質量%を超えて1.0質量%以下の割合となるよう炭
酸カルシウム(CaCO)粉末を秤量して加え、純水,バインダおよびアルミナボールとともにボールミルに入れて、混合および粉砕を1〜50時間行い、平均結晶粒径が2μm以下、好ましくは平均結晶粒径が1.5μm以下となるまで湿式粉砕した後、スプレードラ
イヤーで噴霧造粒して本実施形態のアルミン酸マグネシウム質焼結体の原料粉末を得る。
Next, in the calcined body, with respect to 100% by mass of the calcined body, the mass of Ca in terms of CaO is 0.2% by mass or more and 1.5% by mass or less, preferably more than 0.6% by mass and 1.0% by mass or less. Calcium carbonate (CaCO 3 ) powder was weighed and added to a ball mill with pure water, binder and alumina balls, mixed and pulverized for 1 to 50 hours, average crystal grain size of 2 μm or less, preferably average After wet pulverization until the crystal grain size becomes 1.5 μm or less, the raw material powder of the magnesium aluminate sintered body of this embodiment is obtained by spray granulation with a spray dryer.

また、焼結助剤を添加するときは、酸化珪素(SiO)および五酸化二リン(P)のうち少なくとも一種を適宜秤量して、仮焼体に添加すればよい。 In addition, when adding the sintering aid, at least one of silicon oxide (SiO 2 ) and diphosphorus pentoxide (P 2 O 5 ) may be appropriately weighed and added to the calcined body.

その後、前記原料粉末を用いて、金型プレス成形法、冷間静水圧プレス成形法、押出成形法等により任意の形状に成形して成形体を得て、その成形体を大気雰囲気中で、最高温度を1300℃以上1700℃以下の範囲で選択し、この最高温度で1〜10時間保持して焼成した後、必要に応じて研削加工を施すことにより、本実施形態のアルミン酸マグネシウム質焼
結体を得ることができる。また、より緻密化を促進させる手段としては熱間静水圧プレス(HIP)成形法を用いることも可能である。
Thereafter, using the raw material powder, a molded body is obtained by molding into an arbitrary shape by a die press molding method, a cold isostatic press molding method, an extrusion molding method, etc., and the molded body in an air atmosphere, The highest temperature is selected in the range of 1300 ° C or higher and 1700 ° C or lower, and is kept at this maximum temperature for 1 to 10 hours and fired, and then subjected to grinding as necessary, so that the magnesium aluminate firing of this embodiment is performed. A ligation can be obtained. Moreover, as a means for promoting further densification, a hot isostatic pressing (HIP) molding method can be used.

そして、上述の製造方法により作製された本実施形態のアルミン酸マグネシウム質焼結体は、優れた耐食性と高い強度を有していることから、ハロゲン系腐食性ガス雰囲気中で用いられるのが好適であり、例えば、半導体製造装置用部材であるチャンバー(内壁材)、マイクロ波導入窓、シャワーヘッド、フォーカスリング、シールドリング等の耐食性部材として好適に用いることができる。また、半導体製造装置に真空度を高めるために使用されるクライオポンプまたはターボ分子ポンプ等の構成部品としても使用することができる。   And since the magnesium aluminate sintered body of the present embodiment produced by the above-described production method has excellent corrosion resistance and high strength, it is preferably used in a halogen-based corrosive gas atmosphere. For example, it can be suitably used as a corrosion-resistant member such as a chamber (inner wall material), a microwave introduction window, a shower head, a focus ring, or a shield ring, which is a member for a semiconductor manufacturing apparatus. It can also be used as a component such as a cryopump or a turbo molecular pump used to increase the degree of vacuum in a semiconductor manufacturing apparatus.

ここで、本実施形態のアルミン酸マグネシウム質焼結体をプラズマエッチング装置に用いた一例を、図1の概略説明図を用いて説明する。   Here, an example in which the magnesium aluminate sintered body of the present embodiment is used in a plasma etching apparatus will be described with reference to the schematic explanatory view of FIG.

図1に示す、プラズマエッチング装置10は、ドーム状の上部容器(チャンバー)1と、この上部容器1に密着するように設けられた下部容器2とからなる容器3を有している。容器3内には、支持テーブル4が配置され、この支持テーブル4の上には、半導体ウエハ6を静電吸着するための電極を備えた静電チャック5が設けられている。そして、この静電チャック5の電極には直流電源(図示しない)が接続されており、通電することによって、静電チャック5の上面に半導体ウエハ6が静電吸着される。   A plasma etching apparatus 10 shown in FIG. 1 has a container 3 including a dome-shaped upper container (chamber) 1 and a lower container 2 provided so as to be in close contact with the upper container 1. A support table 4 is disposed in the container 3, and an electrostatic chuck 5 having an electrode for electrostatically adsorbing the semiconductor wafer 6 is provided on the support table 4. A DC power source (not shown) is connected to the electrode of the electrostatic chuck 5, and the semiconductor wafer 6 is electrostatically attracted to the upper surface of the electrostatic chuck 5 when energized.

また、下部容器2には、真空ポンプ9が接続されており、容器3内を真空雰囲気とすることができる。加えて、下部容器2には、CF4ガス等のエッチングガスを供給するガス
供給ノズル7が設けられている。また、上部容器1の周囲には、誘導コイル8が設けられている。
Further, a vacuum pump 9 is connected to the lower container 2 so that the inside of the container 3 can be in a vacuum atmosphere. In addition, the lower container 2 is provided with a gas supply nozzle 7 for supplying an etching gas such as CF 4 gas. An induction coil 8 is provided around the upper container 1.

このようなプラズマエッチング装置10を用いて、半導体ウエハ6をエッチングするには、真空ポンプ9により容器3内を所定の真空度まで排気して、次いで、静電チャック5により半導体ウエハ6を静電吸着した後、ガス供給ノズル7からエッチングガスとして、例えばハロゲン系腐食性ガスを供給しつつ、RF電源から誘導コイル8に通電する。これにより、半導体ウエハ6の上方部分にエッチングガスのプラズマが形成され、半導体ウエハ6が所定パターンにエッチングされる。   In order to etch the semiconductor wafer 6 using such a plasma etching apparatus 10, the inside of the container 3 is evacuated to a predetermined degree of vacuum by the vacuum pump 9, and then the semiconductor wafer 6 is electrostatically discharged by the electrostatic chuck 5. After the adsorption, the induction coil 8 is energized from the RF power supply while supplying, for example, a halogen-based corrosive gas as an etching gas from the gas supply nozzle 7. Thereby, plasma of etching gas is formed in the upper part of the semiconductor wafer 6, and the semiconductor wafer 6 is etched into a predetermined pattern.

ここで、ハロゲン系腐食性ガスとしては、フッ素系ガスを使用するのであればSF、CF、CHF、ClF、NF、CおよびHF等のフッ素化合物を使用でき、塩素系ガスを使用するのであれば、Cl、HCl、BClおよびCCl等の塩素化合物を使用でき、臭素系ガスを使用するであれば、Br、HBrおよびBBr等の臭素化合物を使用できる。 Here, as the halogen-based corrosive gas, if a fluorine-based gas is used, fluorine compounds such as SF 6 , CF 4 , CHF 3 , ClF 3 , NF 3 , C 4 F 8 and HF can be used, and chlorine Chlorine compounds such as Cl 2 , HCl, BCl 3 and CCl 4 can be used if a system gas is used, and bromine compounds such as Br 2 , HBr and BBr 3 are used if a bromine-based gas is used. it can.

そのため、このようなプラズマエッチング装置10において、ハロゲン系腐食性ガスおよびそのプラズマに曝される容器3、支持テーブル4、静電チャック5等が本実施形態のアルミン酸マグネシウム質焼結体からなれば、優れた耐食性および高い強度を有しているため、長期間にわたって使用することができ、交換頻度および交換による装置の停止時間が少なくなるので、半導体の製造コストを大幅に削減することが可能となる。   Therefore, in such a plasma etching apparatus 10, if the halogen-based corrosive gas and the container 3, the support table 4, the electrostatic chuck 5 and the like exposed to the plasma are made of the magnesium aluminate sintered body of the present embodiment. Because it has excellent corrosion resistance and high strength, it can be used for a long period of time, and since the frequency of replacement and the equipment downtime due to replacement are reduced, the manufacturing cost of the semiconductor can be greatly reduced Become.

以下、本発明の実施例を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   Examples of the present invention will be specifically described below, but the present invention is not limited to these examples.

アルミン酸マグネシウム質焼結体について、CaのCaO換算での含有量を表1に示す
ように種々変更した試料を作製し、その耐食性を確認する試験を実施した。
About the magnesium aluminate sintered compact, the sample which changed variously the content of Ca in CaO conversion as shown in Table 1 was produced, and the test which confirms the corrosion resistance was implemented.

まず、出発原料として水酸化マグネシウム(Mg(OH))、酸化アルミニウム(Al)、炭酸カルシウム(CaCO)の各粉末を準備した。次に、前記水酸化マグネシウム(Mg(OH))と酸化アルミニウム(Al)を質量比で28.6:71.4となるように秤量し、秤量後の各粉末を純水とともにアルミナボールを使用するボールミルに入れて、平均粒径が1μm以下となるまで湿式混合および粉砕し、得られたスラリーを乾燥して乾燥体を得る。そして、この乾燥体を1200℃で2時間加熱した仮焼体をアルミナボールを使用したボールミルにより、平均粒径が2μm以下となるまで湿式粉砕した。そして、湿式粉砕後のスラリーを容器に移し乾燥機内で乾燥後、メッシュを通過させて仮焼体を得た。 First, magnesium hydroxide (Mg (OH) 2 ), aluminum oxide (Al 2 O 3 ), and calcium carbonate (CaCO 3 ) powders were prepared as starting materials. Next, the magnesium hydroxide (Mg (OH) 2 ) and aluminum oxide (Al 2 O 3 ) are weighed to a mass ratio of 28.6: 71.4, and each powder after weighing is used with pure water and alumina balls. And then wet-mixed and pulverized until the average particle size becomes 1 μm or less, and the resulting slurry is dried to obtain a dried product. And the calcined body which heated this dried body at 1200 degreeC for 2 hours was wet-ground by the ball mill which used the alumina ball until the average particle diameter became 2 micrometers or less. Then, the slurry after wet pulverization was transferred to a container, dried in a dryer, and then passed through a mesh to obtain a calcined body.

次に、仮焼体に、仮焼体100質量%に対し、炭酸カルシウム(CaCO)粉末をCa
O換算で表1に示す量を秤量して加え、アルミナボールを使用したボールミルにより混合し、スプレードライヤーを用いて噴霧造粒することにより原料粉末を得た。
Next, calcium carbonate (CaCO 3 ) powder is added to the calcined body with respect to 100% by mass of the calcined body.
The amounts shown in Table 1 in terms of O were weighed and added, mixed by a ball mill using alumina balls, and spray granulated using a spray dryer to obtain a raw material powder.

次に、この原料粉末を用いて、金型プレス成形法により板状の成形体を得た。そして得られた成形体を大気中1650℃の焼成温度で2時間保持して焼結体とし、表面に研削加工を施して縦50mm横50mm厚みが5mmの板状体であるアルミン酸マグネシウム質焼結体の試料No.1〜9を得た。   Next, using this raw material powder, a plate-like molded body was obtained by a die press molding method. The obtained molded body was held in the atmosphere at a firing temperature of 1650 ° C. for 2 hours to form a sintered body, and the surface was ground and subjected to grinding, which was a plate-like body having a length of 50 mm, a width of 50 mm, and a thickness of 5 mm. Sample No. of ligation 1-9 were obtained.

また水酸化マグネシウム(Mg(OH))と酸化アルミニウム(Al)とを質量比で25:75となるように秤量して、それ以外は試料No.1〜9と同様の工程にて製造されたアルミン酸マグネシウム質焼結体である試料No.10を得た。 In addition, magnesium hydroxide (Mg (OH) 2 ) and aluminum oxide (Al 2 O 3 ) were weighed so that the mass ratio was 25:75. Sample No. 1 which is a magnesium aluminate sintered body manufactured in the same process as in Nos. 1-9. 10 was obtained.

また、前記仮焼後に添加していた炭酸カルシウム(CaCO)を添加しない以外は、試料No.1〜9と同様の工程にて製造され、Caを含まないアルミン酸マグネシウム質焼結体である試料No.11を得た。 In addition, Sample No. 4 was used except that calcium carbonate (CaCO 3 ) added after the calcination was not added. Sample No. 1 is a magnesium aluminate sintered body produced in the same process as in Nos. 1 to 9 and containing no Ca. 11 was obtained.

そして、試料No.1〜11の試料表面をX線回折装置(BrukersAXS社製 ADVANCE)を
用いて2θ=10°〜90°,CuKα測定の条件で測定し、得られたX線回折チャートの各ピークをJCPDSカードに基づき同定することにより、結晶相の確認を実施した。
And sample no. Sample surfaces 1 to 11 were measured using an X-ray diffractometer (ADVANCE manufactured by BrukersAXS) under the conditions of 2θ = 10 ° to 90 ° and CuKα measurement. Based on the identification, the crystal phase was confirmed.

また、各試料についてJIS R 1601−1995に準拠し3点曲げ強度を測定した。   Each sample was measured for three-point bending strength in accordance with JIS R 1601-1995.

また、試料No.1〜11のアルミン酸マグネシウム質焼結体の各試料について耐食性試験を実施した。各試料の表面の一部にマスキングを施した後、この試験片をRIE装置にセットし、試験片の表面をCFとCHとアルゴンを60:40:20の割合とした混合ガス雰囲気下で、出力140W,周波数13.56MHzのプラズマ中に4時間曝す試験内容とし、試験後にプラズマに曝された表面とマスキングによりプラズマに曝されていない表面との段差について、表面粗さ計を用いて測定を行った。そして、試料No.11の段差の測定結果を1とした場合の相対比較値をエッチングレート比としてそれぞれ算出した。 Sample No. Corrosion resistance tests were carried out on each sample of the 1 to 11 magnesium aluminate sintered bodies. After masking a part of the surface of each sample, this test piece was set in an RIE apparatus, and the surface of the test piece was in a mixed gas atmosphere with CF 4 , CH 3 and argon in a ratio of 60:40:20. Then, the test contents were exposed to a plasma of 140 W output and 13.56 MHz frequency for 4 hours, and the surface level difference between the surface exposed to the plasma after the test and the surface not exposed to the plasma by masking was measured using a surface roughness meter. Went. And sample no. The relative comparison value when the measurement result of 11 steps was 1 was calculated as the etching rate ratio.

なお、各試料の一部を粉砕し、得られた粉体を塩酸に溶解した後、ICP発光分光分析装置(島津製作所製:ICPS−8100)を用いて測定し、得られた各成分の金属量を酸化物に換算し、CaをCaOに換算した含有量が表1に示す通りであることを確認した。結果を表1に示す。   In addition, after pulverizing a part of each sample and dissolving the obtained powder in hydrochloric acid, it was measured using an ICP emission spectroscopic analyzer (manufactured by Shimadzu Corporation: ICPS-8100), and the obtained metal of each component The amount was converted to oxide, and it was confirmed that the content of Ca converted to CaO was as shown in Table 1. The results are shown in Table 1.

Figure 2013209248
Figure 2013209248

表1から、Caを含有する試料No.1〜10は、Caを含有しない試料No.11よりエッチングレート比が小さいため、Caを含有することで耐食性が高まることがわかった。   From Table 1, sample no. Sample Nos. 1 to 10 do not contain Ca. Since the etching rate ratio was smaller than 11, it was found that the corrosion resistance was increased by containing Ca.

また、CaをCaO換算で0.2質量%以上1.5質量%以下含む試料No.2〜6は、エッチングレート比が0.80以下となり、他の試料と比較して特に良好な値を示すことがわかった。   Sample No. 1 containing Ca in an amount of 0.2% by mass to 1.5% by mass in terms of CaO. Nos. 2 to 6 were found to have an etching rate ratio of 0.80 or less, showing particularly good values compared to other samples.

さらに、CaをCaO換算で0.6質量%を超えて1.0質量%以下含む試料No.4〜6はエッチングレート比が0.76以下となり、強度が215Mpa以上となり、耐食性および機械
的特性がともに高い傾向があることがわかった。
Furthermore, sample No. 1 containing Ca in excess of 0.6% by mass and 1.0% by mass or less in terms of CaO. In 4-6, the etching rate ratio was 0.76 or less, the strength was 215 Mpa or more, and it was found that both corrosion resistance and mechanical properties tend to be high.

なお、結晶粒界にCaAlを含まない試料No.1〜8は、CaAlを含む試料No.9および10に比べ機械的強度が高く、エッチングレート比が小さいため、耐食性が高まる傾向があることがわかった。 Incidentally, sample No. without the CaAl 2 O 4 in the grain boundaries Nos. 1 to 8 are sample Nos. Including CaAl 2 O 4 . It was found that the corrosion resistance tends to increase because the mechanical strength is high and the etching rate ratio is small compared to 9 and 10.

1:上部容器(チャンバー)
2:下部容器
3:容器
4:支持テーブル
5:静電チャック
6:半導体ウエハ
7:ガス供給ノズル
8:誘導コイル
9:真空ポンプ
10:プラズマエッチング装置
1: Upper container (chamber)
2: Lower container 3: Container 4: Support table 5: Electrostatic chuck 6: Semiconductor wafer 7: Gas supply nozzle 8: Induction coil 9: Vacuum pump
10: Plasma etching equipment

Claims (3)

アルミン酸マグネシウムを主成分とし、CaをCaO換算で0.2質量%以上1.5質量%以下含むことを特徴とするアルミン酸マグネシウム質焼結体。 A magnesium aluminate-based sintered body comprising magnesium aluminate as a main component and containing Ca in an amount of 0.2% by mass to 1.5% by mass in terms of CaO. CaをCaO換算で0.6質量%を超えて1.0質量%以下含むことを特徴とする請求項1に記載のアルミン酸マグネシウム質焼結体。 2. The magnesium aluminate sintered body according to claim 1, wherein Ca is contained in an amount exceeding 0.6 mass% and 1.0 mass% or less in terms of CaO. 結晶粒界にCaAlを含まないことを特徴とする請求項1または請求項2に記載のアルミン酸マグネシウム質焼結体。 Magnesium aluminate sintered body according to claim 1 or claim 2, wherein the free of CaAl 2 O 4 in the grain boundaries.
JP2012080742A 2012-03-30 2012-03-30 Magnesium aluminate sintered body Expired - Fee Related JP5806158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012080742A JP5806158B2 (en) 2012-03-30 2012-03-30 Magnesium aluminate sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012080742A JP5806158B2 (en) 2012-03-30 2012-03-30 Magnesium aluminate sintered body

Publications (2)

Publication Number Publication Date
JP2013209248A true JP2013209248A (en) 2013-10-10
JP5806158B2 JP5806158B2 (en) 2015-11-10

Family

ID=49527491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012080742A Expired - Fee Related JP5806158B2 (en) 2012-03-30 2012-03-30 Magnesium aluminate sintered body

Country Status (1)

Country Link
JP (1) JP5806158B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08231266A (en) * 1994-10-18 1996-09-10 Applied Materials Inc Polycrystalline alumina ceramic material resistant to plasmafluorine and method of making same
JPH09295863A (en) * 1996-02-29 1997-11-18 Kyocera Corp Anticorrosive member
JPH1067554A (en) * 1996-08-28 1998-03-10 Kyocera Corp Anticorrosive ceramic member
JPH10330150A (en) * 1997-05-30 1998-12-15 Kyocera Corp Corrosion resistant member
JP2000302538A (en) * 1999-04-12 2000-10-31 Nitsukatoo:Kk Spinel sintered compact having corrosion resistance and heat treating member made therefrom
JP2005022971A (en) * 2004-10-18 2005-01-27 Kyocera Corp Member for plasma processing device
JP2005281054A (en) * 2004-03-29 2005-10-13 Kyocera Corp Aluminum oxide-based sintered compact, its producing method, and member for semiconductor or liquid crystal producing equipment, which is obtained by using the sintered compact
JP2007119334A (en) * 2005-09-28 2007-05-17 Kyocera Corp Alumina-based sintered compact, member for treating device using the same, treating device, and method for treating sample

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08231266A (en) * 1994-10-18 1996-09-10 Applied Materials Inc Polycrystalline alumina ceramic material resistant to plasmafluorine and method of making same
JPH09295863A (en) * 1996-02-29 1997-11-18 Kyocera Corp Anticorrosive member
JPH1067554A (en) * 1996-08-28 1998-03-10 Kyocera Corp Anticorrosive ceramic member
JPH10330150A (en) * 1997-05-30 1998-12-15 Kyocera Corp Corrosion resistant member
JP2000302538A (en) * 1999-04-12 2000-10-31 Nitsukatoo:Kk Spinel sintered compact having corrosion resistance and heat treating member made therefrom
JP2005281054A (en) * 2004-03-29 2005-10-13 Kyocera Corp Aluminum oxide-based sintered compact, its producing method, and member for semiconductor or liquid crystal producing equipment, which is obtained by using the sintered compact
JP2005022971A (en) * 2004-10-18 2005-01-27 Kyocera Corp Member for plasma processing device
JP2007119334A (en) * 2005-09-28 2007-05-17 Kyocera Corp Alumina-based sintered compact, member for treating device using the same, treating device, and method for treating sample

Also Published As

Publication number Publication date
JP5806158B2 (en) 2015-11-10

Similar Documents

Publication Publication Date Title
TWI540635B (en) Corrosion resistant member for semiconductor manufacturing apparatus and method for making the same
JP2004262750A (en) Aluminum nitride-based material and component for apparatus to manufacture semiconductor
JP2007045700A (en) Yttria sintered compact, anticorrosion member and process for producing the same
JP6352686B2 (en) Alumina sintered body, semiconductor manufacturing apparatus member, and liquid crystal panel manufacturing apparatus member
JP4854420B2 (en) Alumina sintered body, processing apparatus member and processing apparatus using the same, sample processing method, and method for producing alumina sintered body
TW201831431A (en) Rare earth oxyfluoride sintered body and method for producing same
JP5687350B2 (en) Magnesium aluminate sintered body and member for semiconductor manufacturing equipment
JP5190809B2 (en) Corrosion resistant member and manufacturing method thereof
US20230174429A1 (en) Sintered material, semiconductor manufacturing apparatus including the same, and method of manufacturing the sintered material
JP5421092B2 (en) Alumina sintered body
JP5806158B2 (en) Magnesium aluminate sintered body
JP5137358B2 (en) Alumina sintered body, processing apparatus member and processing apparatus using the same, sample processing method, and method for producing alumina sintered body
JP5721658B2 (en) Magnesium aluminate sintered body
JP2009203088A (en) Alumina sintered compact, member for semiconductor manufacturing apparatus and member for liquid crystal panel manufacturing apparatus
JP5435932B2 (en) Alumina sintered body, manufacturing method thereof, member for semiconductor manufacturing apparatus, member for liquid crystal panel manufacturing apparatus, and member for dielectric resonator
JP2023022339A (en) Oxide sintered body and manufacturing method of oxide sintered body
KR102266684B1 (en) Thermal spray coating, member for semiconductor manufacturing equipment, feedstock material for thermal spray, and method for producing thermal spray coating
JP6634371B2 (en) MgO-based ceramic film, member for semiconductor manufacturing equipment, and method of manufacturing MgO-based ceramic film
KR102618403B1 (en) Ceramics material, method for manufacturing the same, and member for semiconductor manufacturing apparatus
US20220285164A1 (en) Plasma Etching Apparatus Component for Manufacturing Semiconductor Comprising Composite Sintered Body and Manufacturing Method Therefor
JP7351071B2 (en) sintered body
JP5305228B2 (en) Corrosion resistant material
JP5371373B2 (en) Alumina sintered body, semiconductor manufacturing apparatus member, liquid crystal panel manufacturing apparatus member, and dielectric resonator member
JP2010083751A (en) Conductive ceramic material and manufacturing method thereof
JP2013079155A (en) Plasma resistant member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150903

R150 Certificate of patent or registration of utility model

Ref document number: 5806158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees