JPH05160240A - Dummy wafer - Google Patents

Dummy wafer

Info

Publication number
JPH05160240A
JPH05160240A JP34783191A JP34783191A JPH05160240A JP H05160240 A JPH05160240 A JP H05160240A JP 34783191 A JP34783191 A JP 34783191A JP 34783191 A JP34783191 A JP 34783191A JP H05160240 A JPH05160240 A JP H05160240A
Authority
JP
Japan
Prior art keywords
dummy wafer
purity
film
pores
alumina ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34783191A
Other languages
Japanese (ja)
Other versions
JP3323945B2 (en
Inventor
Takashi Morita
敬司 森田
Noboru Igarashi
昇 五十嵐
Yoshiyuki Naito
良之 内藤
Kazu Ando
和 安藤
Sachiyuki Nagasaka
幸行 永坂
Seishi Harada
晴司 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP34783191A priority Critical patent/JP3323945B2/en
Publication of JPH05160240A publication Critical patent/JPH05160240A/en
Application granted granted Critical
Publication of JP3323945B2 publication Critical patent/JP3323945B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To enhance a removing effect of a deposit, etc., due to cleaning, to accurately analyze purity of a film and to provide excellent chemical resistance in the case of cleaning. CONSTITUTION:The dummy wafer is formed of optical transmission polycrystalline alumina ceramics having 99.9% or more of purity and 3.98 or more of bulk specific weight to exhibit high purity, substantially no pore, true density sintered material and ground glass state external appearance for passing a light.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シリコンウェーハに対
する薄膜形成過程において、各種処理条件の評価及び検
査、又は汚染物質付着防止等のために用いられるダミー
ウェーハ(パイロットウェーハ)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dummy wafer (pilot wafer) used for evaluating and inspecting various processing conditions, preventing contaminants from adhering, etc. in the process of forming a thin film on a silicon wafer.

【0002】[0002]

【従来の技術】LSIやVLSI等の半導体製造プロセ
スにおいては、CVDやPVD、スパッタリング等によ
ってシリコンウェーハ上に成膜する工程が重要な位置を
占めており、成膜された薄膜は、高い均質性が要求され
ている。そのため、成膜工程での品質管理や薄膜の評価
が半導体製造プロセスに不可欠な要素となっており、具
体的には、ダミーウェーハを用い、成膜時間やウェーハ
温度等の成膜条件とウェーハ上に形成される膜の厚さと
の関係を測定したり、膜の純度分析等が行われている。
又、ダミーウェーハは、CVDにおいてグラファイト電
極から飛散するカーボンの付着防止用ダミーとしても用
いられている。
2. Description of the Related Art In a semiconductor manufacturing process such as LSI and VLSI, a step of forming a film on a silicon wafer by CVD, PVD, sputtering or the like occupies an important position, and the formed thin film has high homogeneity. Is required. Therefore, quality control and thin film evaluation in the film forming process are indispensable elements in the semiconductor manufacturing process. Specifically, a dummy wafer is used, and film forming conditions such as film forming time and wafer temperature The relationship with the thickness of the film formed on the substrate is measured, and the purity of the film is analyzed.
Further, the dummy wafer is also used as a dummy for preventing adhesion of carbon scattered from the graphite electrode in CVD.

【0003】このような工程において、シリコンウェー
ハをダミーウェーハとして用いると、薄膜の組成を分析
する際には、含有するシリコンの量が多すぎるため、正
確な分析が困難となる一方、CVD等の熱処理を行う工
程では反復して使用できない不具合がある。このため、
従来、ダミーウェーハとしては、シリコン以外の他の材
料からなる、例えば一般的な焼成温度で常圧焼結によっ
て作られるアルミナセラミックスからなるもの(実開昭
63−27469号公報参照)が知られている。
When a silicon wafer is used as a dummy wafer in such a process, when the composition of the thin film is analyzed, the amount of silicon contained is too large, which makes it difficult to perform accurate analysis. There is a problem that it cannot be used repeatedly in the heat treatment process. For this reason,
Conventionally, as a dummy wafer, one made of a material other than silicon, for example, an alumina ceramics produced by pressureless sintering at a general firing temperature (see Japanese Utility Model Laid-Open No. 63-27469) is known. There is.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
一般的なアルミナセラミックスからなるダミーウェーハ
は、アルミナ(Al2 3 )純度が99.5%程度であ
り、シリコン(Si)、カルシウム(Ca)、ナトリウ
ム(Na)等のアルミナの焼結に影響を与える成分が数
1000ppm含有されており、この組成のアルミナを
一般的な焼成温度(1600℃)で常圧焼結した場合、
かさ比重は、3.90〜3.96程度しか得られず、真
比重(3.99)に達することは非常に困難である。従
って、得られるダミーウェーハの内部及び表面には、数
μmから数100μmの気孔が多数存在する。
However, the conventional dummy wafer made of general alumina ceramics has an alumina (Al 2 O 3 ) purity of about 99.5%, and silicon (Si) and calcium (Ca). , Which contains several thousand ppm of a component that affects the sintering of alumina such as sodium (Na), and the alumina of this composition is sintered under normal pressure at a general firing temperature (1600 ° C.),
The bulk specific gravity is only about 3.90 to 3.96, and it is very difficult to reach the true specific gravity (3.99). Therefore, a large number of pores of several μm to several 100 μm exist inside and on the surface of the obtained dummy wafer.

【0005】かかる一般的なアルミナセラミックスから
なるダミーウェーハにスパッタ装置等で蒸着を施すと、
セラミックス表面に露出した気孔内にも蒸着され、蒸着
物を洗浄して蒸着膜厚を測定する際、気孔内に蒸着され
た蒸着物を完全に除去することが不可能であった。又、
CVDやその他の膜形成処理工程においても、ダミーウ
ェーハを常に洗浄しておく必要があるが、洗浄での剥離
性に問題があった。更に、近年では、次回の使用に先立
ち、セラミックス表面を加工により除去することによっ
て、気孔内蒸着物の除去の必要も生じている。
When a dummy wafer made of such general alumina ceramics is vapor-deposited by a sputtering device or the like,
It was also vapor-deposited in the pores exposed on the surface of the ceramic, and when the vapor-deposited material was washed to measure the vapor-deposited film thickness, it was impossible to completely remove the vapor-deposited material deposited in the pores. or,
It is necessary to always wash the dummy wafer in the CVD and other film forming processing steps, but there is a problem in peelability during washing. Further, in recent years, prior to the next use, it is also necessary to remove the deposit in the pores by removing the ceramic surface by processing.

【0006】又、上述した純度の一般的なアルミナセラ
ミックスからなるダミーウェーハでは、膜の純度分析を
正確に行うことができず、かつ洗浄の際の耐薬品性につ
いても問題があった。そこで、本発明は、蒸着物の除去
のために表面加工を施すことなく、洗浄による蒸着物等
の除去効果を高めると共に、膜の正確な純度分析を可能
とし、かつ洗浄の際の耐薬品性に優れたダミーウェーハ
の提供を目的とする。
Further, in the above-mentioned dummy wafer made of general alumina ceramics having the above-mentioned purity, the purity of the film cannot be accurately analyzed, and there is a problem in chemical resistance at the time of cleaning. Therefore, the present invention enhances the effect of removing deposits and the like by cleaning without performing surface treatment for removing deposits, enables accurate purity analysis of the film, and has chemical resistance during cleaning. The purpose is to provide excellent dummy wafers.

【0007】[0007]

【課題を解除するための手段】前記課題を解決するた
め、本発明のダミーウェーハは、純度が99.9%以
上、かさ比重が3.98以上の透光性多結晶アルミナセ
ラミックスからなるものである。透光性多結晶アルミナ
セラミックスの平均結晶粒径は、10〜100μmであ
ることが好ましい。又、表面は、CVDアルミナ膜で覆
われていることが好ましい。
In order to solve the above problems, the dummy wafer of the present invention is made of a translucent polycrystalline alumina ceramics having a purity of 99.9% or more and a bulk specific gravity of 3.98 or more. is there. The average crystal grain size of the translucent polycrystalline alumina ceramics is preferably 10 to 100 μm. The surface is preferably covered with a CVD alumina film.

【0008】[0008]

【作用】上記手段においては、透光性多結晶アルミナセ
ラミックスが、高純度で、実質的に気孔が無く、真密度
焼結体となり、一般的なアルミナセラミックスのよう
に、不純物による二次相及び気孔が含まれることにより
透光性が失われることは無く、光を通すスリガラス状の
外観を呈する。
In the above means, the translucent polycrystalline alumina ceramics is of high purity, has substantially no pores, and becomes a true density sintered body. Due to the inclusion of pores, the translucency is not lost, and the glass has a ground glass appearance that allows light to pass through.

【0009】透孔性多結晶アルミナセラミックスの平均
結晶粒径を10〜100μmとすることにより、気孔を
極めて少なくできると共に、ひずみを小さくして機械的
強度を高めることができる。平均結晶粒径が10μm未
満であると、結晶粒界に残留気孔が存在し、耐食性の低
下を招いたり、表面の気孔に外部からの汚染物質が侵入
し易いおそれがある。一方、平均結晶粒径が100μm
を超えると、機械的強度が不足となり、薄いダミーウェ
ーハの取り扱いが困難となる。
By setting the average crystal grain size of the porous polycrystalline alumina ceramics to 10 to 100 μm, the pores can be extremely reduced and the strain can be reduced to enhance the mechanical strength. If the average crystal grain size is less than 10 μm, residual pores are present in the crystal grain boundaries, which may lead to a decrease in corrosion resistance, or contaminants from the outside may easily enter the surface pores. On the other hand, the average crystal grain size is 100 μm
If it exceeds, the mechanical strength becomes insufficient and it becomes difficult to handle a thin dummy wafer.

【0010】又、表面をCVDアルミナ膜で覆うことに
より、表面の微小な気孔が全て埋まって表面が一層滑ら
かになる。CVDアルミナ膜は、2,3〜100μmの
厚さであることが好ましい。厚さが2,3μm未満であ
ると膜を設ける効果が得られず、又、100μmを超え
ると透光性多結晶アルミナセラミックスとの熱膨張差に
より剥離を生ずる。
Further, by covering the surface with the CVD alumina film, all the minute pores on the surface are filled, and the surface becomes smoother. The CVD alumina film is preferably 2,3-100 μm thick. If the thickness is less than 2-3 μm, the effect of providing the film cannot be obtained, and if it exceeds 100 μm, peeling occurs due to the difference in thermal expansion from the translucent polycrystalline alumina ceramics.

【0011】ここで、アルミナの純度が99.9%未満
であると、膜の純度分析を正確に行うことができないと
共に、フッ酸等を用いた洗浄の際の耐薬品性が低下し、
かつ透光性が低下する。好ましくはアルミナの純度は、
99.99%以上である。又、かさ比重が3.98未満
であると、ダミーウェーハの内部及び表面に気孔が存在
するようになり、透光性や機械的強度が低下すると共
に、蒸着物の残留や汚染物質の吸蔵を生ずる。
If the purity of alumina is less than 99.9%, the purity of the film cannot be accurately analyzed, and the chemical resistance at the time of cleaning with hydrofluoric acid decreases.
Moreover, the translucency is reduced. Preferably the purity of the alumina is
It is 99.99% or more. Further, if the bulk specific gravity is less than 3.98, pores will be present inside and on the surface of the dummy wafer, and the light-transmitting property and the mechanical strength will be reduced, and the residue of deposits and the occlusion of contaminants will be occluded. Occurs.

【0012】更に、透光性多結晶アルミナセラミックス
は、光学直線透過率が可視光線領域で10%以上あるこ
とが好ましく、このようにすることにより、ダミーウェ
ーハの内部が目視できるようになり、内部の混入物やク
ラックが一目瞭然となり、使用前の目視によって不良品
を発見することが可能となり、その信頼性を大幅に向上
することができる。
Further, it is preferable that the translucent polycrystalline alumina ceramics has an optical linear transmittance of 10% or more in the visible light region. By doing so, the inside of the dummy wafer can be visually observed, and The contaminants and cracks can be seen at a glance, and defective products can be found by visual inspection before use, and the reliability can be greatly improved.

【0013】一方、上記ダミーウェーハを製造するに
は、先ず、望ましくは99.99%以上の高純度アルミ
ナ原料粉を用い、これに異常粒子の成長抑制剤としての
マグネシア(MgO)、有機成形助剤を添加混合して円
盤状に成形する。成形方法としては、プレス成形、押出
成形、射出成形又はドクターブレード法がとられる。得
られた成形体は、必要に応じてウェーハ形状に切断した
後、900〜1100℃の温度の大気中で仮焼して有機
添加物を飛散させ、焼成工程に進める。焼成前工程での
不純物混入は、焼成後の製品に悪影響を与えるため、各
装置や雰囲気等からの汚染をできるだけ少なくする工夫
が必要である。
On the other hand, in order to manufacture the above-mentioned dummy wafer, first, it is desirable to use 99.99% or more of high-purity alumina raw material powder, and to this, magnesia (MgO) as an abnormal particle growth inhibitor and organic molding aid. The agents are added and mixed to form a disc. As the molding method, press molding, extrusion molding, injection molding or doctor blade method can be used. The obtained molded body is cut into a wafer shape if necessary, and then calcined in the atmosphere at a temperature of 900 to 1100 ° C. to scatter the organic additives, and then proceed to the firing step. Since the contamination of impurities in the pre-baking process has a bad influence on the product after baking, it is necessary to devise a method for minimizing the contamination from each device and atmosphere.

【0014】次いで、真密度焼結体を得るため、真空中
や水素ガス雰囲気等の非酸化性雰囲気において1700
〜1850℃の焼成温度で所要時間保持して仮焼体の焼
成を行う。水素ガス雰囲気焼成においては、水素の拡散
速度が大きいことから、焼成後期における気孔の排出が
容易になり、実質的に気孔が無くなる。又、焼成中にお
いて、アルカリ金属等の不純物の揮散が進行し、原料粉
に含まれる不純物量より不純物量が少なくなり、高純度
化が一層促進される。ここで、焼成温度及び保持時間
は、平均結晶粒径が10〜100μmとなるよう適宜に
設定される。
Next, in order to obtain a true density sintered body, 1700 in vacuum or in a non-oxidizing atmosphere such as hydrogen gas atmosphere.
The calcined body is calcined by holding the calcining temperature of ˜1850 ° C. for the required time. In the hydrogen gas atmosphere firing, since the diffusion rate of hydrogen is high, it becomes easy to discharge the pores in the latter stage of firing, and the pores are substantially eliminated. Further, during firing, the evaporation of impurities such as alkali metal progresses, the amount of impurities becomes smaller than the amount of impurities contained in the raw material powder, and high purification is further promoted. Here, the firing temperature and the holding time are appropriately set so that the average crystal grain size is 10 to 100 μm.

【0015】得られた透光性多結晶アルミナセラミック
スからなるダミーウェーハには、異常粒子成長抑制剤と
して添加されたマグネシアが数100ppm程度含まれ
ている。このマグネシアは、一部又は全部がアルミナに
固溶しており、極一部がスピネルとしてアルミナ結晶会
合部に存在している場合がある。これは、耐酸性と気孔
の有無という点において、ダミーウェーハとしての機能
には、何等差し支えない。なお、上述したダミーウェー
ハの製造に際しては、異常粒子成長抑制剤としてのマグ
ネシアを添加することなく行うこともでき、この方が一
層好ましい。
The obtained dummy wafer made of translucent polycrystalline alumina ceramics contains magnesia of about several hundred ppm added as an abnormal grain growth inhibitor. This magnesia may be partly or wholly solid-dissolved in alumina, and a very small part thereof may exist as spinel in the alumina crystal association part. In terms of acid resistance and the presence or absence of pores, there is no problem with the function as a dummy wafer. It should be noted that the above-mentioned dummy wafer can be manufactured without adding magnesia as an abnormal particle growth inhibitor, which is more preferable.

【0016】[0016]

【実施例】以下、本発明の一実施例を詳細に説明する。
先ず、純度99.99%、平均粒子径0.2μmのアル
ミナ原料粉100重量に、ストイキオメトリックスピネ
ル0.6重量部、アクリル系バインダー5重量部、イオ
ン交換水15重量部を混練機に投入して混練し、粘土状
にした。この混練物を押出成形機の高さ1.2mm、幅
200mmの開口部を有する口金から押し出し、120
℃の温度の乾燥炉内に導入することによって薄板状の成
形体を得た。
EXAMPLES An example of the present invention will be described in detail below.
First, to 100 parts by weight of alumina raw material powder having a purity of 99.99% and an average particle size of 0.2 μm, 0.6 parts by weight of stoichiometric spinel, 5 parts by weight of an acrylic binder, and 15 parts by weight of ion-exchanged water were charged into a kneader. And kneaded to form a clay. This kneaded product was extruded from a die having an opening having a height of 1.2 mm and a width of 200 mm in an extruder, and 120
A thin plate-shaped compact was obtained by introducing it into a drying oven at a temperature of ° C.

【0017】次に、薄板状の成形体を打ち抜きパンチで
直径190mmの円盤板に打ち抜いてウェーハ素体と
し、これを空気中において1000℃の温度で2時間保
持して仮焼成し、成形時に添加したバインダーを焼き飛
ばした。
Next, the thin plate-shaped molded body is punched into a disk plate having a diameter of 190 mm by a punching punch to obtain a wafer element body, which is held in air at a temperature of 1000 ° C. for 2 hours to be pre-baked and added at the time of molding. The binder was burned off.

【0018】次いで、仮焼成体を水素ガス雰囲気中にお
いて1800℃の温度で2時間焼成し、透光性多結晶ア
ルミナセラミックスとした。焼成体は、焼成収縮して直
径158mm、厚さ1.0mmとなっていた。
Then, the calcined body was calcined in a hydrogen gas atmosphere at a temperature of 1800 ° C. for 2 hours to obtain a translucent polycrystalline alumina ceramics. The fired body was fired and contracted to have a diameter of 158 mm and a thickness of 1.0 mm.

【0019】そして、焼成体をダイヤモンド砥石を用い
て直径6インチ、厚さ0.6mmに研削加工し、更に片
面をダイヤモンドパウダーを用いて研磨加工してダミー
ウェーハとした。比較のため、一般的なアルミナセラミ
ックスからなるダミーウェーハを製造した。このダミー
ウェーハの製造に際しては、先ず、純度99.8%、平
均粒子径0.5μmのアルミナ原料粉を用い、上述した
実施例と同様の配合、成形法及び打ち抜きによって円盤
状のウェーハ素体を得た。
Then, the fired body was ground to a diameter of 6 inches and a thickness of 0.6 mm by using a diamond grindstone, and further, one surface of the fired body was ground to be a dummy wafer. For comparison, a dummy wafer made of general alumina ceramics was manufactured. In manufacturing this dummy wafer, first, a raw material powder of alumina having a purity of 99.8% and an average particle diameter of 0.5 μm was used, and a disk-shaped wafer element was prepared by the same composition, molding method and punching as in the above-mentioned examples. Obtained.

【0020】次いで、ウェーハ素体を空気中において1
600℃の温度で2時間焼成してアルミナセラミックス
の焼成体とした。そして、焼成体を実施例と同様にダイ
ヤモンド砥石により研削加工し、かつダイヤモンドパウ
ダーを用いて片面研磨加工してダミーウェーハとした。
Next, the wafer body is set to 1 in air.
It was fired at a temperature of 600 ° C. for 2 hours to obtain a fired body of alumina ceramics. Then, the fired body was ground with a diamond grindstone in the same manner as in the example, and one side was ground with diamond powder to obtain a dummy wafer.

【0021】上記各ダミーウェーハの研磨面を表面粗さ
計で測定すると共に、重量を計測し、かつ洗浄した後、
スパッタ装置によりシリカ膜を形成した。次いで、成膜
したシリカをフッ酸で溶解し、水洗乾燥後にそれぞれの
ダミーウェーハの重量の計測、その一部を採取したSE
M(走査型電子顕微鏡)観察及びEPMA(X線マイク
ロアナリシス)観察並びに膜溶解に用いたフッ酸のIC
P(誘導結合プラズマ)による定量分析を行ったとこ
ろ、表1に示すようになった。
After measuring the polished surface of each dummy wafer with a surface roughness meter, measuring the weight, and washing,
A silica film was formed by a sputtering device. Next, the formed silica was dissolved in hydrofluoric acid, washed with water and dried, and then the weight of each dummy wafer was measured.
M (scanning electron microscope) observation, EPMA (X-ray microanalysis) observation, and IC of hydrofluoric acid used for membrane dissolution
When quantitative analysis by P (inductively coupled plasma) was performed, the results are shown in Table 1.

【0022】[0022]

【表1】この結果から、一般的なアルミナセラミックス
からなるダミーウェーハでは、気孔内にスパッタリング
されたシリカがフッ酸にすべて溶解されずに残っている
のに対して、透光性多結晶アルミナセラミックスからな
るダミーウェーハには残存物が無いことが確認された。
又、一般的なアルミナセラミックスからなるダミーウェ
ーハでは、アルミナセラミックスに含まれている鉄(F
e)、ナトリウム(Na)等の不純物が膜溶解に用いた
フッ酸中に溶解していることがわかった。
[Table 1] From the results, in the dummy wafer made of general alumina ceramics, the silica sputtered in the pores remained without being completely dissolved in hydrofluoric acid, whereas the translucent polycrystalline alumina ceramics It was confirmed that the dummy wafer consisting of no residue remained.
Further, in a dummy wafer made of general alumina ceramics, iron (F
It was found that impurities such as e) and sodium (Na) were dissolved in the hydrofluoric acid used for dissolving the film.

【0023】更に、本発明に係る透光性多結晶アルミナ
セラミックスからなるダミーウェーハは、残留気孔が無
いため、極めて高い表面精度に研削、研磨加工できるこ
とがわかった。
Further, it has been found that the dummy wafer made of the translucent polycrystalline alumina ceramics according to the present invention has no residual pores and therefore can be ground and polished with extremely high surface accuracy.

【0024】[0024]

【発明の効果】以上説明したように、本発明のダミーウ
ェーハによれば、透光性多結晶アルミナセラミックス
が、高純度で、実質的に気孔が無く、真密度焼結体とな
り、一般的なアルミナセラミックスのように、不純物に
よる二次相及び気孔が含まれることにより透光性が失わ
れることは無く、光を通すスリガラス状の外観を呈する
ので、従来のもののように蒸着物の除去のために表面加
工を施す必要がなく、洗浄による蒸着物等の除去効果を
格段に高めることができると共に、膜の極めて正確な純
度分析ができ、かつ洗浄の際の耐薬品性を優秀なものと
することができる。透光性多結晶アルミナセラミックス
の平均結晶粒径を10〜100μmとすることにより、
気孔を極めて少なくでき、目視によってその内部の欠陥
を発見できると共に、ひずみを小さくして機械的強度を
高めることができる。又、表面をCVDアルミナ膜で覆
うことにより、表面の微小な気孔が全て埋まって表面が
一層滑らかとなるので、洗浄による蒸着物等の除去効果
を飛躍的に高めることができる。
As described above, according to the dummy wafer of the present invention, the translucent polycrystalline alumina ceramics has a high purity, is substantially free of pores, and becomes a true density sintered body. Unlike alumina ceramics, it does not lose its translucency due to the inclusion of secondary phases and pores due to impurities, and it has a ground glass appearance that allows light to pass through. There is no need to perform surface treatment on the surface, the effect of removing deposits by cleaning can be greatly enhanced, extremely accurate purity analysis of the film can be performed, and chemical resistance during cleaning is excellent. be able to. By setting the average crystal grain size of the translucent polycrystalline alumina ceramics to 10 to 100 μm,
Porosity can be extremely reduced, defects inside the pores can be visually detected, and strain can be reduced to increase mechanical strength. Further, by covering the surface with the CVD alumina film, all the fine pores on the surface are filled and the surface becomes smoother, so that the effect of removing the deposits and the like by cleaning can be dramatically enhanced.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安藤 和 千葉県東金市小沼田字戌開1573−8 東芝 セラミックス株式会社東金工場内 (72)発明者 永坂 幸行 千葉県東金市小沼田字戌開1573−8 東芝 セラミックス株式会社東金工場内 (72)発明者 原田 晴司 千葉県東金市小沼田字戌開1573−8 東芝 セラミックス株式会社東金工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Kazu Ando, Togane-shi, Chiba Prefecture, open character, Onuma 1573-8, Toshiba Ceramics Co., Ltd., Togane Factory (72) Inventor, Yukiyuki Nagasaka, Togane, Chiba, Japan 1573-8 Toshiba Ceramics Co., Ltd. Togane Factory (72) Inventor Haruji Harada Tokai, Togane-shi, Chiba, Inakata 1573-8 Toshiba Ceramics Co., Ltd. Togane Factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 純度が99.9%以上、かさ比重が3.
98以上の透光性多結晶アルミナセラミックスからなる
ことを特徴とするダミーウェーハ。
1. A purity of 99.9% or more and a bulk specific gravity of 3.
A dummy wafer comprising 98 or more translucent polycrystalline alumina ceramics.
【請求項2】 請求項1記載のダミーウェーハにおい
て、平均結晶粒径が10〜100μmであることを特徴
とするダミーウェーハ。
2. The dummy wafer according to claim 1, wherein the average crystal grain size is 10 to 100 μm.
【請求項3】 請求項1又は2記載のダミーウェーハに
おいて、表面がCVDアルミナ膜で覆われていることを
特徴とするダミーウェーハ。
3. The dummy wafer according to claim 1, wherein the surface is covered with a CVD alumina film.
JP34783191A 1991-12-03 1991-12-03 Dummy wafer Expired - Fee Related JP3323945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34783191A JP3323945B2 (en) 1991-12-03 1991-12-03 Dummy wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34783191A JP3323945B2 (en) 1991-12-03 1991-12-03 Dummy wafer

Publications (2)

Publication Number Publication Date
JPH05160240A true JPH05160240A (en) 1993-06-25
JP3323945B2 JP3323945B2 (en) 2002-09-09

Family

ID=18392903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34783191A Expired - Fee Related JP3323945B2 (en) 1991-12-03 1991-12-03 Dummy wafer

Country Status (1)

Country Link
JP (1) JP3323945B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100577606B1 (en) * 2001-01-06 2006-05-08 삼성전자주식회사 Method for back up in semiconductor apparatus
WO2008079221A1 (en) * 2006-12-22 2008-07-03 Integrated Materials, Inc. Polysilicon dummy wafers and process used therewith
WO2014157430A1 (en) 2013-03-27 2014-10-02 日本碍子株式会社 Handle substrate for compound substrate for use with semiconductor
WO2014157734A1 (en) 2013-03-27 2014-10-02 日本碍子株式会社 Handle substrate for compound substrate for use with semiconductor
WO2014174946A1 (en) 2013-04-26 2014-10-30 日本碍子株式会社 Handle substrate for composite substrate for semiconductor
WO2015008694A1 (en) 2013-07-18 2015-01-22 日本碍子株式会社 Handle substrate for composite substrate for semiconductor
WO2015098609A1 (en) 2013-12-25 2015-07-02 日本碍子株式会社 Handle substrate, composite substrate for semiconductor, and semiconductor circuit substrate and method for manufacturing same
WO2015102065A1 (en) 2014-01-06 2015-07-09 日本碍子株式会社 Handle substrate and composite wafer for semiconductor device
WO2015122223A1 (en) 2014-02-12 2015-08-20 日本碍子株式会社 Handle substrate of composite substrate for semiconductor, and composite substrate for semiconductor
JPWO2013187410A1 (en) * 2012-06-13 2016-02-04 日本碍子株式会社 Composite board
KR20160125282A (en) 2014-02-26 2016-10-31 엔지케이 인슐레이터 엘티디 Handle substrates of composite substrates for semiconductors

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100577606B1 (en) * 2001-01-06 2006-05-08 삼성전자주식회사 Method for back up in semiconductor apparatus
WO2008079221A1 (en) * 2006-12-22 2008-07-03 Integrated Materials, Inc. Polysilicon dummy wafers and process used therewith
JPWO2013187410A1 (en) * 2012-06-13 2016-02-04 日本碍子株式会社 Composite board
WO2014157430A1 (en) 2013-03-27 2014-10-02 日本碍子株式会社 Handle substrate for compound substrate for use with semiconductor
WO2014157734A1 (en) 2013-03-27 2014-10-02 日本碍子株式会社 Handle substrate for compound substrate for use with semiconductor
US9305827B2 (en) 2013-03-27 2016-04-05 Ngk Insulators, Ltd. Handle substrates of composite substrates for semiconductors
KR20160002691A (en) 2013-04-26 2016-01-08 엔지케이 인슐레이터 엘티디 Handle substrate for composite substrate for semiconductor
WO2014174946A1 (en) 2013-04-26 2014-10-30 日本碍子株式会社 Handle substrate for composite substrate for semiconductor
US9676670B2 (en) 2013-04-26 2017-06-13 Ngk Insulators, Ltd. Handle substrates of composite substrates for semiconductors
WO2015008694A1 (en) 2013-07-18 2015-01-22 日本碍子株式会社 Handle substrate for composite substrate for semiconductor
KR101534460B1 (en) * 2013-07-18 2015-07-07 엔지케이 인슐레이터 엘티디 Handle substrate for composite substrate for semiconductor
US9469571B2 (en) 2013-07-18 2016-10-18 Ngk Insulators, Ltd. Handle substrates of composite substrates for semiconductors
JP5697813B1 (en) * 2013-07-18 2015-04-08 日本碍子株式会社 Handle substrate for composite substrates for semiconductors
WO2015098609A1 (en) 2013-12-25 2015-07-02 日本碍子株式会社 Handle substrate, composite substrate for semiconductor, and semiconductor circuit substrate and method for manufacturing same
US9425083B2 (en) 2013-12-25 2016-08-23 Ngk Insulators, Ltd. Handle substrate, composite substrate for semiconductor, and semiconductor circuit board and method for manufacturing the same
KR20150097818A (en) 2014-01-06 2015-08-26 엔지케이 인슐레이터 엘티디 Handle substrate and composite wafer for semiconductor device
WO2015102065A1 (en) 2014-01-06 2015-07-09 日本碍子株式会社 Handle substrate and composite wafer for semiconductor device
US9390955B2 (en) 2014-01-06 2016-07-12 Ngk Insulators, Ltd. Handle substrate and composite wafer for semiconductor device
WO2015122223A1 (en) 2014-02-12 2015-08-20 日本碍子株式会社 Handle substrate of composite substrate for semiconductor, and composite substrate for semiconductor
KR20160009526A (en) 2014-02-12 2016-01-26 엔지케이 인슐레이터 엘티디 Handle substrates of composite substrates for semiconductors, and composite substrates for semiconductors
US9673282B2 (en) 2014-02-12 2017-06-06 Ngk Insulators, Ltd. Handle substrates of composite substrates for semiconductors, and composite substrates for semiconductors
KR20160125282A (en) 2014-02-26 2016-10-31 엔지케이 인슐레이터 엘티디 Handle substrates of composite substrates for semiconductors

Also Published As

Publication number Publication date
JP3323945B2 (en) 2002-09-09

Similar Documents

Publication Publication Date Title
JP5865916B2 (en) Gas nozzle, plasma apparatus using the same, and method for manufacturing gas nozzle
JPH05160240A (en) Dummy wafer
JP5403390B2 (en) Oxides containing indium, gallium and zinc
JP2002255647A (en) Yttrium oxide sintered body and wafer holding tool
JP3527839B2 (en) Components for semiconductor device manufacturing equipment
JP2004012315A (en) Methods of measuring impurity concentration distribution in silicon carbide material or silicon nitride material, and impurity concentration distribution in ceramics
JP2002293609A (en) Ceramic polycrystal body and method of producing the same
JP3488373B2 (en) Corrosion resistant materials
KR20190085481A (en) Setter for firing
JP4903322B2 (en) Yttrium oxide material
JP2001179080A (en) Member for treating substrate contaminated with metallic substance at low degree
JP2003086475A (en) Dummy wafer, manufacturing method therefor and detection method using the same
JP2005239463A (en) Alumina sintered compact
JP4970712B2 (en) Aluminum nitride sintered body, aluminum nitride production method, and aluminum nitride evaluation method
JP2001181024A (en) Ceramic member
JPH0817888A (en) Dummy wafer
JP2001199762A (en) Corrosion-resisting ceramic material
JP3145518B2 (en) Surface high-purity ceramics and manufacturing method thereof
JP2002222803A (en) Corrosion resistant member for manufacturing semiconductor
JP4450638B2 (en) Manufacturing method of electrostatic chuck
JPH0674835A (en) Compact for detecting thermal history
JPH11214194A (en) Window member for plazma processing unit
JP2005101247A (en) Dlc film and vacuum chuck equipped with its film
JP2000169216A (en) Reference device
US20230373862A1 (en) Zirconia toughened alumina ceramic sintered bodies

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080705

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080705

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080705

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090705

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100705

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees