JP2005281054A - Aluminum oxide-based sintered compact, its producing method, and member for semiconductor or liquid crystal producing equipment, which is obtained by using the sintered compact - Google Patents

Aluminum oxide-based sintered compact, its producing method, and member for semiconductor or liquid crystal producing equipment, which is obtained by using the sintered compact Download PDF

Info

Publication number
JP2005281054A
JP2005281054A JP2004097191A JP2004097191A JP2005281054A JP 2005281054 A JP2005281054 A JP 2005281054A JP 2004097191 A JP2004097191 A JP 2004097191A JP 2004097191 A JP2004097191 A JP 2004097191A JP 2005281054 A JP2005281054 A JP 2005281054A
Authority
JP
Japan
Prior art keywords
aluminum oxide
sintered body
less
mass
oxide sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004097191A
Other languages
Japanese (ja)
Inventor
Jun Asano
潤 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004097191A priority Critical patent/JP2005281054A/en
Publication of JP2005281054A publication Critical patent/JP2005281054A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Drying Of Semiconductors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that it is impossible to produce a good product because the deformation amount becomes large when the amount of a sintering aid is increased so as to lower the sintering temperature and to reduce the production cost of a product having a large size and a thick part, in the production of an aluminum oxide sintered compact used as a member for a semiconductor or liquid crystal producing equipment. <P>SOLUTION: The aluminum oxide sintered compact contains, as a main component, ≥95 mass % aluminum oxide and ≤5 mass % sintering aid, and has a thick part wherein at least a part has a thickness of ≥5 mm. In the aluminum oxide sintered compact, the average crystal grain diameter in the vicinity of the surface of the sintered compact is larger than that in the inside, and the difference between the average crystal grain diameters in the vicinity of the surface and in the inside is ≤10 μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、酸化アルミニウム質焼結体並びにその製造方法に関し、更にはその酸化アルミニウム質焼結体を用いた半導体製造装置の内壁材(チャンバー)、マイクロ波導入窓、シャワーヘッド、フォーカスリング、シールドリングをはじめとする部材や、液晶製造装置のステージ、ミラー、マスクホルダー、マスクステージ、チャック、レチクル等の半導体、液晶製造装置(エッチャーやCVD)の中でも、大型で厚肉部を有する部材に適用できるものである。   The present invention relates to an aluminum oxide sintered body and a manufacturing method thereof, and further, an inner wall material (chamber), a microwave introduction window, a shower head, a focus ring, and a shield of a semiconductor manufacturing apparatus using the aluminum oxide sintered body. Applicable to members such as rings, liquid crystal manufacturing equipment stages, mirrors, mask holders, mask stages, chucks, reticles, and other semiconductors, and liquid crystal manufacturing equipment (etchers and CVDs) with large and thick parts It can be done.

近年、酸化アルミニウム質焼結体は、熱的、機械的、化学的特性に優れることから、種々の技術分野で一般に広く利用されている。   In recent years, aluminum oxide sintered bodies have been widely used in various technical fields because of their excellent thermal, mechanical and chemical properties.

その一つに酸化アルミニウム質焼結体の持つ高い耐食性を利用した用途として、半導体、液晶製造装置用部材がある。この半導体、液晶製造装置用部材は、半導体、液晶製造プロセスでエッチング、クリーニング用として使用される反応性の高いフッ素系、塩素系等のハロゲン系腐食性ガスやそれらのプラズマと接触するために高い耐食性を要求されるばかりか、低誘電損失であること等の要求もあり、この要求を満たし、かつコスト的な面でも折り合いのつくセラミックスが酸化アルミニウム質焼結体である。   One of the applications using the high corrosion resistance of the aluminum oxide sintered body is a member for a semiconductor or liquid crystal manufacturing apparatus. This member for semiconductor and liquid crystal manufacturing equipment is high because it comes into contact with halogen-based corrosive gases such as fluorine and chlorine that are highly reactive and used for etching and cleaning in semiconductor and liquid crystal manufacturing processes and their plasmas. There is a demand not only for corrosion resistance but also for low dielectric loss, and the ceramic that satisfies this demand and can be compromised in terms of cost is an aluminum oxide sintered body.

このような酸化アルミニウム質焼結体へのニーズが高まる中、これをいかに低コストで製造できるかの検討が種々行われている。   While the need for such an aluminum oxide sintered body is increasing, various studies have been conducted on how to manufacture it at a low cost.

ここで酸化アルミニウム質焼結体の製造を低コスト化する方法としては、種々の方法が考えられるが、その中でも酸化アルミニウム質焼結体の持つ特性を劣化させずに、従来よりも低温で焼結させる製造方法の検討が盛んに実施されている。   Here, various methods are conceivable as methods for reducing the production cost of the aluminum oxide sintered body, and among them, the characteristics of the aluminum oxide sintered body are not deteriorated, and the sintering is performed at a lower temperature than before. Studies of manufacturing methods to tie are actively conducted.

例えば、99質量%以上の高純度酸化アルミニウム質焼結体に焼結助剤としてSiO、CaO、MgOを含有させ、その含有量をコントロールし、ある範囲内とすることで、低温で焼結しつつ、高周波誘電損失特性を向上させたアルミナ磁器組成物の例が示されている(特許文献1参照)。 For example, high purity aluminum oxide sintered body of 99% by mass or more contains SiO 2 , CaO, MgO as sintering aids, and the content is controlled within a certain range, so that sintering is performed at a low temperature. However, an example of an alumina porcelain composition with improved high-frequency dielectric loss characteristics is shown (see Patent Document 1).

また、上述のSiO、CaO、MgO含有量の比率をコントロールした酸化アルミニウム質焼結体に、少量のNaOやKOを添加して、更に焼結性を高めて高速焼成可能としたアルミナ磁器組成物の例が示されている(特許文献2参照)。
特開平6−16469号公報 特許第3026011号公報
In addition, a small amount of Na 2 O or K 2 O is added to the above-mentioned aluminum oxide sintered body in which the ratio of SiO 2 , CaO, and MgO content is controlled, so that sinterability is further enhanced and high-speed firing is possible. An example of the prepared alumina porcelain composition is shown (see Patent Document 2).
JP-A-6-16469 Japanese Patent No. 3026011

しかしながら、特許文献1、2とも表面近傍の平均結晶粒子径が内部よりも大きくなっために、小型では問題ないものの、大型の焼結体を形成した場合、その表面は焼成時の収縮差が顕著にあらわれ、反り、うねり等の変形が発生するという問題点があった。特にこの現象は大型化すると更に変形量は大きくなってくるものと考えられる。この収縮差が発生する理由としては、焼成時に酸化アルミニウム以外の融点の低い焼結助剤が液相として焼結体の表面付近に集まり、この影響によって焼結体表面近傍の酸化アルミニウム粒子が活性化され粒成長が促進されるが、内部は粒成長が促進されず、表面近傍と内部が均質なものとできないばかりか、同じ製品内において表面は収縮しやすく、内部は収縮しにくいため焼成後の焼結体に変形を生じてしまうものと考えられる。   However, in both Patent Documents 1 and 2, since the average crystal particle diameter in the vicinity of the surface is larger than the inside, there is no problem with a small size, but when a large sintered body is formed, the surface has a remarkable shrinkage difference during firing. There was a problem that deformation such as warpage and undulation occurred. In particular, this phenomenon is considered to be further increased as the size is increased. The reason for this difference in shrinkage is that sintering aids other than aluminum oxide, which have a low melting point, gather near the surface of the sintered body as a liquid phase during firing. Grain growth is promoted and grain growth is not promoted, but not only the grain growth is not promoted inside and the inside and the inside of the surface cannot be made uniform. It is considered that the sintered body is deformed.

この変形への対策として、焼成後に焼結体を研削加工によって変形を調整することも考えられる。即ち、変形を研削により修正するのに研削する領域である研削しろを多く形成するものであるが、これでは、研削しろとして取り除く部分の原料コストや加工コストが無駄であり、製造コストがアップしてしまうという問題がある。   As a countermeasure against this deformation, it is conceivable to adjust the deformation of the sintered body by grinding after firing. In other words, a lot of grinding allowance, which is a grinding area, is formed to correct the deformation by grinding. However, in this case, the raw material cost and processing cost of the portion removed as the grinding allowance are wasted, and the manufacturing cost is increased. There is a problem that it ends up.

一方、特許文献1では99質量%以上の高純度の焼結体であるので、仮にSi、Ca、Mgの含有をコントロールしたとしても、焼成温度の低温化は難しく、低製造コスト化は困難であるという問題点もあった。   On the other hand, in Patent Document 1, since it is a high-purity sintered body of 99% by mass or more, even if the content of Si, Ca, and Mg is controlled, it is difficult to lower the firing temperature and it is difficult to reduce the production cost. There was also a problem that there was.

これに対して、低温化のために焼結助剤の成分を多く添加した酸化アルミニウム質焼結体は、これを半導体、液晶製造装置部材として用いると、良好な耐食性を有する酸化アルミニウム以外の成分量が多く、フッ素系、塩素系、臭素系のハロゲン系腐食性ガスやそれらのプラズマに対する耐食性が低下してしまうという問題がある。   In contrast, an aluminum oxide sintered body to which a large amount of a sintering aid component has been added for lowering the temperature is a component other than aluminum oxide having good corrosion resistance when used as a semiconductor or liquid crystal manufacturing apparatus member. There is a problem that the corrosion resistance against fluorine, chlorine and bromine halogen corrosive gases and their plasma is reduced.

本発明は前記課題に鑑み、主成分として酸化アルミニウムを95質量%以上、少なくともSi、Ca、Mgの金属元素からなる焼結助剤を5質量%以下含み、5mm以上の厚肉部を有する焼結体であって、前記焼結体の表面近傍の平均結晶粒子径が内部よりも大きく、その差が10μm以下であることを特徴とする。   In view of the above-mentioned problems, the present invention provides a sintered body having 95% by mass or more of aluminum oxide as a main component and 5% by mass or less of a sintering aid composed of at least a metal element of Si, Ca and Mg and having a thick part of 5 mm or more. The sintered body is characterized in that an average crystal particle diameter in the vicinity of the surface of the sintered body is larger than the inside, and a difference thereof is 10 μm or less.

前記金属元素のCaO/SiOが0.3〜3、MgO/SiOが1〜5とするのが好ましい。 It is preferable that CaO / SiO 2 of the metal element is 0.3 to 3 and MgO / SiO 2 is 1 to 5.

前記金属元素が質量基準でSiをSiO換算で6000ppm以下、CaをCaO換算で6000ppm以下、MgをMgO換算で12000ppm以下含むことでもよい。 The metal element may contain Si in terms of mass of 6000 ppm or less in terms of SiO 2 , Ca in terms of CaO in terms of 6000 ppm or less, and Mg in terms of MgO of 12000 ppm or less.

一方、本発明の酸化アルミニウム質焼結体の製造方法としては、酸化アルミニウムの1次原料粒度分布D50が0.8〜1.5μmの粉末を50〜90質量%、0.5〜0.7μmの粉末を10〜50質量%の割合で混合する工程と、前記原料粉末を型に充填して成型する工程と、破断荷重の10〜50%を荷重値とし、温度1600℃以下で5時間以上加熱した条件下でのJISR1601−1995抗折試験片サイズのクリープ変形量が5mm以下の特性を有する焼成治具を用意し、該焼成治具を前記成形体に当接して1500〜1600℃で焼成して焼結体を得る工程とを有することを特徴とする。   On the other hand, as the method for producing the aluminum oxide sintered body of the present invention, 50 to 90% by mass, 0.5 to 0.7 μm of powder having an aluminum oxide primary material particle size distribution D50 of 0.8 to 1.5 μm is used. A step of mixing 10 to 50% by mass of the above powder, a step of filling and molding the raw material powder in a mold, a load value of 10 to 50% of the breaking load, and a temperature of 1600 ° C. or less for 5 hours or more Prepare a firing jig having a characteristic that the creep deformation amount of the JIS R1601-1995 bending test specimen size under a heated condition is 5 mm or less, and the firing jig is brought into contact with the molded body and fired at 1500 to 1600 ° C. And obtaining a sintered body.

前記アルミナ1次原料粉末に含まれるNaが40ppm以下であるのがよい。     It is preferable that Na contained in the alumina primary raw material powder is 40 ppm or less.

前記焼成治具がJIS荷重軟化点が1800℃以上であるのがよい。   The firing jig preferably has a JIS load softening point of 1800 ° C. or higher.

また、半導体、液晶製造装置用部材として前記酸化アルミニウム質焼結体を用いたことを特徴とする。     Further, the aluminum oxide sintered body is used as a member for a semiconductor or liquid crystal manufacturing apparatus.

本発明によれば、表面近傍の平均結晶粒子径が内部よりも大きく、その差が10μm以下の焼結体は、その表面近傍と内部の収縮差を抑えることができるために、焼結体を大型化したとしても焼結体の表面近傍と内部とにかかる内部応力が抑えられ、これにより外周面の変形を有効に防止することができる。   According to the present invention, a sintered body having an average crystal particle diameter near the surface larger than the inside and a difference of 10 μm or less can suppress the shrinkage difference between the surface near and the inside. Even if the size of the sintered body is increased, the internal stress applied to the vicinity and the inside of the sintered body can be suppressed, and the deformation of the outer peripheral surface can be effectively prevented.

従って、変形がないため研削工程を省くことができ、このような焼結体を大型化したとしても、製造コストを低減することができる。   Therefore, since there is no deformation, the grinding process can be omitted, and the manufacturing cost can be reduced even if such a sintered body is enlarged.

また、上述の変形を抑えながら焼結助剤を適度に含有させているので、従来よりも低温での焼成が可能となるばかりか、半導体、液晶製造工程で使用される腐食性ガスや薬品に対して高い耐食性を維持することが可能となる。   In addition, since the sintering aid is moderately contained while suppressing the above-mentioned deformation, not only can firing at a lower temperature than conventional, but also corrosive gases and chemicals used in semiconductor and liquid crystal manufacturing processes. On the other hand, high corrosion resistance can be maintained.

以下、本発明を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

本発明の酸化アルミニウム質焼結体は主成分として酸化アルミニウムを95質量%以上、Si、Ca、Mgの金属元素からなる焼結助剤を5質量%以下含み、その少なくとも一部が5mm以上の厚肉部を有する焼結体であって、該焼結体表面近傍の平均結晶粒子径が内部よりも大きくその差が10μm以下としている。   The aluminum oxide sintered body of the present invention contains 95% by mass or more of aluminum oxide as a main component and 5% by mass or less of a sintering aid composed of a metal element of Si, Ca, Mg, at least a part of which is 5 mm or more. It is a sintered body having a thick part, and the average crystal particle diameter in the vicinity of the surface of the sintered body is larger than the inside and the difference is 10 μm or less.

酸化アルミニウムを95質量%以上としたのは、それより少ない含有量であると、半導体・液晶製造装置用部材として用いられた場合に、SF、CF、CHF、ClF、NF、C、HF等のフッ素系、Cl、HCl、BCl、CCl等の塩素系ガス、或いはBr、HBr、BBr等の臭素系ガスなどのハロゲン系腐食性ガスやそのプラズマに対して良好な耐食性を有する酸化アルミニウムの含有量が少なく、耐食性が低下してしまうからである。また、前記酸化アルミニウム質焼結体に含まれるSi、Ca、Mgの金属元素からなる焼結助剤量を5質量%以下としたのは、5質量%より多くの焼結助剤が含まれると、その焼結助剤成分と前記ハロゲン系腐食性ガスとの反応生成物の融点が低いために、部材全体としての耐食性が低下するからである。より好ましくは下限値を0.5質量%とすれば、従来よりも低温化することが可能となる。 The reason why aluminum oxide is 95% by mass or more is that when the content is less than that, when used as a member for a semiconductor / liquid crystal manufacturing apparatus, SF 6 , CF 4 , CHF 3 , ClF 3 , NF 3 , Halogenous corrosive gas such as fluorine-based gases such as C 4 F 8 and HF, chlorine-based gases such as Cl 2 , HCl, BCl 3 and CCl 4 , or bromine-based gases such as Br 2 , HBr and BBr 3 and plasma thereof. This is because the content of aluminum oxide having good corrosion resistance is small and the corrosion resistance is lowered. In addition, the amount of the sintering aid composed of the metal elements of Si, Ca, and Mg contained in the aluminum oxide sintered body is set to 5% by mass or less because more than 5% by mass of the sintering aid is included. This is because, since the melting point of the reaction product of the sintering aid component and the halogen-based corrosive gas is low, the corrosion resistance of the entire member is lowered. More preferably, if the lower limit is 0.5 mass%, the temperature can be lowered as compared with the prior art.

ここで、酸化アルミニウム質焼結体は、少なくとも5mm以上の厚肉部を有する焼結体であることが好ましく、より好ましくは、10mm以上のものが用いられる。この場合、焼結体表面近傍の平均結晶粒子径が内部よりも大きくその差が10μm以下としたのは、以下の理由からである。即ち、少なくとも一部が5mm以上の厚肉部を有する大型、厚肉製品の製造コストを下げようと焼成温度の低温化のためにSi、Ca、Mgの金属元素からなる焼結助剤量をある程度多く入れるか多くすると、低温化は可能となるものの増加した焼結助剤のうち融点の低いSi及びAlとSiの化合物が、その融点が低いために焼成過程で表面近傍に集まる。これにより、表面近傍の結晶の粒成長が促進され、それが同じ焼結体の表面と内部で収縮差を伴った結晶粒径差となって現れ、最終的に変形量の増加という問題となる。このため、焼結体を大型化したとしても焼結体の表面近傍と内部とにかかる内部応力が抑えられ、これにより外周面の変形を防止することが可能となる。またこの現象は厚みが10mm以上となるとより顕著に現れる。なお、焼結体の表面近傍とは、焼結体表面から少なくとも厚肉部の25%までの厚さの範囲をいい、それ以外の部分は内部とする。   Here, the aluminum oxide sintered body is preferably a sintered body having a thick portion of at least 5 mm, more preferably 10 mm or more. In this case, the average crystal particle diameter in the vicinity of the sintered body surface is larger than the inside and the difference is set to 10 μm or less for the following reason. That is, the amount of sintering aid composed of metal elements of Si, Ca, Mg is used to lower the firing temperature in order to reduce the manufacturing cost of large-sized, thick-walled products having at least a part of 5 mm or more. If a large amount is added or increased, the temperature can be lowered, but among the increased sintering aids, Si and Al and Si compounds having a low melting point gather in the vicinity of the surface during the firing process due to the low melting point. This promotes crystal grain growth in the vicinity of the surface, which appears as a difference in crystal grain size with a difference in shrinkage between the surface and the inside of the same sintered body, and finally increases the amount of deformation. . For this reason, even if the size of the sintered body is increased, the internal stress applied to the vicinity and the inside of the surface of the sintered body can be suppressed, thereby preventing the outer peripheral surface from being deformed. This phenomenon appears more prominently when the thickness is 10 mm or more. In addition, the surface vicinity of a sintered compact means the range of the thickness from the sintered compact surface to at least 25% of a thick part, and let other part be an inside.

なお、前記平均結晶粒径差については、表面近傍から厚肉部の15%の厚さの範囲内の焼結体断面とそれ以外、特に焼結体中央部分を鏡面加工し、エッチング処理した後、これを走査電子顕微鏡等で観察することにより確認することができる。また、走査電子顕微鏡によって所定の倍率で結晶写真を撮影し、その写真のある範囲内での結晶粒径の平均を算出してその比較により確認できる。   Regarding the difference in the average crystal grain size, the cross section of the sintered body within the range from the surface to the thickness of 15% of the thick part and the other part, in particular, the center part of the sintered body is mirror-finished and etched. This can be confirmed by observing with a scanning electron microscope or the like. Further, a crystal photograph can be taken with a scanning electron microscope at a predetermined magnification, and an average of crystal grain diameters within a certain range of the photograph can be calculated and confirmed by comparison.

このように表面近傍の平均結晶粒径が内部よりも大きくその差を10μmの範囲内に制御するためには、焼結体の焼結性を高めるために添加しているSi、Ca、Mgの金属元素量の比率をコントロールする必要がある。Si、Ca、Mgはそれぞれ酸化アルミニウムの焼結過程において、Mg、Caは融点が高く、結晶粒界にAlとの化合物をつくるために結晶成長の抑制作用があり、Siはそれとは逆に融点が低く結晶成長を促す作用がある。MgとCaでより結晶成長の抑制効果が高いのはMgである。Mg、CaとSiの比率をそれぞれ酸化物換算したときに、質量比CaO/SiO=0.3〜3、質量比MgO/SiO=1〜5の範囲内の比率とすることが重要である。なお、この比率はこのような範囲とすることにより、5mm以上の厚肉部を有する大型、厚肉製品であっても、結晶の成長と抑制のバランスが良好で、表面近傍と内部の平均結晶粒径に差がつきにくい。 Thus, in order to control the difference within the range of 10 μm, the average crystal grain size in the vicinity of the surface is larger than the inside, in order to enhance the sinterability of the sintered body, Si, Ca, Mg added It is necessary to control the ratio of the amount of metal element. Si, Ca, and Mg have a high melting point in the sintering process of aluminum oxide, respectively. Mg and Ca have a high melting point, and have a crystal growth inhibiting action to form a compound with Al at the crystal grain boundary. On the contrary, Si has a melting point. Is low and promotes crystal growth. Mg has a higher crystal growth suppression effect than Mg and Ca. When the ratios of Mg, Ca and Si are converted into oxides, respectively, it is important to set the mass ratio CaO / SiO 2 = 0.3 to 3 and the mass ratio MgO / SiO 2 = 1 to 5 in the range. is there. In addition, even if it is a large sized and thick product which has a thick part of 5 mm or more by making this ratio into such a range, the balance of crystal growth and suppression is good, and the average crystal near the surface and inside Difficult to make difference in particle size.

質量比CaO/SiOの質量比が0.3より低いと結晶成長が促進され焼結体の表面近傍と内部で結晶粒径に差を生じやすくなるばかりか、SiO成分が酸化アルミニウムの結晶粒子間に液層として存在し焼結体の機械的特性を低下させるために好ましくない。また、質量比MgO/SiOが1より低いと同様に結晶成長が促進されるために好ましくない。また、質量比CaO/SiOが3より大きいと、結晶成長の抑制効果が大きすぎて低温で焼結体が緻密化しない。質量比MgO/SiOが5より大きい場合も同様に結晶成長抑制効果が大きすぎて焼結体が緻密化しない。 If the mass ratio CaO / SiO 2 mass ratio is lower than 0.3, crystal growth is promoted and a difference in the crystal grain size is likely to occur between the vicinity and inside of the sintered body, and the SiO 2 component is a crystal of aluminum oxide. It is not preferable because it exists as a liquid layer between the particles and lowers the mechanical properties of the sintered body. Further, if the mass ratio MgO / SiO 2 is lower than 1, it is not preferable because crystal growth is promoted similarly. On the other hand, if the mass ratio CaO / SiO 2 is greater than 3, the effect of suppressing crystal growth is too great and the sintered body does not become dense at low temperatures. Similarly, when the mass ratio MgO / SiO 2 is greater than 5, the crystal growth inhibiting effect is too great, and the sintered body does not become dense.

また、Si、Ca、Mgの焼結体への含有量としては、質量基準でそれぞれSiをSiO換算で6000ppm以下、CaをCaO換算で6000ppm以下、MgをMgO換算で12000ppm以下とすることが好ましい。ここで、SiをSiO換算で6000ppm以下としたのは、6000ppmより多く含有すると結晶成長効果を促し、大型、厚肉製品において上述の作用により変形量が増加するために好ましくない。また、半導体、液晶製造工程で使用されるハロゲン系腐食性ガスやそれらのプラズマ、その他腐食性の薬品等への耐食性が低下するために好ましくない。また、CaをCaO換算で6000ppmより多いと、低温での緻密化が困難となるばかりか、Siと同様に腐食性のガスや薬品に対する耐食性が低下するために好ましくない。また、MgがMgO換算で12000ppmより多いと、Caと同様に低温での緻密化が困難となるために好ましくない。 Moreover, as content in the sintered compact of Si, Ca, and Mg, Si is 6000 ppm or less in terms of SiO 2 , Ca is 6000 ppm or less in terms of CaO, and Mg is 12000 ppm or less in terms of MgO on a mass basis. preferable. Here, the Si content of 6000 ppm or less in terms of SiO 2 is not preferable because the Si content is more than 6000 ppm because the crystal growth effect is promoted and the amount of deformation increases due to the above-described action in large and thick products. Further, the corrosion resistance to halogen-based corrosive gases used in semiconductor and liquid crystal manufacturing processes, plasmas thereof, and other corrosive chemicals is not preferable. Further, if Ca is more than 6000 ppm in terms of CaO, it is not preferable because densification at a low temperature becomes difficult and corrosion resistance to corrosive gases and chemicals is reduced as in the case of Si. Further, if Mg is more than 12000 ppm in terms of MgO, it is not preferable because densification at a low temperature becomes difficult like Ca.

なお、Si、Ca、Mgの金属元素量の測定はICP発光分光分析装置により測定することができる。   In addition, the measurement of the metal element amount of Si, Ca, and Mg can be measured with an ICP emission spectroscopic analyzer.

さらに、本発明の酸化アルミニウム質焼結体はその密度が3.8g/cm以上とすることが好ましい。3.8g/cmより低い密度では、強度等の機械的特性が低下するばかりか、腐食性ガスや薬品に対する耐食性が低下するからである。 Furthermore, the aluminum oxide sintered body of the present invention preferably has a density of 3.8 g / cm 3 or more. This is because, at a density lower than 3.8 g / cm 3, not only mechanical properties such as strength decrease, but also corrosion resistance against corrosive gases and chemicals decreases.

次に本発明の酸化アルミニウム質焼結体の製造方法について説明する。   Next, the manufacturing method of the aluminum oxide sintered body of this invention is demonstrated.

本発明の酸化アルミニウム質焼結体の原料は、例えば純度95%以上の酸化アルミニウム粉末に対し、SiO、CaO、MgOの精製原料を所定量添加することにより得られる。このとき1次原料の粒径としては、レーザー回折法により得られる粒度分布におけるD50が0.8〜1.5μmを50〜90質量%と、D50が0.5〜0.7μmを10〜50質量%の割合で混合する。このように粒度配合することにより、D50の小さな1次原料粒子がD50の大きな1次原料粒子の隙間に入り込むため、成形後の成形体の生密度を向上させることが可能であり、成形体のハンドリング性を向上することができるばかりか、焼結体の密度も向上する。 The raw material of the aluminum oxide sintered body of the present invention can be obtained, for example, by adding a predetermined amount of SiO 2 , CaO, MgO refined raw material to aluminum oxide powder having a purity of 95% or more. At this time, as the particle size of the primary material, D50 in the particle size distribution obtained by the laser diffraction method is 0.8 to 1.5 μm, 50 to 90 mass%, and D50 is 0.5 to 0.7 μm, 10 to 50. Mix at a mass percentage. By blending in this way, the primary raw material particles having a small D50 enter the gaps between the primary raw material particles having a large D50, so that the green density of the molded body after molding can be improved. In addition to improving handling properties, the density of the sintered body is also improved.

ここで、D50が0.8〜1.5μmと粒子径の大きい領域のものは、0.8μmより小さい粒径では、粒子同士の隙間に入り込み生密度を向上させるための、小さい領域の粒子を低コストで製造するのが難しくなるからであり、1.5μmより大きい粒径では、焼結体としたときに緻密化しにくいからである。また、D50が0.5〜0.7μmと小さな領域のものは、0.5μm以下では上述のように大きい粒子の隙間に入り込んでも、粒子径が小さすぎるために成形体の生密度を向上させる効果に乏しく、0.7μmより大きい粒子径では大きい粒子の隙間に入り込みにくく、生密度を向上させにくいためである。   Here, in the region where D50 is 0.8 to 1.5 μm and the particle size is large, particles having a small particle size for entering the gap between the particles and improving the raw density are obtained when the particle size is smaller than 0.8 μm. This is because it is difficult to manufacture at a low cost, and when the particle diameter is larger than 1.5 μm, it is difficult to make the sintered body dense. In addition, in the region where D50 is as small as 0.5 to 0.7 μm, the particle size is too small at 0.5 μm or less so that the green density of the molded body is improved. This is because the effect is poor, and when the particle diameter is larger than 0.7 μm, it is difficult to enter the gap between large particles, and it is difficult to improve the green density.

また、酸化アルミニウムの1次原料粉末に含まれる不純物量は0.1%以下とするのが良く、特に、Na成分については焼結体とした後に、これを半導体製造工程等で使用するとウェハの汚染源となるため、40ppm以下の範囲で極力少なくするのが良い。   Also, the amount of impurities contained in the primary raw material powder of aluminum oxide should be 0.1% or less. In particular, when the Na component is made into a sintered body and then used in a semiconductor manufacturing process or the like, Since it becomes a contamination source, it is better to reduce it as much as possible within the range of 40 ppm or less.

また、Si、Ca、Mgの金属元素からなる焼結助剤粉末としては、高価な精製原料ではなく、Si、Ca、Mg成分からなるドロマイト、カオリン、タルク、粘土、長石、石灰等の天然原料を用いることが可能であり、この場合は最終的に酸化アルミニウム質焼結体の特性劣化を避けるためになるべく不純物量の少ないものを用いるのが良い。   In addition, as a sintering aid powder composed of metal elements of Si, Ca, Mg, natural raw materials such as dolomite, kaolin, talc, clay, feldspar, lime, etc. composed of Si, Ca, Mg components are not expensive refined raw materials. In this case, it is preferable to use a material having as little impurity as possible in order to avoid deterioration of the characteristics of the aluminum oxide sintered body.

次に、酸化アルミニウム1次原料粉末と前記焼結助剤粉末を溶媒、バインダー、分散剤等とともに混合ミルにより混合しスラリーとする。その後、スラリーをスプレードライヤー等の噴霧造粒機によって造粒し、成形容易な2次原料粉末とする。そして2次原料粉末を型に充填して成形を行う。成形方法としては、プレス成形法、冷間静水圧プレス成形法、鋳込み成形法、射出成形法等、1次および2次原料粉末を型に充填する成形方法であればどのような成形方法でも成形可能であるが、大型の厚肉部を有する製品を製造するにあたっては、鋳込み成形法、冷間静水圧プレス成形法を用いるのがより好適である。   Next, the aluminum oxide primary raw material powder and the sintering aid powder are mixed with a solvent, a binder, a dispersant and the like by a mixing mill to form a slurry. Thereafter, the slurry is granulated by a spray granulator such as a spray dryer to obtain a secondary raw material powder that can be easily molded. Then, the secondary raw material powder is filled into a mold and molded. As a molding method, any molding method can be used as long as it is a molding method in which primary and secondary raw material powders are filled into a mold, such as a press molding method, a cold isostatic press molding method, a casting molding method, and an injection molding method. Although it is possible, in manufacturing a product having a large thick part, it is more preferable to use a casting method or a cold isostatic pressing method.

そして、上述のようにして成形体を得た後、焼成を行う。焼成炉は1800℃前後まで昇温可能である大気雰囲気炉であればいずれも適用可能であり、特に大型の厚肉部を有する製品の製造には、焼成容量の大きな大型炉を用いる。本発明の酸化アルミニウム質焼結体は成形体を焼成炉にて1500〜1600℃の温度にて焼成することにより得られる。   And after obtaining a molded object as mentioned above, baking is performed. Any firing furnace can be applied as long as it can raise the temperature to around 1800 ° C., and a large furnace having a large firing capacity is used for manufacturing a product having a large thick part. The aluminum oxide sintered body of the present invention can be obtained by firing the compact at a temperature of 1500 to 1600 ° C. in a firing furnace.

このとき、焼成炉内で用いる焼成治具としては、破断荷重の10〜50%の荷重値とし、温度1600℃以下で5時間以上加熱したときの条件下でのJISR1601−1995抗折試験片サイズのクリープ変形量が5mm以下の特性を有するものを用い、これを成形体に当接して焼成を行う。このような治具は大型の厚肉部を有する製品の成形体を焼成する場合に、自重による変形を防止するためによく用いられる。ここで、本発明のように少なくとも一部分が5mm以上の厚肉部を有する酸化アルミニウム質焼結体は大型形状となるために、焼成時に自重による変形を防止するために、焼成治具を用いて各部の変形を抑制することとなる。よって、焼成治具が変形すれば、その変形量がそのまま酸化アルミニウム質焼結体に反映されてしまう。よって、治具の変形量を抑える必要があるために前記条件に見合う焼成治具を仕様している。クリープ変形量を5mm以下としたのは、5mmより多いと実際に焼成時に用いた際に焼結体の荷重により治具が変形してしまうために好ましくない。   At this time, the firing jig used in the firing furnace has a load value of 10 to 50% of the breaking load, and the size of the JIS R1601-1995 bending test piece under the condition of heating at a temperature of 1600 ° C. or less for 5 hours or more. A material having a creep deformation amount of 5 mm or less is used, and this is abutted against a molded body and fired. Such a jig is often used to prevent deformation due to its own weight when a molded product having a large thick part is fired. Here, since the aluminum oxide sintered body having a thick portion at least partially 5 mm or more as in the present invention has a large shape, a firing jig is used to prevent deformation due to its own weight during firing. The deformation of each part will be suppressed. Therefore, if the firing jig is deformed, the amount of deformation is directly reflected in the aluminum oxide sintered body. Therefore, since it is necessary to suppress the deformation amount of the jig, a firing jig that meets the above conditions is specified. When the creep deformation amount is set to 5 mm or less, if it is more than 5 mm, the jig is deformed by the load of the sintered body when actually used during firing, which is not preferable.

また、焼成治具の材質としては、焼結体の重量を支える場合は高温でその重量が荷重として作用するために、JIS荷重軟化点が1800℃以上の特性を有するものを用いるのが良い。これまでの検討により、JIS荷重軟化点が1800℃より低い温度を示す材質からなる焼成治具では、焼成中に著しい変形が起こり、この変形が酸化アルミニウム質焼結体に転写してしまうために好ましくない。具体的材質としては、高純度のアルミナやムライト、SiC、マグネシア、ジルコニア等が挙げられる。   Further, as the material of the firing jig, it is preferable to use a material having a characteristic that the JIS load softening point is 1800 ° C. or higher because the weight acts as a load at a high temperature when supporting the weight of the sintered body. According to the examination so far, a firing jig made of a material having a JIS load softening point lower than 1800 ° C. undergoes significant deformation during firing, and this deformation is transferred to the aluminum oxide sintered body. It is not preferable. Specific materials include high-purity alumina, mullite, SiC, magnesia, zirconia, and the like.

上述のような製造方法を経て得られた本発明の酸化アルミニウム質焼結体は、その5mm以上の厚肉部で表面近傍の平均結晶粒径が内部よりも大きくその差を10μm以下とでき、表面と内部の焼結体組織に特性の劣化や焼結体の変形の原因となるような差を生じることがなく、良好な焼結体を製造することが可能である。   The aluminum oxide sintered body of the present invention obtained through the manufacturing method as described above has an average crystal grain size in the vicinity of the surface at a thick part of 5 mm or more larger than the inside, and the difference can be 10 μm or less. It is possible to manufacture a good sintered body without causing a difference in characteristics between the surface and the inner sintered body and causing deformation of the sintered body.

次に、本発明の酸化アルミニウム質焼結体を半導体製造装置である誘導結合型プラズマエッチング装置の処理容器部材として用いた例を図1に示し、以下詳細を説明する。   Next, an example in which the aluminum oxide sintered body of the present invention is used as a processing container member of an inductively coupled plasma etching apparatus which is a semiconductor manufacturing apparatus is shown in FIG.

図1は誘導結合型プラズマエッチング装置を示す概略断面図であり、図中参照符号1が本発明の処理容器1である。この処理容器1はドーム状をなし、内壁表面には粗面部2を有しており、その下に金属製の下部チャンバー3が処理容器1に密着するように設けられ、これらによりチャンバー3が構成されている。下部チャンバー3内の上部には支持テーブル4が配置され、その上に静電チャック5が設けられており、静電チャック5上に半導体ウェハ6が載置される。静電チャック5の電極には直流電源が接続されており、これにより半導体ウェハ6を静電吸着する。また、支持テーブル4にはRF電源が接続されている。一方、下部ャンバー3の底部には真空ポンプ9が接続されており、チャンバー3内を真空排気可能となっている。また、下部チャンバー3の上部には半導体ウェハ6の上方にエッチングガス、例えばCFガスを供給するガス供給ノズル7が設けられている。処理容器1の周囲には誘導コイル8が設けられており、この誘導コイル8にはRF電源から例えば400kHzの高周波が印加される。 FIG. 1 is a schematic cross-sectional view showing an inductively coupled plasma etching apparatus, and reference numeral 1 in the figure is a processing container 1 of the present invention. The processing vessel 1 has a dome shape and has a rough surface portion 2 on the inner wall surface, and a metal lower chamber 3 is provided below the processing vessel 1 so as to form the chamber 3. Has been. A support table 4 is disposed in the upper part of the lower chamber 3, and an electrostatic chuck 5 is provided thereon, and a semiconductor wafer 6 is placed on the electrostatic chuck 5. A direct current power source is connected to the electrode of the electrostatic chuck 5, thereby electrostatically adsorbing the semiconductor wafer 6. The support table 4 is connected to an RF power source. On the other hand, a vacuum pump 9 is connected to the bottom of the lower chamber 3 so that the inside of the chamber 3 can be evacuated. A gas supply nozzle 7 for supplying an etching gas such as CF 4 gas is provided above the semiconductor wafer 6 above the lower chamber 3. An induction coil 8 is provided around the processing container 1, and a high frequency of 400 kHz, for example, is applied to the induction coil 8 from an RF power source.

このようなエッチング装置10においては、真空ポンプ9によりチャンバー3内を所定の真空度まで排気し、静電チャック5により半導体ウェハ6を静電吸着した後、ノズル7からエッチングガスとして例えばCFガスを供給しつつ、RF電源から誘導コイル9に給電することにより、半導体ウェハ6の上方部分にエッチングガスのプラズマが形成され、半導体ウェハ6が所定のパターンにエッチングされる。なお、高周波電源から支持テーブル5に給電することにより、エッチングの異方性を高めることができる。 In such an etching apparatus 10, the inside of the chamber 3 is evacuated to a predetermined degree of vacuum by the vacuum pump 9, the semiconductor wafer 6 is electrostatically adsorbed by the electrostatic chuck 5, and then, for example, CF 4 gas is used as an etching gas from the nozzle 7. By supplying power to the induction coil 9 from the RF power supply, etching gas plasma is formed in the upper portion of the semiconductor wafer 6 and the semiconductor wafer 6 is etched into a predetermined pattern. Note that the anisotropy of etching can be increased by supplying power to the support table 5 from a high-frequency power source.

このようなエッチング処理の際、処理容器用1の内面はCF4ガスやそれらのプラズマによる腐食を受けるとともに、フッ化物膜等が付着する。しかしながら、処理容器1は上述した本発明の酸化アルミニウム質焼結体で構成されているため、プラズマに対する耐食性が高いとともに、表面に形成された粗面部2の影響により付着物が落下しにくい。   During such an etching process, the inner surface of the processing container 1 is corroded by CF4 gas or plasma thereof, and a fluoride film or the like is attached thereto. However, since the processing container 1 is composed of the above-described aluminum oxide sintered body of the present invention, the corrosion resistance against plasma is high, and deposits are difficult to fall due to the influence of the rough surface portion 2 formed on the surface.

本発明の酸化アルミニウム質焼結体は、図5のような半導体製造装置の処理容器に限らず、チャンバーやマイクロ波導入窓、シャワーヘッド、フォーカスリング、シールドリング等の部材や、また液晶製造装置ではステージ、ミラー、マスクホルダー、マスクステージ、チャック、レチクル等、大型で厚肉部を有する部材として適用可能である。   The aluminum oxide sintered body of the present invention is not limited to the processing container of the semiconductor manufacturing apparatus as shown in FIG. 5, but is a member such as a chamber, a microwave introduction window, a shower head, a focus ring, a shield ring, or a liquid crystal manufacturing apparatus. Then, it is applicable as a large-sized member having a thick part, such as a stage, a mirror, a mask holder, a mask stage, a chuck, and a reticle.

以上、本発明の実施形態について説明したが、本発明の範囲を逸脱しない範囲であれば、種々の改良や変更したものにも適用することができることは言うまでもない。   As mentioned above, although embodiment of this invention was described, it cannot be overemphasized that it can apply also to what was variously improved and changed if it is a range which does not deviate from the scope of the present invention.

以下本発明の実施例を示す。   Examples of the present invention will be described below.

まず、純度95%、粒径1.2μmを80質量%、0.6μmを20質量%の割合で粒度配合させた酸化アルミニウム1次原料粉末を準備する。次に、精製されたSiO、CaO、MgO粉末を表1に示すCaO/SiO、MgO/SiOの比率で添加して、試料No.1〜12のもととなる混合粉末を準備する。 First, an aluminum oxide primary raw material powder having a purity of 95%, a particle size of 1.2 μm and a particle size of 80% by mass and 0.6 μm of 20% by mass is prepared. Next, purified SiO 2 , CaO, and MgO powders were added at the ratio of CaO / SiO 2 and MgO / SiO 2 shown in Table 1, and sample No. Prepare the mixed powder which becomes the basis of 1-12.

次に、この混合粉末にPVAを2質量%、溶媒として水を100質量%加えて、混合ミルに投入し1時間運転した後、スラリーを取り出す。そして該スラリーをスプレードライヤーにて2次原料粉末に造粒し、それを冷間静水圧プレス成形装置にて成形しφ75mm×厚さ12.5mmの成形体を得て、これを大気雰囲気炉にて1550℃で焼成することにより外径φ60mm×厚さ5mmの酸化アルミニウム質焼結体の試料No.1〜12を得た。   Next, 2% by mass of PVA and 100% by mass of water as a solvent are added to the mixed powder, put into a mixing mill and operated for 1 hour, and then the slurry is taken out. Then, the slurry is granulated into a secondary raw material powder with a spray dryer, which is then molded with a cold isostatic press molding device to obtain a molded body having a diameter of 75 mm × thickness of 12.5 mm. By firing at 1550 ° C., sample No. of an aluminum oxide sintered body having an outer diameter of φ60 mm × thickness of 5 mm was obtained. 1-12 were obtained.

そして、試料No.1〜12について、試料中央部を厚さ方向に切断し、その断面を研磨、エッチング処理し、表面から100μmの位置の結晶粒径と、中央部の結晶粒径の大きさをそれぞれ200μm×200μmの範囲で、走査型電子顕微鏡にて2000倍の倍率で撮影した写真をもとに測定して平均し、それを平均結晶粒径として算出した。   And sample no. About 1-12, the sample center part was cut | disconnected in thickness direction, the cross section was grind | polished and etched, and the crystal grain size of the position of 100 micrometers from the surface and the magnitude | size of the crystal grain diameter of a center part are 200 micrometers x 200 micrometers, respectively. In this range, measurements were taken based on a photograph taken at a magnification of 2000 times with a scanning electron microscope and averaged, and the average crystal grain size was calculated.

また、各試料の耐食性についてRIE(Reactive Ion Etchinng)装置にセットしてCF4等のフッ素系ガス雰囲気下でプラズマ中に曝露し、その前後の重量減少量から1分間当たりのエッチングレートを算出した。なお、前記耐食性試験に用いた各試料は表面を鏡面加工したものを用いている。   Further, the corrosion resistance of each sample was set in an RIE (Reactive Ion Etching) apparatus, exposed to plasma in a fluorine-based gas atmosphere such as CF4, and the etching rate per minute was calculated from the weight loss before and after that. Each sample used in the corrosion resistance test has a mirror-finished surface.

結果を表1に示す。

Figure 2005281054
The results are shown in Table 1.
Figure 2005281054

表1から、本発明範囲外の試料No.1、7については、焼結助剤として添加したCaO/SiO比率、MgO/SiO比率が適正範囲でなく、焼成後の焼結体の反りが他の試料と比較して10mmと著しく大きかった。 From Table 1, sample No. For Nos. 1 and 7, the CaO / SiO 2 ratio and MgO / SiO 2 ratio added as sintering aids were not in the proper ranges, and the warped sintered body was significantly larger at 10 mm than other samples. It was.

また、試料No.6、12についてはCaO/SiO比率、MgO/SiO比率が適正範囲でなく、結晶の粒成長を抑制する働きのあるCa、Mg量が多いために十分に緻密化されておらず、その後の評価を実施するまでには至っていない。 Sample No. 6 and 12, the CaO / SiO 2 ratio and the MgO / SiO 2 ratio are not within the proper ranges, and are not sufficiently densified due to the large amounts of Ca and Mg that function to suppress crystal grain growth. It has not yet been evaluated.

これらと比較して試料No.2〜6、8〜11は表面近傍の結晶粒子径の内部と差が10μm以下であり、大きな変形もなく十分緻密化しており良好であった。   Compared to these, sample No. Nos. 2 to 6 and 8 to 11 were good because the difference from the inside of the crystal particle diameter in the vicinity of the surface was 10 μm or less, sufficiently densified without significant deformation.

次に、実施例1の本発明範囲外の試料No.7と、範囲内の試料No.10と同様の原料仕様を用いて、図2に示すような幅500mm×高さ500mm×奥行き700mm、肉厚20mmの1端が開放された箱形直方体をした、大型で厚肉部を有する製品20の製造を行った。   Next, sample No. 1 of Example 1 outside the scope of the present invention. 7 and sample No. within the range. 10 using a raw material specification similar to 10 and having a box-shaped rectangular parallelepiped having a width of 500 mm, a height of 500 mm, a depth of 700 mm, and a thickness of 20 mm as shown in FIG. 20 were manufactured.

前記製品の製造方法としては、造粒して2次原料とするまでの工程は実施例1と同様の製法をとり、その後冷間静水圧プレス成形法により、1端が開放された箱形直方体を概略成形し、焼成後の焼結体が前記寸法となるように計算して切削加工により仕上げを行うことにより成形体を作製した。   As a manufacturing method of the product, the steps from granulation to secondary raw material are the same as in Example 1, and then a box-shaped cuboid with one end opened by cold isostatic pressing. Was molded so that the sintered body after firing would have the above dimensions and finished by cutting to produce a molded body.

そして、成形体を大気雰囲気炉にて焼成して焼結体の製品20を得るが、このとき製品20の開放面21が焼成時の軟化に伴って自重によって潰れないよう保形のために焼成治具22を開放面21の垂直方向に図に示すような位置にセットした。この焼成治具22の材質としては、高純度アルミナを用いており、破断加重の10〜50%を荷重としたときに、1600℃で5時間以上加熱した条件下でのJISR1601−1995抗折試験片サイズのクリープ変形量が5mm以下の特性を有し、さらにJIS荷重軟化点が1800℃以上の特性を有するものを治具材質として用いている。   Then, the compact is fired in an atmospheric furnace to obtain a sintered product 20. At this time, the open surface 21 of the product 20 is fired for shape retention so as not to be crushed by its own weight due to softening during firing. The jig 22 was set at a position as shown in the drawing in the direction perpendicular to the open surface 21. The firing jig 22 is made of high-purity alumina, and JIS R1601-1995 bending test under the condition of heating at 1600 ° C. for 5 hours or more when 10 to 50% of the breaking load is applied. One jig having a creep deformation amount of 5 mm or less and a JIS load softening point of 1800 ° C. or more is used as a jig material.

このような焼成仕様で1580℃で焼成を行い、製品20を作製した。   Firing was performed at 1580 ° C. with such firing specifications to produce a product 20.

その結果、本発明範囲外の試料No.7の原料使用を用いて作製した製品20は変形が大きく、前記焼成治具を仕様したにもかかわらず、開放面21の形状が歪んでしまい、製品として使用できるものではなかった。   As a result, sample no. The product 20 produced using the raw material No. 7 was greatly deformed, and the shape of the open surface 21 was distorted even though the firing jig was specified, so that it could not be used as a product.

これと比較して本発明範囲内の試料No.10と同様の原料仕様として作製した製品20は、図の形状を保つことが可能であり、良好に製造することができた。   Compared to this, sample No. within the scope of the present invention. The product 20 produced as a raw material specification similar to that of FIG. 10 was able to maintain the shape of the figure and could be manufactured satisfactorily.

本発明の酸化アルミニウム質焼結体を処理容器として用いた誘導結合型プラズマエッチング装置を示す概略断面図である。It is a schematic sectional drawing which shows the inductively coupled plasma etching apparatus using the aluminum oxide sintered body of this invention as a processing container. 本発明の実施例2の1端が開放された箱形直方体を示す概略図である。It is the schematic which shows the box-shaped rectangular parallelepiped by which one end of Example 2 of this invention was open | released.

符号の説明Explanation of symbols

1:処理容器
2:粗面部
3:チャンバー
4:支持テーブル
5:静電チャック
6:半導体ウエハ
7:ガス供給ノズル
8:誘導コイル
9: 真空ポンプ
10:エッチング装置
20:製品
21:開放面
22:焼成治具
1: Processing container
2: rough surface portion 3: chamber 4: support table 5: electrostatic chuck 6: semiconductor wafer 7: gas supply nozzle 8: induction coil 9: vacuum pump 10: etching apparatus 20: product 21: open surface 22: firing jig

Claims (7)

酸化アルミニウムを95質量%以上、少なくともSi、Ca、Mgの金属元素からなる焼結助剤を5質量%以下含み、5mm以上の厚肉部を有する焼結体であって、前記焼結体の表面近傍の平均結晶粒子径が内部よりも大きく、その差が10μm以下であることを特徴とする酸化アルミニウム質焼結体。 A sintered body comprising 95% by mass or more of aluminum oxide, 5% by mass or less of a sintering aid composed of at least Si, Ca, and Mg metal elements, and having a thick portion of 5 mm or more, An aluminum oxide sintered body characterized in that the average crystal particle diameter in the vicinity of the surface is larger than the inside, and the difference is 10 μm or less. 前記金属元素中のCaO/SiOの質量比が0.3〜3、MgO/SiOの質量比が1〜5であることを特徴とする請求項1に記載の酸化アルミニウム質焼結体。 2. The aluminum oxide sintered body according to claim 1, wherein a mass ratio of CaO / SiO 2 in the metal element is 0.3 to 3 and a mass ratio of MgO / SiO 2 is 1 to 5. 3. 前記金属元素が質量基準でSiをSiO換算で6000ppm以下、CaをCaO換算で6000ppm以下、MgをMgO換算で12000ppm以下含むことを特徴とする請求項1又は2に記載の酸化アルミニウム質焼結体。 3. The aluminum oxide sintered product according to claim 1, wherein the metal element contains Si in terms of mass of 6000 ppm or less in terms of SiO 2 , Ca in terms of CaO in terms of 6000 ppm or less, and Mg in terms of MgO of 12000 ppm or less. body. 酸化アルミニウムの1次原料粒度分布D50が0.8〜1.5μmの粉末を50〜90質量%、D50が0.5〜0.7μmの粉末を10〜50質量%の割合で混合した原料粉末を得る工程と、
前記原料粉末にバインダーを混合して型に充填し成形して成形体を得る工程と、
破断荷重の10〜50%を荷重値とし、温度1600℃以下で5時間以上加熱した条件下でのJISR1601−1995抗折試験片サイズのクリープ変形量が5mm以下の特性を有する焼成治具を用意し、該焼成治具を前記成形体に当接して1500〜1600℃で焼成して焼結体を得る工程とを有することを特徴とする記載の酸化アルミニウム質焼結体の製造方法。
Raw material powder obtained by mixing 50 to 90% by mass of powder having a primary material particle size distribution D50 of 0.8 to 1.5 μm and 50 to 90% by mass of D50 of 0.5 to 0.7 μm. Obtaining
A step of mixing the raw material powder with a binder, filling a mold and molding to obtain a molded body;
A firing jig having a characteristic that the creep deformation amount of the JIS R1601-1995 bending test specimen size is 5 mm or less under the condition that 10-50% of the breaking load is a load value and heated at a temperature of 1600 ° C. or less for 5 hours or more is prepared. And a step of bringing the firing jig into contact with the molded body and firing at 1500 to 1600 ° C. to obtain a sintered body.
前記酸化アルミニウムの1次原料粉末に含まれるNa量が40ppm以下であることを特徴とする請求項4に記載の酸化アルミニウム質焼結体の製造方法。 5. The method for producing an aluminum oxide sintered body according to claim 4, wherein the amount of Na contained in the primary raw material powder of aluminum oxide is 40 ppm or less. 前記焼成治具のJIS荷重軟化点が1800℃以上であることを特徴とする請求項4記載の酸化アルミニウム質焼結体の製造方法。 The method for producing an aluminum oxide sintered body according to claim 4, wherein the firing jig has a JIS load softening point of 1800 ° C. or higher. 請求項1乃至3のいずれかに記載の酸化アルミニウム質焼結体を用いた半導体、液晶製造装置用部材。 A member for a semiconductor or liquid crystal manufacturing apparatus using the aluminum oxide sintered body according to any one of claims 1 to 3.
JP2004097191A 2004-03-29 2004-03-29 Aluminum oxide-based sintered compact, its producing method, and member for semiconductor or liquid crystal producing equipment, which is obtained by using the sintered compact Pending JP2005281054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004097191A JP2005281054A (en) 2004-03-29 2004-03-29 Aluminum oxide-based sintered compact, its producing method, and member for semiconductor or liquid crystal producing equipment, which is obtained by using the sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004097191A JP2005281054A (en) 2004-03-29 2004-03-29 Aluminum oxide-based sintered compact, its producing method, and member for semiconductor or liquid crystal producing equipment, which is obtained by using the sintered compact

Publications (1)

Publication Number Publication Date
JP2005281054A true JP2005281054A (en) 2005-10-13

Family

ID=35179839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004097191A Pending JP2005281054A (en) 2004-03-29 2004-03-29 Aluminum oxide-based sintered compact, its producing method, and member for semiconductor or liquid crystal producing equipment, which is obtained by using the sintered compact

Country Status (1)

Country Link
JP (1) JP2005281054A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209248A (en) * 2012-03-30 2013-10-10 Kyocera Corp Magnesium aluminate-based sintered body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616469A (en) * 1992-06-30 1994-01-25 Kyocera Corp Alumina porcelain composition
JPH092864A (en) * 1995-04-18 1997-01-07 Applied Materials Inc Lowly granulating plasma-resistant fluoro-alumina ceramic material and its production
JP2003321270A (en) * 2002-04-25 2003-11-11 Nitsukatoo:Kk Alumina ceramics superior in wearing resistance and corrosion resistance and method for manufacturing its molding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616469A (en) * 1992-06-30 1994-01-25 Kyocera Corp Alumina porcelain composition
JPH092864A (en) * 1995-04-18 1997-01-07 Applied Materials Inc Lowly granulating plasma-resistant fluoro-alumina ceramic material and its production
JP2003321270A (en) * 2002-04-25 2003-11-11 Nitsukatoo:Kk Alumina ceramics superior in wearing resistance and corrosion resistance and method for manufacturing its molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209248A (en) * 2012-03-30 2013-10-10 Kyocera Corp Magnesium aluminate-based sintered body

Similar Documents

Publication Publication Date Title
KR101196297B1 (en) Y2o3 sintered body, corrosion resistant member and method for producing same, and member for semiconductor/liquid crystal producing apparatus
US20230373870A1 (en) Sintered ceramic body of large dimension and method of making
JP7553556B2 (en) Plasma-resistant yttrium aluminum oxide body
TWI769013B (en) Ceramic sintered body comprising magnesium aluminate spinel
JP4780932B2 (en) Corrosion-resistant member, method for manufacturing the same, and member for semiconductor / liquid crystal manufacturing apparatus
TWI820786B (en) Yttria-zirconia sintered ceramics for plasma resistant materials and method of making the same
KR20230107853A (en) Plasma Resistant Yttrium Aluminum Oxide Chamber Components
JP4798693B2 (en) Yttria ceramic parts for plasma processing apparatus and method for manufacturing the same
JP2004292270A (en) Corrosion resistant member and its manufacturing method
KR20090101245A (en) Ceramic member and corrosion-resistant member
EP4032701A1 (en) Multilayer sintered ceramic body
JP2005281054A (en) Aluminum oxide-based sintered compact, its producing method, and member for semiconductor or liquid crystal producing equipment, which is obtained by using the sintered compact
US20230373862A1 (en) Zirconia toughened alumina ceramic sintered bodies
TWI854161B (en) Zirconia toughened alumina ceramic sintered bodies
JP5274508B2 (en) Corrosion-resistant member, method for manufacturing the same, and member for semiconductor / liquid crystal manufacturing apparatus
JP2007217218A (en) Yttria ceramic for plasma process apparatus and method for manufacturing the same
JP2023088495A (en) Yag sintered body and component for semiconductor fabrication device
JP2013079155A (en) Plasma resistant member
JP2009256174A (en) Alumina sintered compact, member for semiconductor production apparatus, member for liquid-crystal-panel production apparatus, and member for dielectric resonator
JP2007077005A (en) Yttria ceramic sintered body and method for manufacturing the same
Hamada et al. Y 2 O 3 sintered body and corrosion resistant member for semiconductor/liquid crystal producing apparatus
JP2008195546A (en) Ceramics for plasma treatment device, and production method thereof
JP2008230901A (en) Ceramic member and corrosion resistant member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100713