JP2004292270A - Corrosion resistant member and its manufacturing method - Google Patents

Corrosion resistant member and its manufacturing method Download PDF

Info

Publication number
JP2004292270A
JP2004292270A JP2003089419A JP2003089419A JP2004292270A JP 2004292270 A JP2004292270 A JP 2004292270A JP 2003089419 A JP2003089419 A JP 2003089419A JP 2003089419 A JP2003089419 A JP 2003089419A JP 2004292270 A JP2004292270 A JP 2004292270A
Authority
JP
Japan
Prior art keywords
sintered body
less
mass
ppm
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003089419A
Other languages
Japanese (ja)
Inventor
Toshiyuki Hamada
敏幸 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003089419A priority Critical patent/JP2004292270A/en
Publication of JP2004292270A publication Critical patent/JP2004292270A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method resolving a problem of difficulty in preparing a sufficiently dense Y<SB>2</SB>O<SB>3</SB>sintered compact in a large furnace for mass production because temperature control is difficult due to high firing temperature of Y<SB>2</SB>O<SB>3</SB>. <P>SOLUTION: This corrosion resistant member comprises a Y<SB>2</SB>O<SB>3</SB>sintered compact containing not less than 99.0 mass% Y<SB>2</SB>O<SB>3</SB>, not less than 0.01 mass% but less than 1 mass% Ti in terms of an oxide, not higher than 300 ppm SiO<SB>2</SB>as an unavoidable impurity, not higher than 100 ppm Fe<SB>2</SB>O<SB>3</SB>, and 100 ppm alkali metal oxide, and it is manufactured as a Y<SB>2</SB>O<SB>3</SB>sintered compact having a dielectric loss of not higher than 2×10<SP>-4</SP>for a microwave of 10 MHz to 5 GHz. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はY焼結体並びにその製造方法に関し、更にはそのY焼結体を用いた半導体・液晶製造装置の内壁材(チャンバー)、マイクロ波導入窓、シャワーヘッド、フォーカスリング、シールドリング等をはじめとする半導体・液晶製造装置(エッチャーやCVD等)の中でも特に腐食性ガスまたはそのプラズマに対して高い耐食性を求められる耐食性部材に適用できるものである。
【0002】
【従来の技術】
近年、半導体製造におけるドライエッチングプロセスや成膜プロセスなどの各プロセスにおいて、プラズマを利用した技術が盛んに使用されている。半導体の製造時におけるプラズマプロセスでは、特にエッチング、クリーニング用として、反応性の高いフッ素系、塩素系等のハロゲン系腐食性ガスが多用されている。これら腐食性ガス及びプラズマに接触する部分には、高い耐食性が要求される。
【0003】
被処理物以外でこれらの腐食性ガス及びプラズマに接触する部材は、一般に石英ガラスやステンレス、アルミニウム等の耐食性金属が利用されていた。
【0004】
また、セラミックス部材としては、アルミナ焼結体や窒化アルミニウム焼結体、及びこれらセラミックス焼結体に炭化珪素等のセラミック膜を被覆したもの等が使用されていた。
【0005】
更に、最近では上述の部材にかわりイットリウム・アルミニウム・ガーネット(以下YAGと記載)焼結体やY焼結体が耐食性が優れるとして使用されていた。
【0006】
特に、上記Y焼結体は耐食性が優れるとして、最近これらの焼結体をハロゲン系腐食性ガス及びそのプラズマに接触する部材として用いている。
【0007】
その例として、特許文献1では、ハロゲンガスプラズマにより基板を処理する装置に用いられる基板処理用部材に相対密度94%以上、純度99.5%以上のYで構成された低金属汚染の基板処理用部材が示されていた。
【0008】
また、特許文献2では腐食性ガス下でプラズマに曝される少なくとも表面領域をY系焼結体で構成した耐食性部材が示されていた。
【0009】
【特許文献1】
特開2001―179080号公報
【特許文献2】
特願2001−203256号公報
【0010】
【発明が解決しようとする課題】
ところが、上記特許文献1、2の記載にもあるように、Y焼結体は難焼結性であり、十分に緻密化させるには原料粒径の微細化と非常に高い焼結温度が必要とされる。よって、原料粒径の微細化のために長時間を要し、原料製造のために非常にコストがかかるという問題があった。
【0011】
また、Yはその焼結性が低いため、Y単体で焼結体を得ようとすると、焼結温度を1700〜1800℃の高温としなければならず、一般によく使用されている焼成炉の使用温度限界ぎりぎりで焼成しなければならない。よって、焼成の際に焼成炉内を1700〜1800℃の高温度域で安定させることが難しく、焼成を繰り返すうちに1700〜1800℃までの昇温過程やキープ温度にバラツキが生じてしまう。この焼成温度のバラツキがY焼結体の密度に大きく影響し、しかも焼成炉の容量が大きく、Y焼結体の投入量が多い程上記バラツキが大きく、場合によっては必要とする密度が得られないという問題があった。
【0012】
よって、従来技術で示した特許文献1、2では相対密度で95%未満の焼結体しか得られず、相対密度が95%未満であると、その焼結体中には気孔が多く存在しており、より緻密化させたものを得ることができなかった。このため、上述したようにY元素自体はハロゲン系腐食性ガスとの反応生成物の融点が高いために、ハロゲン系腐食性ガスやプラズマに対する耐食性が高いものの、その耐食性を生かそうとしてY焼結体とすると緻密化が困難であるために耐食性が低下するという状況であった。
【0013】
また、Y焼結体を用いた製品量産の際に、焼成の繰り返しにより焼成炉の炉壁や焼成炉に用いられる金属製部品には、著しい酸化や熱サイクルによる構造的に弱い部分への応力集中等が発生し易く、劣化が激しい。そのため、部品寿命が短く、メンテナンスや部品交換等に時間や経費を費やさなければならず、製造コストが高くなるという問題も発生していた。
【0014】
また一方では、半導体製造装置ではプラズマを発生させるため、高周波やマイクロ波を印可することが行われているが、従来から耐食性部材として使用されているアルミナ焼結体は高周波及びマイクロ波の吸収が多いために発熱し、エネルギーロスによりプラズマの発生効率が低下するとともに、アルミナ焼結体が部分的に加熱、膨張してクラックが発生するといった問題もあった。
【0015】
【課題を解決するための手段】
本発明は上記課題に鑑み、Yが99.0質量%以上、Tiが酸化物換算で0.01質量%以上1質量%未満、不可避不純物としてSiOが300ppm以下、Feが100ppm以下、アルカリ金属酸化物が100ppmのY焼結体から成り、誘電損失が、10MHz〜5GHzのマイクロ波において2×10−4以下であることを特徴とする。
【0016】
前記Y焼結体の比重が4.80g/cm以上、平均結晶粒径が2μm以上であることを特徴とする。
【0017】
また、前記耐食性部材の製造方法において、平均粒径が2μm以下の原料粉末により成形された成形体を、1600〜1700℃の温度で焼成してY焼結体を得ることを特徴とする。
【0018】
【発明の実施の形態】
以下、本発明の実施形態について詳細を説明する。
【0019】
本発明の耐食性部材は、ハロゲン系腐食性ガス或いはそのプラズマに対して高い耐食性が要求される半導体製造装置に使用される耐プラズマ部材として好適に使用されるものである。
【0020】
上記ハロゲン系腐食性ガスとしては、SF、CF、CHF、ClF、NF、C、HF等のフッ素系、Cl、HCl、BCl、CCl等の塩素系ガス、或いはBr、HBr、BBr等の臭素系ガスなどがあり、これらの腐食性ガスが使用される1〜10Paの圧力雰囲気下でマイクロ波や高周波が導入されると、これらのガスがプラズマ化され半導体製造装置用の各部材に接触することとなる。また、よりエッチング効果を高めるために上記のような腐食性ガスとともに、Ar等の不活性ガスを導入してプラズマを発生させることもある。
【0021】
本発明は上記のような、腐食性ガスやそのプラズマに曝される部材としてYが99.0質量%以上、Tiが酸化物換算で0.01質量%以上1質量%未満、不可避不純物としてSiOが300ppm以下、Feが100ppm以下、アルカリ金属酸化物が100ppm以下のY焼結体を用いる。
【0022】
ここで上記Y焼結体は、Yとフッ素系ガスが反応すると、主にYFを生成し、また塩素系ガスと反応するとYClを生成するが、これらの反応生成物の融点(YF:1152℃、YCl:680℃)は、従来から用いられていた石英や酸化アルミニウム焼結体との反応により生成される反応生成物の融点(SiF:−90℃、SiCl:−70℃、AlF:1040℃、AlCl:178℃)より高いために腐食性ガスやプラズマに高温で曝されたとしても安定した耐食性を備えている。
【0023】
本発明では上記Y焼結体にTiを所定量添加することにより、ハロゲン系腐食性ガスやそのプラズマに対する十分な耐食性を得ることができ、なおかつ従来のより好適とされた焼成温度(特許文献1、2)よりも低い温度域にて、十分な耐食性の得られる焼結体の密度が得られることを見出したものである。
【0024】
ここで、上記Tiの添加量としては、酸化物換算で0.01質量%以上1質量%未満とするのが良い。Tiを添加するのは、TiはY焼結体の焼結温度よりも低い温度で焼結体中に液相を形成し、元素が拡散しやすい状態を作るため、通常Y焼結体が十分に緻密化する温度よりも低温での緻密化が可能となるからである。
【0025】
また、上記Tiの添加量を酸化物換算で0.01質量%以上1質量%未満としたのは、添加量が0.01質量%未満であると、従来よりも低温で緻密化することができないからであり、1質量%以上であると、Tiを添加していないY焼結体と比較してハロゲン系腐食性ガスやそのプラズマに対する耐食性が低下してしまうためである。
【0026】
なお、Tiを添加する場合は、酸化チタンの形で添加すればよいが、その他にチタン酸カルシウムやチタン酸バリウム等、Y元素と反応性の低い元素を含むTi化合物であればどのようなものでも添加可能である。
【0027】
また、上記Y焼結体中の不可避不純物の含有量としては、SiOが300ppm以下、Feが100ppm以下、その他アルカリ金属酸化物が100ppm以下とすることが好ましい。
【0028】
ここで、上記不可避不純物の含有量を上記範囲としたのは、不可避不純物を上記範囲より多く含有すると、ハロゲン系腐食性ガスやそのプラズマに対する耐食性が低下するためである。
【0029】
具体的にはSiOはYと反応して主にYSi(ダイシリケート)を生成し、FeはYと反応してYFeOやYFe12等の化合物を形成する。そしてそれらYとの化合物がハロゲン系腐食性ガスやそのプラズマに対して耐食性が低いために、それらの化合物が含まれるとY焼結体の耐食性も低下してしまう。また、その他アルカリ金属酸化物も上記SiOやFeの場合と同様に、Y焼結体中にそのままの形で存在するか、Yと化合物を形成した形で存在し、それらがハロゲン系腐食性ガスやそのプラズマに対し耐食性が低いため、それらを含有するY焼結体としての耐食性も低下する。
【0030】
一方、本発明のY焼結体は、従来のアルミナや石英、YAGと比較して誘電損失が10MHz〜5GHzにおいて、2×10−4以下と低いことも特徴である。このため、半導体製造装置内で発生する高周波及びマイクロ波の吸収を抑えることができ、無駄な発熱がなく、プラズマの発生効率に影響するエネルギーのロスを抑えることができる。更には、焼結体そのものが部分的に加熱、膨張してクラックが発生したりすることがない。
【0031】
従って、半導体製造装置用の各種部材として本発明のTiを添加させたY焼結体を用いることにより、従来よりも高い耐食性を示し、プラズマの発生効率を低下させる発熱もなく、製造コストの安い耐食性部材を提供することが可能となる。
【0032】
なお、上記Y焼結体の誘電損失は、高周波領域(10〜1000MHz)におけるY焼結体の誘電損失(tanδ)を高周波電流電圧法で測定した時の値が、2×10−4以下で、かつマイクロ波領域(1〜5GHz)におけるY焼結体の誘電損失(tanδ)を空洞共振器法で測定した時の値も2×10−4以下である。
【0033】
さらに、上記Y焼結体は比重が4.80g/cm以上、平均結晶粒径が2μm以上であることが好ましい。
【0034】
ここで、上記比重が4.80g/cm以上としたのは、4.80g/cmより低い場合には、焼結体中に多数の気孔が存在し、この影響により焼結体表面には多数の凹凸が存在するため、焼結体表面のハロゲン系腐食性ガスやそのプラズマに曝される表面積が多くなり、耐食性が低下するからである。
【0035】
また、上記平均結晶粒径を2μm以上としたのは、2μmより小さい場合には、焼結体中に誘電損失を大きくする粒界層が多数存在するからであり、平均結晶粒径を2μm以上としてなるべく粒界層を少なくすることが、Y焼結体を低誘電損失とするためには好適である。
【0036】
次に本発明のY焼結体の製造方法を以下に示す。
【0037】
まず、粉砕用のミルにイオン交換水を溶媒として平均粒径2μm以下のイットリア粉末と酸化チタン粉末を0.01以上1質量%未満投入して湿式粉砕した後、有機バインダーを添加してスラリーを作製する。
【0038】
ここで、上記イットリア粉末の粒径を2μm以下としたのは、2μmより大きな粒径とすると、焼結性が悪くなり焼結体としたときに緻密化できなくなるからである。
【0039】
また、上記スラリー作製に使用する粉砕用ミルには例えばボールミルを用いることが可能である。このボールミルのメディアには、メディアの摩耗を抑え、該スラリーにメディアの摩耗粉が不純物として混入するのを防止するためには高純度のZrOボールを用いることが有効である。粉砕時間としては120〜540時間が好適である。
【0040】
更に、粉砕用ミルとしてはビーズミルを使用することもできる。ビーズミルのメディアとしては、ボールミルと同様に高純度のZrOビーズを用いることがより細かい粉砕粒度を得る点においても好適である。粉砕時間としては60〜360時間粉砕すれば所望の粒度は得られるが、粉砕時間を長時間とするほどより細かい粒度とすることができる。
【0041】
更に、上記有機バインダーとしては、パラフィンワックス、ワックスエマルジョン(ワックス+乳化剤)、PVA(ポリビニールアルコール)、PEG(ポリエチレングリコール)、PEO(ポリエチレンオキサイド)等の使用が有効である。
【0042】
また、上記溶媒についてはイオン交換水のみならず、有機溶媒等も使用できる。
【0043】
そして、スラリー作製後、前記スラリーをスプレードライ装置にて造粒し、それを用いて金型プレス成形等の成形方法により所定形状に成形する。
【0044】
ここで、上記成形は目的とする部材の形状に合わせてその方法を選択すればよく、具体的には金型プレス成形、静水圧プレス成形等の乾式成形方法や鋳込み成形、押出成形、射出成形、テープ成形等の湿式成形方法等による成形が可能である。
【0045】
そして上記のようにして成形した成形体を必要に応じて400〜600℃の温度で脱脂して、成形体中の有機バインダーを分解除去した後、大気雰囲気または酸素雰囲気中にて1600〜1700℃で焼成する。
【0046】
ここで、上記焼成温度は1600〜1700でも十分にY焼結体を緻密化することが可能であり、従来Y焼結体を焼成する際に必要であった1700〜1800℃という焼成温度域よりも低い温度域で焼成することが可能となる。これにより、焼成炉の温度制御をし易くなるばかりか、焼成炉の限界使用温度に対して低い温度域で焼成を行えるために、焼成炉の炉壁や、周辺の金属製部品等の寿命を長くし、製造コストを抑えることができる。
【0047】
また、上記酸素雰囲気中で焼成する際には、酸素濃度50体積%以上、より好ましくは80体積%以上が焼結体をより高密度化させるためには望ましい。
【0048】
なお、上記酸素雰囲気中での焼成は大気雰囲気中よりも焼結体をより緻密化させることが可能である。一般に焼結体を高密度化させるためには、焼結過程において気孔内に取り込まれた雰囲気ガスが外部に排除されることが必要であり、大気雰囲気中での焼成の場合、気孔内に取り込まれる雰囲気ガスは空気即ち酸素と窒素ガスであるのに対し、酸素雰囲気焼成では酸素ガスのみとなる。本発明の焼結体は酸化物セラミックスであるため、結晶粒界での元素の拡散速度は、窒素に比べ酸素の方が拡散し易い。そのため、酸素雰囲気中で焼成することにより、焼結体の密度向上を図ることが可能となる。
【0049】
次に本発明の耐食性部材を用いたエッチング装置を図1に示す。
図1中、1はチャンバーを、2はクランプリングまたはフォーカスリングを、3は下部電極を、4はウェハーを、5は誘導コイルを示す。
本装置では、チャンバー1の中にハロゲン系腐食性ガスを注入し、周りに巻かれている誘導コイル5に高周波電力を印可して、ガスをプラズマ化する。また、下部電極3にも高周波電力を与え、バイアスを発生させ、クランプリング2で固定されたウェハー4に所望のエッチング加工を行う。
【0050】
本装置にて発生したプラズマはチャンバー1や、ウェハー4を固定しているクランプリング2に接触するために、これらの部品は特に腐食を受けやすい。そこでチャンバー1やクランプリング2を本発明の耐食性セラミック部材で形成することによって、優れた耐食性を示し、また熱衝撃による割れ等も防止することが可能となる。
【0051】
また、本発明は上記チャンバーおよびクランプリング、マイクロ波導入窓、ノズル、シャワーヘッド、フォーカスリング、シールドリング等をはじめとする半導体・液晶製造装置(エッチャーやCVD等)の中でも特に腐食性ガスまたはそのプラズマに対して高い耐食性を求められる部材に適用できるものである。
【0052】
【実施例】
本発明の実施例について以下に詳細を示す。
【0053】
に添加するTi量を表1に示すような範囲で振って添加し、φ50mm、厚さ30mmのY焼結体を作製し、耐食性を評価する試験を実施した。
【0054】
まず、ビーズミルにイオン交換水を溶媒として平均粒径2μm以下のイットリア粉末と酸化チタン粉末を投入してZrOビーズにて360時間湿式粉砕した後、PVAを有機バインダーとして添加してスラリーを作製した。
【0055】
その後、上記スラリーをスプレードライ装置にて造粒して造粒粉体を得て、該造粒粉体を金型プレス成形にて成形した。
【0056】
そして、上記成形体を大気雰囲気中にて1650℃で焼成して、本発明のY焼結体を得た。
【0057】
なお、比較例としてTi添加量が本発明範囲外のものも、上記と同様の製造工程にて製造した。
【0058】
また、Y焼結体中の不可避不純物量としては、SiOが300ppm、Feが100ppm、その他のアルカリ金属酸化物が100ppmとして試験を実施している。
【0059】
次に、上記のようにして作製したY焼結体の耐食性について評価した。試験は試料の一表面にラップ加工を施して鏡面とし、この試料をRIE(Reactive Ion Etching)装置にセットしてClガス雰囲気下でプラズマ中に3時間曝し、その前後の重量減少量から1分間当たりのエッチングレートを算出し、基準試料として用意したアルミナ質焼結体(アルミナ含有量99.5重量%)のエッチングレートを1としたときの相対比較値として求め、この相対比較値が0.5未満のものを優れたものとした。
【0060】
なお、各試料は2ヶずつ作製しており、そのうちの一つを耐食性評価に、もう一方を誘電損失の測定に使用した。誘電損失は、10〜1000MHzの高周波領域は高周波電流電圧法を用い、1〜5GHzのマイクロ波領域は空洞共振器法を用いてそれぞれの誘電損失を測定し、10MHz〜5GHzにおける誘電損失(δ)が2×10 以下であったものを優れたものとしている。また、誘電損失の数値はそれぞれの測定範囲の中で最大値を採用した。
【0061】
結果を表1に示す。
【0062】
【表1】

Figure 2004292270
【0063】
本発明の範囲外であるTi添加していない試料No.1については、1650℃の焼成温度では十分緻密化しないために、耐食性が悪く、誘電損失も高い値を示している。
【0064】
また、試料No.9、10については、Ti添加により、焼結体は十分に緻密化しているものの、Ti添加量が多いために耐食性が悪くなっている。このことから、Ti添加量を1質量%以上添加すると、耐食性部材としては好適ではないと分かる。
【0065】
これらと比較して、本発明の試料No.3〜8のものは、Yとして1650℃と比較的低い焼成温度でも十分に緻密化されており、耐食性もエッチングレート比で0.5以下の値を示し良好であることが分かる。
【0066】
また、誘電損失についても2×10−4以下の値を示しており、これを図1に示す半導体製造装置内のクランプリングまたはフォーカスリング2のような耐食性部材として用いた場合にも、発熱等が少なく、プラズマの発生効率への影響が少ないことが分かる。
【0067】
更には、上記表1において特に耐食性が良好であった本発明の試料No.4について、不可避不純物の量を本発明範囲外として上記と同様の製法、形状で試料を作製し耐食性を評価した。
【0068】
具体的には、SiOを400ppm、Feを200ppm、その他のアルカリ金属酸化物を200ppm含有している。
【0069】
その耐食性試験の結果、エッチングレートは0.85Å/minとなり、本発明範囲内の試料と比較して耐食性に劣っていた。
【0070】
よって、Y焼結体中の不可避不純物量としては、本発明範囲内とすることが好適であることが分かる。
【0071】
【発明の効果】
本発明の構成によれば、Yが99.0質量%以上、Tiが酸化物換算で0.01質量%以上1質量%未満、不可避不純物としてSiOが300ppm以下、Feが100ppm以下、アルカリ金属酸化物が100ppmのY焼結体の誘電損失が、10MHz〜5GHzのマイクロ波において2×10−4以下とすることにより、従来よりも低温でY焼結体を焼成することが可能となり、温度制御が困難な大容量の焼成炉においても十分に緻密化させたY焼結体の製造が可能となる。
【0072】
また、不可避不純物の含有量を上記範囲内とすることにより、ハロゲン系ガスやそのプラズマに曝される部位に使用される耐食性部材として十分な耐食性が得られる。
【0073】
更には、誘電損失を上記範囲内とすることにより、マイクロ波を吸収しにくく、発熱しにくい耐食性部材とすることが可能であるために、半導体製造装置等におけるプラズマの発生効率を高めることができる。
【0074】
また、Y焼結体の比重を4.80g/cm以上とすることにより、ハロゲン系ガスやそのプラズマに対して十分な耐食性とでき、更には平均結晶粒径が2μm以上とすることにより、誘電損失を上昇させるY焼結体中の粒界層の数を少なくすることができるために、より低誘電損失なY焼結体とすることができる。
【0075】
また、上記耐食性部材に用いられるY焼結体の原料粉末を平均粒径2μm以下として成形体を作製することにより、Y焼結体の焼結性を良好とし、該成形体を従来よりも低温の1600〜1700℃の温度で焼成することにより、焼成炉の温度制御をし易くなるばかりか、焼成炉の限界使用温度に対して低い温度域で焼成を行えるために、焼成炉の炉壁や、周辺の金属製部品等の寿命を長くし、製造コストを抑えることができる。
【図面の簡単な説明】
【図1】本発明のY焼結体を用いた耐食性部材の応用例であるエッチング装置の概略図である。
【符号の説明】
1:チャンバー
2:クランプリングまたはフォーカスリング
3:下部電極
4:ウェハー
5:誘導コイル[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a Y 2 O 3 sintered body and a method of manufacturing the same, and furthermore, an inner wall material (chamber), a microwave introduction window, a shower head, and a focus of a semiconductor / liquid crystal manufacturing apparatus using the Y 2 O 3 sintered body. Among the semiconductor / liquid crystal manufacturing apparatuses (etchers, CVD, etc.) such as rings, shield rings, etc., the present invention can be applied particularly to a corrosion-resistant member requiring high corrosion resistance to a corrosive gas or its plasma.
[0002]
[Prior art]
2. Description of the Related Art In recent years, in each process such as a dry etching process and a film forming process in semiconductor manufacturing, a technology using plasma has been actively used. In a plasma process at the time of manufacturing a semiconductor, a highly reactive halogen-based corrosive gas such as a fluorine-based gas and a chlorine-based gas is frequently used particularly for etching and cleaning. High corrosion resistance is required for those portions that come into contact with corrosive gas and plasma.
[0003]
Members other than the object to be treated that come into contact with these corrosive gases and plasma generally use corrosion-resistant metals such as quartz glass, stainless steel, and aluminum.
[0004]
Further, as the ceramic member, there have been used alumina sintered bodies, aluminum nitride sintered bodies, and those obtained by coating these ceramics sintered bodies with a ceramic film such as silicon carbide.
[0005]
Further, recently, a sintered body of yttrium aluminum garnet (hereinafter referred to as YAG) or a sintered body of Y 2 O 3 has been used instead of the above-mentioned members because of its excellent corrosion resistance.
[0006]
In particular, since the Y 2 O 3 sintered body has excellent corrosion resistance, these sintered bodies have recently been used as members that come into contact with a halogen-based corrosive gas and its plasma.
[0007]
For example, in Patent Document 1, low metal contamination composed of Y 2 O 3 having a relative density of 94% or more and a purity of 99.5% or more is used for a substrate processing member used in an apparatus for processing a substrate by halogen gas plasma. Of the substrate processing member was shown.
[0008]
Patent Document 2 discloses a corrosion-resistant member in which at least a surface region exposed to plasma under a corrosive gas is made of a Y 2 O 3 -based sintered body.
[0009]
[Patent Document 1]
JP 2001-179080 A [Patent Document 2]
Japanese Patent Application No. 2001-203256
[Problems to be solved by the invention]
However, as described in Patent Documents 1 and 2 , the Y 2 O 3 sintered body is difficult to sinter. Temperature is required. Therefore, there is a problem that it takes a long time to reduce the particle size of the raw material, and the production of the raw material is very costly.
[0011]
In addition, since Y 2 O 3 has low sinterability, if a sintered body is to be obtained from Y 2 O 3 alone, the sintering temperature must be as high as 1700 to 1800 ° C. It must be fired at the very limit of the operating temperature of the firing furnace. Therefore, it is difficult to stabilize the inside of the firing furnace in the high temperature range of 1700 to 1800 ° C. during firing, and the temperature rise process to 1700 to 1800 ° C. and the keeping temperature vary during repeated firing. This variation in the firing temperature greatly affects the density of the Y 2 O 3 sintered body, and the larger the capacity of the firing furnace is, the larger the amount of the Y 2 O 3 sintered body is charged, the larger the above-mentioned variation becomes. However, there is a problem that the density cannot be obtained.
[0012]
Therefore, in Patent Literatures 1 and 2 described in the related art, only a sintered body having a relative density of less than 95% can be obtained, and when the relative density is less than 95%, many pores exist in the sintered body. And it was not possible to obtain a more compact one. For this reason, as described above, since the Y element itself has a high melting point of a reaction product with the halogen-based corrosive gas, it has high corrosion resistance to the halogen-based corrosive gas and plasma, but Y 2 O is used to take advantage of the corrosion resistance. In the case of three sintered bodies, it was difficult to densify, and the corrosion resistance was reduced.
[0013]
In addition, during mass production of a product using a Y 2 O 3 sintered body, repetition of firing may cause structural walls that are structurally weak due to remarkable oxidation or thermal cycling to occur on the furnace wall of the firing furnace or metal parts used for the firing furnace. Stress concentration on the surface is likely to occur, and the deterioration is severe. For this reason, there has been a problem that the life of the parts is short, and that time and expenses have to be spent for maintenance and replacement of parts, thereby increasing the manufacturing cost.
[0014]
On the other hand, high frequency and microwaves are applied in semiconductor manufacturing equipment to generate plasma, but alumina sintered bodies conventionally used as corrosion resistant members absorb high frequency and microwaves. Due to the large amount, there is a problem that heat is generated, plasma generation efficiency is reduced due to energy loss, and the alumina sintered body is partially heated and expanded to generate cracks.
[0015]
[Means for Solving the Problems]
In view of the above problems, Y 2 O 3 is 99.0 wt% or more, Ti is less than 1 wt% 0.01 wt% in terms of oxide, SiO 2 is 300ppm or less as inevitable impurities, Fe 2 O 3 Is made of a Y 2 O 3 sintered body of 100 ppm or less and an alkali metal oxide of 100 ppm, and a dielectric loss is 2 × 10 −4 or less in a microwave of 10 MHz to 5 GHz.
[0016]
The Y 2 O 3 sintered body has a specific gravity of 4.80 g / cm 3 or more and an average crystal grain size of 2 μm or more.
[0017]
Further, in the method for producing a corrosion-resistant member, a molded body molded from a raw material powder having an average particle diameter of 2 μm or less is fired at a temperature of 1600 to 1700 ° C. to obtain a Y 2 O 3 sintered body. I do.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0019]
INDUSTRIAL APPLICABILITY The corrosion-resistant member of the present invention is suitably used as a plasma-resistant member used in a semiconductor manufacturing apparatus requiring high corrosion resistance to a halogen-based corrosive gas or its plasma.
[0020]
Examples of the halogen-based corrosive gas include fluorine-based gases such as SF 6 , CF 4 , CHF 3 , ClF 3 , NF 3 , C 4 F 8 and HF, and chlorine-based gases such as Cl 2 , HCl, BCl 3 and CCl 4. Or a bromine-based gas such as Br 2 , HBr, BBr 3 or the like. When microwaves or high-frequency waves are introduced under a pressure atmosphere of 1 to 10 Pa in which these corrosive gases are used, these gases become plasma. And comes into contact with each member for the semiconductor manufacturing apparatus. Further, in order to further enhance the etching effect, an inert gas such as Ar may be introduced together with the above-mentioned corrosive gas to generate plasma.
[0021]
In the present invention, as a member exposed to a corrosive gas or its plasma as described above, Y 2 O 3 is 99.0% by mass or more, and Ti is 0.01% by mass or more and less than 1% by mass in terms of oxide. A Y 2 O 3 sintered body containing 300 ppm or less of SiO 2 , 100 ppm or less of Fe 2 O 3 , and 100 ppm or less of an alkali metal oxide is used as an impurity.
[0022]
Here, the Y 2 O 3 sintered body mainly generates YF 3 when the Y 2 O 3 reacts with the fluorine-based gas, and generates YCl 3 when the Y 2 O 3 reacts with the chlorine-based gas. The melting point of the product (YF 3 : 1152 ° C., YCl 3 : 680 ° C.) is the melting point of the reaction product (SiF 4 : −90 ° C.) generated by the reaction with the conventionally used quartz or aluminum oxide sintered body. , SiCl 4 : -70 ° C., AlF 3 : 1040 ° C., AlCl 3 : 178 ° C.), so that it has stable corrosion resistance even when exposed to corrosive gas or plasma at a high temperature.
[0023]
In the present invention, by adding a predetermined amount of Ti to the Y 2 O 3 sintered body, it is possible to obtain a sufficient corrosion resistance to a halogen-based corrosive gas or its plasma, and to obtain a firing temperature (preferably more suitable than the conventional). It has been found that in a temperature range lower than Patent Documents 1 and 2, the density of a sintered body with sufficient corrosion resistance can be obtained.
[0024]
Here, the addition amount of Ti is preferably 0.01% by mass or more and less than 1% by mass in terms of oxide. To Ti is added, Ti is because the liquid phase is formed in the sintered body at a temperature lower than the sintering temperature of Y 2 O 3 sintered body, making a state in which elements likely to diffuse, usually Y 2 O This is because densification at a temperature lower than the temperature at which the three sintered bodies are sufficiently densified becomes possible.
[0025]
Further, the reason why the addition amount of Ti is set to 0.01% by mass or more and less than 1% by mass in terms of oxide is that if the addition amount is less than 0.01% by mass, densification can be performed at a lower temperature than before. If the content is 1% by mass or more, the corrosion resistance to the halogen-based corrosive gas and its plasma is reduced as compared with the Y 2 O 3 sintered body to which Ti is not added.
[0026]
When Ti is added, it may be added in the form of titanium oxide, but any other Ti compound containing an element having low reactivity with the Y element, such as calcium titanate or barium titanate, may be used. But it can be added.
[0027]
The content of the inevitable impurities in the Y 2 O 3 sintered body is preferably 300 ppm or less for SiO 2 , 100 ppm or less for Fe 2 O 3 , and 100 ppm or less for other alkali metal oxides.
[0028]
Here, the content of the unavoidable impurities is set in the above range because if the unavoidable impurities are contained in a larger amount than the above range, the corrosion resistance to the halogen-based corrosive gas and its plasma is reduced.
[0029]
Specifically, SiO 2 reacts with Y 2 O 3 to generate mainly Y 2 Si 2 O 7 (disilicate), and Fe 2 O 3 reacts with Y 2 O 3 to produce YFeO 3 or Y 3 Fe. 5 to form a compound of O 12 or the like. And since these compounds with Y 2 O 3 have low corrosion resistance to the halogen-based corrosive gas and its plasma, the corrosion resistance of the Y 2 O 3 sintered body is reduced when these compounds are included. Further, similarly to the case of the above-mentioned SiO 2 or Fe 2 O 3 , other alkali metal oxides are present in the Y 2 O 3 sintered body as they are or in a form in which a compound is formed with Y 2 O 3. Since they are present and have low corrosion resistance to halogen-based corrosive gases and their plasma, the corrosion resistance of the Y 2 O 3 sintered body containing them also decreases.
[0030]
On the other hand, the Y 2 O 3 sintered body of the present invention is also characterized by having a dielectric loss as low as 2 × 10 −4 or less at 10 MHz to 5 GHz as compared with conventional alumina, quartz, and YAG. Therefore, absorption of high frequency and microwave generated in the semiconductor manufacturing apparatus can be suppressed, and unnecessary heat generation can be prevented, and energy loss affecting plasma generation efficiency can be suppressed. Further, there is no possibility that the sintered body itself partially heats and expands to generate cracks.
[0031]
Therefore, by using the Y 2 O 3 sintered body to which Ti of the present invention is added as various members for a semiconductor manufacturing apparatus, it exhibits higher corrosion resistance than before and does not generate heat that lowers plasma generation efficiency, and is manufactured. It is possible to provide an inexpensive corrosion-resistant member.
[0032]
Incidentally, the dielectric loss of the Y 2 O 3 sintered body is a value when the dielectric loss (tan [delta) were measured by high-frequency current voltage method of Y 2 O 3 sintered body in a high frequency region (10~1000MHz) is 2 × 10 −4 or less, and the value obtained when the dielectric loss (tan δ) of the Y 2 O 3 sintered body in the microwave region (1 to 5 GHz) is measured by the cavity resonator method is also 2 × 10 −4 or less. .
[0033]
Further, the Y 2 O 3 sintered body preferably has a specific gravity of 4.80 g / cm 3 or more and an average crystal grain size of 2 μm or more.
[0034]
Here, the reason why the specific gravity is set to 4.80 g / cm 3 or more is that when the specific gravity is lower than 4.80 g / cm 3 , a large number of pores are present in the sintered body. This is because the surface of the sintered body exposed to the halogen-based corrosive gas or its plasma increases due to the presence of many irregularities, and the corrosion resistance is reduced.
[0035]
The reason why the average crystal grain size is 2 μm or more is that if the average crystal grain size is smaller than 2 μm, there are many grain boundary layers that increase the dielectric loss in the sintered body. It is preferable to reduce the grain boundary layer as much as possible in order to reduce the dielectric loss of the Y 2 O 3 sintered body.
[0036]
Next, a method for producing a Y 2 O 3 sintered body of the present invention will be described below.
[0037]
First, after introducing yttria powder and titanium oxide powder having an average particle size of 2 μm or less and titanium oxide powder of 0.01 to less than 1% by mass into a mill for grinding using ion-exchanged water as a solvent, wet grinding is performed, and then an organic binder is added to form a slurry. Make it.
[0038]
The reason why the particle size of the yttria powder is set to 2 μm or less is that if the particle size is larger than 2 μm, the sinterability is deteriorated and the sintered body cannot be densified.
[0039]
In addition, a ball mill can be used as the mill for pulverization used for preparing the slurry. It is effective to use high-purity ZrO 2 balls for the media of the ball mill in order to suppress abrasion of the media and to prevent abrasion powder of the media from being mixed as impurities into the slurry. The pulverization time is preferably from 120 to 540 hours.
[0040]
Furthermore, a bead mill can also be used as a mill for grinding. As a medium for the bead mill, it is preferable to use high-purity ZrO 2 beads as in the case of a ball mill in terms of obtaining a finer pulverized particle size. The desired particle size can be obtained by crushing for 60 to 360 hours, but the longer the crushing time, the finer the particle size.
[0041]
Further, as the organic binder, use of paraffin wax, wax emulsion (wax + emulsifier), PVA (polyvinyl alcohol), PEG (polyethylene glycol), PEO (polyethylene oxide) and the like are effective.
[0042]
As the solvent, not only ion-exchanged water but also an organic solvent or the like can be used.
[0043]
Then, after preparing the slurry, the slurry is granulated by a spray drying apparatus, and the slurry is formed into a predetermined shape by a molding method such as die press molding.
[0044]
Here, the above molding may be selected according to the shape of the target member, specifically, a dry molding method such as die press molding, hydrostatic press molding, casting, extrusion molding, injection molding. Molding by a wet molding method such as tape molding is possible.
[0045]
Then, the molded body molded as described above is degreased at a temperature of 400 to 600 ° C. if necessary to decompose and remove the organic binder in the molded body, and then is heated to 1600 to 1700 ° C. in an air atmosphere or an oxygen atmosphere. Baking.
[0046]
Here, even if the firing temperature is 1600 to 1700, it is possible to sufficiently densify the Y 2 O 3 sintered body, and 1700 to 1800 which has conventionally been required for firing the Y 2 O 3 sintered body The firing can be performed in a temperature range lower than the firing temperature range of ° C. This not only makes it easier to control the temperature of the firing furnace, but also enables firing in a temperature range lower than the limit operating temperature of the firing furnace, so that the life of the furnace wall of the firing furnace and surrounding metal parts is reduced. It can be lengthened and the manufacturing cost can be reduced.
[0047]
Further, when firing in the oxygen atmosphere, an oxygen concentration of 50% by volume or more, more preferably 80% by volume or more is desirable in order to further increase the density of the sintered body.
[0048]
The firing in the oxygen atmosphere can make the sintered body denser than in the air atmosphere. In general, in order to increase the density of a sintered body, it is necessary that the atmospheric gas taken in the pores during the sintering process be removed to the outside. The atmosphere gas to be used is air, that is, oxygen and nitrogen gas. On the other hand, in an oxygen atmosphere firing, only oxygen gas is used. Since the sintered body of the present invention is an oxide ceramic, the diffusion rate of elements at crystal grain boundaries is easier to diffuse in oxygen than in nitrogen. Therefore, by firing in an oxygen atmosphere, the density of the sintered body can be improved.
[0049]
Next, FIG. 1 shows an etching apparatus using the corrosion-resistant member of the present invention.
In FIG. 1, 1 indicates a chamber, 2 indicates a clamp ring or focus ring, 3 indicates a lower electrode, 4 indicates a wafer, and 5 indicates an induction coil.
In the present apparatus, a halogen-based corrosive gas is injected into the chamber 1, and high-frequency power is applied to the induction coil 5 wound therearound to convert the gas into plasma. Further, high frequency power is also applied to the lower electrode 3 to generate a bias, and a desired etching process is performed on the wafer 4 fixed by the clamp ring 2.
[0050]
Since the plasma generated by this apparatus comes into contact with the chamber 1 and the clamp ring 2 fixing the wafer 4, these parts are particularly susceptible to corrosion. Therefore, by forming the chamber 1 and the clamp ring 2 from the corrosion-resistant ceramic member of the present invention, it is possible to exhibit excellent corrosion resistance and to prevent cracks and the like due to thermal shock.
[0051]
In addition, the present invention is particularly applicable to a corrosive gas or a corrosive gas thereof in a semiconductor / liquid crystal manufacturing apparatus (etcher, CVD, etc.) including the above chamber and clamp ring, microwave introduction window, nozzle, shower head, focus ring, shield ring and the like. It can be applied to members that require high corrosion resistance to plasma.
[0052]
【Example】
Examples of the present invention will be described in detail below.
[0053]
The amount of Ti to be added to Y 2 O 3 was varied within the range shown in Table 1 to prepare a Y 2 O 3 sintered body having a diameter of 50 mm and a thickness of 30 mm, and a test for evaluating corrosion resistance was performed.
[0054]
First, yttria powder and titanium oxide powder having an average particle size of 2 μm or less were charged into a bead mill using ion-exchanged water as a solvent, wet-ground with ZrO 2 beads for 360 hours, and PVA was added as an organic binder to prepare a slurry. .
[0055]
Thereafter, the slurry was granulated by a spray-drying apparatus to obtain a granulated powder, and the granulated powder was formed by press molding.
[0056]
Then, the formed body was fired at 1650 ° C. in an air atmosphere to obtain a Y 2 O 3 sintered body of the present invention.
[0057]
In addition, as a comparative example, the one in which the amount of Ti added was out of the range of the present invention was manufactured in the same manufacturing process as above.
[0058]
In addition, the test was performed with the unavoidable impurity amount in the Y 2 O 3 sintered body being 300 ppm for SiO 2 , 100 ppm for Fe 2 O 3 , and 100 ppm for other alkali metal oxides.
[0059]
Next, the corrosion resistance of the Y 2 O 3 sintered body produced as described above was evaluated. In the test, one surface of the sample was lapped to a mirror surface, and the sample was set in an RIE (Reactive Ion Etching) apparatus and exposed to plasma in a Cl 2 gas atmosphere for 3 hours. The etching rate per minute was calculated and calculated as a relative comparison value when the etching rate of the alumina-based sintered body (alumina content: 99.5% by weight) prepared as a reference sample was set to 1, and this relative comparison value was 0. Those with less than 0.5 were regarded as excellent.
[0060]
Each sample was prepared two by two, one of which was used for corrosion resistance evaluation and the other was used for measurement of dielectric loss. The dielectric loss is measured using a high-frequency current / voltage method in a high-frequency region of 10 to 1000 MHz, and using a cavity resonator method in a microwave region of 1 to 5 GHz. The dielectric loss (δ) at 10 MHz to 5 GHz is measured. there 2 × 10 - are provided with excellent what was 4 or less. The numerical value of the dielectric loss used the maximum value in each measurement range.
[0061]
Table 1 shows the results.
[0062]
[Table 1]
Figure 2004292270
[0063]
Sample No. without Ti addition, which is outside the scope of the present invention. As for No. 1, since it is not sufficiently densified at a firing temperature of 1650 ° C., the corrosion resistance is poor and the dielectric loss shows a high value.
[0064]
Further, the sample No. In Nos. 9 and 10, although the sintered body was sufficiently densified by the addition of Ti, the corrosion resistance was poor due to the large amount of Ti addition. From this, it can be seen that adding 1% by mass or more of Ti is not suitable as a corrosion-resistant member.
[0065]
As compared with these, the sample Nos. Samples of 3 to 8 are sufficiently densified even at a relatively low firing temperature of 1650 ° C. as Y 2 O 3 , and the corrosion resistance is good, showing an etching rate ratio of 0.5 or less.
[0066]
Also, the dielectric loss shows a value of 2 × 10 −4 or less. Even when this is used as a corrosion-resistant member such as the clamp ring or the focus ring 2 in the semiconductor manufacturing apparatus shown in FIG. It can be seen that there is little influence on the plasma generation efficiency.
[0067]
Further, in Table 1 above, the sample No. of the present invention having particularly good corrosion resistance was obtained. For No. 4, a sample was prepared by the same manufacturing method and shape as described above except that the amount of inevitable impurities was out of the range of the present invention, and the corrosion resistance was evaluated.
[0068]
More specifically, the a SiO 2 400 ppm, 200 ppm of Fe 2 O 3, or other alkali metal oxides contained 200 ppm.
[0069]
As a result of the corrosion resistance test, the etching rate was 0.85 ° / min, which was inferior to those of the samples within the scope of the present invention.
[0070]
Therefore, it can be seen that the inevitable impurity amount in the Y 2 O 3 sintered body is preferably within the range of the present invention.
[0071]
【The invention's effect】
According to the structure of the present invention, Y 2 O 3 is 99.0% by mass or more, Ti is 0.01% by mass or more and less than 1% by mass in terms of oxide, SiO 2 is 300 ppm or less as an unavoidable impurity, and Fe 2 O 3 There 100ppm or less, an alkali metal oxide dielectric loss of Y 2 O 3 sintered body of 100ppm, by the 2 × 10 -4 or less in microwave 10MHz~5GHz, than the conventional cold Y 2 O 3 The sintered body can be fired, and a sufficiently densified Y 2 O 3 sintered body can be manufactured even in a large-capacity firing furnace in which temperature control is difficult.
[0072]
By setting the content of the unavoidable impurities within the above range, sufficient corrosion resistance can be obtained as a corrosion-resistant member used for a portion exposed to a halogen-based gas or its plasma.
[0073]
Further, by setting the dielectric loss within the above range, it is possible to obtain a corrosion-resistant member that hardly absorbs microwaves and hardly generates heat. Therefore, plasma generation efficiency in a semiconductor manufacturing apparatus or the like can be increased. .
[0074]
By setting the specific gravity of the Y 2 O 3 sintered body to 4.80 g / cm 3 or more, sufficient corrosion resistance to a halogen-based gas or its plasma can be obtained, and further, the average crystal grain size to 2 μm or more. By doing so, the number of grain boundary layers in the Y 2 O 3 sintered body that increases the dielectric loss can be reduced, so that a Y 2 O 3 sintered body with a lower dielectric loss can be obtained.
[0075]
In addition, by making the raw material powder of the Y 2 O 3 sintered body used for the corrosion-resistant member to have an average particle diameter of 2 μm or less to prepare a formed body, the sinterability of the Y 2 O 3 sintered body is improved, and By firing the body at a temperature of 1600 to 1700 ° C. lower than before, not only can the temperature of the firing furnace be easily controlled, but firing can be performed in a temperature range lower than the limit use temperature of the firing furnace. The life of the furnace wall of the sintering furnace and the surrounding metal parts can be prolonged, and the manufacturing cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic view of an etching apparatus as an application example of a corrosion-resistant member using a Y 2 O 3 sintered body of the present invention.
[Explanation of symbols]
1: chamber 2: clamp ring or focus ring 3: lower electrode 4: wafer 5: induction coil

Claims (3)

が99.0質量%以上、Tiが酸化物換算で0.01質量%以上1質量%未満、不可避不純物としてSiOが300ppm以下、Feが100ppm以下、アルカリ金属酸化物が100ppmのY焼結体からなり、誘電損失が10MHz〜5GHzのマイクロ波において2×10−4以下であることを特徴とする耐食性部材。Y 2 O 3 is 99.0% by mass or more, Ti is 0.01% by mass or more and less than 1% by mass in terms of oxide, SiO 2 is 300 ppm or less as unavoidable impurities, Fe 2 O 3 is 100 ppm or less, alkali metal oxide Is a 100 ppm Y 2 O 3 sintered body, and has a dielectric loss of 2 × 10 −4 or less in a microwave of 10 MHz to 5 GHz. 前記Y焼結体の比重が4.80g/cm以上、平均結晶粒径が2μm以上であることを特徴とする請求項1記載の耐食性部材。The Y 2 O 3 sintered density of the sintered body is 4.80 g / cm 3 or more, the average corrosion resistant member of claim 1, wherein the crystal grain size is equal to or is 2μm or more. 請求項1記載の耐食性部材の製造方法において、平均粒径が2μm以下の原料粉末により成形された成形体を、1600〜1700℃の温度で焼成してY焼結体を得ることを特徴とする耐食性部材の製造方法。The manufacturing method of claim 1 wherein the corrosion resistant member, that an average particle size of the molded body formed by the following raw material powders 2 [mu] m, to obtain a fired at a temperature of 1600~1700 ℃ Y 2 O 3 sintered body A method for producing a corrosion-resistant member.
JP2003089419A 2003-03-27 2003-03-27 Corrosion resistant member and its manufacturing method Pending JP2004292270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003089419A JP2004292270A (en) 2003-03-27 2003-03-27 Corrosion resistant member and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003089419A JP2004292270A (en) 2003-03-27 2003-03-27 Corrosion resistant member and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004292270A true JP2004292270A (en) 2004-10-21

Family

ID=33403267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003089419A Pending JP2004292270A (en) 2003-03-27 2003-03-27 Corrosion resistant member and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004292270A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005240171A (en) * 2004-01-29 2005-09-08 Kyocera Corp Corrosion resistant member and its production method
JPWO2005009919A1 (en) * 2003-07-29 2006-09-07 京セラ株式会社 Y2O3-sintered sintered body, corrosion-resistant member, manufacturing method thereof, and member for semiconductor / liquid crystal manufacturing apparatus
EP1921053A1 (en) * 2006-10-30 2008-05-14 Applied Materials, Inc. Method for preparing yttria parts and plasma reactor parts comprising yttria
JP2009035469A (en) * 2007-08-02 2009-02-19 Applied Materials Inc Plasma-proof ceramics equipped with controlled electric resistivity
US7964818B2 (en) 2006-10-30 2011-06-21 Applied Materials, Inc. Method and apparatus for photomask etching
US8158544B2 (en) 2008-04-28 2012-04-17 Ferrotec Ceramics Corporation Yttria sintered body and component used for plasma processing apparatus
KR101226120B1 (en) * 2004-10-26 2013-01-24 쿄세라 코포레이션 Corrosion resistance member, and method for manufacturing the same
US8623527B2 (en) 2007-04-27 2014-01-07 Applied Materials, Inc. Semiconductor processing apparatus comprising a coating formed from a solid solution of yttrium oxide and zirconium oxide
WO2017087474A1 (en) 2015-11-16 2017-05-26 Coorstek, Inc. Corrosion-resistant components and methods of making
US10242888B2 (en) 2007-04-27 2019-03-26 Applied Materials, Inc. Semiconductor processing apparatus with a ceramic-comprising surface which exhibits fracture toughness and halogen plasma resistance
US10622194B2 (en) 2007-04-27 2020-04-14 Applied Materials, Inc. Bulk sintered solid solution ceramic which exhibits fracture toughness and halogen plasma resistance

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7932202B2 (en) * 2003-07-29 2011-04-26 Kyocera Corporation Y2O3 sintered body and corrosion resistant member for semiconductor/liquid crystal producing apparatus
JPWO2005009919A1 (en) * 2003-07-29 2006-09-07 京セラ株式会社 Y2O3-sintered sintered body, corrosion-resistant member, manufacturing method thereof, and member for semiconductor / liquid crystal manufacturing apparatus
JP4679366B2 (en) * 2003-07-29 2011-04-27 京セラ株式会社 Y2O3 sintered body, corrosion-resistant member, method for producing the same, and member for semiconductor / liquid crystal production apparatus
JP4606121B2 (en) * 2004-01-29 2011-01-05 京セラ株式会社 Corrosion-resistant film laminated corrosion-resistant member and manufacturing method thereof
JP2005240171A (en) * 2004-01-29 2005-09-08 Kyocera Corp Corrosion resistant member and its production method
KR101226120B1 (en) * 2004-10-26 2013-01-24 쿄세라 코포레이션 Corrosion resistance member, and method for manufacturing the same
US7919722B2 (en) 2006-10-30 2011-04-05 Applied Materials, Inc. Method for fabricating plasma reactor parts
EP1921053A1 (en) * 2006-10-30 2008-05-14 Applied Materials, Inc. Method for preparing yttria parts and plasma reactor parts comprising yttria
US7964818B2 (en) 2006-10-30 2011-06-21 Applied Materials, Inc. Method and apparatus for photomask etching
US10242888B2 (en) 2007-04-27 2019-03-26 Applied Materials, Inc. Semiconductor processing apparatus with a ceramic-comprising surface which exhibits fracture toughness and halogen plasma resistance
US8623527B2 (en) 2007-04-27 2014-01-07 Applied Materials, Inc. Semiconductor processing apparatus comprising a coating formed from a solid solution of yttrium oxide and zirconium oxide
US9051219B2 (en) 2007-04-27 2015-06-09 Applied Materials, Inc. Semiconductor processing apparatus comprising a solid solution ceramic formed from yttrium oxide, zirconium oxide, and aluminum oxide
US10622194B2 (en) 2007-04-27 2020-04-14 Applied Materials, Inc. Bulk sintered solid solution ceramic which exhibits fracture toughness and halogen plasma resistance
US10840113B2 (en) 2007-04-27 2020-11-17 Applied Materials, Inc. Method of forming a coated article and semiconductor chamber apparatus from yttrium oxide and zirconium oxide
US10840112B2 (en) 2007-04-27 2020-11-17 Applied Materials, Inc. Coated article and semiconductor chamber apparatus formed from yttrium oxide and zirconium oxide
US10847386B2 (en) 2007-04-27 2020-11-24 Applied Materials, Inc. Method of forming a bulk article and semiconductor chamber apparatus from yttrium oxide and zirconium oxide
US11373882B2 (en) 2007-04-27 2022-06-28 Applied Materials, Inc. Coated article and semiconductor chamber apparatus formed from yttrium oxide and zirconium oxide
US8367227B2 (en) 2007-08-02 2013-02-05 Applied Materials, Inc. Plasma-resistant ceramics with controlled electrical resistivity
US8871312B2 (en) 2007-08-02 2014-10-28 Applied Materials, Inc. Method of reducing plasma arcing on surfaces of semiconductor processing apparatus components in a plasma processing chamber
JP2009035469A (en) * 2007-08-02 2009-02-19 Applied Materials Inc Plasma-proof ceramics equipped with controlled electric resistivity
US8158544B2 (en) 2008-04-28 2012-04-17 Ferrotec Ceramics Corporation Yttria sintered body and component used for plasma processing apparatus
WO2017087474A1 (en) 2015-11-16 2017-05-26 Coorstek, Inc. Corrosion-resistant components and methods of making

Similar Documents

Publication Publication Date Title
JP4548887B2 (en) Corrosion-resistant ceramic member and manufacturing method thereof
JP4679366B2 (en) Y2O3 sintered body, corrosion-resistant member, method for producing the same, and member for semiconductor / liquid crystal production apparatus
JP4987238B2 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and aluminum nitride sintered body manufacturing method
US20230373870A1 (en) Sintered ceramic body of large dimension and method of making
KR20010034878A (en) Plasma-resistant member and plasma treatment apparatus using the same
JP4780932B2 (en) Corrosion-resistant member, method for manufacturing the same, and member for semiconductor / liquid crystal manufacturing apparatus
TWI769013B (en) Ceramic sintered body comprising magnesium aluminate spinel
JP2004292270A (en) Corrosion resistant member and its manufacturing method
JP4889223B2 (en) Aluminum oxide sintered body, semiconductor manufacturing apparatus member using the same, and liquid crystal manufacturing apparatus member
JP2000103689A (en) Alumina sintered compact, its production and plasma- resistant member
JP3706488B2 (en) Corrosion-resistant ceramic material
JP3904874B2 (en) Components for semiconductor manufacturing equipment
JP4197050B1 (en) Ceramic member and corrosion resistant member
JP2008266095A (en) Member for plasma treatment apparatus and plasma treatment apparatus using the same
JP2001151559A (en) Corrosion-resistant member
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
US20230174429A1 (en) Sintered material, semiconductor manufacturing apparatus including the same, and method of manufacturing the sintered material
JP5274508B2 (en) Corrosion-resistant member, method for manufacturing the same, and member for semiconductor / liquid crystal manufacturing apparatus
JP2006089358A (en) Aluminum oxide-based sintered compact, its manufacturing method, and semiconductor producing equipment using the same
TWI820786B (en) Yttria-zirconia sintered ceramics for plasma resistant materials and method of making the same
US20240055266A1 (en) Plasma etching apparatus component for manufacturing semiconductor comprising composite sintered body and manufacturing method therefor
JP2005281054A (en) Aluminum oxide-based sintered compact, its producing method, and member for semiconductor or liquid crystal producing equipment, which is obtained by using the sintered compact
JP2009203113A (en) Ceramics for plasma treatment apparatus
KR20210011321A (en) Plasma etching device parts for semiconductor manufacturing including composite sintered body and manufacturing method thereof
JP2008195973A (en) Ceramics for plasma treatment system, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090714