JP2009256174A - Alumina sintered compact, member for semiconductor production apparatus, member for liquid-crystal-panel production apparatus, and member for dielectric resonator - Google Patents

Alumina sintered compact, member for semiconductor production apparatus, member for liquid-crystal-panel production apparatus, and member for dielectric resonator Download PDF

Info

Publication number
JP2009256174A
JP2009256174A JP2008278133A JP2008278133A JP2009256174A JP 2009256174 A JP2009256174 A JP 2009256174A JP 2008278133 A JP2008278133 A JP 2008278133A JP 2008278133 A JP2008278133 A JP 2008278133A JP 2009256174 A JP2009256174 A JP 2009256174A
Authority
JP
Japan
Prior art keywords
alumina
sintered body
crystal
terms
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008278133A
Other languages
Japanese (ja)
Other versions
JP5371372B2 (en
Inventor
Tatsuji Furuse
辰治 古瀬
Hiroaki Seno
裕明 瀬野
Shinya Yokomine
慎也 横峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2008278133A priority Critical patent/JP5371372B2/en
Priority to PCT/JP2008/071699 priority patent/WO2009069770A1/en
Priority to KR1020107010888A priority patent/KR101200385B1/en
Publication of JP2009256174A publication Critical patent/JP2009256174A/en
Application granted granted Critical
Publication of JP5371372B2 publication Critical patent/JP5371372B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alumina sintered compact lowering dielectric dissipation factor in 1 MHz to 8.5 GHz bands, to provide a member for a semiconductor production apparatus, and to provide a member for a liquid-crystal-panel production apparatus. <P>SOLUTION: The alumina sintered compact includes at least 99.3 mass% Al in terms of Al<SB>2</SB>O<SB>3</SB>, 0.05 to 0.3 mass% Si in terms of SiO<SB>2</SB>and 0.01 to 0.16 mass% Sr in terms of SrO, is constituted of alumina crystal grains 1 as main crystal grains, and has a crystal phase at triple points 2 constituted of the alumina crystal grains 1, the crystal phase containing the elements Si, Al, Sr, and O. Since the crystal phase containing the elements Si, Al, Sr, and O and having a low loss is present, and further, the average grain size of the alumina crystal grains 1 is ≥10 μm, the number of grain boundaries is reduced, thus dielectric dissipation factor in 1 MHz to 8.5 GHz can be lowered. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、アルミナ質焼結体ならびに半導体製造装置用部材、液晶パネル製造装置用部材および誘電体共振器用部材に関するもので、特に、半導体製造装置の内壁材(チャンバー)やマイクロ波導入窓、シャワーヘッド、フォーカスリング、シールドリングをはじめとする部材や、液晶パネル製造装置のステージ、ミラー、マスクホルダー、マスクステージ、チャック、レチクル等に用いる部材、さらにはマイクロ波やミリ波などの高周波領域において使用される種々の共振器用材料やMIC用誘電体基板材料、誘電体導波路用材料等に好適に用いることができる。   The present invention relates to an alumina sintered body, a member for a semiconductor manufacturing apparatus, a member for a liquid crystal panel manufacturing apparatus, and a member for a dielectric resonator, and in particular, an inner wall material (chamber), a microwave introduction window, a shower of a semiconductor manufacturing apparatus. Used in parts such as heads, focus rings, shield rings, liquid crystal panel manufacturing equipment stages, mirrors, mask holders, mask stages, chucks, reticles, and other high-frequency regions such as microwaves and millimeter waves It can be suitably used for various resonator materials, MIC dielectric substrate materials, dielectric waveguide materials, and the like.

従来から、アルミナ質焼結体は耐熱性、耐薬品性、耐プラズマ性に優れ、さらに高周波領域での誘電正接(tanδ)が小さいことから、半導体、液晶用高周波プラズマ装置用部材などに用いられている。   Conventionally, alumina sintered bodies are excellent in heat resistance, chemical resistance, and plasma resistance, and have a low dielectric loss tangent (tan δ) in the high frequency region, so they have been used for semiconductors and high frequency plasma device members for liquid crystals. ing.

半導体または液晶パネルの製造装置用部材はエッチング、クリーニング用として使用される反応性の高いハロゲン系腐食ガスやそれらのプラズマと接触するため、高い耐腐食性が要求され、一般的に99.0質量%以上の高純度のアルミナ質焼結体が求められている。一方、高純度のアルミナ質焼結体となるにつれて焼結性の観点から誘電正接が増加し、これによりMHz帯での高周波の透過率が低下し、エネルギーロスの増加、発熱による部材の破損といった問題が発生することが知られている。   Semiconductor or liquid crystal panel manufacturing equipment members are in contact with highly reactive halogen-based corrosive gases used for etching and cleaning, and their plasmas, and therefore require high corrosion resistance, and generally 99.0 mass. % Or more high-purity alumina sintered body is required. On the other hand, the dielectric loss tangent increases from the viewpoint of sinterability as it becomes a high-purity alumina sintered body, which decreases the high-frequency transmittance in the MHz band, increases energy loss, breaks the member due to heat generation, etc. Problems are known to occur.

アルミナ質焼結体の低損失化について、焼結助剤としてSiO、CaO、MgOを含有させ、その含有量をコントロールし、ある範囲内とすることで、低温で焼成しつつ、高周波誘電特性を向上させたアルミナ質焼結体が知られている(例えば、特許文献1参照)。 For reducing the loss of the alumina sintered body, SiO 2 , CaO, and MgO are included as sintering aids, and the content is controlled to be within a certain range. There is known an alumina sintered body with improved sinter (see, for example, Patent Document 1).

この特許文献1には、アルミナ99.8〜99.9質量%と、残部が所定比率のSiO、CaO、MgOからなる粒界相成分とから構成し、測定周波数8GHzにおけるQ値が10000以上(誘電正接が0.0001以下)のマイクロ波共振器用等のアルミナ質焼結体が得られたことが記載されている。
特開平6−16469号公報
This Patent Document 1 is composed of 99.8 to 99.9% by mass of alumina and a grain boundary phase component composed of SiO 2 , CaO, and MgO in a predetermined ratio, and the Q value at a measurement frequency of 8 GHz is 10,000 or more. It is described that an alumina sintered body for a microwave resonator having a dielectric loss tangent of 0.0001 or less was obtained.
JP-A-6-16469

特許文献1のようにSiO、CaO、MgOを含有したアルミナ質焼結体では、測定周波数8GHzにおける誘電正接が0.0001以下のものが得られている。しかしながら、半導体製造装置用部材および液晶パネル製造装置用部材のような大型品にアルミナ質焼結体を用いた場合、アルミナ質焼結体中央部の密度が低く、このため、アルミナ質焼結体全体としてのMHz帯での誘電正接が大きく、例えば、MHz帯の高周波が使用される半導体用高周波プラズマ装置用部材等に用いた場合には、MHz帯の高周波の透過率が低下し、エネルギーロスの増加や、部材の破損といった問題が生じている。さらに近年ではMHz〜GHz帯での広い周波数範囲での用途があり、そこでの低誘電正接化が求められていた。 As in Patent Document 1, an alumina sintered body containing SiO 2 , CaO, and MgO has a dielectric loss tangent of 0.0001 or less at a measurement frequency of 8 GHz. However, when an alumina sintered body is used for a large-sized product such as a member for a semiconductor manufacturing apparatus and a liquid crystal panel manufacturing apparatus, the density of the central part of the alumina sintered body is low. The dielectric loss tangent in the MHz band as a whole is large. For example, when used for a member for a high frequency plasma device for semiconductors in which a high frequency in the MHz band is used, the transmittance of the high frequency in the MHz band is reduced, resulting in energy loss. There are problems such as an increase in the number of members and breakage of members. Furthermore, in recent years, there are applications in a wide frequency range in the MHz to GHz band, and there has been a demand for a low dielectric loss tangent.

本発明は、MHz〜GHz帯における誘電正接を小さくできるアルミナ質焼結体ならびに半導体製造装置用部材、液晶パネル製造装置用部材および誘電体共振器用部材を提供することを目的とする。   An object of the present invention is to provide an alumina sintered body, a member for a semiconductor manufacturing apparatus, a member for a liquid crystal panel manufacturing apparatus, and a member for a dielectric resonator that can reduce the dielectric loss tangent in the MHz to GHz band.

本発明のアルミナ質焼結体は、AlをAl換算で99.3質量%以上、SiをSiO換算で0.05〜0.3質量%、SrをSrO換算で0.01〜0.16質量%含有するとともに、アルミナ結晶粒子を主結晶粒子とし、該アルミナ結晶粒子の3重点にSi、Al、SrおよびOの元素を含有する結晶相が存在し、かつ前記アルミナ結晶粒子の平均粒径が10μm以上であることを特徴とする。 In the alumina sintered body of the present invention, Al is 99.3% by mass or more in terms of Al 2 O 3 , Si is 0.05 to 0.3% by mass in terms of SiO 2 , and Sr is 0.01 to in terms of SrO. 0.16% by mass, alumina crystal particles as main crystal particles, a crystal phase containing elements of Si, Al, Sr and O is present at the triple point of the alumina crystal particles, and the alumina crystal particles The average particle size is 10 μm or more.

このようなアルミナ質焼結体では、AlをAl換算で99.3質量%以上含有するため、アルミナ本来の優れた耐腐食性と機械的特性、電気特性を維持することができるとともに、SiをSiO換算で0.05〜0.3質量%、SrをSrO換算で0.01〜0.16質量%含有し、アルミナ結晶粒子で構成される3重点に、従来の粒界相成分からなるガラスではなく、Si、Al、SrおよびO元素を含む低損失の結晶相が多く存在するため、周波数1MHz〜8.5GHzにおける誘電正接を小さくすることができ、さらに、アルミナ結晶粒子の平均粒径が10μm以上であるため粒界の数が少なくなり、誘電正接をさらに小さくすることができ、周波数1MHz〜8.5GHzにおける誘電正接をさらに小さくすることができる。 In such an alumina sintered body, since Al is contained in an amount of 99.3% by mass or more in terms of Al 2 O 3 , the original excellent corrosion resistance, mechanical characteristics, and electrical characteristics of alumina can be maintained. , 0.05 to 0.3 wt% of Si in terms of SiO 2, containing 0.01 to 0.16 wt% of Sr in terms of SrO, a triple point made up of alumina crystal grains, conventional grain boundary phase Since there are many low-loss crystal phases containing Si, Al, Sr and O elements instead of glass composed of components, the dielectric loss tangent at a frequency of 1 MHz to 8.5 GHz can be reduced. Since the average particle size is 10 μm or more, the number of grain boundaries is reduced, the dielectric loss tangent can be further reduced, and the dielectric loss tangent at a frequency of 1 MHz to 8.5 GHz can be further reduced. That.

また、本発明のアルミナ質焼結体は、MgをMgO換算で0.01〜0.1質量%、CaをCaO換算で0.01〜0.16質量%含有することを特徴とする。このようなアルミナ質焼結体では、アルミナ結晶粒子の不均一な異常粒成長を抑制し、強度低下を抑制できる。さらにアルカリ土類金属酸化物は焼結助剤として機能し、焼結性を向上することができ、大型の焼結体の中央部であってもボイドや欠陥を減らすことができるため特にMHz帯でより低損失のアルミナ質焼結体を得ることができる。さらに、焼結性が向上するため、例えば、肉厚の厚い大型の焼結体の厚さ方向中央部が十分に焼結し、肉厚の厚い焼結体全体の機械的強度等の特性を向上できる。   Moreover, the alumina sintered body of the present invention is characterized by containing Mg in an amount of 0.01 to 0.1% by mass in terms of MgO and Ca in an amount of 0.01 to 0.16% by mass in terms of CaO. Such an alumina sintered body can suppress non-uniform abnormal grain growth of alumina crystal particles and suppress a decrease in strength. Furthermore, alkaline earth metal oxides function as a sintering aid, improve sinterability, and can reduce voids and defects even at the center of large sintered bodies, especially in the MHz band. Thus, a lower loss alumina sintered body can be obtained. Furthermore, since the sinterability is improved, for example, the central portion in the thickness direction of a large sintered body with a large thickness is sufficiently sintered, and the characteristics such as the mechanical strength of the entire thick sintered body are improved. It can be improved.

また、本発明のアルミナ質焼結体は、前記結晶相がSrAlSi型結晶相であることを特徴とする。SrAlSi型結晶相はMHz帯で低損失であるため、MHz帯で低損失のアルミナ質焼結体を得ることができる。 The alumina sintered body of the present invention is characterized in that the crystal phase is a SrAl 2 Si 2 O 8 type crystal phase. Since the SrAl 2 Si 2 O 8 type crystal phase has a low loss in the MHz band, an alumina-based sintered body having a low loss in the MHz band can be obtained.

さらに、本発明アルミナ質焼結体は、前記Si、Al、SrおよびOの各元素を含有する結晶相が、前記アルミナ結晶粒子で構成される3重点のうち60%以上の3重点に存在することを特徴とする。このようなアルミナ質焼結体では、焼結体中の3重点に60%以上Si、Al、SrおよびOの各元素を含有する、低損失の結晶相が存在するため、また一方で、誘電正接を大きくする非晶質相の存在比率が少なくなるため、もしくは殆ど存在しないため、周波数1MHz〜8.5GHzにおける誘電正接を小さくすることができる。   Furthermore, in the alumina sintered body of the present invention, the crystal phase containing each element of Si, Al, Sr, and O exists at a triple point of 60% or more of the triple points composed of the alumina crystal particles. It is characterized by that. In such an alumina sintered body, there is a low-loss crystalline phase containing 60% or more of each element of Si, Al, Sr and O at the triple point in the sintered body. Since the abundance ratio of the amorphous phase that increases the tangent decreases or hardly exists, the dielectric loss tangent at a frequency of 1 MHz to 8.5 GHz can be reduced.

本発明の半導体製造装置用部材、液晶パネル製造装置用部材および誘電体共振器用部材は、上記のアルミナ質焼結体からなることを特徴とする。このような半導体製造装置用部材または液晶パネル製造装置用部材、誘電体共振器用部材では、測定周波数1MHz〜8.5GHzの間の周波数領域において誘電正接が小さいため、MHz〜GHz帯での高周波の透過率を向上でき、エネルギーロスを低減し、発熱による部材の破損を抑制することができる。   The member for a semiconductor manufacturing apparatus, the member for a liquid crystal panel manufacturing apparatus, and the member for a dielectric resonator according to the present invention are made of the above-mentioned alumina sintered body. In such a member for a semiconductor manufacturing device, a member for a liquid crystal panel manufacturing device, or a member for a dielectric resonator, the dielectric loss tangent is small in a frequency region between a measurement frequency of 1 MHz to 8.5 GHz. The transmittance can be improved, energy loss can be reduced, and damage to the member due to heat generation can be suppressed.

本発明のアルミナ質焼結体では、AlをAl換算で99.3質量%以上含有するため、アルミナ本来の優れた耐腐食性と機械的特性、電気特性を維持することができるとともに、SiをSiO換算で0.05〜0.3質量%、SrをSrO換算で0.01〜0.16質量%含有し、アルミナ結晶粒子で構成される3重点に、Si、Al、SrおよびOの各元素を含む低損失の結晶相が存在するため、周波数1MHz〜8.5GHzにおける誘電正接を小さくすることができ、さらに、アルミナ結晶粒子の平均粒径が10μm以上であるため粒界の数が少なくなり、誘電正接をさらに小さくすることができ、周波数1MHz〜8.5GHzにおける誘電正接をさらに小さくすることができる。 In the alumina sintered body of the present invention, since Al is contained in an amount of 99.3% by mass or more in terms of Al 2 O 3 , the original excellent corrosion resistance, mechanical properties, and electrical properties of alumina can be maintained. , Si containing 0.05 to 0.3 mass% in terms of SiO 2 , Sr in an amount of 0.01 to 0.16 mass% in terms of SrO, and the triple point composed of alumina crystal particles, Si, Al, Sr Since there is a low-loss crystal phase containing each element of O and O, the dielectric loss tangent at a frequency of 1 MHz to 8.5 GHz can be reduced, and further, the average grain size of the alumina crystal particles is 10 μm or more. , The dielectric loss tangent can be further reduced, and the dielectric loss tangent at a frequency of 1 MHz to 8.5 GHz can be further reduced.

従って、半導体製造装置用部材、液晶パネル製造装置用部材および誘電体共振器用部材に、本発明のアルミナ質焼結体を用いることにより、反応性の高いハロゲン系腐食ガスやそれらのプラズマに対して、高い耐腐食性を有するとともに、アルミナ質焼結体がMHz〜GHz帯で低損失であるため、MHz〜GHz帯での高周波の透過率を向上でき、エネルギーロスを低減し、発熱による部材の破損を抑制することができる。   Therefore, by using the alumina sintered body of the present invention for the semiconductor manufacturing apparatus member, the liquid crystal panel manufacturing apparatus member, and the dielectric resonator member, it is possible to prevent highly reactive halogen-based corrosive gases and their plasmas. In addition to having high corrosion resistance, the alumina sintered body has a low loss in the MHz to GHz band, so that it can improve the high frequency transmittance in the MHz to GHz band, reduce energy loss, Damage can be suppressed.

本発明のアルミナ質焼結体は、AlをAl換算で99.3質量%以上、SiをSiO換算で0.05〜0.3質量%、SrをSrO換算で0.01〜0.16質量%含有する。AlをAl換算で99.3質量%以上含有することにより、焼結性の改善と同時にアルミナの優れた耐腐食性と機械的特性、電気特性を維持することが可能となる。一方、AlをAl換算で99.3質量%よりも少ない場合には、耐食性が劣化し、耐食性部材には適応できなくなる。 In the alumina sintered body of the present invention, Al is 99.3% by mass or more in terms of Al 2 O 3 , Si is 0.05 to 0.3% by mass in terms of SiO 2 , and Sr is 0.01 to in terms of SrO. Contains 0.16% by mass. By containing Al in an amount of 99.3% by mass or more in terms of Al 2 O 3 , it becomes possible to improve the sinterability and maintain the excellent corrosion resistance, mechanical properties, and electrical properties of alumina. On the other hand, when Al is less than 99.3% by mass in terms of Al 2 O 3 , the corrosion resistance deteriorates and cannot be applied to the corrosion resistant member.

特に、半導体や液晶パネルの製造装置用部材として応用するためには、ハロゲン系ガス下でのプラズマに対する耐食性に優れる必要があるため、AlをAl換算で99.5質量%以上とするのが好ましい。焼結性という観点から、AlをAl換算で99.9質量%以下であることが望ましい。なお、ハロゲン系ガスとしては、例えばSF、CF、CHF、ClF、NF、C、HF等のフッ素系ガス、Cl、HCl、BCl、CCl等の塩素系ガス、或いはBr、HBr、BBr等の臭素系ガスなどがある。また、半導体、液晶パネルなどのエッチング効果を高めるために上記ハロゲン系ガスとともにAr等の不活性ガスを導入してプラズマを発生させることもある。 In particular, in order to be applied as a member for a semiconductor or liquid crystal panel manufacturing apparatus, it is necessary to have excellent corrosion resistance against plasma under a halogen-based gas, so Al is 99.5% by mass or more in terms of Al 2 O 3. Is preferred. From the viewpoint of sinterability, it is desirable that Al is 99.9% by mass or less in terms of Al 2 O 3 . Examples of the halogen-based gas include fluorine-based gases such as SF 6 , CF 4 , CHF 3 , ClF 3 , NF 3 , C 4 F 8 , and HF, and chlorine-based gases such as Cl 2 , HCl, BCl 3 , and CCl 4. There is a gas or a bromine-based gas such as Br 2 , HBr, or BBr 3 . In order to enhance the etching effect of semiconductors, liquid crystal panels, etc., plasma may be generated by introducing an inert gas such as Ar together with the halogen-based gas.

また、SiをSiO換算で0.05〜0.3質量%、SrをSrO換算で0.01〜0.16質量%含有したのは、これらの元素で、低損失のSi、Al、SrおよびOの各元素を含む結晶相を析出させるためである。 Further, these elements contained Si in an amount of 0.05 to 0.3% by mass in terms of SiO 2 and Sr in an amount of 0.01 to 0.16% by mass in terms of SrO. This is because a crystal phase containing each element of O and O is precipitated.

一方、SiがSiO換算で0.05よりも少ない場合には、低損失の結晶相が形成されにくくなり、0.3質量%よりも多くなると、焼結されにくくなる。特には、誘電正接と焼結性という観点から、SiはSiO換算で0.1〜0.2質量%であることが望ましい。 On the other hand, when Si is less than 0.05 in terms of SiO 2 , it is difficult to form a low-loss crystal phase, and when it exceeds 0.3% by mass, sintering is difficult. In particular, from the viewpoint of dielectric loss tangent and sinterability, Si is preferably 0.1 to 0.2% by mass in terms of SiO 2 .

SrがSrO換算で0.01よりも少ない場合には、低損失の結晶相が形成されにくくなり、0.16質量%よりも多い場合には、焼結されにくくなる。特には、誘電正接と焼結性という観点から、SrはSrO換算で0.03〜0.13質量%であることが望ましい。   When Sr is less than 0.01 in terms of SrO, it is difficult to form a low-loss crystal phase, and when it is more than 0.16% by mass, it is difficult to sinter. In particular, from the viewpoints of dielectric loss tangent and sinterability, Sr is preferably 0.03 to 0.13 mass% in terms of SrO.

さらに、本発明のアルミナ質焼結体では、MgをMgO換算で0.01〜0.1質量%、CaをCaO換算で0.01〜0.16質量%含有することが望ましい。これにより、アルミナ結晶粒子の不均一な異常粒成長を抑制し、強度低下を抑制できる。さらにアルカリ土類金属酸化物は焼結助剤として機能し、焼結性を向上することができ、ボイドや欠陥を減らすことができるため、特に大型の焼結体であってもMHz帯でより低損失のアルミナ質焼結体を得ることができる。さらに、焼結性が向上するため、例えば、肉厚の厚い大型の焼結体の厚さ方向中央部が十分に焼結し、肉厚の厚い焼結体全体の機械的強度等の特性を向上できる。   Furthermore, in the alumina sintered body of the present invention, it is desirable to contain 0.01 to 0.1% by mass of Mg in terms of MgO and 0.01 to 0.16% by mass of Ca in terms of CaO. Thereby, the non-uniform | heterogenous abnormal grain growth of an alumina crystal particle can be suppressed, and a strength fall can be suppressed. Furthermore, alkaline earth metal oxides function as a sintering aid, can improve sinterability, and can reduce voids and defects. A low-loss alumina sintered body can be obtained. Furthermore, since the sinterability is improved, for example, the central part in the thickness direction of a large sintered body with a large thickness is sufficiently sintered, and the characteristics such as the mechanical strength of the entire thick sintered body are improved. Can be improved.

誘電正接と焼結性という観点から、MgはMgO換算で0.02〜0.08質量%含有することが望ましい。同様に、誘電正接と焼結性という観点から、CaはCaO換算で0.02〜0.1質量%であることが望ましい。   From the viewpoint of dielectric loss tangent and sinterability, Mg is preferably contained in an amount of 0.02 to 0.08% by mass in terms of MgO. Similarly, from the viewpoint of dielectric loss tangent and sinterability, Ca is preferably 0.02 to 0.1% by mass in terms of CaO.

また、本発明のアルミナ質焼結体は、アルミナ結晶粒子を主結晶粒子とし、アルミナ結晶粒子の粒界にSi、Al、SrおよびO元素を含有する化合物からなる低損失の結晶相が存在する。図1に、アルミナ質焼結体の概略断面図を示す。符号1はアルミナ結晶粒子であり、符号2は、3重点である。   The alumina sintered body of the present invention has alumina crystal particles as main crystal particles, and a low-loss crystal phase composed of a compound containing Si, Al, Sr and O elements exists at the grain boundaries of the alumina crystal particles. . FIG. 1 shows a schematic cross-sectional view of an alumina sintered body. Reference numeral 1 is alumina crystal particles, and reference numeral 2 is a triple point.

本出願において、アルミナ結晶粒子1で構成される3重点2とは、3個以上のアルミナ結晶粒子1で形成される粒界で、2つのアルミナ結晶粒子1で構成される2面間粒界5とは異なる。   In the present application, the triple point 2 constituted by the alumina crystal particles 1 is a grain boundary formed by three or more alumina crystal particles 1, and a two-plane grain boundary 5 constituted by two alumina crystal particles 1. Is different.

一般的なアルミナ質焼結体では、焼結助剤として加えた副成分がアルミナ結晶粒子1間にガラス、あるいは誘電正接の高い結晶として存在し、アルミナ質焼結体全体の誘電正接を増大させる傾向があった。しかしながら、本願発明のように、アルミナ結晶粒子1で構成される3重点2に、Si、Al、SrおよびOの各元素を含有する化合物からなる低損失の結晶相を析出させると、この結晶相自身の誘電正接が低い為、アルミナ質焼結体全体のMHz帯での誘電正接を低下させることができる。   In a general alumina sintered body, subcomponents added as a sintering aid exist between the alumina crystal particles 1 as glass or crystals having a high dielectric loss tangent, and increase the dielectric loss tangent of the entire alumina sintered body. There was a trend. However, when a low-loss crystal phase composed of a compound containing each element of Si, Al, Sr and O is deposited on the triple point 2 composed of alumina crystal particles 1 as in the present invention, this crystal phase Since the dielectric loss tangent of itself is low, the dielectric loss tangent in the MHz band of the entire alumina sintered body can be lowered.

尚、上記したように、従来、Mg、Ca等のアルカリ土類金属が焼結助剤として知られていたが、アルカリ土類金属のうち、Sr、Baについてはイオン半径が大きいため、焼結助剤として用いられておらず、特に、Srについては、積極的に使用した例は存在しない。本発明では、特にSrについては、焼結助剤として用いるのではなく、低誘電正接の結晶相であるSrAlSi型結晶を析出させるために用い、その低誘電正接の結晶相の存在により直接的にアルミナ質焼結体の誘電正接を低くできる。 In addition, as described above, alkaline earth metals such as Mg and Ca have been conventionally known as sintering aids, but among alkaline earth metals, Sr and Ba have a large ionic radius, so sintering. It is not used as an auxiliary agent, and in particular, there is no example of actively using Sr. In the present invention, in particular, Sr is not used as a sintering aid, but is used to precipitate SrAl 2 Si 2 O 8 type crystal, which is a low dielectric loss tangent crystal phase. The presence can directly lower the dielectric loss tangent of the alumina sintered body.

Si、Al、SrおよびO元素を含有する化合物からなる低誘電正接の結晶相は、上記したように電気的特性の観点より、SrAlSi型結晶であることが好ましく、本結晶の生成により誘電正接を低減できる。Si、Al、SrおよびO元素を含有する化合物からなる低誘電正接の結晶相としては、他に、SrAlSiの定比組成ではなく、化学量論組成から少しずれたものであっても良い。尚、本発明においては、SrAlSi型結晶とは、構成元素の一部が他の元素で置換されたものも含む概念である。 The low dielectric loss tangent crystal phase comprising a compound containing Si, Al, Sr and O elements is preferably a SrAl 2 Si 2 O 8 type crystal from the viewpoint of electrical characteristics as described above. The dielectric loss tangent can be reduced by the generation. Another low dielectric loss tangent crystal phase comprising a compound containing Si, Al, Sr and O elements is not a stoichiometric composition of SrAl 2 Si 2 O 8 but a little deviated from the stoichiometric composition. May be. In the present invention, the SrAl 2 Si 2 O 8 type crystal is a concept including one in which a part of the constituent elements is replaced with another element.

本発明では、アルミナ結晶粒子1で構成される3重点2のうち60%以上の3重点2に、元素としてSi、AlおよびMを含有する化合物からなる結晶相が存在していることが望ましい。アルミナ結晶粒子1で構成される3重点2のうち60%以上の3重点2に結晶相が存在するとは、アルミナ質焼結体の任意断面の所定面積において、アルミナ結晶粒子1で構成される多数の3重点2のうちの少なくとも60%に、Si、AlおよびSrを含有する化合物からなる結晶相が存在していることを意味する。   In the present invention, it is desirable that a crystal phase composed of a compound containing Si, Al, and M as elements is present at the triple point 2 of 60% or more of the triple points 2 composed of the alumina crystal particles 1. The crystal phase is present in the triple point 2 of 60% or more of the triple point 2 constituted by the alumina crystal particles 1 is that a large number of the alumina crystal particles 1 are formed in a predetermined area of an arbitrary cross section of the alumina sintered body. This means that a crystal phase composed of a compound containing Si, Al and Sr exists in at least 60% of the triple point 2 of the above.

本発明では、多数の3重点2のうちの少なくとも60%に、Si、AlおよびMを含有する化合物からなる結晶相を存在せしめるために、後述するように、結晶相を構成する原料粉末を混合粉砕し、この混合粉末を仮焼し、Si、AlおよびSrを含有する化合物からなる結晶相を合成し、アルミナ粉末に添加している。   In the present invention, in order to make a crystal phase composed of a compound containing Si, Al and M present in at least 60% of the many triple points 2, as described later, the raw material powder constituting the crystal phase is mixed. The mixed powder is pulverized and calcined, a crystal phase composed of a compound containing Si, Al and Sr is synthesized and added to the alumina powder.

このように、低誘電正接の結晶相が3重点2のうち60%以上の3重点2に存在するため、アルミナ質焼結体の低誘電正接化をさらに図ることができる。1MHz〜8.5GHzの間の周波数領域においても誘電正接を低下させるためには、低誘電正接の結晶相が存在する粒界3重点2の比率は90%以上が好ましい。   Thus, since the low dielectric loss tangent crystal phase is present in the triple point 2 of 60% or more of the triple points 2, the alumina sintered body can be further reduced in the dielectric loss tangent. In order to reduce the dielectric loss tangent even in the frequency region between 1 MHz and 8.5 GHz, the ratio of the grain boundary triple point 2 where the crystal phase of the low dielectric loss tangent exists is preferably 90% or more.

また、本発明では、アルミナ結晶粒子1で構成される3重点2で、上記結晶相が存在していない3重点2には、元素としてSi、AlおよびSrを含有する非晶質相が存在しているか、もしくは、後述する結晶相が存在している。この非晶質相が存在する3重点は、実質的に存在しないか、任意断面の所定面積において10%以下とされている。   In the present invention, the triple point 2 composed of the alumina crystal particles 1 and the triple point 2 where the above crystal phase does not exist has an amorphous phase containing Si, Al and Sr as elements. Or a crystal phase to be described later exists. The triple point where the amorphous phase exists is substantially absent or 10% or less in a predetermined area of an arbitrary cross section.

アルミナ結晶粒子1で構成される3重点2とは、3個以上のアルミナ結晶粒子1で形成される粒界で、2つのアルミナ結晶粒子1で構成される2面間粒界5とは異なる。   The triple point 2 constituted by the alumina crystal particles 1 is a grain boundary formed by three or more alumina crystal particles 1 and is different from the inter-plane grain boundary 5 constituted by two alumina crystal particles 1.

また、本発明のアルミナ質焼結体は、さらにMgAlおよびCaAl1219で表される化合物からなる結晶相のうち少なくとも一種を含有することが望ましい。これらの結晶は、アルミナ結晶粒子1で構成される3重点2に存在している。これら結晶相を生成させることで、誘電正接を高くする非晶質相を減少させることができ、1MHz〜8.5GHzの領域において誘電正接を低下させることができる。特にMgAl、CaAl1219は、GHz帯での誘電正接が低いため、アルミナ質焼結体のGHz帯の誘電正接低下に有効である。 Moreover, it is desirable that the alumina sintered body of the present invention further contains at least one of crystal phases composed of compounds represented by MgAl 2 O 4 and CaAl 12 O 19 . These crystals are present at the triple point 2 constituted by the alumina crystal particles 1. By generating these crystal phases, the amorphous phase that increases the dielectric loss tangent can be reduced, and the dielectric loss tangent can be lowered in the region of 1 MHz to 8.5 GHz. In particular, MgAl 2 O 4 and CaAl 12 O 19 have a low dielectric loss tangent in the GHz band, and are therefore effective in reducing the dielectric loss tangent in the GHz band of an alumina sintered body.

さらに、本発明のアルミナ質焼結体は、平均粒径D50が10μm以上とされている。このように平均粒径が大きいため、粒界の数が少なくなり、誘電正接をさらに小さくすることができ、周波数1MHz〜8.5GHzにおける誘電正接をさらに小さくすることができる。低誘電正接をより安定させるという観点から、アルミナ結晶粒子1の平均粒径D50は15μm以上が好ましい。アルミナ結晶粒子1の平均粒径D50は、機械的特性という観点から、70μm以下であることが望ましい。尚、平均粒径D50とは、累積粒度分布の微粒側から累積50%の粒径をいう。 Further, the alumina sintered body of the present invention has an average particle diameter D 50 is equal to or greater than 10 [mu] m. Since the average particle diameter is thus large, the number of grain boundaries is reduced, the dielectric loss tangent can be further reduced, and the dielectric loss tangent at a frequency of 1 MHz to 8.5 GHz can be further reduced. From the viewpoint of further stabilizing the low dielectric loss tangent, the average particle diameter D 50 of the alumina crystal particles 1 is preferably 15 μm or more. The average particle diameter D 50 of the alumina crystal particles 1 is desirably 70 μm or less from the viewpoint of mechanical properties. Incidentally, the average particle diameter D 50, refers to the particle size of cumulative 50% fine particle side of the cumulative particle size distribution.

本発明のアルミナ質焼結体は、産業機械用部品として用いられ、とりわけ半導体製造装置や液晶製造装置に用いられる大型で、厚みのある部材として好適に用いることができる。本発明における半導体製造装置用部材とは、半導体製造装置の内壁材(チャンバー)やマイクロ波導入窓、シャワーヘッド、フォーカスリング、シールドリング等をいう。液晶パネル製造装置用部材とは、ステージ、ミラー、マスクホルダー、マスクステージ、チャック、レチクル等をいう。   The alumina-based sintered body of the present invention is used as a part for industrial machinery, and can be suitably used as a large and thick member used particularly for a semiconductor manufacturing apparatus or a liquid crystal manufacturing apparatus. The member for a semiconductor manufacturing apparatus in the present invention means an inner wall material (chamber), a microwave introduction window, a shower head, a focus ring, a shield ring, or the like of the semiconductor manufacturing apparatus. A member for a liquid crystal panel manufacturing apparatus refers to a stage, a mirror, a mask holder, a mask stage, a chuck, a reticle, and the like.

さらに本発明のアルミナ質焼結体は、マイクロ波やミリ波等の高周波領域において、誘電体共振器、MIC用誘電体基板や導波路等としても用いられる。特に種々の誘電体共振器の支持体等の誘電体共振器用部材としても好適に使用できる。   Furthermore, the alumina sintered body of the present invention is also used as a dielectric resonator, a dielectric substrate for MIC, a waveguide or the like in a high frequency region such as a microwave or a millimeter wave. In particular, it can be suitably used as a dielectric resonator member such as a support for various dielectric resonators.

本発明のアルミナ質焼結体の製法は、例えば、酸化アルミニウム粉末に、Si源とアルカリ土類金属源とを混合して熱処理した原料粉末を混合し、この混合粉末を成形したのち、1650〜1800℃で焼成する。   The method for producing an alumina sintered body according to the present invention includes, for example, mixing an aluminum oxide powder with a raw material powder obtained by mixing and heat-treating a Si source and an alkaline earth metal source, and forming the mixed powder, and then 1650- Bake at 1800 ° C.

Srを含むアルカリ土類金属源とSi源とを混合し熱処理した原料粉末とは、Si源とSrを含むアルカリ土類金属源を、例えばSrAlSiを生成するように、所定の比率で混合し、500℃〜1400℃で仮焼することによって得られる粉末である。ここでいうSi源、Srを含むアルカリ土類金属源としては、金属、酸化物、水酸化物、炭酸塩、硝酸塩等の塩類のいずれであっても良い。SiとSrを含むアルカリ土類金属の原料粉末を用いることで、アルミナ質焼結体中でのSiとSrを含むアルカリ土類金属の分布を均一なものとし、不均一な焼結組織をなくすことが可能となる。 The raw material powder obtained by mixing and heat-treating an alkaline earth metal source containing Sr and an Si source is a predetermined powder so as to produce an alkaline earth metal source containing Si source and Sr, for example, SrAl 2 Si 2 O 8 . It is a powder obtained by mixing at a ratio and calcining at 500 ° C to 1400 ° C. The Si source and the alkaline earth metal source containing Sr may be any of metals, oxides, hydroxides, carbonates, nitrates, and other salts. By using the alkaline earth metal raw material powder containing Si and Sr, the distribution of the alkaline earth metal containing Si and Sr in the alumina sintered body is made uniform, and the non-uniform sintered structure is eliminated. It becomes possible.

また、Siとアルカリ土類金属の反応を優先的に起こし、アルミナ結晶粒子間にSiとSr、Al、O元素からなる誘電正接の低い結晶を生成することが可能となる。SiとSrを含むアルカリ土類金属の分布が不均一であると、非晶質相(ガラス)あるいは高誘電正接の結晶相が生成し、アルミナ質焼結体全体の誘電正接が増大する原因となる。   In addition, it is possible to preferentially cause a reaction between Si and an alkaline earth metal, and to generate a crystal having a low dielectric loss tangent composed of Si, Sr, Al, and O elements between alumina crystal particles. If the distribution of the alkaline earth metal containing Si and Sr is not uniform, an amorphous phase (glass) or a crystalline phase with a high dielectric loss tangent is generated, and this increases the dielectric loss tangent of the entire alumina sintered body. Become.

酸化アルミニウム粉末に、上記Srを含むアルカリ土類金属源とSi源を混合し焼成した原料粉末と、Mg源を含む原料粉末を混合し、焼成する場合もある。Mg源としては、金属、金属酸化物、金属水酸化物、金属炭酸塩などの塩類等を粉末あるいは水溶液等として使用することが可能である。   In some cases, the raw material powder obtained by mixing and baking the alkaline earth metal source containing Sr and the Si source and the raw material powder containing the Mg source are mixed with the aluminum oxide powder and fired. As the Mg source, it is possible to use salts such as metals, metal oxides, metal hydroxides, and metal carbonates as powders or aqueous solutions.

成形には、プレス成形、鋳込み、冷間静水圧成形、或いは冷間静水圧処理などの成形法が使用可能である。次に、得られた成形体を1650〜1800℃の温度範囲で焼成する。これにより高密度で、アルミナ結晶粒子間にSiとSr、Al、O元素を含有する化合物からなる結晶相が生成した焼結体を作製する。   For molding, a molding method such as press molding, casting, cold isostatic pressing, or cold isostatic pressing can be used. Next, the obtained molded body is fired in a temperature range of 1650 to 1800 ° C. As a result, a sintered body having a high density and a crystal phase made of a compound containing Si, Sr, Al, and O elements between alumina crystal particles is produced.

本発明のアルミナ質焼結体の誘電正接の測定法について説明する。   A method for measuring the dielectric loss tangent of the alumina sintered body of the present invention will be described.

焼結体を測定周波数1MHzと8.5GHzで誘電正接を測定し、1MHzで5×10−4以下、8.5GHzで5×10−4以下とするものを良品として使うことにより、測定周波数1MHz〜8.5GHzの間の周波数領域においても誘電正接が5×10−4以下を見込むことができる。この方法により、誘電正接に関して高精度なキャパシタンスメータ(ヒューレットパッカード社製:HP−4278A)とネットワークアナライザ(アジレント・テクノロジー社製:8722ES)を使用することができ、従来のインピーダンスアナライザでは保障できない1MHz〜8.5GHz帯における低誘電正接材料の設計が可能となる。 The sintered body dissipation factor was measured at a measuring frequency of 1MHz and 8.5 GHz, 1MHz at 5 × 10 -4 or less, by using non-defective ones to be 5 × 10 -4 or less at 8.5 GHz, measurement frequency 1MHz Even in the frequency region between ˜8.5 GHz, the dielectric loss tangent can be expected to be 5 × 10 −4 or less. By this method, it is possible to use a highly accurate capacitance meter (Hewlett Packard: HP-4278A) and network analyzer (Agilent Technology: 8722ES) with respect to the dielectric loss tangent. It is possible to design a low dielectric loss tangent material in the 8.5 GHz band.

JIS C2141に基づきキャパシタンスメータで誘電正接を測定する際の寸法の試料を用いて、ネットワークアナライザで測定する際には、測定周波数は8.5GHzから多少ずれることがある。このずれはサンプル外形寸法精度や材料の誘電率バラツキから来るものであり、純度99.3%以上で十分に焼結したアルミナ質焼結体の場合、8.5±0.3GHzは見込まれる。   When measuring with a network analyzer using a sample having a dimension when measuring the dielectric loss tangent with a capacitance meter based on JIS C2141, the measurement frequency may slightly deviate from 8.5 GHz. This deviation comes from the accuracy of the sample outer dimensions and the dielectric constant variation of the material. In the case of an alumina sintered body sufficiently sintered with a purity of 99.3% or more, 8.5 ± 0.3 GHz is expected.

すなわち、従来、測定周波数1MHzにおける誘電正接は、キャパシタンス・メータ(HP−4278A)、測定周波数8.5GHzにおける誘電正接は、空洞共振器法(ネットワーク・アナライザ 8722ES)を用いて測定を行ない、測定誤差がそれぞれ±2×10−4以下、±0.1×10−4以下の精度の良い誘電正接が得られることが知られているが、半導体、液晶パネル製造装置用部材に要求される1MHz〜8.5GHz、特に10MHz〜1GHzにおける周波数領域では、インピーダンスアナライザ(ヒューレットパッカード社製:HP−4291A)による測定しかなく、その測定誤差は小さくても±30×10−4程度であり、5×10−4以下の誘電正接については測定精度が極めて低い。 That is, conventionally, the dielectric loss tangent at a measurement frequency of 1 MHz is measured using a capacitance meter (HP-4278A), and the dielectric loss tangent at a measurement frequency of 8.5 GHz is measured using a cavity resonator method (network analyzer 8722ES). Are known to obtain accurate dielectric loss tangents of ± 2 × 10 −4 or less and ± 0.1 × 10 −4 or less, respectively, but from 1 MHz required for semiconductor and liquid crystal panel manufacturing apparatus members In the frequency region of 8.5 GHz, particularly 10 MHz to 1 GHz, there is only measurement using an impedance analyzer (HP-4291A, manufactured by Hewlett-Packard Company), and the measurement error is about ± 30 × 10 −4 even if it is small, 5 × 10 Measurement accuracy is very low for dielectric loss tangent of -4 or less.

そこで、1MHz〜8.5GHzにおける周波数領域の誘電損失を、測定精度の低いインピーダンスアナライザで直接測定することなく、測定周波数1MHzと8.5GHzにおける誘電正接を測定し、測定周波数1MHzと8.5GHzにおける誘電正接が5×10−4以下の範囲にある場合には、測定周波数1MHz〜8.5GHz、特には10〜100MHzの間の周波数領域においても誘電正接を5×10−4以下と認定でき、測定周波数1MHz〜8.5GHzにおける誘電正接を容易にかつ正確に測定することができる。 Therefore, the dielectric loss tangent at the measurement frequency of 1 MHz and 8.5 GHz is measured without directly measuring the dielectric loss in the frequency domain from 1 MHz to 8.5 GHz with an impedance analyzer with low measurement accuracy, and the measurement frequency at 1 MHz and 8.5 GHz is measured. When the dielectric loss tangent is in the range of 5 × 10 −4 or less, the dielectric loss tangent can be recognized as 5 × 10 −4 or less even in the frequency range between 1 MHz to 8.5 GHz, particularly 10 to 100 MHz, The dielectric loss tangent at a measurement frequency of 1 MHz to 8.5 GHz can be measured easily and accurately.

まず、SiOとSrCO、CaCO、BaCOの粉末を秤量、混合して混合粉末を得た。この粉末を1000℃〜1300℃で熱処理し、アルミナボールミルにて48〜72時間粉砕を行ない、原料粉末を作製した。 First, SiO 2 and SrCO 3 , CaCO 3 , and BaCO 3 powders were weighed and mixed to obtain a mixed powder. This powder was heat-treated at 1000 ° C. to 1300 ° C. and pulverized in an alumina ball mill for 48 to 72 hours to produce a raw material powder.

純度が99.95%のAl粉末に、前記の原料粉末と、Mg(OH)粉末とを添加し、これに所定量の水を加えアルミナボールミルにて48時間混合してスラリーとした。このスラリーにバインダーを加えて乾燥したのち、造粒し、この混合粉末を1t/cmの圧力で金型成形して円柱状成形体(直径60mm×高さ30mm)を作製し、大気中にて1680℃の温度で焼成を行ない、直径50mm×高さ25mmのアルミナ質焼結体を得た。 Purity to 99.95% of Al 2 O 3 powder, and the raw material powders described above, and the addition of the Mg (OH) 2 powder, which in mixed 48 hours alumina balls mill adding a predetermined amount of water slurry did. The slurry is added to the slurry, dried, granulated, and the mixed powder is molded at a pressure of 1 t / cm 2 to produce a cylindrical molded body (diameter 60 mm × height 30 mm). Was fired at a temperature of 1680 ° C. to obtain an alumina sintered body having a diameter of 50 mm and a height of 25 mm.

このアルミナ質焼結体の元素の定量分析を、ICP発光分光分析にて行い、表1に、AlをAl換算、SiをSiO換算で、SrをSrO換算、MgをMgO換算で、CaをCaO換算で、BaをBaO換算で記載した。尚、Al、Si、Sr、Mg、Ca、Ba以外の元素を残部とし、その量も記載した。残部は、主にNaOと、Feであった。X線回折測定により、表1の試料全てが、アルミナ結晶粒子を主結晶粒子とすることを確認した。さらに、MgAlまたはCaAl1219で表される化合物からなる結晶相の有無について、X線回折測定により確認し、表1にスピネル等の存在有無として記載した。 Quantitative analysis of the elements of this alumina sintered body is performed by ICP emission spectroscopic analysis. In Table 1, Al is converted to Al 2 O 3 , Si is converted to SiO 2 , Sr is converted to SrO, and Mg is converted to MgO. , Ca is described in terms of CaO, and Ba is described in terms of BaO. In addition, elements other than Al, Si, Sr, Mg, Ca, and Ba are used as the balance, and their amounts are also described. The balance was mainly Na 2 O and Fe 2 O 3 . By X-ray diffraction measurement, it was confirmed that all the samples in Table 1 had alumina crystal particles as main crystal particles. Furthermore, the presence / absence of a crystal phase composed of a compound represented by MgAl 2 O 4 or CaAl 12 O 19 was confirmed by X-ray diffraction measurement, and listed in Table 1 as the presence / absence of spinel.

得られた焼結体の高さ方向中央部から厚み1mmの試料を切り出して、密度、誘電正接を測定し、表2に記載した。密度はアルキメデス法にて測定した。   A sample having a thickness of 1 mm was cut out from the center in the height direction of the obtained sintered body, and the density and dielectric loss tangent were measured. The density was measured by the Archimedes method.

また、誘電正接tanδは、1MHz、12MHz、8.5GHzにて行ない、それぞれキャパシタンス・メータ(HP−4278A)、インピーダンスアナライザ(HP−4291A)、空洞共振器法(ネットワーク・アナライザ 8722ES)を用いて測定を行なった。キャパシタンス・メータの測定誤差は±2×10−4以下であり、空洞共振器法の測定誤差は±0.1×10−4以下であるものの、インピーダンスアナライザの測定誤差は±30×10−4であるため、インピーダンスアナライザによる12MHzの誘電正接が5×10−4未満の場合には、<5と表2に記載した。 The dielectric loss tangent tan δ is measured at 1 MHz, 12 MHz, and 8.5 GHz, and measured using a capacitance meter (HP-4278A), impedance analyzer (HP-4291A), and cavity resonator method (network analyzer 8722ES), respectively. Was done. Although the measurement error of the capacitance meter is ± 2 × 10 −4 or less and the measurement error of the cavity resonator method is ± 0.1 × 10 −4 or less, the measurement error of the impedance analyzer is ± 30 × 10 −4. Therefore, when the 12 MHz dielectric loss tangent by the impedance analyzer is less than 5 × 10 −4 , it is described in Table 2 as <5.

尚、インピーダンスアナライザにより、1MHz〜1GHzにおける誘電正接の周波数依存性も確認した。その結果、今回のサンプルにおいて装置の精度上1MHz〜1GHzにおける誘電正接は、1〜10MHzと100MHz〜1GHzにおける誘電正接が高く、その間の周波数帯で低いという傾向があり、特に10〜100MHzにおける誘電正接が低いという傾向があった。また、10〜100MHzの周波数帯で誘電正接にピークはみられず、フラットな形状であった。   In addition, the frequency dependence of the dielectric loss tangent at 1 MHz to 1 GHz was also confirmed by an impedance analyzer. As a result, the dielectric loss tangent at 1 MHz to 1 GHz in this sample tends to be high at 1 to 10 MHz and 100 MHz to 1 GHz and low in the frequency band between them, particularly at 10 to 100 MHz. Tended to be low. Moreover, no peak was observed in the dielectric loss tangent in the frequency band of 10 to 100 MHz, and the shape was flat.

先ず、ネットワーク・アナライザを用い、直径50mm×厚み1mmの試料を治具にて挟持し、8.5GHzにおける誘電正接を求め、次に、インピーダンスアナライザを用い、上記直径50mm×厚み1mmの試料を治具にて挟持し、12MHzにおける誘電正接を求め、この後、JIS C2141に基づき、上記直径50mm×厚み1mmの試料の上下面に電極を形成し、キャパシタンス・メータにて1MHzにおける誘電正接を求めた。   First, using a network analyzer, a sample having a diameter of 50 mm × thickness 1 mm is sandwiched by a jig to obtain a dielectric loss tangent at 8.5 GHz. Next, using an impedance analyzer, the sample having a diameter of 50 mm × thickness 1 mm is cured. The electrode was formed on the upper and lower surfaces of the sample having a diameter of 50 mm and a thickness of 1 mm based on JIS C2141, and the dielectric loss tangent at 1 MHz was obtained with a capacitance meter. .

また、各焼結体中の結晶相の分析は、透過型電子顕微鏡(TEM)を用いて、エネルギー分散型X線分光分析(EDS)と制限視野電子線回折により行ない、Si、Al、Sr、O元素を含む結晶相の有無について粒界3重点を30箇所確認し、結晶相の発生割合と、非晶質相の発生割合を表2に記載した。尚、粒界3重点のものが非晶質相かどうかは、制限視野電子線回折により確認した。非晶質相は、Si、Al、Sr、O元素を含有していた。Si、Al、Sr、O元素を含む結晶相は、MAlSi型結晶相であり、Mは、表1に示すように、Srと、Ca、Baの少なくとも一種であった。図2に、試料No.9の電子線回折写真を示した。 Moreover, the analysis of the crystal phase in each sintered body is performed by energy dispersive X-ray spectroscopy (EDS) and limited-field electron diffraction using a transmission electron microscope (TEM), and Si, Al, Sr, Regarding the presence or absence of the crystal phase containing the O element, 30 grain boundary triple points were confirmed, and the generation ratio of the crystal phase and the generation ratio of the amorphous phase are shown in Table 2. Whether the grain boundary triple point is an amorphous phase was confirmed by limited-field electron diffraction. The amorphous phase contained Si, Al, Sr, and O elements. The crystal phase containing Si, Al, Sr, and O elements was an MAl 2 Si 2 O 8 type crystal phase, and M was at least one of Sr, Ca, and Ba as shown in Table 1. In FIG. 9 electron diffraction photographs are shown.

さらに、アルミナ結晶粒子の平均粒径D50は、上記試料の走査型電子顕微鏡写真(500倍)について、0.0432mmの範囲で、画像解析装置にて各結晶粒子の直径を求め、平均粒径D50を算出し、表2に記載した。 Further, the average particle diameter D 50 of the alumina crystal particles, the scanning electron micrograph of the sample (500 fold) in the range of 0.0432Mm 2, determine the diameter of each crystal grain in an image analyzer, the average particle calculating the diameter D 50, as described in Table 2.

表1、2より、AlをAl換算で99.3質量%以上、SiをSiO換算で0.05〜0.3質量%、SrをSrO換算で0.01〜0.16質量%含有し、アルミナ結晶粒子の粒界にSrAlSi型結晶相が存在し、平均粒径が10μm以上である本発明の試料では、誘電正接が8.5GHzにおいて2.2×10−4以下、1MHzにおいて4×10−4以下の場合、12MHzにおいても5×10−4未満の低損失であることがわかる。 From Tables 1 and 2, Al is 99.3% by mass or more in terms of Al 2 O 3 , Si is 0.05 to 0.3% by mass in terms of SiO 2 , and Sr is 0.01 to 0.16 in terms of SrO. In the sample of the present invention containing SrAl 2 Si 2 O 8 type crystal phase at the grain boundary of alumina crystal particles and having an average particle size of 10 μm or more, the dielectric loss tangent is 8.5 × 10 × 10 at 2.2 GHz. -4 or less When the frequency is 4 × 10 −4 or less at 1 MHz, it is found that the loss is less than 5 × 10 −4 at 12 MHz.

これに対して、SiOとSrCO、CaCOの粉末を熱処理して、Al粉末に添加して作製したものの、SiO量が0.02質量%と少ない試料No.1では、1MHzにおいて29×10−4、8.5GHzにおいて6.2×10−4と誘電損失が高かった。 In contrast, by heat-treating the powder of SiO 2 and SrCO 3, CaCO 3, but was prepared by adding the Al 2 O 3 powder, a sample amount of SiO 2 is less and 0.02 wt% No. 1, the dielectric loss was high at 29 × 10 −4 at 1 MHz and 6.2 × 10 −4 at 8.5 GHz.

また、比較例である試料No.14は、下記のようにして作製した。純度が99.95質量%のAl粉末に、SiO粉末、CaCO粉末、Mg(OH)粉末を別個にそれぞれ添加し、これに所定量の水を加えボールミルにて48時間混合してスラリーとした。このスラリーにバインダーを加えて乾燥したのち、造粒し、この混合粉末を1t/cmの圧力で金型成形して成形体(直径60mm×高さ30mm)を作製し、1600℃にて焼成を行なった。 In addition, sample No. 14 was produced as follows. Add SiO 2 powder, CaCO 3 powder and Mg (OH) 2 powder separately to Al 2 O 3 powder with purity of 99.95% by mass, add predetermined amount of water to this, and mix for 48 hours by ball mill To give a slurry. The slurry is added with a binder, dried, granulated, and the mixed powder is molded at a pressure of 1 t / cm 2 to produce a molded body (diameter 60 mm × height 30 mm) and fired at 1600 ° C. Was done.

得られた焼結体の高さ方向中央部(厚み1mm)を切り出して、実施例と同様の方法によって、密度、誘電特性を測定した。分析の結果、酸化アルミニウム結晶粒子間にはSiとCa、Al、O元素からなる結晶が僅か生成し、残りはMgAlであり、殆どがSi、Al、Sr、O元素を含有する非晶質相であった。誘電正接の値は、8.5GHzでは1.4×10−4以下と低損失であったが、1MHzにおいて40×10−4、12MHzにおいて7×10−4と高く、MHz帯において誘電損失が高かった。 The center part (thickness 1 mm) in the height direction of the obtained sintered body was cut out, and the density and dielectric properties were measured by the same method as in the examples. As a result of the analysis, a few crystals composed of Si and Ca, Al, and O elements are formed between the aluminum oxide crystal particles, and the rest are MgAl 2 O 4 , and most of them contain Si, Al, Sr, and O elements. It was a crystalline phase. The value of dielectric loss tangent was as low as 1.4 × 10 −4 or less at 8.5 GHz, but it was as high as 40 × 10 −4 at 1 MHz and 7 × 10 −4 at 12 MHz, and the dielectric loss was in the MHz band. it was high.

本発明のアルミナ質焼結体の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the alumina sintered compact of this invention. 表1、2の試料No.9の電子線回折写真である。Sample Nos. 9 is an electron diffraction photograph of 9;

符号の説明Explanation of symbols

1・・・アルミナ結晶粒子
2・・・3重点
1 ... Alumina crystal particles 2 ... 3 points

Claims (7)

AlをAl換算で99.3質量%以上、SiをSiO換算で0.05〜0.3質量%、SrをSrO換算で0.01〜0.16質量%含有するとともに、アルミナ結晶粒子を主結晶粒子とし、該アルミナ結晶粒子で構成される3重点にSi、Al、SrおよびOの各元素を含有する結晶相が存在し、かつ前記アルミナ結晶粒子の平均粒径が10μm以上であることを特徴とするアルミナ質焼結体。 It contains 99.3% by mass or more of Al in terms of Al 2 O 3 , 0.05 to 0.3% by mass of Si in terms of SiO 2 , 0.01 to 0.16% by mass of Sr in terms of SrO, and alumina. Crystal grains are main crystal grains, a crystal phase containing each element of Si, Al, Sr and O is present at a triple point composed of the alumina crystal grains, and the average grain diameter of the alumina crystal grains is 10 μm or more. An alumina sintered body characterized in that さらに、MgをMgO換算で0.01〜0.1質量%、CaをCaO換算で0.01〜0.16質量%含有することを特徴とする請求項1記載のアルミナ質焼結体。   The alumina sintered body according to claim 1, further comprising 0.01 to 0.1% by mass of Mg in terms of MgO and 0.01 to 0.16% by mass of Ca in terms of CaO. 前記結晶相がSrAlSi型結晶相であることを特徴とする請求項1または2記載のアルミナ質焼結体。 The alumina-based sintered body according to claim 1 or 2, wherein the crystal phase is a SrAl 2 Si 2 O 8 type crystal phase. 前記Si、Al、SrおよびOの各元素を含有する結晶相が、前記アルミナ結晶粒子で構成される3重点のうち60%以上の3重点に存在することを特徴とする請求項1乃至3のうちいずれかに記載のアルミナ質焼結体。   The crystal phase containing each element of said Si, Al, Sr, and O exists in 60% or more of 3 points | pieces among the 3 points | pieces comprised with the said alumina crystal particle, The Claim 1 thru | or 3 characterized by the above-mentioned. The alumina sintered body according to any one of the above. 請求項1乃至4のうちいずれかに記載のアルミナ質焼結体からなることを特徴とする半導体製造装置用部材。   A member for a semiconductor manufacturing apparatus, comprising the alumina sintered body according to any one of claims 1 to 4. 請求項1乃至4のうちいずれかに記載のアルミナ質焼結体からなることを特徴とする液晶パネル製造装置用部材。   A member for a liquid crystal panel manufacturing apparatus, comprising the alumina sintered body according to any one of claims 1 to 4. 請求項1乃至4のうちいずれかに記載のアルミナ質焼結体からなることを特徴とする誘電体共振器用部材。   A dielectric resonator member comprising the alumina sintered body according to any one of claims 1 to 4.
JP2008278133A 2007-11-28 2008-10-29 Alumina sintered body, semiconductor manufacturing apparatus member, liquid crystal panel manufacturing apparatus member, and dielectric resonator member Active JP5371372B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008278133A JP5371372B2 (en) 2008-03-26 2008-10-29 Alumina sintered body, semiconductor manufacturing apparatus member, liquid crystal panel manufacturing apparatus member, and dielectric resonator member
PCT/JP2008/071699 WO2009069770A1 (en) 2007-11-28 2008-11-28 Aluminous sinter, process for producing the same, member for semiconductor production apparatus, member for liquid-crystal-panel production apparatus, and member for dielectric resonator
KR1020107010888A KR101200385B1 (en) 2007-11-28 2008-11-28 Aluminous sinter, process for producing the same, member for semiconductor production apparatus, member for liquid-crystal-panel production apparatus, and member for dielectric resonator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008080842 2008-03-26
JP2008080842 2008-03-26
JP2008278133A JP5371372B2 (en) 2008-03-26 2008-10-29 Alumina sintered body, semiconductor manufacturing apparatus member, liquid crystal panel manufacturing apparatus member, and dielectric resonator member

Publications (2)

Publication Number Publication Date
JP2009256174A true JP2009256174A (en) 2009-11-05
JP5371372B2 JP5371372B2 (en) 2013-12-18

Family

ID=41384102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008278133A Active JP5371372B2 (en) 2007-11-28 2008-10-29 Alumina sintered body, semiconductor manufacturing apparatus member, liquid crystal panel manufacturing apparatus member, and dielectric resonator member

Country Status (1)

Country Link
JP (1) JP5371372B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015163569A (en) * 2014-01-30 2015-09-10 京セラ株式会社 Alumina sintered body and member for semiconductor manufacturing apparatus, and member for liquid crystal panel manufacturing apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05301762A (en) * 1992-04-27 1993-11-16 Mitsubishi Materials Corp Production of cutting tool with high toughness made of aluminum oxide-based ceramic
JPH0616469A (en) * 1992-06-30 1994-01-25 Kyocera Corp Alumina porcelain composition
JP2005050875A (en) * 2003-07-29 2005-02-24 Kyocera Corp Ceramic package
JP2007254273A (en) * 2006-02-24 2007-10-04 Kyocera Corp Alumina sintered compact, and member for treatment apparatus using the same, treatment apparatus, and treatment method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05301762A (en) * 1992-04-27 1993-11-16 Mitsubishi Materials Corp Production of cutting tool with high toughness made of aluminum oxide-based ceramic
JPH0616469A (en) * 1992-06-30 1994-01-25 Kyocera Corp Alumina porcelain composition
JP2005050875A (en) * 2003-07-29 2005-02-24 Kyocera Corp Ceramic package
JP2007254273A (en) * 2006-02-24 2007-10-04 Kyocera Corp Alumina sintered compact, and member for treatment apparatus using the same, treatment apparatus, and treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015163569A (en) * 2014-01-30 2015-09-10 京セラ株式会社 Alumina sintered body and member for semiconductor manufacturing apparatus, and member for liquid crystal panel manufacturing apparatus

Also Published As

Publication number Publication date
JP5371372B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
Zhou et al. Novel water insoluble (Na x Ag 2− x) MoO 4 (0≤ x≤ 2) microwave dielectric ceramics with spinel structure sintered at 410 degrees
JP6455343B2 (en) Dielectric composition and electronic component
JP4780932B2 (en) Corrosion-resistant member, method for manufacturing the same, and member for semiconductor / liquid crystal manufacturing apparatus
JP6462449B2 (en) High-frequency window member, semiconductor manufacturing device member, and flat panel display (FPD) manufacturing device member
JP4854420B2 (en) Alumina sintered body, processing apparatus member and processing apparatus using the same, sample processing method, and method for producing alumina sintered body
JP5421092B2 (en) Alumina sintered body
JP2010235337A (en) Dielectric ceramic and dielectric resonator
JP5128783B2 (en) High frequency dielectric materials
JP5361141B2 (en) Plasma processing apparatus member and plasma processing apparatus using the same
JP6352686B2 (en) Alumina sintered body, semiconductor manufacturing apparatus member, and liquid crystal panel manufacturing apparatus member
JP4969488B2 (en) Alumina sintered body, semiconductor manufacturing apparatus member, and liquid crystal panel manufacturing apparatus member
JP5435932B2 (en) Alumina sintered body, manufacturing method thereof, member for semiconductor manufacturing apparatus, member for liquid crystal panel manufacturing apparatus, and member for dielectric resonator
JP2017017090A (en) Dielectric composition and electronic component
JP2005272293A (en) Aluminum oxide sintered body and members using the same for manufacturing semiconductor and liquid crystal manufacturing apparatuses
JP5371372B2 (en) Alumina sintered body, semiconductor manufacturing apparatus member, liquid crystal panel manufacturing apparatus member, and dielectric resonator member
US8247337B2 (en) Alumina sintered article
WO2010050514A1 (en) Dielectric ceramic and resonator using the same
JP2012046374A (en) Dielectric ceramic and resonator
JP2016084268A (en) Dielectric composition and electronic component
KR101200385B1 (en) Aluminous sinter, process for producing the same, member for semiconductor production apparatus, member for liquid-crystal-panel production apparatus, and member for dielectric resonator
JP2004018365A (en) Composition for microwave dielectric ceramic and method of manufacturing the ceramic
JPWO2009069707A1 (en) Dielectric ceramics, manufacturing method thereof, and resonator
JP5371373B2 (en) Alumina sintered body, semiconductor manufacturing apparatus member, liquid crystal panel manufacturing apparatus member, and dielectric resonator member
JP2009229253A (en) Measuring apparatus and quality determination method of dielectric loss tangent
JP5159961B2 (en) Dielectric ceramics and dielectric filter using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130917

R150 Certificate of patent or registration of utility model

Ref document number: 5371372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150