JPH0674835A - Compact for detecting thermal history - Google Patents

Compact for detecting thermal history

Info

Publication number
JPH0674835A
JPH0674835A JP4230352A JP23035292A JPH0674835A JP H0674835 A JPH0674835 A JP H0674835A JP 4230352 A JP4230352 A JP 4230352A JP 23035292 A JP23035292 A JP 23035292A JP H0674835 A JPH0674835 A JP H0674835A
Authority
JP
Japan
Prior art keywords
compact
glass
firing
thermal history
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4230352A
Other languages
Japanese (ja)
Other versions
JP2892229B2 (en
Inventor
Kenichi Shimizu
憲一 清水
Koichi Umagome
幸一 馬込
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP4230352A priority Critical patent/JP2892229B2/en
Publication of JPH0674835A publication Critical patent/JPH0674835A/en
Application granted granted Critical
Publication of JP2892229B2 publication Critical patent/JP2892229B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make high the detection accuracy of an indicated temperature (conveniently indicative of the thermal history) in a low temperature range, by using a compact as the green compact of a mixture consisting of specific ceramic powders and glass powders. CONSTITUTION:The circular arc parts 11 of a compact 10 having a shape cut in the parallel chord parts 12 of a circular plate are used as the excellent side faces 11 for measuring circularity, a recess 13 is formed in a surface thereof, and the edges of up and down surfaces are chamfered (14). In the compact 10, a mixture of ceramic powders 5 to 90wt.% and glass powders 10 to 95wt.% is formed with a press. As ceramic powders, oxide ceramics of Al2O3, ZrO2, etc., and nonoxide ceramics of SiN4, SiC, etc., (improving the wettability with glass by forming an oxide film on the surface) are used. Glass powders are arbitrarily selected in accordance with the shrinkage characteristics of the compact 10. The compact 10 is fired with an object to be fired, the size (length between both side faces 11) D after firing is measured, and an indicated temperature is found by a previously found conversion table.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミックスの焼成工
程などにおける熱履歴を検知するためのものであり、特
に低温焼成セラミックス、電子材料セラミックスなどの
焼成工程、および釉薬焼付け工程、厚膜メタライズ工
程、金属材の熱処理工程などにおいて、酸化雰囲気での
550〜1200℃の低温温度域の焼成あるいは熱処理
における熱履歴検知用成形体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is for detecting a thermal history in a firing process of ceramics and the like, and particularly, a firing process of low temperature firing ceramics, electronic material ceramics, etc., a glaze firing process, a thick film metallizing process. The present invention relates to a molded body for detecting heat history in firing or heat treatment in a low temperature range of 550 to 1200 ° C. in an oxidizing atmosphere in a heat treatment step of a metal material.

【0002】[0002]

【従来の技術】セラミックスなどの焼成工程において、
温度プロファイル、焼成炉の種類、炉内のセッティング
などによって被焼成体の受ける熱履歴は変化する。即
ち、焼成温度が同じでも他の条件が異なれば熱履歴は異
なることとなり、この熱履歴を正しく検知する必要があ
った。例えば、実開昭56−29441号公報などに示
されているゼーゲルコーンを用いて被焼成体の熱履歴を
検知することが行なわれていた。ゼーゲルコーンとは、
溶倒温度の異なる複数の三角錐状体を支持台上に備えた
ものであり、このゼーゲルコーンを被焼成体と共に焼成
した後、各三角錐状体の倒れ方によって、熱履歴を検知
するようになっていた。しかし、これでは正確な検知が
できないことから、現在では使用されることが少なくな
っている。
2. Description of the Related Art In the firing process of ceramics and the like,
The thermal history of the object to be fired varies depending on the temperature profile, the type of firing furnace, the settings in the furnace, and the like. That is, even if the firing temperature is the same, the thermal history will be different if other conditions are different, and it is necessary to correctly detect this thermal history. For example, the thermal history of a body to be fired has been detected using a Zegel cone as disclosed in Japanese Utility Model Publication No. 56-29441. What is Zegel Cone?
It is equipped with a plurality of triangular pyramids with different melting temperatures on the support, and after firing this Zegel cone together with the object to be fired, the thermal history can be detected depending on the falling direction of each triangular pyramid. Was becoming. However, since it cannot detect accurately, it is now less used.

【0003】そこで、例えば特開平1−184388号
公報などに示されているように、セラミックスの未焼成
体を用いて、この成形体を被焼成体と共に焼成した後、
収縮による寸法変化を測定することによって、熱履歴を
検知することが行なわれていた。
Therefore, as disclosed in, for example, Japanese Unexamined Patent Publication No. 1-184388, an unsintered body of ceramics is used, and this molded body is fired together with an article to be fired.
Thermal history has been detected by measuring dimensional changes due to shrinkage.

【0004】例えば、図2に示すようなリング状の成形
体20、あるいは図3に示すようなシート状の成形体3
0が用いられていた。
For example, a ring-shaped molded body 20 as shown in FIG. 2 or a sheet-shaped molded body 3 as shown in FIG.
0 was used.

【0005】なお、このような焼成収縮による寸法変化
を測定する場合、寸法変化は便宜的に温度に変換される
が、この温度は実温を測定したものではなく、熱履歴を
示すものであって、本発明では指示温度と呼ぶこととす
る。
When measuring the dimensional change due to such firing shrinkage, the dimensional change is expediently converted into a temperature, but this temperature is not a measurement of the actual temperature but a thermal history. Therefore, in the present invention, it is referred to as an instruction temperature.

【0006】[0006]

【発明が解決しようとする課題】ところが、上記の熱履
歴検知用セラミックス成形体は、Al2 3 、Si
2、MgOなどを主成分とし、多量の不純物を含む粗
製原料から成るものであったため、焼成収縮率にバラつ
きがあり、検知された指示温度の精度が悪かった。
However, the above-mentioned ceramic molded body for detecting thermal history is not suitable for Al 2 O 3 and Si.
Since the raw material was composed of a crude raw material containing O 2 and MgO as main components and containing a large amount of impurities, the firing shrinkage ratio varied, and the accuracy of the detected indicated temperature was poor.

【0007】また、図2に示すリング状のものでは、面
積が大きいため、焼成炉内で広いスペースを必要とし、
図3に示すシート状のものでは、ソリが発生して正しく
寸法を測定できないなどの問題点があった。
Further, the ring-shaped one shown in FIG. 2 has a large area, and thus requires a large space in the firing furnace.
The sheet-like material shown in FIG. 3 has a problem that warpage occurs and the dimension cannot be measured correctly.

【0008】さらに、リング状のものはおよそ1100
℃以上、シート状のものでおよそ1000℃以上でしか
測定できず、1000℃以下では使用できなかった。前
記ゼーゲルコーンでは1000℃以下にも使用するもの
があるが、検知精度が悪かった。即ち、従来の熱履歴検
知用成形体では、1000℃以下の熱履歴を精度よく検
知することが不可能であった。
Further, the ring-shaped one is about 1100.
A sheet-like product having a temperature of 1000 ° C or higher can be measured only at about 1000 ° C or higher, and cannot be used at 1000 ° C or lower. Some of the Zegel cones can be used at 1000 ° C. or lower, but the detection accuracy was poor. That is, it was impossible for the conventional molded article for detecting heat history to accurately detect heat history at 1000 ° C. or less.

【0009】[0009]

【課題を解決するための手段】そこで、本発明は、骨剤
を成すアルミナなどのセラミック粉末5〜90重量%
と、結合剤としてのガラス粉末10〜95重量%からな
る混合物の未焼成成形体を熱履歴検知用成形体としたも
のである。
Therefore, according to the present invention, 5 to 90% by weight of ceramic powder such as alumina forming an aggregate is used.
And a green body of a mixture of 10 to 95% by weight of glass powder as a binder is used as a thermal history detecting body.

【0010】このような本発明によれば、成形体の組
成、粉砕粒度、密度を管理することによって、指示温度
の精度のバラつきを±2℃とすることができた。なお、
本発明において、ガラス粉末を10〜95重量%以上と
したのは、10重量%未満では1200℃において殆ん
ど焼成収縮が生じないためであり、逆にガラス成分が9
5重量%より多いとソリや変形が生じやすくなるためで
ある。
According to the present invention as described above, by controlling the composition, the crushed particle size and the density of the molded body, it was possible to make the variation in the accuracy of the indicated temperature ± 2 ° C. In addition,
In the present invention, the glass powder content is set to 10 to 95% by weight or more because if it is less than 10% by weight, almost no firing shrinkage occurs at 1200 ° C.
This is because warp and deformation are likely to occur when the content is more than 5% by weight.

【0011】また、本発明において、より低温での熱履
歴を検知するためには、セラミック粉末5〜70重量
%、ガラス粉末30〜95重量%の範囲としたものが好
ましい。
Further, in the present invention, in order to detect the heat history at a lower temperature, it is preferable that the range of ceramic powder is 5 to 70% by weight and the range of glass powder is 30 to 95% by weight.

【0012】さらに、本発明の成形体の平均粒子径は1
0μm以下、好ましくは5μm以下が良く、このような
粒子径の小さな原料粉末を用いることで、焼成収縮のバ
ラつきを少なくすることができる。
Further, the average particle size of the molded article of the present invention is 1
It is preferably 0 μm or less, preferably 5 μm or less. By using such a raw material powder having a small particle diameter, it is possible to reduce variations in firing shrinkage.

【0013】[0013]

【実施例】以下、本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0014】図1(a)(b)に示すように、本発明の
熱履歴検知用成形体10は、円板体に平行な弦部12、
12を形成したものであり、残された円弧部は優れた真
円度の測定面11、11としてある。また、表裏を区別
するための凹部13が片面に形成され、上下面の角部に
は面取り14が施されている。なお、凹部13は単なる
凹形状でもよいが、使用温度範囲を示す記号等を刻印し
てもよい。
As shown in FIGS. 1 (a) and 1 (b), the thermal history detecting molded body 10 of the present invention has a chord portion 12 parallel to the disk body.
12 is formed, and the remaining circular arc portions serve as measurement surfaces 11 having excellent roundness. Further, a recess 13 for distinguishing between the front and the back is formed on one surface, and chamfers 14 are provided on the upper and lower corners. The concave portion 13 may have a simple concave shape, but may have a mark or the like indicating the operating temperature range.

【0015】さらに、この成形体10は、セラミック粉
末5〜90重量%と、ガラス粉末10〜95重量%の混
合物をプレス成形してなる未焼成成形体である。
The compact 10 is an unsintered compact formed by press-molding a mixture of 5 to 90% by weight of ceramic powder and 10 to 95% by weight of glass powder.

【0016】ここで、上記セラミック粉末としては、ア
ルミナ(Al2 3 )、ジルコニア(ZrO2 )、ムラ
イト(3Al2 3 ・2SiO2 )、ステアタイト(M
gO・SiO2 )、スポジューメン、フォルステライト
(2MgO・SiO2 )などの酸化物セラミックス、あ
るいは窒化珪素(Si3 4 )、炭化珪素(SiC)、
窒化アルミニウム(AlN)などの非酸化物セラミック
スを用いれば良い。なお、上記非酸化物セラミックス自
体はガラスとの濡れ性が悪いが、その表面に酸化膜を形
成することで濡れ性を良くし、ガラスとの混合成形体を
得ることができる。
Here, as the ceramic powder, alumina (Al 2 O 3 ), zirconia (ZrO 2 ), mullite (3Al 2 O 3 .2SiO 2 ), steatite (M
gO · SiO 2), spodumene, forsterite (2MgO · SiO 2) oxide ceramics or silicon nitride (Si 3 N 4, the like), silicon carbide (SiC),
A non-oxide ceramic such as aluminum nitride (AlN) may be used. The non-oxide ceramics themselves have poor wettability with glass, but an oxide film is formed on the surface of the non-oxide ceramics to improve wettability, and a mixed molded product with glass can be obtained.

【0017】一方、ガラス粉末の種類はどのようなもの
でも用いることができる。即ち、ガラス粉末としては、
各種のケイ酸塩ガラスをはじめとして、PbO、Ba
O、ZnO、Li2 O、Na2 O、K2 Oその他の特殊
粉末を含む特殊ガラス、結晶化ガラスを用いることがで
きる。いずれのガラス粉末を用いるかということは、酸
化物セラミック粉末と混合してなる成形体の収縮特性に
より、任意に選定される。
On the other hand, any kind of glass powder can be used. That is, as the glass powder,
Various silicate glasses, PbO, Ba
Special glass or crystallized glass containing special powder of O, ZnO, Li 2 O, Na 2 O, K 2 O or the like can be used. Which glass powder is used is arbitrarily selected depending on the shrinkage property of the molded body mixed with the oxide ceramic powder.

【0018】例えば、本発明で使用されるガラス粉末の
一例を表1に示す。
For example, Table 1 shows an example of the glass powder used in the present invention.

【0019】[0019]

【表1】 [Table 1]

【0020】そして、後述するように、ある条件下で焼
成温度を変化させて、この成形体10の焼成後の寸法を
測定し、寸法と焼成温度の関係を換算表として用意して
おく。その後異なる条件で焼成を行なう際に、被焼成体
と共にこの成形体10を焼成し、焼成後の寸法を測定す
ることによって、上記換算表により指示温度を求めるこ
とができる。
Then, as will be described later, the firing temperature is changed under a certain condition, the dimension of the molded body 10 after firing is measured, and the relationship between the dimension and the firing temperature is prepared as a conversion table. Then, when firing is performed under different conditions, the molded body 10 is fired together with the body to be fired, and the dimensions after firing are measured, whereby the indicated temperature can be obtained from the conversion table.

【0021】なお、前記したように、この指示温度と
は、実際の温度ではなく、熱履歴を便宜的に表したもの
である。即ち、本発明の熱履歴検知用成形体を用いれ
ば、焼成条件が異なる場合でも、指示温度を求めること
によって、熱履歴自体を管理することが可能となる。
As described above, the indicated temperature is not an actual temperature but a thermal history for convenience. That is, by using the heat history detecting molded body of the present invention, it is possible to manage the heat history itself by obtaining the indicated temperature even when the firing conditions are different.

【0022】また、本発明の成形体10は、弦部12、
12をもっていることから、図2に示した従来例に比べ
て面積が小さく、焼成炉内で大きなスペースを必要とし
ない。なお、この弦部12、12は互に平行でなくても
よく、一ケ所のみに形成してもよい。さらに、本発明の
成形体10は、ある程度の肉厚をもったプレス成形品で
あるから、ソリなどが生じることはなく、また寸法測定
時には、図1(a)に示すように、円弧をした測定面1
1、11簡を定圧マイクロメータで測定すればよく、測
定位置がずれても、同じ直径Dを正確に測定できる。
Further, the molded body 10 of the present invention has a string portion 12,
Since it has 12, the area is smaller than that of the conventional example shown in FIG. 2, and a large space is not required in the firing furnace. The string portions 12 and 12 do not have to be parallel to each other and may be formed at only one place. Furthermore, since the molded product 10 of the present invention is a press-molded product having a certain thickness, warpage does not occur, and during dimension measurement, an arc is formed as shown in FIG. 1 (a). Measurement surface 1
It suffices to measure 1 and 11 with a constant pressure micrometer, and the same diameter D can be accurately measured even if the measurement position is deviated.

【0023】実験例1 骨剤として精製した純度99.9%以上のアルミナ原料
からなるセラミック粉末と、結合剤として表2に示した
組成を有するガラス粉末を混合し、アルミナボールによ
り湿式粉砕し、レーザー光散乱法による粒度分析を行な
って、平均粒径2.0±0.1μmの範囲とする。この
原料粉末に8重量%のワックス系バインダを添加、混合
し、噴霧乾燥することによって、流動性の良い顆粒を得
る。この顆粒を、空調された成形室にて、図1(a)
(b)に示す形状にプレス成形するが、このとき、成形
体の生密度を1.6〜2.2±0.005g/cm3
範囲内として、本発明の熱履歴検知用成形体を得た。
Experimental Example 1 Ceramic powder made of an alumina raw material having a purity of 99.9% or more, which was purified as an aggregate, and glass powder having a composition shown in Table 2 as a binder were mixed and wet-ground with an alumina ball, Particle size analysis is carried out by a laser light scattering method to obtain an average particle size of 2.0 ± 0.1 μm. To this raw material powder, 8% by weight of a wax binder is added, mixed, and spray-dried to obtain granules having good fluidity. The granules were placed in an air-conditioned molding room as shown in FIG.
Press molding is performed into the shape shown in (b). At this time, the green body of the present invention is set to have a green density within the range of 1.6 to 2.2 ± 0.005 g / cm 3 , and the heat history detecting molded article of the present invention is obtained. Obtained.

【0024】この成形体の調合組成と、収縮特性の関係
を表3に示した。この結果、アルミナとガラスA、およ
びアルミナとガラスBの組合せで、550〜1200℃
の低温温度域において熱履歴検知用成形体として利用可
能であることがわかる。なお、セラミック粉末が10%
と少ないNo.1の組成では焼成時にやや変形がみられ
たが、ガラス粉末として結晶化ガラスを使用すれば変形
を防止できる。ただし、セラミック粉末が5重量%より
も少ないとソリなどの変形が生じやすかった。一方、セ
ラミック粉末が90重量%と多いNo.10の組成では
1200℃で収縮しなかったことから、セラミック粉末
が90重量%より多いと、本発明の目的とする低温温度
域での熱履歴検知ができない。したがって、セラミック
粉末は5〜90重量%、ガラス粉末は10〜95重量%
の範囲のものが良かった。
Table 3 shows the relationship between the compounding composition of this molded article and the shrinkage property. As a result, in the combination of alumina and glass A, and alumina and glass B, 550 to 1200 ° C.
It can be seen that it can be used as a molded article for detecting thermal history in the low temperature range. 10% ceramic powder
And less No. Although the composition of No. 1 showed some deformation during firing, the deformation can be prevented by using crystallized glass as the glass powder. However, if the ceramic powder is less than 5% by weight, deformation such as warpage is likely to occur. On the other hand, the ceramic powder containing as much as 90% by weight of No. Since the composition of 10 did not shrink at 1200 ° C., if the content of the ceramic powder is more than 90% by weight, the thermal history cannot be detected in the low temperature range targeted by the present invention. Therefore, ceramic powder is 5 to 90% by weight, glass powder is 10 to 95% by weight.
Those in the range of were good.

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】実験例2 上記表3中のアルミナが70重量%、ガラスAが30重
量%の場合について、実施例1と全く同様にして、直径
が22.300mmの熱履歴検知用成形体10を用意し
た。この成形体10を厳密に管理校正された焼成炉を用
いて、酸化雰囲気にて、昇温速度200℃/時、最高焼
成温度で2時間保持、降温速度300℃/時として焼成
し、350℃で1時間脱脂した。焼成後の成形体10の
寸法を、20℃にて定圧マイクロメータで測定した。
Experimental Example 2 In the case of 70% by weight of alumina and 30% by weight of glass A in Table 3 above, a heat history detecting molded body 10 having a diameter of 22.300 mm was prepared in exactly the same manner as in Example 1. I prepared. This molded body 10 was fired at a temperature rising rate of 200 ° C./hour, a maximum firing temperature of 2 hours, and a temperature lowering rate of 300 ° C./hour in an oxidizing atmosphere using a firing furnace rigorously controlled and calibrated to 350 ° C. It was degreased for 1 hour. The dimension of the molded body 10 after firing was measured at 20 ° C. with a constant pressure micrometer.

【0028】焼成温度(指示温度)を様々に変化させ
て、それぞれ20個の成形体10の焼成を3回繰返して
行なった。この結果は、表4および図4に示す通りであ
る。また、各温度における寸法のばらつき(3σ)と、
その温度での1℃当りの寸法変化量(接線の傾き)か
ら、 指示温度の検知精度=±(寸法のばらつき)/(1℃当
りの寸法変化量) により、指示温度の検知精度(3σ)を算出した。結果
は、表4に示す通り、650〜850℃の範囲内で、指
示温度の検知精度を±2℃以内とすることができた。さ
らに、表4では、指示温度50℃毎の成形体の寸法を示
しているが、もっと細かな指示温度ごとの寸法を測定し
ておくことによって、成形体の寸法と指示温度の換算表
とすることができる。
The firing temperature (instructed temperature) was variously changed, and the firing of each of the 20 molded bodies 10 was repeated three times. The results are shown in Table 4 and FIG. In addition, the dimensional variation (3σ) at each temperature,
From the amount of dimensional change per 1 ° C (tangent slope) at that temperature, the detection accuracy of the indicated temperature = ± (dimensional variation) / (the amount of dimensional change per 1 ° C), the detection accuracy of the indicated temperature (3σ) Was calculated. As a result, as shown in Table 4, within the range of 650 to 850 ° C., the detection accuracy of the indicated temperature could be set within ± 2 ° C. Further, although Table 4 shows the dimensions of the molded body for each indicated temperature of 50 ° C., it is possible to obtain a conversion table between the dimensions of the molded body and the indicated temperature by measuring the dimensions for each of the finer indicated temperatures. be able to.

【0029】[0029]

【表4】 [Table 4]

【0030】なお、以上の実施例ではセラミック粉末と
してアルミナを用いたもののみを示したが、この他にジ
ルコニア、ムライトなどの酸化物セラミックスや、窒化
珪素、炭化珪素などの非酸化物セラミックスを用いても
ほぼ同様の結果であった。
In the above examples, only alumina powder was used as the ceramic powder, but other oxide ceramics such as zirconia and mullite, and non-oxide ceramics such as silicon nitride and silicon carbide are used. However, the result was almost the same.

【0031】[0031]

【発明の効果】このように本発明によれば、セラミック
粉末5〜90重量%と、ガラス粉末10〜95重量%の
混合物の未焼成成形体から熱履歴検知用成形体を構成し
たことによって、550〜1200℃程度の低温におい
て、指示温度の検知精度を±2℃以下と極めて高精度に
できることから、焼成条件が変わっても焼成工程を厳密
に管理することができ、優れた焼結体を得ることが可能
となる。
As described above, according to the present invention, the thermal history detecting molded body is constituted by the unfired molded body of the mixture of the ceramic powder of 5 to 90% by weight and the glass powder of 10 to 95% by weight. At a low temperature of about 550 to 1200 ° C, the detection accuracy of the indicated temperature can be made extremely high at ± 2 ° C or less, so that the firing process can be strictly controlled even if the firing conditions change, and an excellent sintered body can be obtained. It becomes possible to obtain.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の熱履歴検知用成形体を示す平
面図、(b)は(a)中のX−X線断面図である。
FIG. 1A is a plan view showing a heat history detection molded body of the present invention, and FIG. 1B is a sectional view taken along line XX in FIG.

【図2】従来の熱履歴検知用成形体を示す斜視図であ
る。
FIG. 2 is a perspective view showing a conventional molded body for heat history detection.

【図3】従来の熱履歴検知用成形体を示す斜視図であ
る。
FIG. 3 is a perspective view showing a conventional molded body for heat history detection.

【図4】本発明の熱履歴検知用成形体における、指示温
度と焼成収縮率の関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the indicated temperature and the firing shrinkage in the thermal history detection molded body of the present invention.

【符号の説明】[Explanation of symbols]

10・・・熱履歴検知用成形体 11・・・測定面 12・・・弦部 13・・・凹部 14・・・面取り 10 ... Mold for heat history detection 11 ... Measurement surface 12 ... Chord portion 13 ... Recessed portion 14 ... Chamfer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】アルミナ、ジルコニア、ムライト、炭化珪
素、窒化珪素などのセラミック粉末5〜90重量%と、
結合材としてのガラス粉末10〜95重量%の混合物の
未焼成成形体から成ることを特徴とする熱履歴検知用成
形体。
1. A ceramic powder such as alumina, zirconia, mullite, silicon carbide or silicon nitride in an amount of 5 to 90% by weight,
A molded article for thermal history detection, comprising an unfired molded article of a mixture of 10 to 95% by weight of glass powder as a binder.
JP4230352A 1992-08-28 1992-08-28 Molded body for thermal history detection Expired - Fee Related JP2892229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4230352A JP2892229B2 (en) 1992-08-28 1992-08-28 Molded body for thermal history detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4230352A JP2892229B2 (en) 1992-08-28 1992-08-28 Molded body for thermal history detection

Publications (2)

Publication Number Publication Date
JPH0674835A true JPH0674835A (en) 1994-03-18
JP2892229B2 JP2892229B2 (en) 1999-05-17

Family

ID=16906515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4230352A Expired - Fee Related JP2892229B2 (en) 1992-08-28 1992-08-28 Molded body for thermal history detection

Country Status (1)

Country Link
JP (1) JP2892229B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064627A (en) * 2006-09-07 2008-03-21 Kyocera Corp Thermal history sensor
JP2017061394A (en) * 2015-09-24 2017-03-30 日本電気硝子株式会社 Granular powder for forming glass ceramic sintered body, glass ceramic temporarily sintered body and method for producing the same
CN113683428A (en) * 2021-09-10 2021-11-23 厦门市宏珏电子科技有限公司 Ceramic temperature measuring ring applied to low-temperature kiln
US11674587B2 (en) 2021-03-29 2023-06-13 Enplas Corporation Planetary gear device
US11859650B2 (en) 2021-03-29 2024-01-02 Enplas Corporation Gear device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064627A (en) * 2006-09-07 2008-03-21 Kyocera Corp Thermal history sensor
JP2017061394A (en) * 2015-09-24 2017-03-30 日本電気硝子株式会社 Granular powder for forming glass ceramic sintered body, glass ceramic temporarily sintered body and method for producing the same
US11674587B2 (en) 2021-03-29 2023-06-13 Enplas Corporation Planetary gear device
US11859650B2 (en) 2021-03-29 2024-01-02 Enplas Corporation Gear device
CN113683428A (en) * 2021-09-10 2021-11-23 厦门市宏珏电子科技有限公司 Ceramic temperature measuring ring applied to low-temperature kiln
CN113683428B (en) * 2021-09-10 2023-02-14 厦门市宏珏电子科技有限公司 Ceramic temperature measuring ring applied to low-temperature kiln

Also Published As

Publication number Publication date
JP2892229B2 (en) 1999-05-17

Similar Documents

Publication Publication Date Title
EP0210813B1 (en) Aluminum titanate.-mullite base ceramics
JP2005314215A (en) Dense cordierite sintered body and method of manufacturing the same
JPS649266B2 (en)
JPH0628947B2 (en) Double-layer heat-resistant plate for tool bricks
JP2892229B2 (en) Molded body for thermal history detection
JPH0572341B2 (en)
US3627547A (en) High alumina bodies comprising anorthite gehlenite and spinel
JP2899920B2 (en) Molded body for thermal history detection
Hall Secondary Expansion of High‐Alumina Refractories
JP2008044814A (en) Ceramic composite material and bottom board for firing
JP2941495B2 (en) Molded body for thermal history detection
JP2958166B2 (en) Molded body for thermal history detection
JP2948973B2 (en) Molded body for thermal history detection
JP3510978B2 (en) Temperature sensing element
JP3266352B2 (en) Molded body for thermal history detection
JP3170341B2 (en) Molded body for thermal history detection
Norton Pure beryllium oxide as a refractory
JPH0672061B2 (en) Molded body for heat history detection
JP4047050B2 (en) Low-temperature fired porcelain composition, low-temperature fired porcelain, and wiring board using the same
WO2023189338A1 (en) Wiring board
JP2003252677A (en) Ceramic-burning tool and method for producing the same
JP3137737B2 (en) Si-SiC shelf
Robinson et al. A survey of electrical ceramics
JPH0967169A (en) Firing jig and production of ceramic substrate formed by using the same
Aggarwal et al. Development of high strength whiteware bodies

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090226

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100226

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110226

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110226

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120226

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees