JP2001181024A - Ceramic member - Google Patents

Ceramic member

Info

Publication number
JP2001181024A
JP2001181024A JP36882899A JP36882899A JP2001181024A JP 2001181024 A JP2001181024 A JP 2001181024A JP 36882899 A JP36882899 A JP 36882899A JP 36882899 A JP36882899 A JP 36882899A JP 2001181024 A JP2001181024 A JP 2001181024A
Authority
JP
Japan
Prior art keywords
oxide
halogen
ceramic member
porosity
yttrium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36882899A
Other languages
Japanese (ja)
Inventor
Atsushi Suzuki
敦 鈴木
Hiromichi Otaki
浩通 大滝
Yukio Kishi
幸男 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd, Taiheiyo Cement Corp filed Critical Nihon Ceratec Co Ltd
Priority to JP36882899A priority Critical patent/JP2001181024A/en
Publication of JP2001181024A publication Critical patent/JP2001181024A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a ceramic member having a high resistance to a halogen gas or a halogen gas plasma and high in resistance to thermal shock. SOLUTION: A part of this ceramic member exposed to a halogen gas or halogen gas plasma is composed of oxides including >=30 wt.% of yttrium oxide and porosity of the ceramic member is 3%-8%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製造装置用
部材等に好適な、ハロゲン系ガスまたはハロゲンガスプ
ラズマに対する耐性の高いセラミックス部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic member having high resistance to a halogen-based gas or a halogen gas plasma, which is suitable for a member for a semiconductor manufacturing apparatus and the like.

【0002】[0002]

【従来の技術】半導体製造工程においては、化学的腐蝕
性の高い環境下で用いられる部材が多数存在する。例え
ば、ベルジャー、チャンバー、サセプター、クランプリ
ング、フォーカスリング等を挙げることができ、これら
は例えば腐蝕性の高いハロゲン系ガスによるドライエッ
チング工程で使用される。
2. Description of the Related Art In a semiconductor manufacturing process, there are many members used in an environment having high chemical corrosion. For example, a bell jar, a chamber, a susceptor, a clamp ring, a focus ring, and the like can be used. These are used in a dry etching process using a highly corrosive halogen-based gas.

【0003】これらの材料としては、従来、石英(Si
)やアルミナ(Al)が多用されてきたが、
これらはハロゲンガスまたはハロゲンガスプラズマ環境
下での耐食性が十分とはいえず、これらに代わる材料と
して、近時、希土類元素を含む酸化物材料が提案されて
いる。
As these materials, conventionally, quartz (Si
O 2 ) and alumina (Al 2 O 3 ) have been frequently used,
These materials do not have sufficient corrosion resistance in a halogen gas or halogen gas plasma environment, and oxide materials containing rare earth elements have recently been proposed as alternative materials.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな希土類元素を含む酸化物材料は、ハロゲンガスやハ
ロゲンガスプラズマ環境下での耐食性は高いものの種々
の問題点がある。すなわちYに代表される希土類
酸化物を含む複合酸化物やY酸化物単体のセラミ
ックスはいずれも熱伝導性が低く、熱膨張が大きいた
め、熱衝撃特性が従来使用されてきたセラミックスに比
べて悪く、使用時における熱衝撃による破損が懸念され
ている。
However, such an oxide material containing a rare earth element has various problems, although it has high corrosion resistance in a halogen gas or halogen gas plasma environment. That Y 2 O 3 composite oxide including a rare earth oxide represented by and Y 2 O 3 oxide single ceramic Both low thermal conductivity, thermal expansion is large, thermal shock properties conventionally used It is worse than ceramics, and there is a concern that it may be damaged by thermal shock during use.

【0005】本発明はかかる事情に鑑みてなされたもの
であって、ハロゲン系ガスまたはハロゲンガスプラズマ
に対する耐性が高く、しかも熱衝撃性が高いセラミック
ス部材を提供することを目的とする。
The present invention has been made in view of such circumstances, and has as its object to provide a ceramic member having high resistance to a halogen-based gas or a halogen gas plasma and having high thermal shock resistance.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく研究を重ねた結果、ハロゲン系ガスまたは
ハロゲンガスプラズマに曝される部位を酸化イットリウ
ムを含む特定の材料とし、かつある程度の気孔率を持た
せることにより、ハロゲン系ガスまたはハロゲンガスプ
ラズマに対する耐食性を良好に維持しつつ、耐熱衝撃性
を高くすることができることを見出し、本発明を完成す
るに至った。
Means for Solving the Problems As a result of repeated studies to solve the above-mentioned problems, the present inventors have made a site exposed to a halogen-based gas or a halogen gas plasma a specific material containing yttrium oxide, and It has been found that by providing a certain degree of porosity, it is possible to increase the thermal shock resistance while maintaining good corrosion resistance to a halogen-based gas or a halogen gas plasma, thereby completing the present invention.

【0007】すなわち、本発明は、ハロゲン系ガスまた
はハロゲンガスプラズマに曝される部位が、酸化イット
リウムを30wt%以上含む酸化物で構成され、気孔率
が3%を越え8%以下であることを特徴とするセラミッ
クス部材を提供する。
That is, the present invention provides that a portion exposed to a halogen-based gas or a halogen gas plasma is composed of an oxide containing 30 wt% or more of yttrium oxide and has a porosity of more than 3% and 8% or less. Provide a ceramic member characterized by the following.

【0008】上記セラミックス部材において、少なくと
も一部を複合酸化物とすることができる。また、酸化イ
ットリウムの他に酸化アルミニウムを含有したものとす
ることができる。
[0008] At least a part of the ceramic member may be a composite oxide. Further, aluminum oxide may be contained in addition to yttrium oxide.

【0009】[0009]

【発明の実施の形態】以下、本発明について具体的に説
明する。本発明のセラミックス部材は、ハロゲン系ガス
またはハロゲンガスプラズマに曝される部位が、酸化イ
ットリウムを30wt%以上含む酸化物で構成され、気
孔率が3%を超え8%以下である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described specifically. In the ceramic member of the present invention, the portion exposed to the halogen-based gas or the halogen gas plasma is made of an oxide containing 30 wt% or more of yttrium oxide and has a porosity of more than 3% and 8% or less.

【0010】本発明を構成するセラミックス部材は、酸
化イットリウムを30wt%以上含んでいればよく、他
の酸化物を含んでいても酸化イットリウム単体であって
もよい。
The ceramic member constituting the present invention may contain at least 30 wt% of yttrium oxide, and may contain other oxides or may be yttrium oxide alone.

【0011】酸化イットリウムの含有量を30wt%以
上としたのは、酸化イットリウムが30wt%未満とな
るとハロゲン系ガスおよびハロゲンガスプラズマに対し
十分な耐食性をもたないからである。
The reason why the content of yttrium oxide is set to 30 wt% or more is that if yttrium oxide is less than 30 wt%, it does not have sufficient corrosion resistance to halogen-based gas and halogen gas plasma.

【0012】酸化イットリウムを30wt%以上含有す
ることにより耐食性が向上するため、残部の化合物は特
に限定されず、気孔率が本発明の範囲内である焼結体を
形成することができるものであればよいが、少なくとも
一部が酸化イットリウムとの間で複合酸化物を形成して
いることが好ましい。
Since the corrosion resistance is improved by containing yttrium oxide in an amount of 30% by weight or more, the remaining compound is not particularly limited, and any compound capable of forming a sintered body having a porosity within the range of the present invention can be formed. However, it is preferable that at least a part of the composite oxide forms a complex oxide with yttrium oxide.

【0013】他の化合物としては、酸化アルミニウム、
酸化ケイ素等を挙げることができるが、その中でも耐食
性の高い複合酸化物を形成することができる酸化アルミ
ニウムが好ましい。
Other compounds include aluminum oxide,
Among them, silicon oxide and the like can be mentioned, and among them, aluminum oxide which can form a composite oxide having high corrosion resistance is preferable.

【0014】一方、酸化イットリウムは、上述したよう
に、熱伝導性が低くかつ熱膨張が大きいため、耐熱衝撃
特性に乏しく、酸化イットリウムの含有量の増大に従っ
て耐熱衝撃特性が劣化する。従来は酸化イットリウムを
含む材料として緻密体が使用されており、使用時の熱衝
撃による破損が懸念されていたが、本発明ではある程度
の気孔率をもたせることにより耐熱衝撃特性を向上させ
ている。すなわち、耐熱衝撃特性に関しては気孔率が特
に重要な要素であり、ある程度の気孔率とすることによ
り耐熱衝撃特性が向上する。気孔率が3%以下であると
腐食速度は小さいが熱衝撃特性の改善が認められず、ま
た8%以上では耐熱衝撃特性は改善されるが耐食性が不
十分となる。したがって、気孔率の範囲を3%を超え8
%以下とした。
On the other hand, as described above, yttrium oxide has low thermal conductivity and large thermal expansion, and thus has poor thermal shock resistance, and the thermal shock resistance deteriorates as the content of yttrium oxide increases. Conventionally, a dense body has been used as a material containing yttrium oxide, and there has been a concern about breakage due to thermal shock during use. However, in the present invention, the thermal shock resistance is improved by providing a certain degree of porosity. In other words, the porosity is a particularly important factor with respect to the thermal shock resistance, and by setting the porosity to a certain degree, the thermal shock resistance is improved. If the porosity is 3% or less, the corrosion rate is small but the thermal shock characteristics are not improved. If the porosity is 8% or more, the thermal shock characteristics are improved but the corrosion resistance is insufficient. Therefore, the porosity range exceeds 3% to 8%.
% Or less.

【0015】本発明のセラミックス部材は、ハロゲン系
ガスまたはハロゲンガスプラズマに曝される部位がこれ
らに対する耐食性に優れ、かつ耐熱衝撃性が高いので、
ベルジャー、チャンバー、サセプター、クランプリン
グ、フォーカスリング等の半導体製造装置用の部材や液
晶表示装置製造装置用の部材に好適である。
In the ceramic member of the present invention, a portion exposed to a halogen-based gas or a halogen gas plasma is excellent in corrosion resistance to the same and has high thermal shock resistance.
It is suitable for a member for a semiconductor manufacturing device such as a bell jar, a chamber, a susceptor, a clamp ring, and a focus ring and a member for a liquid crystal display device manufacturing device.

【0016】[0016]

【実施例】以下、本発明の実施例について説明する。純
度99.9%の酸化イットリウム(Y)と純度9
9.9%以上の酸化アルミニウム(Al)を用
い、これらを表1に示す比率で合計200g秤量し、こ
れらをイオン交換水200gおよび鉄芯入りナイロンボ
ール250gとともにポリエチレンポット中に投入し、
16時間混合した。得られたスラリーをロータリーエバ
ポレーターで減圧乾燥した後、得られた粉末を#100
のナイロンメッシュを用いてメッシュパスを行った。こ
の粉末を直径15mm、厚さ6mm、または40×50
×6mmに成形した後、冷間静水圧プレス成形して成形
体を得た。得られた成形体を大気雰囲気の電気炉中で、
所定温度で4時間焼成した。
Embodiments of the present invention will be described below. 99.9% pure yttrium oxide (Y 2 O 3 ) and 9 pure
Using 9.9% or more of aluminum oxide (Al 2 O 3 ), these were weighed in a total of 200 g in the ratios shown in Table 1, and were put into a polyethylene pot together with 200 g of ion-exchanged water and 250 g of nylon balls containing an iron core. ,
Mix for 16 hours. After the obtained slurry was dried under reduced pressure by a rotary evaporator, the obtained powder was # 100
A mesh pass was performed using a nylon mesh. This powder is 15 mm in diameter, 6 mm in thickness, or 40 × 50
After molding to a size of × 6 mm, a molded product was obtained by cold isostatic pressing. The obtained molded body is placed in an electric furnace in the atmosphere,
It was baked at a predetermined temperature for 4 hours.

【0017】得られた焼結体の片面を鏡面研磨し、平行
平板型のRIEエッチング装置のチャンバー内に装入
し、CF+Oのプラズマによる腐蝕試験を行った。
その際、研磨面の一部をポリイミドテープでマスクして
プラズマ処理を行い、試験後にマスクを除去した後に、
マスクのある部分とない部分との段差を測定することに
よりエッチング速度を算出した。
One side of the obtained sintered body was mirror-polished, placed in a chamber of a parallel plate type RIE etching apparatus, and subjected to a corrosion test using CF 4 + O 2 plasma.
At that time, plasma processing was performed by masking a part of the polished surface with a polyimide tape, and after removing the mask after the test,
The etching rate was calculated by measuring the level difference between the portion with and without the mask.

【0018】また、それぞれの温度で焼成した試料から
JIS R1601に準拠した曲げ試験体を作製し、所
定温度に保った電気炉から氷温水に投入し、その後試験
体の曲げ強度を測定した。この際に、電気炉温度をΔT
とし、氷温水への投入のない試料における曲げ強度の1
/2の強度となるΔTの値を耐熱衝撃性として評価し
た。これらの結果を表1に示す。
Further, bending specimens in accordance with JIS R1601 were prepared from the samples fired at the respective temperatures, poured into ice-cold water from an electric furnace maintained at a predetermined temperature, and then the bending strength of the specimen was measured. At this time, the electric furnace temperature was set to ΔT
And the flexural strength of the sample without pouring into hot ice water was 1
The value of ΔT at which the strength was / 2 was evaluated as thermal shock resistance. Table 1 shows the results.

【0019】[0019]

【表1】 [Table 1]

【0020】表1に示すように、酸化イットリウム(Y
)の含有量は本発明の範囲内にあるものの、気孔
率が0.3%と本発明の範囲よりも小さい比較例1は、
エッチング速度は3nm/min.と小さいが、耐熱衝
撃性ΔTは100℃と通常使用されるアルミナセラミッ
クス(Al;表1の比較例5)よりも小さい値で
あった。また、酸化イットリウム(Y)の含有量
は本発明の範囲内にあるものの、気孔率が9%と本発明
の範囲よりも大きい比較例2は、耐熱衝撃性は170℃
と実施例1〜3と同程度であったが、エッチング速度が
15nm/min.と大きく、耐食性が低かった。
As shown in Table 1, yttrium oxide (Y
Although the content of 2 O 3 ) is within the range of the present invention, Comparative Example 1 having a porosity of 0.3%, which is smaller than the range of the present invention,
The etching rate is 3 nm / min. However, the thermal shock resistance ΔT was 100 ° C., which was smaller than that of a commonly used alumina ceramic (Al 2 O 3 ; Comparative Example 5 in Table 1). Although the content of yttrium oxide (Y 2 O 3 ) is within the range of the present invention, Comparative Example 2 having a porosity of 9% larger than the range of the present invention has a thermal shock resistance of 170 ° C.
And about the same as in Examples 1 to 3, but the etching rate was 15 nm / min. And the corrosion resistance was low.

【0021】これに対し、酸化イットリウム(Y
)の含有量が57wt%であり気孔率がそれぞれ
3.5%、5%といずれも本発明の範囲内である実施例
1,2は、エッチング速度はいずれも3nm/minと
小さな値を維持しつつ、耐熱衝撃性がそれぞれ160℃
および170℃とアルミナセラミックスに近い値を示し
た。実施例1,2よりも酸化イットリウム(Y
含有量が少なく、気孔率が3.5%の実施例3でも、エ
ッチング速度が4nm/min、耐熱衝撃性が170℃
と良好な値を示した。
On the other hand, yttrium oxide (Y
In Examples 1 and 2 in which the content of 2 O 3 ) was 57 wt% and the porosity was 3.5% and 5%, both of which were within the range of the present invention, the etching rate was as small as 3 nm / min. 160 ° C each while maintaining the value
And 170 ° C., a value close to that of alumina ceramics. Yttrium oxide (Y 2 O 3 ) more than in Examples 1 and 2
Even in Example 3 where the content is small and the porosity is 3.5%, the etching rate is 4 nm / min and the thermal shock resistance is 170 ° C.
And a good value.

【0022】一方、酸化イットリウム単体の試料につい
て、気孔率が0.3%の比較例3では耐熱衝撃性が90
℃と低く、気孔率が9%の比較例4ではエッチング速度
が18nm/min.と耐食性が低かった。
On the other hand, with respect to the sample of yttrium oxide alone, in Comparative Example 3 having a porosity of 0.3%, the thermal shock resistance was 90%.
° C and a porosity of 9% in Comparative Example 4 where the etching rate was 18 nm / min. And corrosion resistance was low.

【0023】酸化イットリウム単体の試料で、気孔率が
それぞれ3.5%、4.5%と本発明の範囲内である実
施例4,5は、いずれもエッチング速度が3nm/mi
n.と低い値を示し、耐熱衝撃性もそれぞれ150℃お
よび160℃とアルミナセラミックスに近い値を示し
た。
Examples 4 and 5, which are samples of yttrium oxide alone and have a porosity of 3.5% and 4.5%, respectively, within the range of the present invention, have an etching rate of 3 nm / mi.
n. And the thermal shock resistance was 150 ° C. and 160 ° C., respectively, showing values close to those of alumina ceramics.

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば、
ハロゲン系ガスまたはハロゲンガスプラズマに曝される
部位が、酸化イットリウムを30wt%以上含む酸化物
で構成され、気孔率を3%を超え8%以下としたので、
ハロゲン系ガスまたはハロゲンガスプラズマに対する耐
性が高く、しかも熱衝撃性が高いセラミックス部材を得
ることができる。
As described above, according to the present invention,
Since the portion exposed to the halogen-based gas or the halogen gas plasma is made of an oxide containing 30 wt% or more of yttrium oxide and has a porosity of more than 3% and 8% or less,
A ceramic member having high resistance to halogen-based gas or halogen gas plasma and high thermal shock resistance can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大滝 浩通 宮城県仙台市泉区明通三丁目5番 株式会 社日本セラテック本社工場内 (72)発明者 岸 幸男 宮城県仙台市泉区明通三丁目5番 株式会 社日本セラテック本社工場内 Fターム(参考) 4G030 AA12 AA36 BA33 CA09 4G031 AA08 AA29 BA26 4G075 AA30 AA53 BC06 BD14 CA47 FB04  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiromichi Otaki 3-5 Amedori, Izumi-ku, Sendai-shi, Miyagi Japan Co., Ltd. Inside the plant of Japan Ceratech Co., Ltd. F-term (reference) in the Japan Ceratech headquarters and factory No.5 4G030 AA12 AA36 BA33 CA09 4G031 AA08 AA29 BA26 4G075 AA30 AA53 BC06 BD14 CA47 FB04

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ハロゲン系ガスまたはハロゲンガスプラ
ズマに曝される部位が、酸化イットリウムを30wt%
以上含む酸化物で構成され、気孔率が3%を超え8%以
下であることを特徴とするセラミックス部材。
A portion exposed to a halogen-based gas or a halogen gas plasma contains 30 wt% of yttrium oxide.
A ceramic member comprising an oxide containing the above and having a porosity of more than 3% and 8% or less.
【請求項2】 少なくとも一部が複合酸化物であること
を特徴とする請求項1に記載のセラミックス部材。
2. The ceramic member according to claim 1, wherein at least a part of the ceramic member is a composite oxide.
【請求項3】 酸化イットリウムの他に酸化アルミニウ
ムを含有することを特徴とする請求項1または請求項2
に記載のセラミックス部材。
3. The method according to claim 1, wherein aluminum oxide is contained in addition to yttrium oxide.
2. The ceramic member according to 1.
JP36882899A 1999-12-27 1999-12-27 Ceramic member Pending JP2001181024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36882899A JP2001181024A (en) 1999-12-27 1999-12-27 Ceramic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36882899A JP2001181024A (en) 1999-12-27 1999-12-27 Ceramic member

Publications (1)

Publication Number Publication Date
JP2001181024A true JP2001181024A (en) 2001-07-03

Family

ID=18492869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36882899A Pending JP2001181024A (en) 1999-12-27 1999-12-27 Ceramic member

Country Status (1)

Country Link
JP (1) JP2001181024A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002087878A (en) * 2000-07-11 2002-03-27 Toshiba Ceramics Co Ltd Plasma resistant member and its manufacturing method
JP2002097075A (en) * 2000-07-19 2002-04-02 Nihon Ceratec Co Ltd Ceramic material
JP2002356387A (en) * 2001-03-30 2002-12-13 Toshiba Ceramics Co Ltd Plasma proof member
JP2008174801A (en) * 2007-01-19 2008-07-31 Covalent Materials Corp Member for plasma processor
JP2010195682A (en) * 2010-04-26 2010-09-09 Kyocera Corp Corrosion resistant member, method for manufacturing the same and member for semiconductor/liquid crystal manufacturing apparatus
US7932202B2 (en) 2003-07-29 2011-04-26 Kyocera Corporation Y2O3 sintered body and corrosion resistant member for semiconductor/liquid crystal producing apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002087878A (en) * 2000-07-11 2002-03-27 Toshiba Ceramics Co Ltd Plasma resistant member and its manufacturing method
JP4688307B2 (en) * 2000-07-11 2011-05-25 コバレントマテリアル株式会社 Plasma-resistant member for semiconductor manufacturing equipment
JP2002097075A (en) * 2000-07-19 2002-04-02 Nihon Ceratec Co Ltd Ceramic material
JP2002356387A (en) * 2001-03-30 2002-12-13 Toshiba Ceramics Co Ltd Plasma proof member
US7932202B2 (en) 2003-07-29 2011-04-26 Kyocera Corporation Y2O3 sintered body and corrosion resistant member for semiconductor/liquid crystal producing apparatus
JP2008174801A (en) * 2007-01-19 2008-07-31 Covalent Materials Corp Member for plasma processor
JP2010195682A (en) * 2010-04-26 2010-09-09 Kyocera Corp Corrosion resistant member, method for manufacturing the same and member for semiconductor/liquid crystal manufacturing apparatus

Similar Documents

Publication Publication Date Title
JPH1045461A (en) Corrosion resistant member
JP2000001362A (en) Corrosion resistant ceramic material
JPH104083A (en) Anticorrosive material for semiconductor fabrication
KR20110089348A (en) Corrosion-resistant bonding agents for bonding ceramic components which are exposed to plasmas
JPH1045467A (en) Corrosion resistant member
JP3527839B2 (en) Components for semiconductor device manufacturing equipment
JP2001031484A (en) Corrosion-resistant composite member
JP3488373B2 (en) Corrosion resistant materials
JP2001181024A (en) Ceramic member
JP2002249379A (en) Aluminum nitride sintered compact and member for device for manufacturing of semiconductor
JP2000103689A (en) Alumina sintered compact, its production and plasma- resistant member
JP2001179080A (en) Member for treating substrate contaminated with metallic substance at low degree
JPH05160240A (en) Dummy wafer
JP2003055050A (en) Yttrium oxide member
JP2000313656A (en) Corrosionproof ceramic material and corrosionproof member
Yoo et al. Quantitative Evaluation of Glass‐Forming Impurities in Alumina: Equivalent Silica Concentration (ESC)
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
JPH09295863A (en) Anticorrosive member
JP2001151559A (en) Corrosion-resistant member
JP2001031466A (en) Corrosion-resistant ceramic member
JP2002222803A (en) Corrosion resistant member for manufacturing semiconductor
JP2002362966A (en) Ceramic material
JP4601136B2 (en) Corrosion resistant material
JP4889155B2 (en) High-strength alumina sintered body having free machinability and corrosion-resistant member using the same
JPH11278944A (en) Silicon nitride corrosion resistant member and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090804